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ABSTRACT:
Timbre provides an important cue to identify musical instruments. Many timbral attributes covary with other

parameters like pitch. This study explores listeners’ ability to construct categories of instrumental sound sources

from sounds that vary in pitch. Nonmusicians identified 11 instruments from the woodwind, brass, percussion, and

plucked and bowed string families. In experiment 1, they were trained to identify instruments playing a pitch of C4,

and in experiments 2 and 3, they were trained with a five-tone sequence (F#3–F#4), exposing them to the way timbre

varies with pitch. Participants were required to reach a threshold of 75% correct identification in training. In the test-

ing phase, successful listeners heard single tones (experiments 1 and 2) or three-tone sequences from (A3–D#4)

(experiment 3) across each instrument’s full pitch range to test their ability to generalize identification from the

learned sound(s). Identification generalization over pitch varies a great deal across instruments. No significant differ-

ences were found between single-pitch and multi-pitch training or testing conditions. Identification rates can be pre-

dicted moderately well by spectrograms or modulation spectra. These results suggest that listeners use the most

relevant acoustical invariance to identify musical instrument sounds, also using previous experience with the tested

instruments. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0017100
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I. INTRODUCTION

When listening to music, we can often identify which

section of the orchestra is playing, and how our favorite part

in this concerto is the cello solo. So how do we perceive and

learn to distinguish and identify these instrumental sound

sources? In our sonorous world, timbre plays an important

role in the perception of music. It is a multidimensional attri-

bute of sound that accounts for many features unaccounted

for by other sound attributes such as pitch, loudness, and

duration (McAdams, 2019). Timbre, often referred to as

“sound color,” has a multitudinous set of perceptual attributes

that are often described with terms such as “brightness” or

“richness” or “roughness” (Saitis and Weinzierl, 2019). It is

one of the primary perceptual vehicles for recognition and

identification of a sound source (McAdams, 1993, 2019).

However, timbre is known to vary systematically with

changes in pitch on a given instrument (Siedenburg et al.,
2021). For example, different names are given to the various

registers of the clarinet: the dark, low chalumeau; the rich,

middle clarion; and the bright, high altissimo registers. The

timbral differences potentially complicate instrument identifi-

cation across the whole pitch range. The question is whether

this poses a problem for instrument identification in practice,

and if it does, whether the differences across pitch register

can be learned.

Ecological psychologists propose that “knowledge

acquisition involves the direct perception of an informa-

tional structure composed of systemic relationships; this

informational structure is isomorphic to the actual invariant

structure of whatever entity we are apprehending” [McCabe

(1986), p. 30]. In this sense, systematic relations among dif-

ferent events produced by a sound source across variations

in its mechanical properties (tube, string, or bar length,

which vary with pitch) should be apparent in invariant prop-

erties of the acoustics of those events. As such, learning to

identify an instrument at one pitch, should generalize to

other pitches if the mechanical properties create an acousti-

cal invariance over pitch, and listeners should be able to

judge relations between instruments independently of pitch.

Along these lines, Marozeau et al. (2003) found that timbre

spaces derived from dissimilarity ratings for recorded musi-

cal instrument tones are similar at three different pitches

(B3, C#4, and Bb4, where C4 is middle C), and that listeners

were able to ignore pitch differences within an octave when

they were asked to compare only the timbres of the tones.

However, in a similar study, Marozeau and de Cheveign�e
(2007) varied the pitch over a range of 18 semitones (an

octave and a half) for synthesized tones with different spec-

tral centroids and asked listeners to rate the dissimilarities of
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pairs of tones. They found a dimension of pitch in the multi-

dimensional space that was orthogonal to the timbre dimen-

sion and systematic distortion of the perceived spectral

centroid relations due to the pitch changes. Korsmit et al.
(2021) extended this study by employing the full pitch range

of 11 instruments. They found a dimension related to pitch

that was orthogonal to three dimensions related to timbre.

Studies with other approaches have focused on the way

timbre-pitch covariation is characterized in our mental cate-

gories for musical instruments. Handel and Erickson (2001)

examined how far timbre invariance could extend across

pitches by investigating how well listeners could determine

whether two instrumental notes at different pitches were

played on identical or different instruments. They found that

different kinds of errors in judgments occurred above vs at
or below one octave pitch separation. At intervals greater

than an octave (17–29 semitones), participants judged the

instrument pairs to be from different instruments even when

they were the same. They were able to distinguish same and

different pairs at intervals of 5, 7, and 12 semitones. In a

subsequent study, Handel and Erickson (2004) focused on

whether timbre perception can independently affect listeners’

ability to recognize one instrument at different pitches. In

their second experiment, they investigated listeners’ ability to

identify an oddball instrument as a function of its pitch place-

ment with respect to two other notes played in sequence by

another instrument. An outlying pitch was most often chosen

as the oddball, irrespective of its instrument, when the two

woodwinds (clarinet and English horn) were paired. The task

was performed correctly more often when a woodwind was

paired with a brass instrument. The result shows that, despite

timbre being the primary perceptual cue for identification,

the listener still uses pitch differences secondarily to discrim-

inate between instruments of similar timbre. Therefore, it is

difficult to judge source timbre similarity independently of

pitch, unless the timbres are strikingly different. However,

Steele and Williams (2006) found that musician listeners can

recognize sounds as coming from the same instrument at

intervals of more than two octaves. Therefore, there do seem

to be limits to timbral invariance across pitch that appear to

depend on musical training.

The Steele and Williams (2006) result suggests that the

timbre-pitch covariation can be learned. Stilp et al. (2010)

have demonstrated that passive exposure to highly correlated

acoustic properties results in a collapse of the two unitary

dimensions (temporal envelope and spectral shape in their

case) into a single perceptual dimension. They note that this

is an important feature of perceptual learning given that natu-

ral sounds are complex and typically change along multiple

acoustic dimensions that covary in accord with physical laws

governing sound-producing sources. The adaptation to corre-

lated attributes could be a mechanism for efficient coding of

sound source properties (Lewicki, 2002), perhaps including

those that lead to categorization and identification.

