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Abstract  To study the perceptual structure of musical 
timbre and the effects of musical training, timbral dis- 
similarities of synthesized instrument sounds were 
rated by professional musicians, amateur musicians, 
and nonmusicians. The data were analyzed with an 
extended version of the multidimensional scaling algo- 
rithm CLASCAL (Winsberg & De Soete, 1993), which 
estimates the number of latent classes of subjects, the 
coordinates of each timbre on common Euclidean di- 
mensions, a specificity value of unique attributes for 
each timbre, and a separate weight for each latent class 
on each of the common dimensions and the set of 
specificities. Five latent classes were found for a three- 
dimensional spatial model with specificities. Common 
dimensions were quantified psychophysically in terms 
of log-rise time, spectral centroid, and degree of spectral 
variation. The results further suggest that musical 
timbres possess specific attributes not accounted for by 
these shared perceptual dimensions. Weight patterns 
indicate that perceptual salience of dimensions and 
specificities varied across classes. A comparison of class 
structure with biographical factors associated with 
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degree of musical training and activity was not clearly 
related to the class structure, though musicians gave 
more precise and coherent judgments than did non- 
musicians or amateurs. The model with latent classes 
and specificities gave a better fit to the data and made 
the acoustic correlates of the common dimensions 
more interpretable. 

Introduction 

Timbre, in contrast to pitch and loudness, remains an 
auditory attribute, which has been until recently, poor- 
ly understood from a psychophysical standpoint. In 
fact until about 25 years ago, timbre was considered to 
be a perceptual parameter of sound that was simply 
complex and multidimensional, defined primarily by 
what it wasn't: what distinguishes two sounds present- 
ed in a similar manner and being equal in pitch, subjec- 
tive duration, and loudness (American Standards Asso- 
ciation, 1960; Plomp, 1970). This multidimensionality 
makes it impossible to measure timbre on a single 
continuum such as low to high, short to long, or soft to 
loud, and raises the problem of determining experi- 
mentally the number of dimensions and features re- 
quired to represent the perceptual attributes of timbre 
and of characterizing those attributes psychophysi- 
cally. 

Multidimensional scaling (MDS) has been a fruitful 
tool for studying the perceptual relationships among 
stimuli and for analyzing the underlying attributes used 
by subjects when making (dis)similarity judgments on 
pairs of stimuli (Kruskal, 1964 a,b; Shepard, 1962 a,b). 
The object of MDS is to reveal relationships among 
a set of stimuli by representing them in a low-dimen- 
sional (usually Euclidean) space so that the distances 
among the stimuli reflect their relative dissimilarities. 
To achieve this representation, dissimilarity data aris- 
ing from N sources, usually subjects, each relating 
J objects pairwise, is modeled by one of a family of 
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MDS procedures to fit distances in some type of space, 
generally Euclidean or extended Euclidean of low di- 
mensionality R. The different dimensions are then in- 
terpreted as psychologically meaningful attributes that 
underlie the judgments. An important distinction 
among different MDS techniques (which we discuss 
below) is the kind of spatial model used to represent the 
distances between pairs of stimuli. 

Multidimensional scaling of (dis)similarity judg- 
ments has been the tool of predilection for exploring 
the perceptual representation of timbre (e.g. Plomp, 
1970; Miller & Carterette, 1975; Grey, 1977; Krum- 
hansl, 1989; Kendall & Carterette, 1991). There are 
several reasons for this choice: (1) the judgments are 
relatively easy to make for subjects; (2) the technique 
makes no apriori assumptions about the nature of the 
dimensions that underly the perceptual representation 
used by subjects to compare the timbres of two sound 
events; (3) the resulting geometric representation of the 
data can be readily visualized in a spatial model; and (4) 
the spatial model has been found to have predictive 
power (Grey & Gordon, 1978; Ehresman & Wessel, 
1978; Kendall & Carterette, 1991; McAdams & 
Cunibile, 1992). 

The object of the present paper is to illustrate the 
use of a new MDS technique in the study of musical 
timbre. This new technique provides a means for deter- 
mining a parsimonious number of psychologically 
meaningful dimensions common to all stimuli as well as 
dimensions specific to individual stimuli, and to assign 
the sources (subjects) to a small number of latent 
classes. Hence in contrast with previous studies of mu- 
sical timbre, a large number of subjects with widely 
varying musical experience were employed. Since max- 
imum likelihood estimation was used to determine the 
parameters of the model, statistical tests were employed 
to select both the number of latent classes and the 
appropriate spatial model, including the number of 
psychologically meaningful common dimensions and 
whether to include specific dimensions. 

Below we present brief surveys of the different MDS 
distance models and their use in the study of musical 
timbre. We then present an experimental study of the 
timbre of complex, synthesized sounds using the new 
technique. In addition to providing further support for 
the psychophysical interpretation of certain primary 
dimensions of musical timbre, this study has three 
facets that further advance our knowledge of timbre 
perception: (1) the use of complex, synthetic sounds 
designed either to imitate acoustic instruments or 
to create perceptually interpolated hybrids between 
such instruments; (2) the estimation of specific at- 
tributes (denoted specificities) possessed by individual 
sounds not accounted for by the common dimensions 
of the Euclidean spatial model; (3) the estimation of 
latent classes of subjects and the comparison of this 
class structure with degree of musical training and 
activity. 

Multidimensional scaling analysis 

Distance models. In the classical MDS model the ob- 
jects are assumed to possess collectively a small number 
of psychological attributes. The classical model was 
proposed by Torgerson (1958) and Gower (1966) and 
used by Shepard (1962 a,b) and Kruskal (1964 a,b). This 
type of model is implemented in programs such as 
MDSCAL and KYST for nonmetric MDS. The Euclid- 
ean distance, dj.~,, between the stimulij a n d f  is given by 

where xs,. is the coordinate of stimulus j on the dimen- 
sion r ( j , f  = 1, . . . ,  J). 

In this model, the distance between a pair of stimuli 
does not depend on the data source or subject. In the 
classical model, the choice of axes is arbitrary as the 
model distance does not depend upon this choice. Thus 
this model is rotationally invariant. In the weighted 
Euclidean model, however, psychologically meaningful 
dimensions are postulated. These common dimensions 
are weighted differently by each source or subject. That 
is, it is assumed that each dimension has a different 
salience for each source or subject. The INDSCAL, or 
weighted Euclidean distance, model proposed by Car- 
roll and Chang (1970) removes the rotational invari- 
ance that exists in the classical Euclidean distance 
model. The distance, dss,,, between stimuli j and j' for 
source n in the weighted Euclidean model is given by 

R / \27½ F 
dsj, , = [ ~ w.~ txs~ Lr=l - -xs ,r)  ] (2) 

where xj~ is the coordinate of stimulus j on dimension 
r (j = 1, . . . ,  J), and w,r is the weight for dimension 
r associated with source n (n = 1, . . . ,  N;w,,r > 0). 

Since psychologically meaningful dimensions are 
postulated in the weighted Euclidean model and these 
dimensions are weighted differently by each source or 
subject, rotational invariance is removed. The lack of 
rotational invariance makes the interpretation much 
easier for the user, since it is often difficult to find 
psychologically interpretable dimensions (by rotation 
in R space), if the classical distance model is postulated 
and the dimensionality of the space exceeds two. 

In addition to sharing the common dimensions, the 
stimuli may differ in ways that are specific to each one. 
A spatial model that is more appropriate in this case 
(postulating both common dimensions and specifici- 
ties) has been proposed and tested on several data sets 
(see Bentler & Weeks, 1978; De Leeuw & Heiser, 1980; 
Takane & Sergent, 1983; Winsberg & Carroll, 1989a; 
and De Soete, Carroll, & Chaturvedi, 1993). To distin- 
guish this model from the classical (Euclidean, spatial) 
MDS model, Winsberg and Carroll (1989a) called it the 
extended two-way Euclidean model with common and 
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specific dimensions, or simply the "extended two-way 
model," for short. In this model, the distance between 
stimuli j and j' is given by 

d j ;  = x jr - x;~ + sj + s~, (3) 
r 

where sj is the square of the coordinate of stimulus 
j along the dimension specific to that stimulus (one 
cannot distinguish mathematically between one or 
many such specific dimensions). This model may be 
thought of as a hybrid between a Euclidean spatial 
model and an additive tree (Sattath & Tversky, 1977). 
The specificity may be thought of as the square of 
the perceptual strength of a feature possessed by the 
stimulus. The ss may, of course, be constrained to be 
zero, making the standard Euclidean model in R di- 
mensions a special case of the extended model. 

An extension of the common dimensions and speci- 
ficities model to a weighted Euclidean model was de- 
veloped by Winsberg and Carroll (1989b). In this last 
model the distance between stimuli j and j' for source 
n is given by 

R 2 1 

dj;n=[~w,,~(xj~-xj,,.)k ~= ~ +v,,(s~+s;)l~ (4) 

where v, is the weight given by source n to the whole set 
of specificities (v, > 0). 

