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Abstract

Timbre has most often been studied through correlational analyses that associate percep-
tual dimensions (or in other words, the orthogonal axes of a timbre space), with a wide
set of audio descriptors. These timbre-related descriptors have been widely used for tasks
such as acoustical interpretation of perceptual dimensions, explaining listeners’ dissimilar-
ity ratings between pairs of sounds, content delivery in music information retrieval sys-
tems, investigating timbre semantics, quantifying a↵ective responses to sound, predicting
the amount of blend between instrumental sounds, investigating cognitive factors related
to memory for timbre, and developing perceptually based audio processing strategies and
sound e↵ects. However, audio descriptors identified through correlational analyses do not
necessarily causally relate to listeners’ perceptions and when entered into statistical regres-
sion models may lead to false positive interpretations about their perceptual significance,
especially when features also strongly covary.

The present thesis undertakes an investigation of timbre by establishing psychophysical
correspondences between perception and several timbre-related audio descriptors. Three
studies investigate whether listeners perceive spectral audio descriptors on perceptual or-
dinal, interval, and ratio scales, and temporal descriptors on an ordinal scale. The stimuli
used in each of the presented experiments were constructed through specifically designed
synthesis algorithms that enabled control of each audio descriptor independently of the rest
and that therefore isolated as much as was feasible the e↵ect of each descriptor on listeners’
perceptions.

The first study perceptually validates spectral audio descriptors through an ordinal
scaling experiment. The results indicate that listeners were overall able to rank order
the stimuli of a particular feature set when presented with an appropriate spacing of de-
scriptor values. The second study underpins the e↵ect of amplitude envelope features and
spectral envelope features on the perceptual relevance of temporal audio descriptors and
inharmonicity, through another ordinal scaling experiment. In addition, the results of that
experiment suggested a combination of acoustically independent descriptors that could po-
tentially explain variation along a spectrotemporal perceptual dimension, which in previous
timbre studies had been considered to be strictly temporal. The above hypothesis was con-
firmed by conducting a meta-analysis on the timbre spaces derived from previous studies.
The third study comprises two experiments that provided interval scale and ratio scale
measurements on spectral audio descriptors. The results of the first experiment indicated
that listeners were overall able to estimate intervals of spectral descriptors. We therefore
proceeded to a ratio scaling experiment the results of which indicated that listeners can
also produce ratios of descriptor values and enabled the construction of psychophysical
ratio scales of each descriptor tested.

The findings advance the current knowledge on timbre perception both by establishing
cause-and-e↵ect relations between audio descriptors and perceptual dimensions and by ex-
panding previous research in which the acoustical interpretations of perceptual dimensions
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were made solely under the prism of correlational analysis. The psychophysical correspon-
dences between perception and audio descriptors reported in this thesis will hopefully serve
as a basis for future research, which may attempt to study timbre as a phenomenon that
emerges from a combination of audio features and explore its psychophysical attributes
through perceptual dominance hierarchies of those features.
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Résumé

Le timbre a le plus souvent été étudié au moyen d’analyses corrélationnelles qui associent
à des dimensions perceptives (ou en d’autres termes, les axes orthogonaux d’un espace de
timbre) un large éventail de descripteurs audio. Ces descripteurs liés au timbre ont été
largement utilisés pour des tâches telles que l’interprétation acoustique des dimensions per-
ceptives, l’explication des dissemblances d’estimation d’indices entre paires de sons par des
auditeurs, la distribution de contenu par des systèmes de recherche d’informations musi-
cales, l’étude de la sémantique du timbre, la quantification des réponses a↵ectives au son,
la prédiction du niveau de fusion entre sons instrumentaux, l’étude des facteurs cognitifs
liés à la mémoire du timbre, ainsi que le développement de stratégies de traitement audio
et d’e↵ets sonores fondés sur la perception. Cependant, les descripteurs audio identifiés
par ces analyses corrélationnelles ne sont pas nécessairement liés de façon causale à la
perception des auditeurs et, lorsque traités par des modèles de régression statistique, peu-
vent conduire à des interprétations faussement positives de leur signification perceptive, en
particulier lorsque les caractéristiques sont également fortement covariants.

Cette thèse présente une étude sur le timbre qui établit des correspondances psy-
chophysiques entre perception et descripteurs audio liés au timbre. Trois études exami-
nent si les auditeurs perçoivent les descripteurs audio spectraux sur des échelles ordinales,
d’intervalle et de rapport perceptifs, et les descripteurs temporels sur une échelle ordi-
nale. Les stimuli utilisés dans chacune des expériences présentées ont été construits grâce
à des algorithmes de synthèse spécialement conçus pour contrôler chaque descripteur audio
indépendamment des autres, isolant autant que possible l’e↵et de chaque descripteur sur
la perception par les auditeurs.

La première étude valide perceptivement les descripteurs audio spectraux par une
expérience d’échelle ordinale. Les résultats indiquent que les auditeurs étaient globalement
capables de classer de manière ordonnée les stimuli d’une même caractéristique spécifique
lorsque présentés selon un espacement approprié des valeurs des descripteurs. La deuxième
étude souligne l’e↵et des caractéristiques d’enveloppe d’amplitude et des caractéristiques
d’enveloppe spectrale sur la pertinence perceptive des descripteurs audio temporels et sur
l’inharmonicité, grâce à une autre expérience de mise à l’échelle ordinale. De plus, les
résultats de cette expérience suggèrent une combinaison de descripteurs acoustiquement
indépendants qui pourrait potentiellement expliquer une variation le long d’une dimension
perceptive spectro-temporelle, qui a été considérée jusqu’à maintenant comme strictement
temporelle selon de précédentes études sur le timbre. L’hypothèse ci-dessus a été con-
firmée par la réalisation d’une méta-analyse sur des espaces de timbre résultants d’études
antérieures. La troisième étude consiste en deux expériences qui ont fourni des mesures
d’échelle d’intervalle et d’échelle de rapport sur des descripteurs audio spectraux. Les
résultats de la première expérience ont indiqué que les auditeurs étaient globalement ca-
pables d’estimer des intervalles de descripteurs spectraux. Nous avons donc procédé à une
expérience de mise à l’échelle des rapports dont les résultats indiquent que les auditeurs
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peuvent également produire des rapports de valeurs de descripteurs ce qui a permis la
construction d’échelles de rapports psychophysiques pour chaque descripteur testé.