Various auditory features of sounds contribute to their

identification (McAdams, 1993). Attack transients or the

temporal envelope more globally, is one important feature

(Saldanha and Corso, 1964). The of the resonator or sound-

ing object is also crucial (Giordano and McAdams, 2010) as

is, and perhaps more importantly, the action by which a

sounding body is excited (Lemaitre and Heller, 2012).

This paper will contrast two hypotheses: (1) the acous-

tic invariance hypothesis states that the properties of a given

instrument sound should be generalizable across pitches it

produces; (2) the correlational learning hypothesis states

that exposure to covariation of perceptual properties such as

pitch and timbre in identification training should enhance

performance, perhaps beyond the learned stimuli if the

nature of the covariation can be extrapolated. We pose a

number of questions.

(1) Do we pick up invariant properties in the sound and

then use those to categorize other sounds as coming

from the same sound source? This model would predict

a flat curve (to the extent to which they are completely

invariant) of recognition across pitch, independently of

the pitch at which an identification training stimulus is

positioned.

(2) Do we need to experience the way an important feature

for identification varies with another feature in order to

learn their correlation and use that to extrapolate to other

instances? This model would predict better performance

when correlated variation is provided in training, and

the identification performance would be more con-

strained around a single training tone’s pitch than

around a wider range of training pitches, with perhaps

increased performance at pitches outside the training

set.

(3) Do we need to experience all possible combinations of

features (at least appropriately sampled across their

ranges) in order to build a mental model of the sound

source category? This model would predict bumps in

the curves at the training pitches and lower performance

beyond.

One aim of this paper, related to the first question, is to

examine potential acoustic invariances and their relation to

identification performance. From a biological perspective,

many studies have used auditory models to assess timbre

similarities and timbre perception (Patil et al., 2012; Thoret

et al., 2021). Historically, the modeling of sensory represen-

tations of sound has been based on waveforms and spectro-

grams. Incoming signals arrive at the cochlea and the

mechanical waves excite the basilar member from base to

apex. The selectivity of the basilar membrane excitation pat-

tern is observed to be non-linear but involves a quasi-

logarithmic scale due to the biomechanical properties of the

membrane [for more details see Thoret et al. (2017)].

Therefore, the abstraction of the acoustic signal at the

cochlear level can be interpreted as a log-frequency spectro-

gram, also known as the auditory spectrogram (Chi et al.,
2005), although other studies have used a linear frequency

scale [e.g., Elliott et al. (2013)]. More recently, studies have

investigated the role of higher cortical networks such as the

primary auditory cortex. These studies have revealed that
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neurons of these areas seem to fire to specific acoustical pat-

terns—spectral and temporal modulations—of an incoming

acoustic signal (Shamma, 2001). Some studies have pro-

vided evidence for the prominent role of spectrotemporal

modulations for timbre perception (Patil et al., 2012; Elliott

et al., 2013; Thoret et al., 2021) and sound source classifica-

tion (Thoret et al., 2016, 2017).

Incorporating spectrotemporal modulation analysis into

timbre perception models may lead to greater understanding

of both the mental representation of musical sounds and

their storage in memory. Spectrotemporal modulations

roughly correspond to the 2D Fourier transform of the spec-

trogram and are called the modulation power spectrum

(MPS) (Singh and Theunissen, 2003). This representation

reveals the regularities and periodicities of the spectrogram

in the temporal and spectral dimensions. This neuromimetic

mathematical formulation provides an efficient way to

model perceptual dissimilarity judgments between instru-

ments (Patil et al., 2012; Thoret et al., 2021) and musical

instrument categorization (Thoret et al., 2016, 2017), as

well as providing a tool for automatic classification of dif-

ferent timbres (Patil et al., 2012; Hemery and Aucouturier,

2015). Hence, the MPS provides a relevant tool to investi-

gate which invariant acoustical structures might be relevant

to memorize and identify musical instruments.

This paper investigates the relationship between timbre

and pitch and addresses the question of whether we learn to

identify instruments by the aspects of timbre that remain

consistent across pitch (acoustically invariant properties) or

by learning how the timbre varies with pitch (learned corre-

lations), thereby extrapolating the timbre variation to iden-

tify instruments on untrained pitches. Furthermore, through

an acoustic analysis, the paper also investigates whether the

underlying generalization mechanism can be predicted from

complete, unified acoustic representations, which would

support the role of acoustic invariance across registers.

To test both aforementioned hypotheses, we focus on lis-

teners’ ability to generalize learning to identify musical instru-

ments in a constrained pitch register to other registers under

different training and testing stimulus conditions. We train par-

ticipants to identify the selected instruments from either a sin-

gle pitch (experiment 1) or a sequence of five pitches spanning

an octave (experiments 2 and 3). We then test their ability to

extrapolate their knowledge to identify the instrument from

single tones (experiments 1 and 2) or three-pitch sequences

spanning six semitones over the instrument’s whole pitch range

(experiment 3). This investigation is thus divided into three

parts. Experiment 1 examines the ability to extrapolate identifi-

cation from learning based on a single pitch in building mental

models of instruments. Experiment 2 examines further the

hypothesis by providing more stimulus samples to indicate

how timbre varies with pitch in training to build an improved

mental model of instruments, which is tested under the same

conditions as experiment 1. Furthermore, we also hypothesize

that by increasing the number of tones in each stimulus of the

testing phase, we might improve the participants’ success in

applying their training and identifying the sounds correctly.

Therefore, in experiment 3, the provided information on pitch-

timbre covariation remained the same as in experiment 2, but

in the testing phase, the listeners are asked to identify instru-

ments with a three-tone sequence (an augmented triad) in

untrained registers. In order to better understand the timbral

properties that underpin timbre-pitch covariation perception,

we further analyze the results of the experiments in relation to

the information in spectrograms and modulation power spectra,

which may reveal relevant invariant acoustical structures

involved in these recognition tasks.

II. METHODS

Methods common to all three experiments will be pre-

sented first, followed by specifics of each experiment.