Latent class approach. The modeling of individual dif- 
ferences that results in the rotational uniqueness of the 
object coordinates is most likely the reason for the 
popularity of the weighted Euclidean model among 
users. The N different sources are usually the N subjects 
and the data consist of dissimilarity judgments from 
these subjects. In this case (or in any case where N is 
large), the cost of removing rotational invariance, to 
obtain ease of interpretation, is the introduction of 
many nuisance parameters (the individual subject 
weights w,~ and v,). In practice, these weights are rarely 
interpreted for each individual subject. The weighted 
Euclidean model is not generally retained because 
goodness-of-fit measures are radically improved (thus 
justifying so many additional parameters), but rather 
because its dimensions are meaningful psychologically. 
Therefore, Winsberg and De Soete (1993) proposed 
a latent-class approach to this problem. This approach 
has the advantage that rotational invariance is re- 
moved since the distance model posits psychologically 
meaningful dimensions, but the number of parameters 
is reduced considerably. 

In the latent-class approach, it is assumed that each 
of the N subjects belongs to one and only one of a small 
number of latent classes or subpopulations. The classes 
are latent because it is not known in advance to which 
one a particular subject belongs. We postulate T latent 
classes (with T ~ N). The (unconditional) probability 

that any subject belongs to latent class t is denoted 
)~t(1 <_ t <_ T), with: 

T 

y,  = 1. (5) 
t = l  

It is also assumed that for a subject n in latent-class 
t, the data Yn (where y, is a J ( J -  1)/2-dimensional 
vector of dissimilarities for source n) are independently 
normally distributed with means dt=(d21t, dalt, 
d32 t ..... dj(j_t~ ) and common variance cr;. Sometimes 
the dissimilarities from each source or subject are ar- 
ranged in the lower triangle of a matrix. Here the data 
for each source are presented as a vector and the entire 
data set is a N x J ( J -  1) /2-matrix  Y. In the CLAS- 
CAL model proposed by Winsberg and De Soete 
(1993), the distance between stimuli j and j' in latent 
class t is given by 

where w,~ is the INDSCAL-type weight for latent class 
t(w,~ >_ 0). 

To identify fully the latent class-weighted Euclidean 
model, some constraints must be applied. First, the 
latent class weights for a given dimension (for 
r = 1, . . . ,  R) are constrained to sum up to the number 
of classes: 

T 

Y = T. (7) 

Secondly, the coordinates for a given dimension are 
constrained to sum to zero: 

J 

Z = 0 (s) 
j = l  

The first constraint normalizes the weights and 
the second one centers the solution. The latent 
class-weighted Euclidean distance model has 
T + 1 + J x R + T x R parameters corresponding to 
2 (class structure vector), a 2 (variance parameter), 
X (stimulus configuration matrix), and W (weight 
matrix), respectively. By subtraction from the number 
of model parameters, the number of constraints im- 
posed on these parameters via equations 5, 7 and 8, the 
degrees of freedom of the model are obtained: 

T + ( r  + J -  2)-R. (9) 

When T = 1, it is necessary to subtract R(R - 1) /2 
from equation 9 for the rotational indeterminacy that 
occurs in this case. 

For each latent class t, a separate set of weights w~ is 
estimated. These weights are constrained to be non- 
negative. The stimulus configuration X (a J x R 
matrix) and the variance parameter a 2 are assumed to 
be the same for all latent classes. Since we do not know 
in advance to which latent class a particular subject 
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n belongs, the probability density function of y, 
becomes a mixture of multivariate normal densities. 
Estimates of the parameters X, W (a T x R matrix), a 2, 
and Z (a T vector) are obtained by maximizing the 
likelihood function. As in many mixture problems 
(McLaughlin & Basford, 1988), the likelihood function 
is most easily optimized by means of an EM (expecta- 
tion-maximization) algorithm (Dempster, Laird, 
& Rubin, 1977; for a description of the likelihood 
function as well as the steps involved in the present 
application of the EM algorithm, see Winsberg and De 
Soete, 1993). Once parameter estimates for X, W, 0 -2, 
and Z are obtained, the a-posteriori probability that 
subject n belongs to latent class t is computed by means 
of Bayes' theorem. The subject is assigned to that class 
for which the a-posteriori probability is greatest. In 
general, this probability is close to one for one of the 
classes for each subject. 

In this paper we also present the application of an 
extended CLASCAL model which allows for both com- 
mon dimensions and specificities. In this extended 
CLASCAL model the distance between stimuli j and j' 
for latent class t is given by 

R 2 1 

where vt is the extended INDSCAL-type weight for 
the specificities for latent class t (v~ > 0). To obtain 
the number of degrees of freedom in the extended 
CLASCAL model, one must add J + (T - 1) to the 
degrees obtained for the ordinary CLASCAL model to 
account for the specificities and their weights. 

Latent-class formulations, or more general mixture 
distribution approaches, have also been used in the 
context of various uni- and multidimensional-scaling 
models for paired-comparison data (Bockenholt 
& Bockenholt, 1990; De Soete, 1990; De Soete & 
Winsberg, 1993; Formann, 1989), for data obtained 
in a "pick any n stimuli"-type task (Bockenholt 
& Bockenholt, 1990; De Soete & De Sarbo, 1991), and 
for single-preference data (De Sarbo, Howard, 
& Jededi, 1991; De Soete & Winsberg, 1993; De Soete 
& Heiser, 1993). In all of these applications, latent-class 
modeling has proved to be a viable technique for cap- 
turing systematic group differences in a parsimonious 
way. 

Model selection. In most situations, we do not know 
the number of latent classes in advance. The usual 
procedure for deciding on the number of classes in- 
volves testing whether a solution for T + 1 latent 
classes gives a significantly better fit than one for the 
same model with T classes. If a (T + 1)-class solution 
does not significantly improve the solution for 
T classes, T classes are considered sufficient to describe 
the data adequately. Unfortunately in the case of finite 
mixture models, the likelihood ratio statistic for testing 

T versus T + 1 latent classes is not asymptotically 
distributed as a chi-squared with known degrees of 
freedom (McLaughlin & Basford, 1988). So likelihood 
ratio tests and information criteria such as AIC and 
BIC that rely on the same regularity conditions cannot 
be used. We therefore use a Monte Carlo significance 
testing procedure proposed by Hope (1968) and first 
applied in the context of latent-class analysis by Aitken, 
Andersen, and Hinde (1981). 

Theprocedure can be summarized as follows. Let 
01,..., 0T, Z, denote maximum likelihood estimates 
of 01, ..., 0T, 2 for a T-class model, where 0t is the 
parameter vector for class t, and 2 is the class-weight 
vector. From the T-class population with parameters 
01,..., 0r, 2, a number (say S - 1) of random Monte 
Carlo samples ¢f of size N are drawn. The model is fit 
with T and T + 1 classes for each of these generated 
samples Y and the likelihood statistic for comparing 
the T-class and (T + 1)-class solutions is computed. 
The T-class solution is rejected at significance level cz in 
favor of the (T + 1)-class solution, if the value of the 
likelihood ratio statistic for Y exceeds S(1 - ~) of the 
values of the statistic obtained for the Monte Carlo 
samples Y. A minimal value of S when a significance 
level ~ = .05 is used is 20. Hope (1968) showed that the 
power of the Monte Carlo significance test increases as 
S becomes larger. We have used S = 250 on the null 
model for paired comparisons in the present study. 

One of the advantages of using a maximum likeli- 
hood criterion for estimating the model parameters is 
that it enables statistical model evaluation by means of 
likelihood-ratio tests and information criteria. Ramsay 
(1977) was the first to use maximum-likelihood estima- 
tion (MLE) in MDS via his program MULTISCALE. 
Winsberg and Carroll (1989a) also used this criterion in 
the MDS context. The use of MLE removes the difficul- 
ties of choosing an appropriate spatial model using 
goodness-of-fit measures like stress 1, stress 2, or 
s-stress (squared stress) and looking for the elbow that 
indicates that the addition of a supplementary dimen- 
sion does not sufficiently reduce the stress to be worth 
trying to interpret. In general, this elbow is poorly 
defined in real data structures. Once the number of 
latent classes has been determined by means of Hope's 
(1968) procedure, the appropriate distance model, with 
or without specificities and with the appropriate num- 
ber of common dimensions, can be chosen by a com- 
parison of the values of the information criterion. One 
such criterion is the AIC statistic (Aikake, 1977) which 
is defined for model f~ as 

AICn = - 21ogLn + 2Vn (11) 

where Ln is the estimate of the likelihood function and 
~,~ is the number of degrees of freedom for model f}. 