Les résultats de cette thèse ont fait progresser les connaissances actuelles sur la per-
ception du timbre à la fois en établissant des relations de cause à e↵et entre descripteurs
audio et dimensions perceptives, et en prolongeant les recherches antérieures dans lesquelles
les interprétations acoustiques des dimensions perceptives étaient établies uniquement à
travers le prisme de l’analyse corrélationnelle. Nous espérons que les correspondances psy-
chophysiques entre perception et descripteurs audio rapportées dans cette thèse serviront
de base à de futures recherches, qui viseraient à étudier le timbre en tant que phénomène
émergeant d’une combinaison de caractéristiques audio et à explorer ses attributs psy-
chophysiques selon des hiérarchies de dominance perceptives de ces caractéristiques.



v

Acknowledgments

My first sincere gratitude is extended to Paul Berg, who was my supervisor during my
studies at the Institute of Sonology. Paul soon realized that I was very interested in this
“timbre business”, as he might say, and encouraged me to approach Stephen McAdams,
hoping that I could join his team at McGill University for a semester as a visiting student.
If it wasn’t for Paul, . . .

Stephen McAdams fortunately accepted me in his team and gave me the opportunity to
collaborate with many brilliant timbre researchers, who also warmly welcomed me to Mu-
sic Perception and Cognition Lab (MPCL). My thanks go to Meghan Goodchild, Chelsea
Douglas, Sven-Amin Lembke, Kai Siedenburg, Yinan Tsao, and David Sears. In partic-
ular, I would like to thank Cecilia Taher for her kindness, support, and friendship, and
Charalampos Saitis who was the first person to introduce me to Montreal.

Special thanks go to Bennett Smith for his kindness, technical assistance, and sense of
humor. Bennett soon became my favorite person among MPCLers. I recall us standing
together on McAdams’ rooftop, during MPCL’s Christmas party being held downstairs and
sharing some cigarettes along with McAdam’s homemade glöggi drinks, while peacefully
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Chapter 1

Introduction

Most of the past research on timbre psychophysics has focused on determining acoustic
correlates of perceptual dimensions derived from multidimensional scaling of dissimilarity
ratings, in order to quantify the ways in which we perceive sounds to di↵er. However, there
is only little empirical evidence to date demonstrating that acoustic features derived from
correlational analysis causally correspond to psychological dimensions. Most importantly,
even for cases in which the causality has been verified, there is almost no research on
understanding how the sensation magnitudes of such acoustic features are apprehended,
which is the core subject of this dissertation.

This chapter begins with an overview of timbre representation models along with a
brief comparison between models that rely on (the parsimonious) audio descriptors against
models that rely on modulation spectra. In order to situate the contributions of this thesis
in a broader context, Section 1.2 presents some practical applications of timbre models
focusing on timbral blend and sound morphing guided by audio descriptors. Section 1.3
gives an introduction to psychophysical scaling and presents some terms and methodologies
that will be used in subsequent chapters. Finally, the research aims of this thesis conclude
this chapter.

1.1 Timbre Representations

The majority of timbre studies postulate that timbre relies on a limited number of orthogo-
nal perceptual dimensions. Listeners make paired comparisons between stimuli by judging
their similarity on a numerical scale ranging from “very similar” to “very dissimilar”. The
presented sounds are usually equalized in pitch, loudness and perceived duration, so that
listeners’ judgments are based exclusively on a set of timbre attributes. The (hidden) per-
ceptual structure of the dissimilarity data is most often revealed through multidimensional
scaling techniques (MDS). MDS achieves that by finding a configuration of the data points
in a low-dimensional space, such that the distances between points in the low-dimensional
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space adequately represent the ratings between stimuli in the full-dimensional space. As
a result, perceptually similar sounds are spaced close together and dissimilar sounds are
spaced farther apart. The space defined from the orthogonal MDS axes is commonly re-
ferred to as a timbre space, the first visualization of which was given by Plomp (1970). The
final step of the analysis is the psychophysical interpretation of the MDS dimensions, which
in early studies used to rely heavily on the researcher’s intuition. As the number of MDS
dimensions increases, the model will represent listeners’ ratings with higher fidelity, but a
psychological interpretation of the axes becomes more di�cult, and the resultant space is
also harder to visualize. On the other hand, as the number of dimensions decreases, the
possibility of having metameric matches between sounds increases, because there can be
an infinite number of di↵erent sounds (at least in theory) that map to the same location
in the timbre space.

1.1.1 Acoustic correlates of timbre spaces

In the early timbre studies, the MDS axes were qualitatively interpreted according to rather
general acoustical descriptions of the stimuli such as, the number of harmonics present,
the overall shape of the spectral and amplitude envelope, or the onset asynchrony of the
partials (Grey, 1977; Miller & Carterette, 1975). Grey and Gordon (1978) were the first to
quantitatively interpret perceptual dimensions, by inspecting the correlations of the points
on the MDS axes with a set of algebraic models derived after performing an acoustic
analysis on the stimuli. The model that correlated most strongly with the dimension that
was (qualitatively) associated with the global energy distribution of the partials in Grey’s
(1977) study, was the spectral centroid (also known as the spectral center of gravity),
which corresponds to timbral brightness and is a weighted average of the partials’ energies.
In addition, when they performed a new MDS analysis on the dissimilarity ratings of a
spectrally modified stimulus set with respect to Grey’s original set, they observed that
pairs of synthesized sounds that had exchanged spectral envelopes also exchanged orders
on the MDS axis that correlated most strongly with spectral centroid.