A. General methods

1. Participants

All participants were nonmusicians, defined as a person

having one year or less of musical training in elementary

school and not having been involved in musical practice or

study since then. All participants gave informed written con-

sent and received compensation for their participation in the

study. This study was certified for ethical compliance by the

McGill University Research Ethics Board II.

2. Stimuli

The experimental sound stimuli were drawn from two

collections: the Vienna Symphonic Library (2015) and the

McGill University Master samples (Opolko and Wapnick,

2006). The sounds were produced by instruments playing at a

mezzo forte level at different durations and were recorded

using a sample rate of 44.1 kHz. To unify them, a 50-ms

raised cosine fade-out amplitude envelope was used to create

a constant duration of 500 ms. The initial attack portion was

not modified as it contributes significantly to instrument iden-

tification (Saldanha and Corso, 1964). The levels of the

sounds in the Sennheiser HD280 Pro headphones (Sennheiser

Electronic GmbH, Wedemark, Germany) varied between

75.8 and 83.7 dB SPL as measured with a Br€uel & Kjær type

2205 sound-level meter (A-weighting) and a Bruel and Kjær

type 4153 artificial ear to which the headphones were cou-

pled (Bruel and Kjær, Nærum, Denmark).

The traditional orchestral instruments used for the

experiment were selected such that their playing ranges

included the octave around middle C (C4, 261.6 Hz funda-

mental), which is the center pitch used to train participants

to identify the instruments. We collected stimulus samples

at intervals of three semitones starting from C4 to the lower

and upper ends of each instrument’s range, spanning from

C1 (30.9 Hz) to F#7 (2960.0 Hz) for the instrument with the

widest range, the harp.

Table I lists the instruments with their instrument families

and playing range. Figure 1 further displays the playing ranges

of each instrument in relation to each other: the red vertical bar

highlights C4, the training pitch in experiment 1. The yellow
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region highlights the octave that encircles C4, including pitches

F#3, A3, C4, D#4, F#4 played in succession as an arpeggio for

the training stimuli in experiments 2 and 3.

3. Procedure

After obtaining signed informed consent from the partic-

ipants, they were seated in an audiometric booth and fitted

with headphones. Prior to the start of the experimental study,

participants were screened with a standardized pure-tone

audiometric test separately in the left and right ears at octave-

spaced frequencies from 125 Hz to 8000 Hz (International

Organization for Standardization, 2004; Martin and

Champlin, 2000). The participants were required to have

threshold at or below 20 dB HL (relative to a standardized

hearing threshold) to proceed to the main experiment.

The main experiment was divided into three phases:

familiarization, training, and testing. During the familiariza-

tion stage, all the instrument names appeared on the screen

and a click on a name would produce the corresponding

training stimulus for that instrument in each experiment.

The participants took as long as needed for the familiariza-

tion stage. They were instructed to proceed to the training

phase once they felt comfortable and familiar with the asso-

ciation between the instrument names and their correspond-

ing C4 sounds.

In each trial of the training phase, the participant heard

a training stimulus (C4 for experiment 1, arpeggio centered

on C4 for experiments 2 and 3) and had to select the corre-

sponding instrument name from the list of 11 instruments.

They had a one-time replay button to hear the sound again.

Feedback was provided. The name flashed green if the

response was correct. If it was incorrect, the name flashed

red and the correct name flashed green. The training phase

was programmed in blocks of 11 trials corresponding to the

11 instruments, the order of which was randomized within

each block. When the participant reached at least 75% accu-

racy (a score of nine or more correct out of 11 in each block)

for four consecutive blocks, they moved from the training

phase to the testing phase. However, if they did not reach

this threshold within 20 blocks, the experimental program

would terminate, and the participant would not move on to

the testing phase.

Successful participants continued to the testing phase,

where test stimuli across the entire range of each instrument

were presented in randomized order (151 stimuli for experi-

ment 1, 156 for experiment 2, 134 for experiment 3). Their

task, similar to the previous phase, was to identify the sam-

pled instrument for each test stimulus. A one-time replay

button was provided, but no feedback was given in this

phase. The trials were divided into three blocks, and partici-

pants had the option of taking breaks between blocks. Once

they finished identifying the test stimuli, the experiment

terminated.

TABLE I. List of instruments sampled.

Family Instrument Pitch range

Cello (bowed) C2–D#6

String Harp (plucked) C1–F#7

Acoustic guitar (plucked) F#2–C6

Brass
Tenor trombone F#2–F#4

Tuba C2–F#4

English horn F#3–A5

Woodwind Clarinet D#3–F#6

Tenor saxophone A2–D#5

Marimba C2–C7

Pitched percussion Tubular bell F#3–D#5

Vibraphone F#3–D#6

FIG. 1. (Color online) Instrument playing ranges and the range of stimuli used.
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At the end of the experiment, whether the participant

moved on to the testing phase or not, they were asked to

complete a questionnaire regarding their general demo-

graphics, music listening habits, and musical experience.

4. Apparatus

The participants completed both the screening and the

main experiment seated in an IAC model 120act-3 double-

walled audiometric booth (IAC Acoustics, Bronx, NY).

Sounds stored on a Mac Pro 5 computer running OS 10.6.8

(Apple Computer, Inc., Cupertino, CA) were amplified

through a Grace Design m904 monitor (Grace Digital

Audio, San Diego, CA) and presented over Sennheiser

HD280 Pro headphones (Sennheiser Electronic GmbH,

Wedemark, Germany). The experimental session was pro-

grammed in the PsiExp computer environment (Smith,

1995). The levels of sounds were measured with a Br€uel &

Kjær type 2205 sound-level meter (A-weighting) with a

Br€uel & Kjær type 4153 artificial ear to which the head-

phones were coupled (Br€uel & Kjær, Nærum, Denmark).

B. Experiment 1

1. Participants

Forty-one nonmusician participants were recruited

through advertisement on Facebook and McGill Classified

Marketplace. Participants’ ages ranged from 20 to 50 years

(M¼ 20.7, 26 females). One participant failed the audiomet-

ric screening test and 15 failed the training phase. Twenty-

five participants completed the testing phase, indicating that

they had learned the training stimuli and were therefore kept

for the subsequent analyses of how listeners extrapolate

from such learning.