The AIC statistic does not take into account sample 
size and in many situations tends to select a model with 
too many parameters (see Bogdozan, 1987). The BIC 
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statistic proposed by Schwarz (1978) takes into account 
sample size and usually is more parsimonious. In our 
case (paired-comparisons data), BIC is defined for 
model f~ as 

BICa = - 21ogLe + valog(NJ(J21) ). (12) 

Both statistics explicitly compensate for a good- 
ness-of-fit due to an increased number of model 
parameters. The model with the smallest value of 
these statistics is said to give the best representation 
of the data. From experience with artificial data, 
Winsberg and De Soete (1993) suggest using the BIC 
criterion. We shall use this criterion as a basis for 
model selection here, though AIC values are also 
reported. 

Multidimensional studies of musical timbre 

Plomp was among the first to use the classic Euclidean 
spatial model for the multidimensional representation 
of synthesized steady-state spectra derived both from 
Dutch vowels (Plomp, Pols, & van de Geer, 1967; Pols, 
van der Kamp, & Plomp, 1969) and from organ-pipe 
and musical-instrument (wind and bowed-string) tones 
(Plomp, 1970, 1976). This technique was also used 
to study the effects on timbre perception of phase 
relations among frequency components (Plomp & 
Steenecken, 1969). For vowel and musical-instrument 
spectra and a variety of phase spectra, three- 
dimensional solutions were found. A two-dimensional 
solution was sufficient for organ-pipe spectra. Further, 
the perceptual dimensionality was much smaller in 
each solution than the number of degrees of freedom 
available for the: construction of the stimuli. No 
attempt was made by these authors to interpret 
quantitatively the psychophysical nature of the 
individual dimensions. However, the authors computed 
distance measures on the vector of energy levels in 
a bank of 1/3-octave filters (a rough estimate of 
auditory filter bandwidths Zwicker & Scharf, 1965) 
for the vowel, organ-pipe, and musical-instrument 
spectra. Analysis of these distances with MDSCAL 
gave spatial solutions similar to those for the dissimil- 
arity ratings for each stimulus set. This correspondence 
indicates that the global activity level present in the 
array of frequency-specific auditory nerve fibers may be 
a sufficient sensory representation from which a small 
number of perceptual factors related to the spectral 
envelope are extracted. 

Several studies of recorded musical-instrument 
tones or of tones synthesized to capture certain acous- 
tic characteristics of instrument tones have obtained 
two- or three-dimensional spatial solutions. Wedin and 
Goude (1972) found a clear relation between the three- 

dimensional perceptual structure of similarity relations 
among musical-instrument tones (winds and bowed 
strings) and the spectral-envelope properties. However, 
whether the tones were presented with the attack por- 
tion of the tone or with this portion removed seemed to 
have only a slight effect on the perceptual structure (the 
mean dissimilarities for the two conditions were corre- 
lated at .92). In one of their experiments on synthesized 
tones, Miller and Carterette (1975) varied the ampli- 
tude envelope (a temporal property), the number of 
harmonics (a spectral property), and the temporal 
pattern of onset asynchrony of the harmonics (a spec- 
trotemporal property). They found that the spectral 
property was represented on two of the three dimen- 
sions and that the two other properties combined were 
organized along the third dimension. These results sug- 
gested a perceptual predominance of spectral charac- 
teristics in the timbre judgments. 

To the contrary, a greater contribution of temporal 
and spectrotemporal properties has been found by 
other researchers with recorded wind and bowed-string 
instrument tones (Grey, 1977; Wessel, 1979; Iverson 
& Krumhansl, 1993) and with relatively complex syn- 
thesized tones meant either to imitate conventional 
musical instruments (winds, bowed string, plucked 
strings, mallet percussion) or to represent a hybrid of 
a pair of these instruments (Krumhansl, 1989). In these 
studies, one dimension generally seemed to correspond 
to the centroid of the amplitude spectrum (Grey 
& Gordon, 1978; Iverson & Krumhansl, 1993; Krimp- 
hoff, McAdams & Winsberg, 1994) and another either 
to properties of the attack portion of the tone (Grey, 
1977; Krimphoff et al., 1994) or to properties of the 
overall amplitude envelope (Iverson & Krumhansl, 
1993). The psychophysical nature of the third dimen- 
sion seemed to vary with the stimulus set used, corres- 
ponding either to temporal variations in the spectral 
envelope (Grey, 1977) or to spectral fine-structure 
(Krimphoffet al.'s, 1994, analysis of Krumhansl's, 1989, 
stimuli). 

MDS techniques have also been applied to judg- 
ments on instrument dyads in which two instruments 
played either single tones (in unison or at an interval of 
a musical third) or melodies (in unison or in harmony) 
(Kendall & Carterette, 1991). The dimensional struc- 
tures obtained remained relatively stable over the dif- 
ferent contexts for the first two dimensions (labeled 
verbally as nasality and brilliance~richness), but at- 
tempts were not made to characterize the dimensions 
psychophysically. What this study did demonstrate is 
that a quasi-linear vector model may be able to explain 
the perception of timbre combinations on the basis of 
the dimensional structure of individual timbres, i.e., the 
position of timbre dyads in a given space can be pre- 
dicted on the basis of the vector sum of the positions of 
the constituent timbres. This hypothesis of a vector-like 
representation has also been applied to the perception 
of relations between timbres (Ehresman & Wessel, 
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1978; McAdams & Cunibile, 1992). These studies 
showed that listeners can to a certain extent make 
judgments of the similarity of intervals between pairs of 
timbres on the basis of a representation analogous to 
a multidimensional vector. 

It seems likely that timbre can be defined not only 
in terms of a certain number of continuous dimensions 
shared by a set of sound events, but also in terms of 
distinguishing features or dimensions that may be spe- 
cific to a given timbre. Only one study to date (Krum- 
hansl, 1989) has tested this notion with an extended 
Euclidean model (eq. 3; Winsberg & Carroll, 1989a). 
The sounds tested were synthesized imitations and hy- 
brids of conventional western musical instruments. 
Judgments of dissimilarity from professional musicians 
gave rise to a three-dimensional solution, with non- 
zero specificities on about 60% of the timbres. The 
three common Euclidean dimensions of this study have 
been characterized quantitatively by Krimphoff et al. 
(1994) in terms of rise time, spectral centroid, and 
irregularity of the spectral envelope. The specificities 
were quite strong on timbres such as the harpsichord 
and the clarinet, and especially on some of the hybrid 
timbres such as the pianobow (bowed piano), the 9uitar- 
net (guitar/clarinet hybrid) and the vibrone (vibra- 
phone/trombone hybrid). In some of these cases, it 
seems obvious that acoustic "parasites" such as the 
clunk at the end of the harpsichord (the return of the 
hopper) or the raspy double attack on the vibrone may 
have been perceived as discrete features distinguishing 
these sounds from the others in a unique way. The 
relative perceptual strength of these unique features 
may have been captured by the specificities in the 
extended Euclidean model, but they have yet to be 
systematically related to particular acoustic properties. 

Analyses with weighted Euclidean models are also 
of interest in order to determine whether the weights on 
different dimensions and specificities correspond to 
biographical factors such as the level of musical train- 
ing or cultural origin. Most of the timbre spaces de- 
scribed above were derived exclusively from musician 
listeners (Wessel, 1979; Grey, 1977; Krumhansl, 1989). 
A few studies have used individual-differences scaling 
(INDSCAL) and recruited subjects of varying degrees 
of musical training (Wedin & Goude, 1972; Miller 
& Carterette, 1975), but have found no systematic dif- 
ferences in the dimensional weights between subject 
groups. Serafini (1993), on the other hand, tested two 
groups of western musician listeners on a set of 
Javanese percussion sounds (xylophones, gongs, metal- 
lophone) and a plucked-string sound. One group had 
never played or listened to Indonesian gamelan music 
and the other was composed of people who had played 
Javanese gamelan for at least two years and had know- 
ledge and experience of Javanese culture. Listeners 
heard pairs of either single notes or melodies played by 
these instruments and their dissimilarity judgments 
were analyzed with INDSCAL. A two-dimensional 

solution was found, the dimensions of which corres- 
ponded to the spectral centroid in the attack portion of 
the tone (a timbral dimension) and the mean level in the 
resonant portion of the tone (a dimension more proper- 
ly characterized as related to loudness). Differences 
between the two groups were only found for the mel- 
odic condition: gamelan players appeared to focus their 
judgments more on the attack dimension, whereas 
nonplayers appeared to accord equal weight to the two 
dimensions. 

No studies of musical-timbre scaling have been 
conducted to date that have employed a large number 
of listeners of varying levels of musical training with 
an analysis of latent class structure. Only one 
study (Krumhansl, 1989) has analyzed the specific 
weights on timbres. The experiment reported below fills 
this gap. 