The approach of Grey and Gordon (1978) for quantitatively interpreting perceptual di-
mensions according to a set of acoustic parameters was extended and systematized by Krim-
pho↵, McAdams, andWinsberg (1994) based on Krumhansl’s (1989) three-dimensional tim-
bre space. Krimpho↵ et al. examined the correlations of each axis of that timbre space with
a set of unidimensional acoustic parameters extracted from the stimuli. The dimensions
that were referred to as “Spectral Envelope” and “Temporal Envelope” in Krumhansl’s
study, correlated strongly (r = 0.94) with spectral centroid and log-attack time respec-
tively, the latter parameter being useful for distinguishing between impulsive (e.g., struck,
plucked) and continuant instruments (e.g., bowed, blown). Although subsequent studies
employing di↵erent MDS models and stimulus sets confirmed the importance of these two
acoustic parameters, there seems to be no consensus about the acoustic correlate of the
third MDS dimension, which in most cases also exhibits weaker correlations than the other
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two parameters. Throughout the various studies, the third dimension has been associated
with: the harmonic odd-to-even ratio, and spectral deviation (also known as spectral irreg-
ularity), which is a measure of the spectral envelope’s jaggedness Krimpho↵ et al. (1994);
spectral flux (also known as spectral variation), which measures the spectral fluctuation
over a tone’s duration McAdams, Winsberg, Donnadieu, Soete, and Krimpho↵ (1995); har-
monic odd-to-even ratio, and to a lesser extent, spectral flux Caclin, McAdams, Smith, and
Winsberg (2005). In addition, probably due to no significant correlations with any of the
above-mentioned parameters, some researchers would step back to qualitative interpreta-
tions such as in Lakatos’s (2000) study, in which the generic term “timbral richness” was
used to characterize the third dimension.

An exception related to the robustness of attack time in explaining dissimilarity ratings
is the study of Kendall, Carterette, and Hajda (1999), who explored the timbral similarities
between physical instrument tones and emulations of them generated by frequency modu-
lation (FM) synthesis, sampling, and a mixture of the two. Similar to McAdams et al.’s
(1995) study, two of the dimensions of the three-dimensional MDS space were correlated
with spectral centroid and spectral variation. Interestingly, the third dimension did not
correlate with log-attack time, probably due to the homogeneity of the synthetic stimuli
with respect to that parameter. Instead, the authors observed that the emulated sounds
did not match the time-varying characteristics of the authentic sounds, such as spectral flux
or amplitude modulation during the steady state and therefore, this dimension was qual-
itatively associated with spectrotemporal parameters. Nonetheless, Kendall et al. (1999)
suggested that in their study, attack time was a perceptual cue used by listeners for distin-
guishing the real instruments from their emulations. A similar observation was made by
Iverson and Krumhansl (1993), who argued that attack time may not be as important for
dissimilarity judgments as it is for instrument identification, or near categorical separation
between impulsive and continuant instruments.

The incongruence of the reported results in relation to the acoustical interpretation of
a third perceptual dimension, may indicate the possibility that psychological dimensions
result from a combination of acoustic parameters rather than a single parameter. How-
ever, currently there is no research that has systematically investigated the possible ways
and conditions under which such parameters collapse onto single perceptual dimensions.
Another explanation could be that the MDS solution depends on stimulus context, which
is di↵erent from study to study. However, there is some research that counteracts this
hypothesis. For instance, McAdams and Giordano (2006), and McAdams (2015) observed
that the distances between sounds in a particular timbre space remain invariant in the pres-
ence of new stimulus sets, which suggests that timbre relations do not depend on stimulus
context. This invariance could be partly explained from the fact that timbre perception
is strongly linked to the identification and categorization of sound sources, as pointed out
from the previous discussion.
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1.1.2 Audio Descriptors

Since Krimpho↵ et al.’s (1994) study, the set of acoustic parameters started expanding with
the appearance of the MPEG-7 standard, according to which such parameters would be
termed “audio descriptors” (ISO/IEC, 2002), and which in the field of music information
retrieval (MIR) fall under the umbrella term “features”. These two terms will be used
interchangeably in the present manuscript.

Some descriptors are computed on the temporal energy envelope of the signal and are
therefore called “global”. This family of descriptors includes attack and decay time, tempo-
ral centroid, attack slope, and the frequency and amplitude of the modulation of the tem-
poral envelope. Another set of audio descriptors is known as “time-varying” because they
are computed on analysis frames derived from the short-term Fourier transform (STFT).
This set of descriptors includes spectral centroid, spread, skewness and kurtosis, spectral
slope, harmonic spectral deviation, harmonic odd-to-even ratio, and spectral flux, which is
the only spectrotemporal descriptor. In general, global descriptors capture some aspects
of the evolution of the time-domain waveform, whereas time-varying descriptors capture
some aspects of the spectral envelope. The values of the time-varying descriptors are often
further compressed to a single number by computing summary statistics over the analysis
frames (e.g., mean, median, and interquartile range). In fact, it is the summary statistics
that are used when computing the correlations of MDS axes with audio descriptors.

A large set of descriptors is o↵ered in MATLAB toolboxes such as the Timbre Toolbox
(Peeters, Giordano, Susini, Misdariis, & McAdams, 2011), the MIRtoolbox (Lartillot &
Toiviainen, 2007) and more recently in MATLAB’s native Audio Toolbox (although the set
of descriptors is limited compared to the other two toolboxes). However, it is customary
with most audio analysis tools, the user has to specify a set of analysis parameters, which
may have an impact on the accuracy of computed descriptors with respect to the type
of sound being analyzed. Such specifications may be related to the parameters used for
computing the amplitude envelope before extracting the related descriptors, the shape
and length of the analysis STFT window, whether spectral descriptors will be computed
on the magnitude or on the power values of the FFT bins, or related to the parameters
that will be used for extracting harmonics from the raw spectrogram values, in order to
derive descriptors that relate only to the harmonic content of the signal. A study on how
such analysis parameters a↵ect the accuracy of descriptors is given in Appendix A, which
evaluates the performance of the Timbre Toolbox and the MIRtoolbox when using their
default settings for extracting descriptors. In addition, Nymoen, Danielsen, and London
(2017) evaluated the calculation of some global descriptors in the Timbre Toolbox and the
MIRtoolbox, and proposed parameter settings that lead to descriptor values that are in
closer agreement with empirical results.
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1.1.3 Audio features extracted from modulation power spectra (MPS)