2. Stimuli and procedure

The familiarization and training stimuli were single C4

tones produced by each instrument. The test stimuli were

single tones drawn from the 156 stimulus tones across

instruments and pitch registers (Fig. 1). Due to a program-

ming error, five tones in the higher register (C5, D#5, F#5,

A5, C6) of the guitar were not presented. There were thus

151 test stimuli. Comparative analyses across experiments

will exclude these five stimuli.

C. Experiment 2

1. Participants

Twenty-seven nonmusician participants were recruited

through advertisement on Facebook and McGill Classified

Marketplace. None had participated in experiment 1. All lis-

teners verbally confirmed that they had not previously par-

ticipated in any other instrument identification study. Their

ages ranged from 18 to 49 years (M¼ 22.3, 16 female). One

participant failed the audiometric screening, and one failed

the training phase. Twenty-five participants completed the

testing phase.

2. Stimuli and procedure

The familiarization and training stimuli in experiment 2

consisted of an ascending arpeggio (F#3, A3, C4, Eb4, F#4)

to provide information about covariation of pitch and tim-

bre. The 156 test stimuli were single tones, identical to those

of experiment 1, with the addition of the five missing guitar

tones.

D. Experiment 3

1. Participants

Twenty-nine nonmusician participants were recruited

through advertisement on Facebook and McGill Classified

Marketplace. None had participated in experiments 1 and 2.

All listeners verbally confirmed that they had not previously

participated in any other instrument identification study.

Their ages ranged from 18 to 28 years (M¼ 21.8, 18

female). All participants passed the audiometric screening,

but four failed the training phase. Twenty-five participants

completed the testing phase.

2. Stimuli and procedure

The familiarization and training stimuli in experiment 3

consisted of an ascending five-note arpeggio as in experi-

ment 2. The test stimulus was an ascending three-note

arpeggiated diminished triad; e.g., A3, C4, and D#4. Data

points refer to the central pitch of the triad. Given that three-

note arpeggios were presented instead of single notes, there

were only 134 trials in this experiment, because the lowest

and highest notes of each instrument could not be used.

III. RESULTS

The average number of training blocks to reach the

threshold of at least 75% correct identification for four con-

secutive blocks was 10.6 blocks in experiment 1, 8.2 blocks

in experiment 2, and 8.4 blocks in experiment 3. The differ-

ence between experiment 1 and experiments 2 and 3 com-

bined was only marginally significant when corrected for

unequal variances, t(32.38)¼1.76, p¼ 0.087. Furthermore,

15 participants failed the training phase in experiment 1 by

not reaching threshold performance within 20 blocks, but

there was only 1 failure in experiment 2 and 4 failures in

experiment 3. A test of equal proportions between the fail-

ures in experiment 1 and the combined failures of experi-

ments 2 and 3 was significant, X2(1)¼9.60, p¼ 0.002, This

result suggests that it is easier to learn the instrument identi-

fication task with more information about timbre-pitch

covariation.

To investigate and compare the participants’ results

across pitch, we looked at identification performance for

each instrument in all three experiments. Figures 2–5 repre-

sent the correct identification rate across pitch register for

each instrument in the string, woodwind, brass, and percus-

sion families, respectively, for all the experiments:

Experiment 1 in solid blue, with single-note training and

test, experiment 2 in long-dash red, with octave arpeggio
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training and single-note test, and experiment 3 in short-dash

green, with octave arpeggio training and triad arpeggio test.

Pitch is coded as MIDI number on the x axis with each inte-

ger representing a semitone. MIDI 60 is middle C or C4,

which is represented on the graph in the vertical line. The

range of within-octave pitches, used in the training of

experiments 2 and 3, is indicated in pale yellow. The opti-

mal range used in orchestration is indicated within the graph

FIG. 2. (Color online) Proportion correct identification as a function of pitch for the string instruments.

FIG. 3. (Color online) Proportion correct identification as a function of pitch for the woodwind instruments.
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of the string, woodwind, and brass instruments (Adler,

2002). The optimal range is not indicated for percussion

instruments as this concept is not meaningful in this case.

There is indeed a separate mechanical system that produces

each pitch which technically allows musicians to easily pro-

duce pitches over the whole range without any difficulties

whereas it might be difficult for other instrumentalists for

whom playability varies with the pitch to be produced.

The graphs present different patterns as a function of

the instrument. Instruments that present a peak at the train-

ing pitches are harp and saxophone. Clarinet and guitar have

broader regions beyond the training pitches, but perfor-

mance falls off at more extreme pitches. Cello and tubular

bells have relatively flat curves with no significant effect of

pitch, suggesting that some timbral invariant was extracted

from the training set that allowed the other pitches to be

identified easily. English horn and tuba have descending

graphs. The English horn is better recognized in the training

region, but the tuba is better recognized at pitches below the

training region in its optimal register. The tuba curve

extends over a surprisingly wide range of performance with

especially low identification in the highest register of tuba,

which is incidentally closest to the training tones.

The analysis of correct-response data were performed

with generalized linear mixed effects modeling with fixed

effects of pitch, experiment, and their interaction. Because

pitch often has a quadratic relationship with measures of

interest [e.g., McAdams et al. (2017)], we included both

FIG. 4. (Color online) Proportion correct identification as a function of pitch for the brass instruments.

FIG. 5. (Color online) Proportion correct identification as a function of pitch for the percussion instruments.
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linear and quadratic terms for this factor, minimizing the

correlation between them using orthogonal polynomials. To

fit an appropriate random effects structure, we followed the

approach advocated by Barr et al. (2013), which involves

finding the maximal random effects structure justified by the

data (i.e., that does not result in a singular fit). This approach

guards against the high type I error rates commonly found in

intercept-only mixed effects models (Schielzeth and

Forstmeier, 2009). We began by fitting a random intercept

for participant and then attempted to add random slopes for

both the quadratic and linear effects of pitch. No random

effects for experiment were included because this was a

between-subjects factor. If a model was singular, we first

dropped the random slope for quadratic pitch, leaving in the

linear random slope. If this wasn’t enough, we then dropped

the correlations between random slopes and random inter-

cepts. In one case (Tuba), random slopes had to be dropped

entirely. After fitting the maximal random effects structure,

we then tested fixed effects. If the experiment by linear/qua-

dratic pitch interaction was not significant, it was dropped

from the model. Significant fixed effects are indicated in

Table II.