Method 

Subjects. Ninety-eight subjects were recruited who had varying de- 
grees of musical training, ranging from nonmusicians to professional 
musicians. Each subject completed a questionnaire at the end of the 
experiment concerning the amount and kind of musical training 
(compositional, instrumental, and theoretical) they had received, the 
number of years of music making (composing, conducting, playing 
an instrument) in which they engaged, and the amount and type of 
musical listening they did regularly. The subjects were assigned to 
one of three groups according to the degree of musical training they 
had obtained, the number of years of music making in which they 
had engaged, and their self-identification as one of professional 
musician, amateur musician, or nonmusician. The 24 composers, 
performers, and musicologists making a living from music were 
assigned to the professional group. Their ages ranged from 21 to 55 
years (M = 30) and they had from 8 to 51 years of music making 
(M = 18.0, SD = 9.5). This group included 7 females and 17 males. 
The amateur group was composed of subjects who identified them- 
selves as amateurs and either had engaged in at least 5 years of music 
making and still played on at least an occasional basis or had 
recently taken up music and played on a regular basis. The 46 
subjects assigned to this group included music students from City 
University in London as well as students, staff, and associates of the 
Institut de Psychologic at the Universit6 Ren6 Descartes. Their ages 
ranged from 18 to 57 years (M = 22) and they had from 1 to 18 years 
of music making (M = 9.1, SD = 4.9). This group included 27 
females and 19 males. The remaining 28 subjects composed the 
nonmusician group and were students, staff, and associates of the 
Institut de Psychologic at the Universit6 Ren6 Descartes. They had 
engaged in less than five years of music making, played rarely or not 
at all, and had no formal music training beyond childhood music 
lessons. Their ages ranged from 21 to 53 years (M = 26) and they 
had from 0 to 4 years of music making (M = 0.5, SD = 1.1). This 
group included 18 females and 10 males. Two subjects identifying 
themselves as amateurs were classed as nonmusicians and one self- 
identified nonmusician was classed as amateur. All subjects were 
paid a token fee for their participation. The subjects were tested at 
three sites: IRCAM or the Universit~ Ren6 Descartes in Paris or 
City University in London. All subjects were tested under similar 
conditions. 

Stimuli. The basic task of the study was to compare the timbres of 
pairs of complex musical sounds and to rate their degree of dissimil- 
arity. The set of sounds used included 18 of the 21 digitally syn- 
thesized instruments developed by WesseI, Bristow, and Settel (1987) 
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Table 1 Names, labels in Figure 1, maximum level, and total dura- 
tions for the 18 sounds used. All sounds had a fundamental 
frequency of 311 Hz (E-flat4). 

Name Label Max Total 
(origins of hybrids Level Duration 
in parentheses) (dBA) (ms) 

French horn hrn 72 569 
Trumpet tpt 60 520 
Trombone tbn 64 563 
Harp hrp 61 707 
Trumpar (trumpet/guitar) tpr 56 635 
Oboleste (oboe/celesta) ols 62 716 
Vibraphone vbs 59 770 
Striano (bowed string/piano) sno 61 775 
Harpsichord hcd 53 521 
English horn (cor anglais) ehn 67 507 
Bassoon bsn 65 495 
Clarinet cut 64 496 
Vibrone vbn 62 1096 
(vibraphone/trombone) 
Obochord obc 63 544 
(oboe/harpsichord) 
Guitar gtr 57 569 
Bowed string stg 58 1071 
Piano pno 60 1008 
Guitarnet (guitar/carinet) gut 63 557 

Mean 61.5 673 
Standard deviation 4.1 200 

and employed in the study by Krumhansl (1989) 1 (see Table 1). 
These sounds were synthesized on a Yamaha TX802 FM Tone 
Generator with the frequency modulation technique (Chowning, 
1973). Twelve of the instruments were designed to imitate traditional 
western instruments (e.g., trumpet, guitar, vibraphone, bowed string) 
and six were designed as hybrids of two traditional instruments (e.g. 
the trumpar aimed to capture perceptual characteristics of both the 
trumpet and the guitar). 

The pitch, subjective duration, and loudness of all these sounds 
were equalized so that subjects' ratings would only concern the 
differences in their timbres (see Table 1). The pitch was fixed at 
E-flat4 (a fundamental frequency of approximately 311 Hz). Two 
listeners (authors SM and SD) equalized the loudnesses and subjec- 
tive durations of the sounds by adjustment independently at first 
and then by consensus in the case of differences in adjustment. The 
loudness was adjusted by changing the MIDI 2 velocity value in the 
synthesizer. This parameter normally controls the intensity and 

1Three timbres were eliminated from Krumhansl's (1989) set in 
order to reduce the number of comparisons. All three were very close 
to some other timbre in the Euclidean space of her three-dimen- 
sional solution. Two of them (oboe, sampled piano) had specificities 
of zero and one (bowed piano) had a moderately strong specificity. 
As such, their removal should not have had much of an effect on the 
global structure of the space 

2 MIDI = Musical Instrument Digital Interface: an international 
industry standard for communication between computers and musi- 
cal instruments that use microprocessors. It includes information 
about pitch, timing, key velocity and various musical control para- 
meters. For a sound whose spectrum does not vary with the key 
velocity, the MIDI velocity scale corresponds to a roughly linear 
loudness scale 

spectrum of the sound as a function of the speed with which a key is 
struck. The adjusted values varied between 45 and 70 on a scale of 
127 to attain an equal impression of loudness when the sounds were 
played at a mean level of 62 dB SPL. The maximum physical level 
attained by each sound was then measured at the earphone on 
a BrueI and Kjaer 2209 sound level meter (A-weighting, fast re- 
sponse) with a flat-plate coupler. The tone durations were adjusted 
around a mean value of about 670 ms by a change in the duration 
between the MIDI note-on and note-offpoints in the evolution of the 
tone. The tone starts physically within 1 or 2 ms of the note-on in 
a monophonic situation, and the tone begins to decay more or less 
rapidly within 1 or 2 ms of the note-qff command. The actual 
physical durations required to obtain subjective equality varied 
between 495 and 1,096 ms because of the various shapes of the onset 
and offset ramps. 

Procedure. The experimental session consisted of a familiarization 
phase, a training phase, and an experimental phase. The subject read 
the experimental instructions and asked any questions necessary for 
clarification. Then the 18 sounds were presented in a random order 
to familiarize the subjects with the range of variation among timbres 
that was to be rated on a 9-point scale. On each experimental trial, 
the subject's task was to compare the pairs of instrument sounds and 
rate directly their degree of dissimilarity on a scaIe of l (very similar) 
to 9 (very dissimilar). The pair could be played as many times as was 
desired before the rating was entered into the computer keyboard. 
Subjects were asked to use the full scale in making their judgments. 
Fifteen trials were chosen at random from the 153 pairs for each 
subject to train them in making the dissimilarity rating. Subjects 
were informed that these ratings would not be included in the 
analysis. Once this phase was completed, all pairs ( J ( J  - -  1)/2 = 
153) of the 18 sounds (excluding identical pairs) were presented for 
dissimilarity ratings in a different random order for each subject. 
Each pair was presented once over the course of the experiment and 
the order of presentation of the sounds within the pair was chosen at 
random for each subject. Subjects were allowed to take a break at 
any time during the experimental session, which lasted from 30 to 45 
minutes. 

The subject was seated in a quiet room in front of the computer. 
The experiment was controlled by a LISP program running on 
a Macintosh SE/30 computer which commanded the Yamaha 
TXS02 via a MIDI interface. The stimuli were presented diotically 
via Sony Monitor K240 earphones connected directly to the output 
of the synthesizer. 