In contrast to the approaches presented in section 1.1.1, a di↵erent class of timbre rep-
resentations favors the notion that timbre emerges from an indivisible high-dimensional
structure characterized by modulation power spectra (MPS). MPS is derived from a two-
dimensional Fourier transform of the spectrogram, and unifies the spectral and temporal
domains through a scale-rate representation from which spectrotemporal features may be
extracted. The temporal modulations, also called rates, indicate the amount of amplitude
periodicity within each channel, whereas the spectral modulations, also called scales, repre-
sent the amount of spectral periodicity, which conceptually can be thought of as a measure
of spectral density.

Patil, Pressnitzer, Shamma, and Elhilali (2011) showed that the MPS can be e�ciently
used as a data source in machine learning tasks for musical instrument identification re-
gardless of pitch and playing style. Most importantly, the machine-learning model was able
to reproduce human dissimilarity judgments, which may suggest that listeners rely on sim-
ilar features for instrument identification. The MPS representation was averaged over time
and initially consisted of 128 frequencies, 22 rates, and 11 scales that resulted in a total of
30,976 features. The dimensionality of the features was greatly reduced through singular
value decomposition (SVD) to 420 features with 21 eigen-frequencies, 4 eigen-rates, and
5 eigen-scales. The correlation between the human dissimilarity matrix and the one gen-
erated from the machine-learning model was r = 0.94, whereas the strongest correlations
between audio descriptors and a two-dimensional MDS space were r = 0.97 for log-attack
time and r = 0.62 for spectral centroid.

Hemery and Aucouturier (2015) examined in depth di↵erent possible ways to process
MPS representations and their ability to compute perceptual distances between pairs of
environmental sounds. The results showed that processing the data as time-series is no
more e↵ective than models that rely on summary statistics along time, but processing the
data in series that are organized along frequency, scale, or rate, does give better results than
processing their summary statistics. Contrary to the study of Patil et al. (2011), there were
no systematic di↵erences between the processing of the scale-rate representation, and the
processing of just the frequency dimension. However, as also noted by the authors, most
environmental sounds are stationary and therefore do not exhibit strong spectrotemporal
modulations as acoustic instruments do, and for which a scale-rate representation could be
more appropriate.

Elliott, Hamilton, and Theunissen (2013) suggested that combining the results from an
acoustic analysis based on MPS with an analysis based on audio descriptors o↵ers com-
plementary insights for acoustically interpreting perceptual dimensions. In their study, a
five-dimensional MDS space was derived from dissimilarity judgments between tones from
physical instruments. Four out of five dimensions were significantly correlated with MPS
features. The dimensionality of the MPS was first reduced through principal component
analysis (PCA). Similar results were obtained from a second regression analysis that used as
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predictors the attack time, spectral centroid, temporal centroid, spectral spread, skewness,
kurtosis, and entropy. The complementary viewpoint resulting from these two di↵erent
analyses is supported from the fact that the fifth dimension was only correlated with MPS
features (albeit weakly) but not with the classical descriptors, whereas the third dimension
was purely spectral and only correlated with spectral centroid and spectral spread. How-
ever, from a statistical point of view, both analyses led to very similar results: the MPS
features accounted for 73%, 59%, 60%, and 10%, of the variance along the first, second,
fourth, and fifth MDS dimensions, respectively, whereas audio descriptors accounted for
70%, 57%, 40%, and 22%, of the variance along the first, second, third, and fourth MDS
dimensions, respectively.

From the above discussion, it can be concluded that features derived from MPS have
similar explanatory power along perceptual dimensions to the classical descriptors. In
addition, listeners’ dissimilarity ratings are hard to interpret when modeled through MPS
features that have undergone a data-reduction step, especially because the transformed
features (e.g., the eigen-rates and eigen-scales used in Patil et al., 2011) no longer reflect
the physical aspects of the initial feature space.

1.2 Timbral blend and feature-based sound synthesis

Timbre spaces along with audio descriptors have been widely used for explaining the amount
of timbral blend between sound sources, which is of primary importance in several orches-
tration treatises (Lembke, 2014), as well as in computer aided orchestration environments
in order to create (composite) instrumental sounds that exhibit a particular spectromor-
phology (Carpentier & Bresson, 2010). In addition, audio descriptors have been used to
indirectly control sound synthesis parameters related to audio morphing, or more generally
for synthesizing a (target) sound that exhibits spectrotemporal characteristics that match
a set of descriptor values, as well as for synthesizing realistic sound textures.

1.2.1 Timbral blend

Kendall and Carterette (1993) found that sounds in close proximity within a two-dimensional
timbre space blend better than sounds that are spaced farther apart, which indicates that
the amount of perceived blend is proportional to the distances between the constituent
sounds located within a timbre space. Although they did not o↵er a quantitative inter-
pretation of the MDS dimensions, they made some general observations related to the
spectrotemporal contrasts between the lower and the upper partials of each sound.

Sandell (1995) attempted to identify which acoustic parameters contribute to ratings
of blend between dyads of instrument sounds when played in unison, and when separated
by a minor third. The audio descriptor that correlated the most with the ratings was the
spectral centroid: blend increased when the composite spectral centroid was low, or when
the di↵erence between the centroids (di↵erential centroid) of the two sounds was small.
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More specifically, when sounds were played in unison, the composite spectral centroid,
followed by attack time, and loudness envelope accounted for 51% of the variance. When
the sounds were separated by a minor third, the composite centroid, di↵erential centroid,
attack time, and o↵set synchrony, accounted for 63% of the variance.