The pitch factor was significant for most instruments

except cello and tubular bells, indicating a lack of generali-

zation from the training set to more distant pitches for nine

of the instruments. Finally, the pitch� experiment interac-

tion was only significant for cello, harp, and tuba. The

experiment factor, which varies the amount of information

provided on pitch-timbre covariation, was only marginally

significant for trombone and marimba.

For clarinet, saxophone, and marimba, the identification

curve is concave with respect to pitch. Identification is

higher in a certain restricted pitch register for these instru-

ments. For saxophone and marimba, there is a clear bump in

the training region and performance falls rapidly at higher

and lower pitches for saxophone and more gradually for

marimba, suggesting greater difficulty in generalizing iden-

tification across pitch for saxophone than for marimba.

However, the clarinet’s identification region is quite broad,

indicating that some timbral characteristics generalize

beyond the training region, but not across its entire range.

The trombone graph is increasing concave with a nar-

row bump that peaks just below the training region in the

middle of its optimal range. Instruments with decreasing

concave curves include harp and guitar. The harp’s bump

falls in the training range, and it is better recognized at

lower than at higher pitches. The guitar has a wider bump

extending below the training range and is also better identi-

fied at lower pitches.

Cello and tubular bells have nearly perfect identification

at some pitches, followed by marimba, clarinet, tuba, and

vibraphone. Plucked strings (guitar and harp) are identified

slightly less well in their best pitch range, followed by saxo-

phone and trombone. The most poorly identified instrument

overall is the English horn.

In subsequent analyses, given that there were no signifi-

cant differences between the three experiments, we use the

averaged data across all experiments to have a more general

representation of identification performance. To examine the

degree of generalization of identification across instruments,

we determined the range of pitches identified between the

maximum proportion correct and 75% of that maximum

(allowing for some fluctuations around this point in marimba

and vibraphone). This range and its expression as a percent-

age of the pitch range for each instrument in these experi-

ments are shown in Table III. Cello, guitar, clarinet, and the

percussion instruments have the greatest pitch range of

above-threshold performance. Cello, clarinet, and percussion

stand out as having the greatest degree of generalization

across pitch in relation to each instrument’s tessitura.

To further investigate trends in participants’ performance

in identifying the instruments, we analyzed identification

confusions for each instrument across its pitch range on the

average across experiments. We found that instruments are

TABLE II. Significant and marginal fixed effects in the generalized linear

mixed models for each instrument.

Instrument Fixed effect X2a p (effect) p (linear) p (quad.)

Cello Pitch � experiment 11.75 0.0193

Harp Pitch 53.63 <0.0001 0.0037 <0.0001

Pitch � experiment 14.84 0.0050

Guitar Pitch 18.30 0.0001 0.0011 0.0340

English horn Pitch 19.30 <0.0001 <0.0001 n.s.

Clarinet Pitch 34.18 <0.0001 n.s. <0.0001

Saxophone Pitch 44.54 <0.0001 n.s. <0.0001

Trombone Pitch 17.68 0.0001 0.0257 0.0002

Experiment 5.37 0.0680

Tuba Pitch 19.22 <0.0001 <0.0001 n.s.

Pitch � experiment 14.72 0.0053

Marimba Pitch 13.38 0.0012 n.s. 0.0003

Experiment 5.55 0.0623

Vibraphone Pitch 6.45 0.0400 0.0149 n.s.

Tubular bells No significant effects — —

aWald X2 is an omnibus test equivalent to ANOVA. Marginally significant

effects are indicated in italics. Significant p-values for linear and quadratic

terms for pitch are shown.

TABLE III. Pitch range of identification performance above 75% of maxi-

mum performance (Peak Pitch Range) and extent of that range relative to

each instrument’s tessitura (Relative Range).

Instrument Peak pitch range Relative range

Cello A2–Eb6 (42 STa) 82%

Harp F#3–A4 (15 ST) 19%

Guitar Eb3–C5 (21 ST) 50%

English horn A3–Eb4 (6 ST) 22%

Clarinet A3–C6 (27 ST) 69%

Saxophone F#3–Eb4 (9 ST) 30%

Trombone Eb3–C4 (9 ST) 38%

Tuba C2–F#3 (18 ST) 60%

Marimba Eb3–F#6 (39 ST) 65%

Vibraphone F#3–A5 (27 ST) 82%

Tubular bells F#3–Eb5 (21 ST) 100%

aST¼ semitone.
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usually confused within instrument family and within the

type of excitation: sustained or impulsive. In the confusion

graphs (Figs. 6 and 7), we include the plot of the correct iden-

tification of the instrument, which is always represented in

solid blue, with other instruments that are often confused

with it. Only instruments that were misidentified at least 10%

of the time are shown. We also include the optimal ranges for

each instrument from Adler (2002) at the top of the graphs.

Although there can be confusion between instruments

within the subsections of the sustained (blown, bowed) and

impulsive (struck, plucked) excitation groups, there is no

confusion across the two groups, signifying that type of exci-

tation provides unequivocal information about the sound

events. The sustained sounds shown in Fig. 6 consist of cello,

as the only bowed string, and all of the wind instruments.

Some notable patterns include the fact that the listeners’ iden-

tifications of instruments are better over the pitch range that

orchestral instruments tend to occupy. Also, within excitation

types, there are more confusions in extreme registers depend-

ing on the instrument, i.e., correct identifications decrease

and incorrect identifications of other instruments increase.

Cello has a high correct identification rate, so the curve

remained flat with rarely any confusion with other instru-

ments. Within the woodwind family, tones in the middle to

high registers are often confused with other instruments in

the same family. For example, the English horn has an inter-

esting pattern of increasing confusion with clarinet in higher

register, and woodwind tones in the lower ranges are often

mistaken for brass instruments. The brass instruments are

also mainly confused within the family; trombone and tuba

are often confused with each other in the appropriate regis-

ters, especially in the lower notes.