Results 

Each  subject 's  da ta  cons is ted  of a vector  of 153 pa i red  
c o m p a r i s o n s  a m o n g  18 sounds .  The  analysis  p roceeded  
in two stages. In te r - sub jec t  cor re la t ions  on  the dissimi-  
lar i ty  matr ices  were c o m p u t e d  a n d  a cluster  analys is  of 
the cor re la t ions  was pe r fo rmed  to detect  subjects  who 
pe r fo rmed  very differently f rom the others.  D a t a  sets 
tha t  were sys temat ica l ly  unco r re l a t ed  with all o ther  sets 
m a y  have ind ica ted  subjects  who had  no t  adop t ed  
a sys temat ic  r a t ing  s t ra tegy or those who  m i s u n d e r -  
s tood  the ins t ruc t ions .  These  subjects  were e l imina t ed  
f rom fur ther  analysis .  Subsequen t ly ,  m u l t i d i m e n s i o n a l  
scal ing of the selected da ta  sets was pe r fo rmed  by an  
ex tended  vers ion  of C L A S C A L  (Winsbe rg  & De Soete, 
1993). The  n u m b e r  of l a ten t  classes was d e t e r m i n e d  by  
Hope ' s  (1968) p rocedure  a n d  then  the a p p r o p r i a t e  spa- 
tial mode l  was selected. 
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Table 2 Log likelihood, degrees of 
freedom, and values of information 
criteria AIC and BIC for spatial 
models with 5 latent classes of 
subjects obtained from dissimilarity 
ratings by 88 subjects on 18 timbres. 
Values for the null model (no 
dimensional structure) are shown 
for comparison 

Without Specificities 

# Dim. logL df AIC BIC 

2 
3 
4 
5 
6 
7 
Null 

With Specificities 

logL df AIC BIC 

- 23010 47 46115 46468 
- 21546 68 43228 43738 
- 21077 89 42331 42999 
- 20876 110 41973 42799 
- 20735 131 41732 42716 
- 20940 152 42183 43324 
- 19666 770 40872 46653 

- 21505 69 43148 43666 
- 20990 90 42159 42835 
- 21054 111 42331 43164 

Cluster analysis 

The correlations between the dissimilarity vectors of all 
pairs of subjects were computed. This vector was sub- 
mitted to a hierarchical cluster analysis using the near- 
est neighbor (single link) algorithm. A subset of 10 
subjects formed a group of clusters that were clearly 
isolated from the rest of the subjects. Among these 10, 
9 were nonmusicians. The tenth subject was a music 
student whose data  were negatively correlated with the 
majori ty of the other subjects, indicating that she had 
perhaps inverted the rating scale. The data for these 10 
outliers were eliminated from the subsequent multi- 
dimensional-scaling analysis. 3 

Multidimensional analysis 

Determination of the number of classes. The data from 
the 88 selected subjects were analyzed with the CLAS- 
CAL program. Hope's (1968) procedure was used to 
determine the number of latent classes in the subject 
population. According to these analyses, five classes 
were sufficient to account for the data. 

Determination of the number of dimensions and inclusion 
of specificities. Selection of the appropriate model for 
the data set requires a determination of the number of 
dimensions and whether or not to include the specifici- 
ties. The parameters for models consisting of from two 
to seven dimensions without specificities (eq. 6) and 
from two to four dimensions with specificities (eq. 10) 
were estimated for five classes of subjects. The BIC 
values indicated that  the most parsimonious model had 
six dimensions without specificities (see Table 2). The 

3 A separate MDS analysis of the nine nonmusicians with EXSCAL 
yielded a one-dimensional solution with specificities. The co- 
ordinates of the timbres along the lone dimension correlated strong- 
ly with the spectral centroid of the tones (see Discussion section). 
However, the specificity values were quite strong indicating that this 
group of subjects had not used systematic perceptual factors shared 
by the timbres in making their dissimilarity ratings 

model for three dimensions with specificities was 
a close contender. The AIC criterion for the 88 subjects 
selected the null model (mean dissimilarity ratings on 
all pairs without spatial structure). This result indicates 
that the data for the entire group were quite noisy. We 
opted for the three-dimensional solution with specifici- 
ties because the psychophysical interpretation of the 
underlying dimensions was more coherent than for the 
six-dimensional solution (see Discussion) and its BIC 
value was close to optimal. 

For  the selected spatial model, the CLASCAL pro- 
gram provides the coordinates of the timbre of each 
sound along each common dimension (Table 3), the 
specifcity value for each timbre (Table 3), and the 
weights for each dimension and the set of specificities 
for each latent class of subjects (Table 4). The positions 
of the timbres in the three-dimensional space are shown 
graphically in Figure 1. 

Estimation of class weights on dimensions and specifici- 
ties. The weights for each of the three dimensions and 
the set of specificities in our selected model were esti- 
mated for each class (see Table 4). These weights signify 
that some classes of subjects accorded more import- 
ance to certain attributes of timbre in their judgments. 
Multiplication of the coordinates in Table 3 by the 
appropriate weights in Table 4 for a given class yields 
the spatial model for that class. These varying patterns 
of weights are also what determines the unique orienta- 
tion of the axes in this model. Classes 1 and 2, which 
contain the majority of subjects, gave approximately 
equal weight to all dimensions and the set of specifici- 
ties, though the weights were slightly higher than the 
mean for Class 1 and slightly lower than the mean 
for Class 2. This difference can be attributed to the 
use of the rating scale since the mean rating for Class 
1 was 4.0 and that for Class 2 was 5.5, unpaire d 
t(304) = -8 .73 ,  p < .0001. The other three classes 
gave less homogeneous patterns of weights which 
means that the orientation of the axes is primarily 
determined by the subjects in Classes 3-5. Class 
3 weighted dimension 2 quite strongly and the specifici- 
ties weakly compared to dimensions I and 3. Class 4 



Table 3 Timbre coordinates  along 
comm on  dimensions and 
corresponding specificities (square 
root) for a 3-dimensional  spatial 
solution with specificities and 
5 latent classes of subjects derived 
from dissimilarity ratings by 88 
subjects on 18 t imbres 

Timbres Dimension  1 Dimension 2 Dimension 3 Specificities 1'2 

French  horn  - 3.3 1.3 - 1.5 1.4 
Trumpet  - 2.6 - 1.9 0.4 1.6 
T rombone  - 2.4 1.7 - 1.2 1.4 
Harp  3.0 1.7 - 0.4 0.8 
Trumpar - 0.1 - 2.7 0.1 1.9 
Oboleste 3.0 1.7 0.7 1.4 
Vibraphone  3.8 1.8 1.3 1.9 
Striano - 1.4 - 0.9 1.6 1.8 
Harps ichord  3.6 - 2.8 0.5 2.2 
English horn - 1.9 - 1.5 - 1.9 1.9 
Bassoon - 2.4 - 1.8 - 2.0 1.4 
Clarinet - 2.4 1.9 0.5 2.5 
Vibrone 0.7 2.3 - 1.6 2.5 
Obochord 2.5 - 2.3 - 2.7 0.0 
Guitar  2.9 0.2 2.4 0.0 
String - 2.4 - 1.4 1.4 1.1 
Piano 1.3 1.3 0.2 2.0 
Guitarnet - 1.8 1.2 2.0 1.4 

Range 7.1 5.0 5.1 2.5 
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Fig. 1 Timbre space m three dimensions: a spatial model  with 
specificities and five latent classes derived from dissimilarity ratings 
on 18 t imbres by 88 subjects. The acoustic correlates of the percep- 
tual dimensions are indicated in parentheses.  Hashed lines connect  
two of the hybrid t imbres (vbn and sno) to their progenitors.  Two 
others can be examined in the same way in this figure (tpr and gnt) 
(see Table 1 for t imbre labels) 

weighted more strongly dimension 1 and the specifici- 
ties, which were weaker for Class 5, whereas dimen- 
sions 2 and 3 were stronger for Class 5 and weaker for 
Class 4. 

Estimation and analysis of class belongingness. A-poste- 
riori probabilities that each subject belonged to a given 

Table 4 Est imated weights in the selected 3-dimensional model  with 
specificities for 5 latent classes of subjects obtained from dissimilar- 
ity ratings by 88 subjects for 18 t imbres 

Dim 1 2 3 Specif 

Class 

! 1.14 0.94 1.18 1.72 
2 0.81 0.69 0.73 0.74 
3 1.05 1.77 1.22 0.58 
4 1.24 0.44 0.51 1.09 
5 0.76 1.15 1.36 0.88 

latent class were computed according to Bayes' 
theorem. Four subjects (three nonmusicians and one 
student musician) could not be assigned unequivocally 
to a given class as their posterior probabilities were 
distributed over all of the classes. So they did not fit 
into any one class and were removed from subsequent 
analyses of class structure. Four other subjects had 
ambiguous assignments to two classes with the prefer- 
red class having a probability of less than .65. The 
probability for the preferred class for 12 other subjects 
was between .65 and .95 and that for the remaining 68 
subjects was greater than .95. 