Tardieu and McAdams (2012) attempted to identify factors that influence the ratings
of blend between dyads consisting of a continuant and an impulsive tone. The results
were similar to those reported by Kendall and Carterette (1993): sounds with low spectral
centroids, and thus darker timbres, along with long attack times, lead to higher degrees
of blend. The contribution of the acoustic characteristics of the impulsive sound to the
perceived blend was greater than the characteristics of the continuant sounds. However, in
a second experiment where they examined factors that influence the dissimilarity ratings
among dyads, they found that that the contribution of the continuant sound was greater
than that of the impulsive sound. The first MDS dimension correlated with the attack
time of the dyad. Interestingly, the second dimension was occupied by two di↵erent dyad-
clusters, one of which correlated with spectral spread, and the other one with spectral
flatness.

Lembke and McAdams (2015) using a step-wise regression model found that the for-
mants of the spectral envelope are stronger predictors than the spectral descriptors for
explaining the amount of timbral blend between wind instruments. The regression model
explained about 87% of the total variance in listeners’ blend ratings with the strongest pre-
dictor being the upper bound of a formant. The other two predictors were the di↵erential
spectral centroid of the dyad and a binary contrast factor related to the energy between
the lower and upper formants. However, the contribution of the last two predictors in the
regression model was about five times less than the contribution of the first predictor.

1.2.2 Feature-based sound synthesis

Ho↵man and Cook (2006) proposed a general framework for feature-based synthesis accord-
ing to an optimization scheme that maps synthesis parameters to target feature values. The
results are very preliminary: the source sound consists of stationary sinusoids, and white
noise that is spectrally shaped through mel-frequency cepstral coe�cients (MFCC); the tar-
get features are limited to spectral centroid, spectral roll-o↵, and fundamental frequency
histograms. Park, Biguenet, Li, Conner, and Travis (2007) treat single features as modu-
lation signals that are applied to a source harmonic sound. The feature set includes the
overall shape of the amplitude envelope, spectral centroid, spectral spread, spectral flux,
and inharmonicity. According to their proposed synthesis scheme, the imposed constraints
can only control one feature at a time and therefore, the combination of multiple target
features leads to unpredictable results. Furthermore, treating the residual part of the signal
(i.e., the noisy part) is left for future work.

Caetano and Rodet (2010a) investigate spectral envelope representations, which lead
to linearly varying values of audio descriptors when linearly interpolated according to a
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morphing factor. In a subsequent study (Caetano & Rodet, 2010b), the authors use op-
timization techniques based on genetic algorithms, in order to obtain morphed spectral
envelopes that approximate target audio descriptor values. Olivero, Depalle, Torrésani,
and Kronland-Martinet (2012) propose a sound morphing technique that relies on the
interpolation of Gabor masks (i.e., time-frequency filters), and in which the imposed con-
straints force the morphing intermediates to exhibit a predesigned temporal sequence of
centroids. In relation to the above-mentioned studies, Appendix B presents a morphing
strategy that relies on the interpolation of synthesis parameters related to the signal model
and the independent control of several audio descriptors.

Audio descriptors have also proven to be useful in producing compelling and realistic
sound textures. McDermott, Schlemitsch, and Simoncelli (2013) were able to resynthesize
realistic textures using the time averaged statistics of centroid, spread, skewness, kurtosis,
as well as cross-band correlations computed from the envelopes of cochlear-like filterbank
responses extracted from real textures. Schwarz and O’Leary (2015) used granular synthe-
sis for extending the duration of environmental sound texture recordings, by controlling
the perceptual similarity between successive grains according to metrics based either on
di↵erences between audio descriptor values or MFCCs. The set of descriptors included
the loudness of the grain, fundamental frequency, spectral centroid, spectral spread, and
spectral slope. Formal listening tests indicated that grain concatenation according to audio
descriptor values rendered more natural sounding textures than the textures synthesized
by concatenating grains according to MFCC distances.

1.3 Psychophysical scaling

The most common measurement scales are the ordinal scale, which indicates whether lis-
teners are able to rank order the stimuli; the interval scale, which indicates whether they
can judge the relative size of intervals between stimuli; and, the ratio scale, which indi-
cates whether ratios between stimuli can be perceived, e.g., whether a given interval is
perceived as being twice the size of another interval (Stevens, 1946). According to Luce
and Krumhansl (1988), psychophysics can be classified into two broad categories. The first
category is local psychophysics, in which the focus is on stimulus changes that are small
enough to cause confusion among stimuli. For this reason, the methods used to construct
perceptual scales from experiments that belong to this category are referred to as confusion
scaling methods (Gescheider, 1997). The scales derived from such methods are indirectly
constructed through the discrimination responses of the observer on stimuli that are close
in magnitude and result in interval measurements, because the observer has to indicate the
di↵erences rather than the ratios of perceived magnitudes. Such scales are useful when it
is more convenient to specify the di↵erences of stimulus intensities in a number of discrim-
inable steps through just noticeable di↵erences (JND), rather than using the actual stimulus
intensity units. On the other hand, the main drawback of scales constructed with confusion
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scaling methods is that the constructed intervals capture only ‘local’ e↵ects, because the
data are derived from the discrimination of neighboring stimuli, whereas the stimuli in the
real world are widely distributed. Nonetheless, the methods related to local psychophysics
are particularly useful when one wishes to study a class of psychoacoustic phenomena such
as those related to detection, discrimination, masking e↵ects, and time-intensity tradeo↵s.

The second category is global psychophysics in which the focus is toward understanding
listeners’ responses on stimulus changes over the full dynamic range of the signal, and not
on stimulus changes that are small enough and which therefore cannot be easily detected
(Luce & Krumhansl, 1988). The measurements from global psychophysics experiments
may lead to ordinal, interval or ratio scales, depending on both the experimental method
and the stimulus properties. Since audio descriptors capture global properties (rather than
the fine structure) of the spectral and temporal envelopes of a sound event, in order to
establish psychophysical correspondences between perception and several timbre-related
audio descriptors, this thesis has only considered experimental procedures that are part of
global psychophysics, the basic methods of which are presented in the next two subsections.