The impulsive sounds, shown in Fig. 7, consist of the

plucked strings harp and guitar and the percussion instru-

ments. The two plucked strings are often mistaken for each

other throughout the registers. The harp in particular

presents an interesting case, where it is more often identi-

fied as a guitar way below the guitar’s range and as a mal-

let percussion at the top of its range. Vibraphone and

marimba show a similar pattern of confusions to that of

trombone and tuba, especially within the lower and higher

ranges.

FIG. 6. (Color online) Confusion rates among instruments with sustained sounds. Proportion correct identification as a function of pitch, with the correct

instrument represented with the solid line. Optimal ranges are drawn from the orchestration treatise of Adler (2002).
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IV. ACOUSTIC ANALYSIS

The previous results revealed that generalized learning

of instrument identification with timbre-pitch variation is

different across instruments. For example, whereas the iden-

tification rates appear to be relatively constant for the tubu-

lar bells, they clearly varied more for the tuba across

pitches. In order to better understand these differences

among the instruments and why some of them are better

identified at different pitches, we conducted an analysis that

tested whether acoustic representations in the form of spec-

trograms or modulation power spectra can explain the iden-

tification results.

Here, we aim to investigate the hypothesis that for a

given instrument the variation in identification performance

is correlated with the distance between such acoustic repre-

sentations at the different pitches. Similarity in perceptually

available features across pitches (i.e., some kind of acoustic

invariance) would make generalization easier, whereas

greater dissimilarity would hinder generalization. Timbre

perception has historically been accounted for by acoustic

representations that reveal the sounds spectrotemporal fea-

tures and in particular spectrotemporal modulations (Patil

et al., 2012; Elliott et al., 2013; Thoret et al., 2016, 2017;

Thoret et al., 2021). We first describe the two different rep-

resentations used here: spectrograms and modulation power

spectra.

A. The spectrogram

Spectrograms represent the evolution of the sound’s

spectral content over time. They are mainly defined by their

time/frequency resolution, i.e., the time window and the

overlap between time windows at which the signal is framed

to compute the spectra. The other aspect of spectrograms

that is crucial is whether the frequency scale is linear or log-

arithmic. Although logarithmic scales are closer to the tono-

topic mapping of frequency on the cochlear basilar

membrane, linear scales remain largely used in the timbre

literature because they are thought to provide equally accu-

rate results. Here, we chose to compute both representations

and to test their relevance in a methodologically agnostic

fashion.

B. The modulation power spectrum

The MPS is a two-dimensional Fourier transform of the

spectrogram (Elliott and Theunissen, 2009; Singh and

Theunissen, 2003). The spectrotemporal modulation charac-

terizes the spectral and temporal regularities of a spectro-

gram. It must be noted that two different kinds of MPS can

be computed according to the choice of a linear or a loga-

rithmic frequency scale in the spectrogram. In the following,

both cases will be considered. Figure 8 illustrates the differ-

ent steps in the computation of the MPS in the case of a lin-

ear frequency spectrogram. The short-time Fourier

FIG. 7. (Color online) Confusion rates among instruments with impulsive sounds. Proportion correct identification as a function of pitch, with the correct

instrument represented with the solid line.
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transform (STFT) is first computed. The MPS is then com-

puted by applying two successive Fourier transforms (2D

FFT) along the spectrogram’s temporal and frequency axes.

The MPS is composed of two different dimensions: the tem-

poral modulations (Hz)—referred to as “rate”—and the

spectral modulations (cycle/Hz)—referred to as “scale” [for

more detail, see Elliott and Theunissen (2009) and Thoret

et al. (2017)]. Note that in the case of a logarithmic fre-

quency spectrogram, the process remains the same with

the difference that the spectrogram is computed with a

constant-Q bandpass filterbank. The spectral modulations

are then expressed in cycles/octave.

C. Distances between acoustic representations

We examine whether distances between acoustic repre-

sentations can explain lower identification rates for some

instruments. For each instrument, we computed the time-

frequency representations for linear (TFlin) and logarithmic

(TFlog) frequency scales and then for each TF we computed

the corresponding MPS (MPSlin and MPSlog). We therefore

tested two different factors: (1) the type of representation—

time-frequency vs modulation power spectrum and (2) the

type of frequency scale—linear vs logarithmic. Then, for

each pair of pitches, we computed the Pearson correlation

as a measure of distance between pairs of vectorized

representations of sounds for each of the four acoustic

representations.

For each representation and instrument, we compute

a vector of distances of length N -1, with N being the

number of pitches for a given instrument. Each vector

was composed of the distance between a reference note

and all the other notes. The experimental reference note

was middle C (MIDI 60), the pitch on which the partici-

pants were trained in experiment 1 or the center pitch of

the training stimuli in experiments 2 and 3. These values,

expressed as z-scores, are presented in Fig. 9 along with

the z-transformed mean identification rate across all three

experiments. What interests us is the similarity of shape,

which is estimated as the mean squared error (MSE)

between the two (Fig. 10). To get a global sense of the fit

for the two main fixed effects, box plots of the variation

of the four acoustic representations across each instru-

ment and of the 11 instruments across each representation

are shown in Fig. 11.

As seen in Fig. 9, the correspondence between the

acoustic predictor (solid lines) and behavioral measure

(dashed dotted lines) is variable across instruments and

input representations. The fit is quite good for some and not

so good for others as measured by the MSE. The interaction

between instrument and representation is very complex (Fig.