The distribution across latent classes of the 84 sub- 
jects for whom a preferred class could be determined 
was analyzed according to our original grouping by 
degree of musical training as well as according to three 
items from the questionnaire that could be conceived as 
ordinal scales: years of music making (composition, 
conducting, performance), habitual amount of music 
playing, and habitual amount of music listening. These 
data are shown in Table 5. Two of the professional 
musicians (one each from Classes 1 and 4) did not fill 
out the questionnaire and so their data are absent from 
the last three factors in the table. 
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Table 5 Distribution of subjects in 
each latent class according to 
degree of musical training, number 
of years of music making, amount of 
music playing and music listening 
(the bottom panel has data for only 
82 subjects since two professional 
musician subjects did not fill out the 
questionnaire) 

Musical training Class 1 Class 2 Class 3 Class 4 Class 5 

Professional 8 5 0 7 4 
Amateur 9 17 2 3 7 
Nonmusician 7 4 1 7 3 

Music making Class 1 Class 2 Class 3 Class 4 Class 5 

> 10 years 12 14 1 7 10 
5-10 years 3 6 0 0 1 
0-4 years 8 6 2 9 3 

Music playing Class 1 Class 2 Class 3 Class 4 Class 5 

Every day 12 14 1 5 8 
Occasionally 5 5 1 4 3 
None 6 7 1 7 3 

Music listening Class 1 Class 2 Class 3 Class 4 Class 5 

> 3 times/day 8 8 0 6 4 
2 3 times/day 11 11 0 6 6 
< 2 times/day 4 7 3 4 4 

The musical-training categories are defined above 
in the Methods section. The music-making categories 
were defined by the number of years of musical activity. 
While these two factors certainly covary, we felt that 
they might reveal different tendencies. The music-play- 
ing categories were defined by the amount of regular 
instrumental practice and the music-listening catego- 
ries by the frequency of daily listening. In the analysis, 
Classes 1 and 2 were combined since their weight pat- 
terns were similar and Class 3 was removed since there 
were too few subjects for the analysis to be reliable. 
A table of counts for each analysis class and category 
was constructed from the data in Table 5. The 
null hypothesis was that the proportional distribution 
of categories for each analysis factor is constant across 
classes. Differences in distribution may indicate a rela- 
tion between these biographical factors and class 
belongingness. 

An exploratory data-analysis technique based on 
counted fractions (Tukey, 1977, chap. 15) was used to 
evaluate differences between classes for each factor. The 
folded log (or flog) represents the difference between the 
log of the proportion of data below a cutoff point 
between two categories on an ordinal scale and the log 
of the proportion above that point. This statistic is 
preferable for comparing classes to the raw proportion 
in each category as it is symmetric about a mid-point of 
equal proportion, because of the folding or differencing 
part, and increases the importance of smaller differ- 
ences near the endpoints of the scale (0 and 1), due to 
the log transformation. This analysis shows that the 
distributions of categories of a given biographical fac- 
tor are not the same for all classes for the factors 
musical training and music making, indicating differ- 
ences across classes, while they are similar or parallel 

for the factors music playing and music listening, indi- 
cating a lack of difference. However, as can be seen in 
Table 5, it is generally the case that each class contains 
some people of each category of a given biographical 
factor, indicating that each category of a factor can give 
each of the weighting types revealed by the class struc- 
ture. 

Discussion 

The analyses presented in this section have several 
goals: (1) to evaluate the stability of the timbre spaces 
obtained on the same set of synthetic sounds in two 
different studies (the present one and that of Krum- 
hansl, 1989) using different subject populations; (2) to 
determine the psychophysical nature of the common 
dimensions found in the present study on the basis of 
acoustic parameters derived by Krimphoff et al. (1994); 
(3) to report the results of informal listening to the 
distinctive aspects of sounds that are indicated by the 
specificities; and (4) to discuss the relation between class 
belongingness and musical training and activity. 

Comparison of the two spatial solutions obtained 
with Krumhansl's (1989) solution 

Krumhansl (1989) used a set of 21 sounds that included 
the 18 employed in the present study. Her subjects were 
nine musicians on the staff at IRCAM. As is reported in 
that paper, her data were analyzed by Winsberg using 
the spatial models described by equations 3 and 4. 
A three-dimensional model with specificities was 
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selected. The weighted Euclidean model was rejected in 
favor of the unweighted model because adding weights 
only slightly improved the log likelihood. However, 
using a Procrustian rotation algorithm, Winsberg ro- 
tated the unweighted solution to the weighted model to 
yield meaningful dimensions. Correlations between di- 
mensions in the resulting model and our model were 
computed on the coordinates of individual timbres as 
well as on the specificities (see Table 6). 4 

The first two dimensions of our timbre space were 
strongly correlated with the dimensions that Krum- 
hansl (1989) labeled "temporal envelope" and "spectral 
envelope." However, Krumhansl's "spectral flux" di- 
mension was not significantly correlated with any of 
the dimensions in our model, which suggests differences 
between the subject populations for this dimension. 
Although the specificities were significantly correlated 
between the two studies (see Table 6), there were impor- 
tant differences between them: the harp and guitarnet 
had much higher specificities in Krumhansl's model 
than in the present one, whereas the trombone, trum- 
pet, and trumpar had moderate specificities in the pres- 
ent model and specificities of zero in Krumhansl's 
model. 

For comparison, we computed the correlations 
(df= 16 in all cases) between the coordinates on the 
common dimensions of Krumhansl's (1989) model and 
each of the dimensions of the six-dimensional model 
selected by BIC. Krumhansl's "temporal envelope" and 
"spectral envelope" dimensions were well correlated 
with dimensions 1, r = .98, p < .0001, s and 3, r = .77, 
p < .01, of the six-dimensional space, respectively. Her 
"spectral flux" dimension, however, was significantly 
correlated with dimensions 3, r = .60, p < .01, 4, 
r = - . 53 ,  p <.05, and 6, r = - . 57 ,  p <.05. So our 
dimension 3 correlated with two of her three dimen- 
sions and her dimension 2 correlated with three of our 
six dimensions. The most coherent relation thus exists 
between the two models with three dimensions and 
specificities. 

Quantitative analysis of the psychophysical nature 
of the common dimensions 

Only two of the previous studies that found two or 
three perceptual dimensions of timbre in MDS analyses 
attempted a quantitative description of their acoustic 
correlates. Grey and Gordon (1978) found that the 
spectral centroid of the tones correlated significantly 

4 Negative correlation coefficients indicate that the two axes being 
compared were inverted with respect to one another. Since we were 
interested in distances between objects, the sign of the coordinate 
system on each axis is of no particular importance 

5 All p values shown for correlation coeffÉcients are those for Fisher's 
r-to-z transform 

Table 6 Correlations (dr= 16) between coordinates in Krumhansl's 
(1989) and our three-dimensional models with specificities for 18 
timbres 

Our Model 

Krumhansl's Model Dim 1 Dim 2 Dim 3 Specif 

Temporal Envelope .98t .09 .27 
Spectral Flux -.33 -.20 .24 
Spectral Envelope -.01 -.95? - .07 
Specificities .58* 

*p = .01, tp < .0001 (Fisher's r-to-z). 

and strongly with the coordinate along the first dimen- 
sion of spatial models for Grey's (1977) original tones, 
for tones interpolated acoustically between these orig- 
inals (Grey, 1975), and for spectral modifications of 
some of the original tones (Grey & Gordon, 1978). The 
correlation coefficients for comparisons between the 
dimension coordinates for these three spaces and 
a spectral centroid measure derived fiom a loudness 
function (Zwicker & Scharf, 1965) were .94, .92, and .92, 
respectively. Iverson and Krumhansl (1993) character- 
ized the second dimension of their three spatial models 
(complete tones, attack portion only, attacks removed) 
in terms of spectral centroid, rs = - .70, - .61, - .75, 
respectively. The first dimension of the attack-only 
space was characterized in terms of the rise time from 
the start of the tone to maximum amplitude, r = .79. 6 

More recently, however, Krimphoff et al. (1994) 
have quantified satisfactorily all three common dimen- 
sions of Krumhansl's (1989) model. The first dimension 
correlated very strongly, r = .94, with the logarithm of 
the rise time (measured from the time the amplitude 
envelope reaches a threshold of 2% of the maximum 
amplitude to the time it attains maximum amplitude). 
The second dimension correlated very strongly, r = .94, 
with the spectral centroid (measured as the average 
over the duration of the tone of the instantaneous 
spectral centroid within a running time window of 
12 ms). The third dimension correlated well, r =  .85, 
with a measure of spectral irregularity (log of the SD of 
component amplitudes from a global spectral envelope 
derived from a running mean of the amplitudes of three 
adjacent harmonics) rather than with any of a number 
of measures of spectral variation over time as was 
presumed by Krumhansl (1989) in originally naming 
this dimension "spectral flux." 