1.3.1 Partition scaling methods

In partition scaling methods the main objective is the partitioning of the psychological
continuum into equal sensory intervals, which leads to either interval or ordinal scale mea-
surements. There are two main approaches used for constructing such scales, one based
on equisection scaling and the other on category scaling (Gescheider, 1997). In equisection
scaling, the main task of the observer is to report whether the sensory distance between a
pair of stimuli is equal to, greater than, or less than the distance between a di↵erent pair.
The observer is presented with the upper and lower limits of a physical continuum and is
instructed to choose a number of stimuli in order to create a prescribed number of equidis-
tant sensory steps between those limits. This technique is referred to as the simultaneous
solution because the observer has to estimate all the scale values at once. Another tech-
nique is the progressive solution, in which the observer is presented with the highest and
lowest stimulus values and is instructed to bisect the given sensory distance by choosing a
single stimulus. The process is progressively repeated using as the highest or lowest limits
of the previously chosen stimulus and terminates when the desired number of successive
equal sensory intervals is reached.

In category scaling, the observer’s task is to distribute a set of stimuli in a number of
specified categories. The final scale is derived by treating the assigned category values as
interval values, under the basic assumption that the observer is able to keep the intervals
between category boundaries equal during the assignment of stimuli to each category. The
main issue with this approach is that observers tend to make equal use of all the categories,
which in the best-case scenario could lead to an ordinal scale. Nonetheless, if the stimulus
set is perceptually uniform, the chances of deriving interval measurements are increased
(Gescheider, 1997).
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1.3.2 Direct estimation methods

This set of methods is known as direct, because the observer makes direct estimations of
sensation magnitudes on presented stimuli. This set includes the methods of ratio esti-
mation, ratio production and generalizations of them known as magnitude estimation and
magnitude production (Gescheider, 1997). In ratio production, the task of the observer is
to adjust according to a prescribed ratio the intensity of a variable stimulus with respect to
a reference stimulus (also known as the standard stimulus). The most apprehensible ratio,
and the one most often used, is the 2-to-1 along with its complement, which serves as a
validity check on the observer’s judgments. Any biasing e↵ects due to intensity’s upward
or downward adjustments (also known as hysteresis e↵ects) can be lessened by averaging
the two scales derived from each direction. In ratio estimation, the observers do not make
any adjustments on the stimuli, but instead are asked to estimate their apparent ratios.
One of the two methods can also be used to validate the other.

The methods of magnitude estimation and magnitude production are generalizations
of the ratio estimation and ratio production methods, in which observers make direct
numerical estimations of the sensory magnitudes according to a given numerical value
(also known as modulus) of a reference stimulus, or by arbitrarily choosing their own
reference value for the reference stimulus. In another variant, called absolute magnitude
estimation (Hellman & Zwislocki, 1961), the observers match numbers to stimuli without
the presentation of the standard, and for each new trial, they are instructed to do so
independently of their previous matches. The final scale can be computed from the data of
the subjects using either the geometric mean or the median since the arithmetic mean may
distort the scale in the presence of a few unrepresentative and extremely high judgments.
As in the previous case, one method can be used to test the validity of the other, but
some times these methods lead to small but systematic di↵erences in the psychometric
functions (Gescheider, 1997). Observers are often reluctant to report extremely low or high
judgments although their perceptions may be correct and thus, a psychometric function
derived from magnitude production will have a steeper curve than the function derived
from magnitude estimation. The results from both methods are usually combined under
the assumption that the unbiased function lies somewhere in between.

1.3.3 Scale types and practical considerations

The type of scale is determined by the numerical rules that best model the empirical data,
and which therefore provide the most information about the invariance of scale values across
a variety of conditions (Baird & Noma, 1978). In other words, the scale invariance across
di↵erent trials ensures that the pattern of response magnitudes remains the same.

In an ordinal scale, the order of scale values is constant over trials, but the ratios and
interval sizes may change from trial to trial. This scale can be modeled according to:
x
0 = monf(x), where the values in trial x0 are a monotonic transformation of the values in
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x. For instance, if u > v in trial x, then u
0
> v

0, in trial x0, because f(x) is a transformation
that maintains the order of u and v.

In an interval scale the relative size of intervals is retained over trials, or in other
words, the ratio of two intervals remains the same. It is modeled according to the a�ne
transformation: x

0 = ax + b, where a is a positive multiplicative constant, and b is an
additive constant. The interval scale also satisfies the conditions for the ordinal scale.

The ratio scale is the only type of scale in which the concept of “times as much” has a
meaning and is modeled according to: x0 = ax, where a > 0. One of its distinctive charac-
teristics, and what di↵erentiates it from the interval scale, is the existence of the so-called
absolute zero, which means that a stimulus attribute will always remain zero throughout dif-
ferent trials regardless of the multiplicative constant. The ratio scale satisfies all the criteria
for the interval, and ordinal scales, and is therefore the most informative type of scale. Fur-
thermore, the operation of addition is invariant under all possible representations within the
scale only for ratio scale measurements. For instance, the transformation f from one scale
value to another must be increasing and satisfy the constraint f(u+ v) = f(u) + f(v), for
u, v > 0, which is true for the ratio scale but not for the interval scale (Luce & Krumhansl,
1988).