10). The instruments best predicted by MPSlog are marimba,

trombone, and tubular bells. Those for TFlog are English

horn, saxophone, trombone, and vibraphone. For MPSlin,

cello, clarinet, guitar, and harp are best, whereas for TFlin, it

is guitar, tuba, and vibraphone. The four representations pro-

vide roughly similar measures for some instruments (guitar,

harp, marimba, and vibraphone, which are all impulsive

sounds), but are quite different for others (notably English

horn, saxophone, trombone, and tubular bells), making it

difficult to select a representation that “best” accounts for

the behavioral data (Fig. 11). As shown in the lower panel

of Fig. 11, globally across instruments, none of the input

representations stands out over the others in terms of predic-

tive power. That being said, the acoustic representations do

capture moderately well the variation in behavioral ratings

(average MSE for MPSlin¼ 1.73%, MPSlog¼ 1.48%,

TFlin¼ 1.79%, TFlog¼ 1.55%).

V. DISCUSSION

We studied how nonmusician listeners learn to gener-

alize identification of a set of Western orchestral musical

instruments from exposure to limited range of pitches

across the full range of pitches these instruments can pro-

duce. We first provided a brief training session with feed-

back on a single pitch (C4—experiment 1) or on a pitch

sequence covering one octave centered on that pitch

(F#3-F#4—experiments 2 and 3). Many more listeners

failed to reach criterion performance within the allotted

number of trial blocks with single-pitch stimuli than with

pitch sequences in which the timbral covariation with

pitch was present. Listeners who successfully completed

the training part also needed more blocks to reach crite-

rion performance in experiment 1, than in experiments 2

and 3. Together these results suggest that exposure to

timbre-pitch covariation enhanced the initial identifica-

tion learning.

To test whether their learning could be generalized

beyond the training pitch or pitch range, listeners attaining

the criterion in the training session were subsequently asked

to identify the instrument with either a single pitch (experi-

ments 1 and 2) or an augmented triad sequence, centered on

FIG. 8. Acoustic analysis process for the MPS in the case of a linear frequency scale. The STFT is first computed from the original sound excerpt to obtain

the spectrogram, and then a two-dimensional fast Fourier transform (FFT) is applied to compute the MPS.
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pitches drawn from the full range of each instrument (exper-

iment 3). We compared three hypotheses.

H1: Single sounds carry invariant acoustic information that

specifies the instrument across its full pitch range.

H2: Exposure to the way timbre varies with pitch enhances

learning of the training pitches and may allow listeners to

extrapolate beyond the training range.

H3: Listeners need to learn all pitch-timbre combinations

inherent to a given instrument in order to successfully iden-

tify that instrument across its full pitch range.

Different patterns were observed across instruments.

Separate generalized linear mixed effects models of correct

response data were estimated for each instrument with pitch

(including both linear and quadratic terms), experiment, and

their interaction as fixed effects. The main effect of experi-

ment was significant for no instrument, indicating that tim-

bre patterns of invariance across pitches do not enhance

learning, arguing against H1 and H2.

The main effect of pitch was significant for all instru-

ments except cello and tubular bells, indicating that learning

did not generalize to all pitches for most of the instruments,

again not supporting H1 or H2. Cello may have been identi-

fiable across pitch as the only bowed string with bow noise

and tubular bells as the only clearly inharmonic sound.

Those distinguishing features could serve as invariants to

enhance recognition over the whole range within the stimu-

lus context of this experiment. However, this was not the

case for the majority of instruments. The curves were linear

decreasing over pitch for English horn, tuba, and vibra-

phone. The results for English horn and vibraphone would

conform to H3 according to which learning is restricted to

the encountered sounds: the training pitches are at the low

end of their ranges, and higher pitches were not as easily

identified. However, the tuba presents a surprising case

given that performance was better at low notes and worse at

higher notes that were in the training region. This may

reflect previous experience (see Sec. V A of recognition

FIG. 9. Comparison of z-transformed mean identification performance across all three experiments at each pitch (dashed dotted) with z-transformed acoustic

distances (solid) between sounds at each pitch and the reference pitch (C4, MIDI 60). Each instrument is analyzed with each representation (MPS or TF

with linear or log frequency).
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below), because the tuba’s optimal (and likely most fre-

quently encountered) range is below the training range. This

instrument therefore conforms with none of the initial

hypotheses. All of the other instruments had concave curves

with highest identification performance in the vicinity of the

training range, although the breadth of the peak was wider

for some instruments such as the clarinet and harp. For these

two instruments, certain acoustic invariances gleaned from

the training set may still have been apparent in nearby adja-

cent regions.

The interaction between pitch and experiment was only

significant for cello, harp, and tuba, surprisingly with lower

performance at pitches below the training region in experi-

ment 2 (cello), experiment 3 (tuba) or both (harp) compared

to experiment 1. Performance was also lower at higher

pitches for harp in experiment 3. These results are counter-

intuitive in that exposure to more information in training

and text would be expected to increase performance at more

distant pitches, not decrease it.

A. Bandwidth of recognition

To better understand the form and patterns of identifica-

tion performance, we looked at the instruments’ optimal

playing ranges in orchestration, i.e., the register that best

represents the instrument, given that these ranges are likely

encountered more often in music. We considered the

approximate indication of optimal ranges for the wind and

string instruments (Adler, 2002). In this discussion, we omit

percussion instruments because the concept of optimal reg-

ister is not relevant given that a separate mechanical system

(bar and resonator) in percussion produces each pitch. We

examined whether each instrument’s optimal range corre-

lated with the range of identification performance exceeding

75% of maximum performance across experiments (Table

III). The strings: cello, harp, and guitar have optimal ranges

of C2–C5, Bb0–F5, and E2–E6, respectively. However,

there doesn’t seem to be any clear bandwidth pattern in the

strings’ identification performance. The optimal range of

cello actually lies near its lower value of correct identifica-

tion, and those of harp and guitar do not correlate to any pat-

tern with the instrument identification.

The woodwinds—English horn, clarinet, and tenor sax-

ophone—have optimal ranges of E3–D5, D3–B5, and

Eb3–Eb5, respectively, which all correspond well with the

range of correct identification in each instrument above 75%

of maximum. The narrow bumps of English horn and saxo-

phone have the highest proportion of correct identification at

the ranges of A3–A4 and D#3–A4, respectively. The broad

bump of clarinet has the highest proportion of correct identi-

fication in the range of D#4–C6, which also overlaps with

its optimal range. Trombone and tuba have optimal ranges

of A2–D4 and C2–E3, respectively, which also correspond

with high identification performance in both instruments.