One of the aims of the current study was to validate 
the acoustic correlates described by Krimphoff (1993; 
Krimphoff et al., 1994) for a timbre space based on 
a large set of dissimilarity ratings given by subjects with 

6 Although acoustic measurements were compared directly to sim- 
ilarity ratings, equivalent characterizations of the coordinates of this 
dimension were not reported for their other two stimulus spaces 
(complete tones and attacks removed) 
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Table 7 Correlations (df= 16) between acoustic parameters 
IKrimphoff, 1993; Krimphoff et al., 1994) and the coordinates of 18 
timbres along the three common dimensions of our spatial model (5 
latent classes and specificities derived from dissimilarity ratings by 
88 subjects) 

Acoustic Correlate Dim 1 Dim 2 Dim 3 

Log-Attack Time - . 9 4 t  - . 1 2  - . 1 6  
Spectral Centroid - . 0 4  - . 9 4 t  - . 2 1  
Spectral Irregularity .41 .31 .13 
Spectral Flux - . 0 7  .13 .54* 

*p < .05, tp < .0001 (Fisher's r-to-z). 

varying degrees of musical training. We therefore corre- 
lated these acoustic parameters with the coordinates of 
the 18 sounds (df= 16 in all cases) of the present study 
(see Table 7). Log-attack time accounted for 88% of the 
variance along Dimension 1 of the perceptual model, 
r = - . 9 4 ,  p < .0001. Spectral centroid accounted for 
88% of the variance along Dimension 2, r = - . 9 4 ,  
p < .0001. The third dimension (as in most previous 
studies) presented more of a difficulty in deriving its 
psychophysical interpretation. The spectral irregularity 
measure that accounted for 72% of the variance along 
Krumhansl's (1989) second dimension was not signifi- 
cantly correlated with the third dimension in the pres- 
ent spatial model. The label spectral flux given to her 
third dimension would suggest a parameter measuring 
the degree of variation of the spectral envelope over 
time. One such measure developed by Krimphoff(1993) 
described spectral flux as the average of the correla- 
tions between amplitude spectra in adjacent time 
windows: the smaller the degree of variation of the 
spectrum over time, the higher the correlation. This 
parameter correlated significantly with the third di- 
mension of our spatial model, but only accounted for 
29% of the variance along this dimension, 1"= .54, 
p < .05. This variance increased to 39% when four of 
the timbres (clarinet, trombone, guitarnet, and vibrone) 
were removed from the correlation, r = .63, df= 12, 
p < .05. Their removal did not affect the correlations of 
attack time and spectral centroid with dimensions 
1 and 2. 

Given the high degree of variation in duration and 
level among the stimuli (obtained by perceptually 
equalizing the sounds for loudness and subjective dura- 
tion), we also correlated various measures of these 
parameters with the coordinates on the common 
dimensions. For duration, we computed the energy 
envelope of each sound (rms amplitude of the wave- 
form over a 10 ms running window that advanced in 
5-ms steps). The maximum point of this envelope was 
determined and the duration encompassing the part of 
the signal exceeding thresholds of 3, 10, and 20 dB 
below this maximum were computed. For level, we also 
determined the rms amplitude across the entire dura- 
tion of each sound (expressed in dB). These values, as 

well as the total physical duration and maximum SPL 
recorded on a sound-level meter (see Methods section) 
were correlated with the coordinates of each timbre on 
the common dimensions. After using Bonferroni's cor- 
rection for multiple tests, the only correlation that 
attained significance was between the - 3  dB thre- 
shold duration and the coordinates of dimension 1, 
r = - .82, df = 16, p < .0001. For the set of synthesized 
instrument sounds used, the rise time was also strongly 
correlated with this duration measure, r = .82, df= 16, 
p < .0001. This correlation reflects the fact that, in 
general, impulsive sounds tend both to have sharp 
attacks and to begin decaying immediately, since there 
is no sustained excitation of the instrument. A similar 
interpretation was advanced by Iverson and Krum- 
hansl (1993) for one of their dimensions. 

For comparison, we also computed the correlation 
of Krimphoffet al's (1994) parameters with the coordi- 
nates on the dimensions of the six-dimensional solution 
selected by BIC (df= 16 in all cases). An equivocal 
result was found here, as with the correlation of this 
high-dimensional solution with Krumhansl's (1989) 
model. The log-rise time and spectral flux parameters 
correlated significantly only with dimensions 1, 
r = - .94, p < .0001, and 2, t- = .51, p < .05, respective- 
ly. The spectral fine-structure parameter correlated sig- 
nificantly with dimensions 3, r = - . 5 5 ,  p < .05, 4, 
r = .68, p < .01, and 6, r = .52, p < .05; and the spectral 
centroid correlated significantly with dimensions 2, 
r = - .74, p < .01, and 3, r = - .75, p < .01. So two of 
our dimensions each correlated significantly with two 
acoustic parameters and two of the acoustic parameters 
correlated with several dimensions. We conclude that 
the psychophysical interpretation of this high-dimen- 
sional solution is rather ambiguous compared with the 
three-dimensional solution. 

In contrast to the six-dimensional solution, Table 
7 shows that each of the acoustic parameters that 
correlated significantly with a given dimension of the 
three-dimensional model with specificities was corre- 
lated with that dimension only. This orthogonality of 
the acoustic parameters associated with our perceptual 
dimensions is what makes a psychophysical interpreta- 
tion possible. Further, an analysis for three dimensions 
without specificities was performed to evaluate the ef- 
fect of removing specificities on the correlations of the 
acoustic parameters with the coordinates of the result- 
ing solutions. If the specificities were removed, the 
correlation of spectral centroid with dimension 2 was 
reduced from .94 to .79, and that for spectral flux with 
dimension 3 was reduced from .55 to .27. The inclusion 
of specificities thus improved the psychophysical inter- 
pretation of the dimensions. 

A similar additional analysis for three dimensions 
with specificities and only one latent class was per- 
formed to evaluate the effect of removing latent-class 
structure on the correlations of the acoustic parameters 
with the spatial configuration. If only one latent class 
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was used, the correlation of spectral flux with dimen- 
sion 3 was slightly reduced from .55 to .49. These results 
indicate that the fit of the model to acoustic variables 
was slightly enhanced by including latent classes. 

Informal analysis of specificities 

To make an informal attempt to identify the kinds of 
characteristics that are captured by the specificities in 
our model, we listened to the timbres individually and 
in comparison to all the others and noted verbally what 
seemed to be unique about each timbre. We noted no 
distinguishing features for timbres with specificities be- 
low 2.0 nor for the trumpet-like sound which had, 
nonetheless, a specificity of 2.7. For the rest of the 
timbres with specificities above 2.0, unique features 
were noted. These are summarized in Table 8. Our 
general impression is that the perceptual strength of 
these distinguishing features increases monotonically 
with the specificity value, but this correspondence 
needs to be verified under more controlled conditions 
in future work. One important fact to remark here, 
however, is that the features noted seem to be of two 
types: attributes that vary in degree (such as raspiness 
of attack, inharmonicity, graininess, deviation of pitch 
glide, hollowness of tone color) and attributes of a more 
discrete nature that vary in perceptual strength (such as 
a high frequency zzzir! on the offset, a suddenly damped 
or pinched offset, the presence of a clunk or thud). 
These reports suggest that what is captured by the 
specificities may include both additional continuous 
dimensions of variation, as well as discrete features of 
variable perceptual salience. 

One might have imagined at the outset that hybrid 
instruments, being unfamiliar to listeners, would have 
a novelty that would distinguish them perceptually 
from the more traditional instruments. On average, 

Table 8 Eleven of the 18 timbres having specificities greater than 2.0 
in the 3-dimensional spatial model with specificities derived from 
dissimilarity judgments of 88 subjects. Distinguishing features noted 
in informal comparisons among the sounds are described 

Instrument Speci- Description of distinguishing 
ficity characteristics 

Trombone 2.1 
Guitarnet 2.1 
Trumpet 2.7 
Striano 3.1 
English horn 3.5 
Trumpar 3.8 

Vibraphone 3.8 
Piano 4.2 
Harpsichord 4.7 
Clarinet 6.4 
Vibrone 6.4 

slightly raspy attack 
slight high frequency zzzit! on offset 
nothing remarkable 
downward pitch glide at end of tone 
nasal formant, very sudden offset 
noisy and/or rough attack, roughness in 
resonance of sound, 
low frequency thud on onset and offset 
metallic sound 
slight inharmonicity and soft graininess 
very sharp, pinched offset with clunk 
hollow timbre (very distinctive) 
wobbly double attack 

however, the hybrid timbres do not have greater speci- 
fic weights than the conventional instrument imita- 
tions, neither in Krumhansl's (1989) study nor in the 
present one. In fact, three of the six hybrids have lower 
than average specific weights. The highest specific 
weights found systematically in both studies were for 
the vibrone, the clarinet, the harpsichord, and the piano. 
The lowest weights in both studies were found for the 
obochord. The specificity of the piano-like sound argues 
strongly against the relation between specificity and 
familiarity since this instrument is probably one of the 
most familiar to the primarily European listeners who 
participated in this study. It is possible that in the case 
of certain instruments, such as the harpsichord, the 
properties suggested by the specificities are related to 
the simulation of specific mechanical properties of the 
object. In this case, the acoustic result of the return of 
the hopper in the harpsichord mechanism is percep- 
tually important and should certainly play an impor- 
tant role in an identification task. Similarly, the timbre 
of the clarinet has a specific acoustic property, related 
to the predominance of odd harmonics in its spectrum, 
due to the conical geometry of the air column. 