Another type of scale is the log-interval scale, which remains invariant up to a power
transformation:  = k�

�, where k is a constant which depends on the units of measurement,
and the exponent � is an index of perceptual sensitivity (Baird & Noma, 1978). This
type of scale has been extensively studied by S. S. Stevens (Stevens, 1975) and is also
referred to as Stevens’ power law. By taking the logarithms, the above equation becomes:
log = logk + �log�, and when plotted in log-log coordinates it describes a straight line,
where the exponent � becomes the slope of the line. The practical utility of this function can
be summarized into the following sentence (Stevens, 1975): Equal stimulus ratios produce
equal subjective ratios. In practice, however, there are cases in which the simple form of
the power law does not always accurately describe the data either because the zero of the
subjective scale  does not coincide with the absolute threshold on the stimulus scale �
(Stevens, 1975), or simply because the observers’ responses depart from linearity (in log-
terms) near the low end of the scale (Baird & Noma, 1978). In such cases, the fit of the
power function on the data can be improved by subtracting (or adding) a constant (�0)
from the stimulus values, in which case the power function becomes  = k(�–�0)�.

In the previous subsections, it was mentioned that partition scaling methods lead to
interval scale measurements whereas direct estimation methods lead to ratio scale measure-
ments. The power law can be used to model both these two types of responses although the
exponent derived from partition scaling will in most cases be lower than the exponent found
from direct estimation methods (Baird & Noma, 1978; Stevens, 1975). These observations
were made after comparing the results of the two methods on a class of continua that S.
S. Stevens called prothetic, because he assumed that discrimination along such continua
is mediated by additive processes at the physiological level (e.g., loudness). A di↵erent
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class of continua is what S. S. Stevens called methathetic, because he assumed that for
these continua, the discrimination is mediated by substitutive processes at the physiolog-
ical level (e.g., pitch: the progression along the continuum is achieved by changing the
locus of excitation along the basilar membrane). Experiments on this type of continua
have indicated that the exponents from partition scaling and direct estimation methods al-
most coincide, meaning that the results of these two experimental methods lead to almost
identical perceptual scales (Stevens, 1975).

1.4 Research Aims

This thesis investigates whether, how, and to what extent listeners perceive magnitude
di↵erences along acoustic features, some of which have been arbitrarily used in the field
of music information retrieval (Siedenburg, Fujinaga, & McAdams, 2016) and have been
appraised as physical correlates of perceptual dimensions in several timbre studies (Sec-
tion 1.1.1). Besides the topics presented in this chapter, audio descriptors have also
been widely used for investigating the role of timbre in areas such as timbre semantics
(Zacharakis, Pastiadis, & Reiss, 2015), quantifying a↵ective responses to sound (Farbood &
Price, 2017; McAdams, Douglas, & Vempala, 2017), investigating cognitive factors related
to memory for timbre (Siedenburg, 2016), and psychomechanics (McAdams, Roussarie,
Chaigne, & Giordano, 2010). However, audio descriptors identified through correlational
analyses do not necessarily causally relate to listeners’ perceptions and when entered into
statistical regression models may lead to false positive interpretations about their percep-
tual significance, especially when features also strongly covary.

The aim of this thesis is to test whether listeners perceive audio descriptors on perceptual
ordinal, interval, and ratio scales. Chapter 2 presents an experiment that tested the ordinal
scalability of the following spectral descriptors: spectral centroid, spectral spread, spectral
skewness, harmonic odd-to-even ratio, spectral deviation, and spectral slope.

Chapter 3 presents a similar experiment that tested the ordinal scalability of temporal
descriptors, and the extent to which their scalability depends on amplitude envelope fea-
tures and spectral envelope features. The following descriptors were tested: attack time,
decay time, temporal centroid with fixed attack or decay time, and inharmonicity. In ad-
dition, with respect to the results of the ordinal scaling experiment, a meta-analysis on
previously reported timbre spaces was conducted in order to test the hypothesis that vari-
ation along a spectrotemporal perceptual dimension may be explained by a combination of
acoustically independent descriptors.

Chapter 4 presents two experiments that provided interval scale, and ratio scale mea-
surements, respectively, of all the spectral descriptors tested in the second chapter. In ad-
dition, it presents the psychophysical ratio scales of each descriptor that were constructed
after taking into account the absolute zero of the stimulus scale, and by extrapolating the
subjective scale of the ratio measurements outside the tested range.
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Chapter 5 concludes the dissertation by summarizing the main results and the experi-
mental procedures used in each study. It also provides suggestions for future research, and
discusses how the findings of this thesis contribute to our understanding of timbre.
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Chapter 2

Ordinal scaling of timbre-related
audio descriptors: Spectral envelope
features

This chapter is based on the following research article:

Kazazis, S., Depalle, P. and McAdams, S. (in preparation). Ordinal scaling of timbre-
related audio descriptors: Spectral envelope features. Manuscript prepared for submission
to Journal of the Acoustical Society of America.

Abstract A psychophysical experiment was conducted to perceptually validate several
spectral audio features through ordinal scaling: spectral centroid, spectral spread, spec-
tral skewness, odd-to-even harmonic ratio, spectral slope, and harmonic spectral deviation.
Several sets of stimuli per audio feature were synthesized at di↵erent fundamental fre-
quencies and spectral centroids by controlling (wherever possible) each spectral feature
independently of the others, thus isolating the e↵ect that each feature had on the stimulus
rankings within each sound set. Listeners were overall able to order stimuli varying along
all the spectral features tested when presented with an appropriate spacing of feature val-
ues. For specific cases of stimuli in which the ordering task partially failed, we provide
psychophysical interpretations to explain listeners’ confusions. The results of the ordinal
scaling experiment outline trajectories of spectral features that correspond to listeners’
perceptions and suggest a number of sound synthesis parameters that could carry contour
information.
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2.1 Introduction