The narrow bump of trombone has the highest identification

rate around C3–A3. Tuba has a descending curve with its

highest identification rate in its lower range around C2–C3,

which is within the optimal playing range of C2–E3. The

comparison of the tuba’s optimal range with identification

rate provides a better understanding of its descending trend.

Again, these results suggest a role of previous experience, as

we are more often exposed to these optimal registers specific

to each instrument; the timbre within those ranges becomes

more familiar to listeners as a representation of that instru-

ment, presumably prior to the experiment.

According to H2, one would expect that providing more

covariation contexts in either the training or testing phase

could expand the identified pitch range. However, the lack

of a main effect of experiment does not support this hypoth-

esis. Similarly to the work of Handel and Erickson (2001),

listeners could only extrapolate the timbre of an instrument

over a limited pitch range. In their case, the limit was one

FIG. 10. (Color online) Mean squared error between identification perfor-

mance and acoustic distance relative to the reference pitch for each instru-

ment analyzed with each representation. Both variables are z-transformed.

FIG. 11. (Color online) Boxplots of mean squared errors for each instru-

ment across representations (upper panel) and each representation across

instruments (lower panel).
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octave (with a recognition rather than an identification task).

However, in our data, this limit was found only for three

instruments—English horn, tenor saxophone, and tenor

trombone all had pitch ranges of less than an octave with at

least 75% identification performance (Table III). English

horn and trombone were also used in Handel and Erickson’s

study. For the other instruments in our study, high perfor-

mance ranged from 1.25 to 3.5 octaves, even for nonmusi-

cians, similarly to the musicians’ performance in Steele and

Williams (2006).

B. Confusions

We investigated the extent to which instruments are

confused with one another. Confusions mostly occur within

excitation categories (sustained and impulsive) and instru-

mental family. Although there are confusions within the

sustained and impulsive groups, there were none between

them, demonstrating the primacy both of excitation type as

a feature for categorization of sounds based on temporal

envelope (Lemaitre and Heller, 2012) and of onset charac-

teristics for instrument identification (Siedenburg, 2019).

Within-family confusions are apparent for woodwinds.

English horn is at times confused with tenor saxophone in

its lowest register and is more often misidentified as clari-

net in its highest register. Trombone is labeled as tuba at its

lowest pitch, and tuba is progressively labeled as trombone

as its pitch increases, which fits with their optimal registers

and thus perhaps with previous experience. Similarly, the

two plucked string instruments, harp and guitar, are also

often confused with each other. The confusions are stron-

gest at lowest pitches for harp and more mildly for extreme

pitches at both ends for guitar. Harp is most frequently mis-

identified as vibraphone or marimba in its extreme high

register.

A study by Giordano and McAdams (2010) proposed

two possible reasons for the inability to discriminate instru-

ments from the same family. They suggested that acoustical

information is not present that differentiates between musi-

cal instruments from the same family in a reliable way

across pitch variation and that even if acoustical information

is present, it is less perceptually salient than pitch variations.

In view of this, listeners are more likely to identify an

instrument based on their knowledge of the instrument’s

typical pitches, which seem to be at least partially responsi-

ble for the pattern of within-family confusions observed.

We observed that certain timbral sound features might give

rise to the confusions, even across instrument families. For

example, listeners reported that the “metallic” characteristic

caused confusions between harp and vibraphone, especially

in the higher register. However, instruments that had little

confusion even within families, such as tubular bells, dem-

onstrated that perhaps large differences in mechanical prop-

erties of the sound source, and their inherent perceptual

properties such as inharmonicity, are associated with signifi-

cantly better identification ability.

C. Acoustic analyses

The acoustic predictor developed for comparison with

identification performance was more or less successful

depending on the sound representation used and the instru-

ment being tested. These results echo those of Thoret et al.
(2016, 2017) who related identification confusions to over-

lap in the MPS representation. In the current study, no single

representation was systematically better at predicting the

identification results than the others over all instruments.

Furthermore, some instruments were better predicted than

others. The spectrogram and modulation power spectrum

representations were equivalent predictors across instru-

ments, as were the use of linear and logarithmic frequency.

D. Limitations

One potential limitation of our study is that the training

tones and sequences fall within different parts of each

instrument’s range, as they vary from lower (English horn,

clarinet, vibraphone, and tubular bells) to middle (cello,

harp, guitar, saxophone, and marimba) or upper instrument

registers (trombone, tuba). It would be interesting to study

whether the variance of the training pitch range, according

to each instrument’s register, affects identification.

Although we specifically selected nonmusicians as partici-

pants, there may have been some exposure to certain instru-

ments by their musical affinity or preconceived impressions

about some of the instruments presented, as evidenced nota-

bly by the tuba results, where performance for untrained low

pitches was better than for trained high ones.

VI. CONCLUSION

In this study, we examine the listener’s ability to identify

musical instruments across timbres and pitch register to

investigate how we learn and extrapolate the timbre-pitch co-

variance to correctly identify instruments. We observed that

the combined results of the study showed that the generaliza-

tion of pitch-timbre covariation is highly dependent on the

specific instruments, the optimal range of each instrument,

and the set of instruments selected for the experiment.

Acoustic analyses provide a partial explanation of the behav-

ioral data, but there was no apparent advantage of any of the

different representations used—modulation power spectra

and spectrograms, with linear or log frequency. Concerning

our three competing hypotheses, acoustic invariance does not

seem to be extractable from single pitches or even pitch

sequences over an octave, providing no support for hypothe-

sis 1. Also, listeners trained with pitch-timbre variation do no

better than those trained with a single pitch and are largely

unable to extrapolate from that acoustic behavior to untrained

pitches. Providing limited pitch-timbre covariation at the test-

ing phase does not improve performance either. Thus hypoth-

esis 2 is not supported either. Further investigation is needed

to confirm how much information concerning pitch-timbre

co-varied information is needed to build an improved

mental representation of the instruments, perhaps requiring
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experience with the full pitch range of a to-be-identified

instrument as proposed in hypothesis 3.
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