These results suggest that subjects did indeed make 
dissimilarity judgments on the basis of criteria related 
to structural characteristics of the stimuli. Certain of 
these criteria incited the subjects to analyze the rela- 
tively global and common degree of dissimilarity of all 
the stimuli based on continuous dimensions. The goal 
in this case was to determine the relations among 
stimuli along these common dimensions. Some stimuli, 
though, would seem to possess certain unique struc- 
tural characteristics that cannot be accounted for by 
the Euclidean spatial model alone. These specific fea- 
tures or dimensions would be sutficiently salient per- 
ceptually to influence the dissimilarity of some timbres 
with respect to others. An indication of the presence of 
such features could lead to more systematic psycho- 
physical analyses whose orientation would be quite 
different from an analysis based only on a Euclidean 
spatial model. 

Class structure and musical activity 

One final aim of this study was to examine the relation 
between class structure and the musical training of 
listeners. We hypothesized at the outset that there 
would be a richer dimensional structure for musicians 
and that the weights on the dimensions would be more 
evenly distributed, in line with results found for the 
multidimensional structure of musical pitch (Shepard~ 
1982). Although the folded-log analysis showed some 
differences in the proportional distribution of bio- 
graphical factors among classes, there was no clear 
division of musicians, amateurs, and nonmusicians 
among the latent classes revealed by the CLASCAL 
analysis. 
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Recall that Classes 1 and 2 gave roughly equal 
weights across dimensions and specificities, while 
Classes 4 and 5 gave high weights on two dimensions, 
or on one dimension and the specificities, and low 
weights on the others, respectively. It is these patterns 
that our analysis sought to explain by the biographical 
factors. One interpretation of the patterns is that the 
equal weights for Classes 1 and 2 reflect a shifting of 
attention among dimensions and specificities over the 
course of an experimental session, which averages out 
over trials. The subjects of Classes 4 and 5 may have 
adopted more consistent strategies of judgment that 
focussed on a smaller number of dimensions and stuck 
to them throughout the experimental session. Another 
interpretation is that members of Classes 1 and 2 were 
able to focus on more dimensions at a time than could 
the members of the other classes, and one might predict 
a priori that these would be principally musicians. At 
any rate, the factor responsible for making Class 4 fo- 
cus on the attack time dimension and the specificities, 
while Class 5 focussed on the spectral centroid and 
spectral flux dimensions is difficult to tease out from the 
analysis of the biographical factors presented in the 
Results section. Overall, both musicians and non- 
musicians were able either to weight all dimensions 
equally (Classes 1 and 2) or to give special attention to 
some dimensions (Classes 4 and 5). Nor does the degree 
of musicianship or the amount of training, playing or 
listening mean that one factor or another will be given 
preferential weight. The pattern of weighting of a given 
subject cannot be predicted simply from the bio- 
graphical data related to that subject. It would thus 
seem difficult to extract any clear picture of the factors 
that influence the weight patterns from biographical 
factors related to musical training and activity. 

Separate CLASCAL analyses (three dimensions 
with specificities and one latent class) were performed 
for the professional and nonmusician groups as well as 
for each individual latent class. The variance about the 
model distances was much greater for the non- 
musicians (3.53) and amateurs (3.64) than for the pro- 
fessionals (2.75). The variances for the individual latent 
classes (containing mixtures of professionals, amateurs, 
and nonmusicians) were less than the variance for the 
professional group (range 2.41-2.72). The inclusion of 
class weights in the dimensional model is thus justified 
in terms of model fit since it reduces the overall vari- 
ance. This pattern of results suggests that the effect of 
musicianship is, among other things, one of variance. 
Latent classes do not differ with respect to variance, but 
musicians and nonmusicians do. So musicianship 
affects judgment precision and coherence. 

Conclusion 

A group of 98 listeners of varying degrees of musical 
training rated the dissimilarities among a set of 18 

synthesized instrument sounds. Of these, 88 gave 
dissimilarity matrices that were sufficiently coherent to 
be analyzed with an extended version of the CLASCAL 
MDS algorithm (Winsberg & De Soete, 1993). Monte 
Carlo simulations indicated that five latent classes of 
subjects were sufficient to represent the data. About 
half of the subjects were in the first two classes which 
had very similar weight patterns, being distinguished 
only by a scale factor. These subjects gave approxim- 
ately equal weight to all dimensions and the specifici- 
ties. The other classes' weight patterns suggested that 
certain dimensions, or the set of specificities, had 
greater perceptual salience for each group of listeners. 
The class structure, however, had an ambiguous rela- 
tion to the degree of musical training and activity. 
Timbre, being composed of many of the sensory quali- 
ties that specify the identity of a sound source, may 
likely be used as an important auditory cue for 
monitoring the environment on a continual basis by 
listeners in their everyday lives (McAdams, 1993). It 
would not therefore be surprising that musical training 
as such did not play an important role in defining the 
class structure revealed in this study. What is suggested 
by our study, however, is that musicians make more 
coherent and precise judgments of timbral dissimilarity 
and may, by virtue of their training, have adopted 
a more consistent judgment strategy. 

The CLASCAL analysis suggested a six-dimensional 
model without specificities for individual timbres with 
a three-dimensional model with specificities being 
a close contender. Psychophysical quantification of the 
three-dimensional model was achieved, whereas only 
one dimension of the six-dimensional solution was 
unequivocally correlated with one of the acoustic para- 
meters derived by Krimphoff (1993; Krimphoff et al., 
1994). Further, the first two dimensions and the specifici- 
ties of the three-dimensional model correlated signifi- 
cantly with a similar spatial solution found by Krmnhansl 
(1989), who employed a group of professional musician 
subjects and a set of stimuli including all of ours. 

The acoustic correlates of the three common dimen- 
sions in our spatial model were log-rise time, spectral 
centroid, and spectral flux. The first dimension was also 
well correlated with the duration during which the 
sound's amplitude envelope remained within 3 dB of 
the maximum, suggesting that this dimension distin- 
guishes impulsively flom continuously excited sound 
sources. In most multidimensional-scaling studies of 
musical timbre, dimensions qualitatively related to the 
first two parameters have been found. The third dimen- 
sion seems to be less stable across subject populations 
(in a comparison of this study with that of Krumhansl, 
1989) and/or stimulus sets (Grey, 1977; Grey & Gor- 
don, 1978; Krimphoff et al., 1994). 

That abstract parameters, such as spectral centroid, 
spectral irregularity, and spectral flux, seem to explain 
some of the dimensions used to compare timbres in 
a dissimilarity-rating task, may suggest that such 



191 

judgments are based in part on raw sensory qualities. 
A dimension related to the manner of excitation of the 
instrument would suggest that the judgments also in- 
clude inferences about the nature of the sound sources 
involved. According to this view, differences between 
latent classes of subjects would reflect differences either 
in sensitivity to these qualities or in the importance 
accorded to them in the comparisons made by the 
subjects. This notion is further supported by the fact 
that similar predictive variables are found for synthetic 
sounds of varying degrees of resemblance to acoustic 
sources (Miller & Carterette, 1975; and the present 
study), for recorded instrument tones (Iverson & 
Krumhansl, 1993; Serafini, 1993; Wedin & Goude, 
1972), or for analyzed, modified, and resynthesized in- 
strument tones (Grey, 1977; Grey & Gordon, 1978; 
Iverson & Krumhansl, 1993). Nonetheless, none of 
these studies really presented a broad and balanced set 
of instrument sounds deriving both from different types 
of resonating structures (strings, bars, plates, air 
columns) and means of excitation (blowing, bowing, 
striking, plucking). Such a set would allow systematic 
variation of the many types of physical properties that 
instruments possess, perhaps giving rise to judgments 
more classificatory than continuous. Work in progress 
in our laboratory intends to clarify this issue. 

The specificities that were suggested by the model 
were explored informally in the present study. This 
exploration suggested that distinguishing features of 
the timbres indicated by the specificities in the CLAS- 
CAL analysis are of two types: additional perceptual 
dimensions on which only certain sounds vary and 
discrete features of varying degrees of perceptual sali- 
ence. Further work in both acoustic analysis and psy- 
chophysical experimentation is needed to verify and 
develop this notion. 

The CLASCAL algorithm (Winsberg & De Soete, 
1993), and in particular the extended version employed 
here, promises to be a powerful tool for the analysis of 
timbre perception. Specificities provide a way to repres- 
enting systematic variation in dissimilarities that can't 
be accounted for by shared dimensions, and may indi- 
cate additional dimensions along which only a single or 
a small number of timbres vary or unique attributes 
with varying degrees of perceptual salience. Further, 
the model captures certain systematic variations in 
judgments that are accounted for by different weighting 
of the common dimensions and the specificities by 
latent classes of subjects. Taken together, these added 
modeling features give a better fit to the data and 
render the resulting model more interpretable in terms 
of its acoustic correlates. This approach provides 
a much needed tool for the analysis of complex percep- 
tual representations and for suggesting orientations for 
their psychophysical quantification. 
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