Musical timbre has often been studied by evaluating listeners’ dissimilarity ratings between
pairs of instrumental sounds (Caclin, McAdams, Smith, & Winsberg, 2005; Grey, 1977;
Grey & Gordon, 1978; Iverson & Krumhansl, 1993; Lakatos, 2000; McAdams, Winsberg,
Donnadieu, Soete, & Krimpho↵, 1995). Researchers then employ a nonlinear dimension-
ality reduction technique on the data, presuming that timbre relies on a limited bundle of
perceptual dimensions, usually ranging from two to three. The techniques most often used
are variants of Multidimensional Scaling (MDS), which project the dissimilarity data onto
a lower-dimensional ”timbre space” by maximizing the fit between average dissimilarities
and mathematical distances in the model. A psychophysical meaning is then sought for
the MDS dimensions by examining how strongly each axis correlates with a set of audio
features, which are most often extracted within time frames from traditional spectrograms,
and the time-varying values are further compressed to a scalar value with summary statis-
tics representing central tendency and variability over time. The systematic development of
audio features for quantitatively interpreting perceptual dimensions started with the work
of Grey and Gordon (1978), and this approach was extended and systematized by Krim-
pho↵, McAdams, and Winsberg (1994) who conducted acoustic analyses of Krumhansl’s
(1989) sound set and examined the correlations of various features with each axis of her
three-dimensional timbre space. The feature set started expanding with the appearance of
the MPEG-7 standard according to which audio features would be termed audio descriptors
(ISO/IEC, 2002). These two terms will be used interchangeably in the present paper.

There is only limited empirical evidence to date demonstrating that features derived
from correlational analysis, or arbitrarily used for example in music information retrieval,
causally correspond to psychological dimensions. On the contrary, recent research indicates
that even some well-established features, such as spectral flatness, do not correspond to
listeners’ perceptions (Agus, Anderson, Chen, Lui, & Herremans, 2018). One exception is
the study of Grey and Gordon (1978) who observed that pairs of synthesized sounds that
had exchanged spectral envelopes also exchanged orders on the MDS axis which correlated
most strongly with the spectral centroid weighted by the loudness function of Zwicker and
Scharf’s (1965) model. Another exception is the confirmatory study of Caclin et al. (2005),
who tested and confirmed with synthesized stimuli the saliency of attack time, spectral
centroid, and the odd-to-even harmonic ratio, but not spectral flux (i.e., the change in
shape of a spectral envelope over time) for explaining dissimilarity ratings. However, we
find that for the experiments of Caclin et al. (2005), the interpretation of one dimension
being associated only with spectral centroid could be problematic because the stimuli were
actually varying in spectral slope, which in the special case where the spectral components
monotonically increase (or decrease) in magnitude is linearly dependent on spectral centroid
but also a↵ects the spectral spread and skewness. As such, the authors were directly
evaluating the perception of spectral slope, although this descriptor does covary strongly
with centroid in these stimuli. In conclusion, the aforementioned timbre studies support
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a unidimensional or two-dimensional spectral representation of timbre, along with a third
temporal dimension associated with attack time.

However, when the experimental paradigm is switched from judging the dissimilari-
ties between pairs of sounds to discrimination or identification tasks, features other than
centroid and attack time become also prevalent. Although Caclin et al. (2005) did not
confirm the saliency of spectral flux in dissimilarity judgments (albeit computed over the
first 100 ms), McAdams, Beauchamp, and Meneguzzi (1999) had previously identified it as
one of the most salient spectrotemporal features when listeners were asked to discriminate
instrument sounds resynthesized with the full parameters of an additive synthesis model
from sounds resynthesized with simplified synthesis parameters (in this particular case,
spectral flux was eliminated in the simplified versions). In addition, the discrimination
was also very good between sounds that exhibited a certain amount of harmonic spectral
deviation and the simplified versions, in which the spectral deviation was minimized (for
each time frame each harmonic amplitude was replaced by the average of itself and its two
harmonic neighbors), which indicates that harmonic spectral deviation had been another
salient spectral feature for this particular task. Horner, Beauchamp, and So (2011) used
additive synthesis for synthesizing sounds with matched spectral centroids, and reported
that the relative amplitudes of the first five harmonics could account for 85% of the variance
in predicting spectral discrimination performance. Nonetheless, spectral centroid also plays
a role in discrimination and identification tasks. Wun, Horner, and Wu (2014) used synthe-
sized instrument sounds based again on additive synthesis, and showed that discrimination
levels were above 75% when the spectral centroid was increased by 40% or decreased by
24%, and that instruments started to lose their identity when the spectral centroid was
increased by 64% or decreased by 48%. McDermott, Schlemitsch, and Simoncelli (2013)
measured the discrimination of various sound textures, which were synthesized according
to the time-averaged summary statistics of the respective pre-analyzed textures. Their
results indicate that the combination of summary statistics (including the mean, variance,
and skewness) greatly accounts for the categorical discrimination among di↵erent textures,
but limits the ability to discern temporal detail.

Based on the above discussion, it can be concluded that the relative perceptual salience
of each audio feature depends on the experimental task (e.g., dissimilarity judgments, dis-
crimination, identification), the range of feature values within a stimulus set (e.g., matched
spectral centroid, minimum spectral deviation, etc.), and whether clear categorical bound-
aries exist or not (e.g., instrument and texture categories). The aim of this study is to
perceptually validate a number of spectral descriptors by testing whether, and in some
cases the extent to which, independently controlled features can each be perceived on an
ordinal scale. The following descriptors related to spectral shape were tested: spectral
centroid, spread, skewness, odd-to-even harmonic ratio, spectral slope, and harmonic spec-
tral deviation, which measures the average amplitude deviation of harmonics from a global
spectral envelope smoothed by the average amplitude of three consecutive harmonics. The
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Tristimulus values (T1 being the normalized amplitude of the fundamental frequency, T2
the mean normalized amplitude of the second, third and fourth harmonics, and T3 the
mean normalized amplitude of all the upper partials) were not tested, but the T2 value
was used as a criterion for constructing stimuli for spectral deviation. A mathematical
formulation of these descriptors can be found in Peeters, Giordano, Susini, Misdariis, and
McAdams (2011). The above descriptors were tested in an experiment that consisted of
two sessions, and for clarity of presentation the results of each session are presented in
di↵erent sections. Discussion for both sessions is included in Section 2.4.

2.2 Experimental Session A

2.2.1 Method

Participants

Twenty-five participants, 10 female and 15 male, with a median age of 23 years (range:
18–40) were recruited from the Schulich School of Music, McGill University. All of them
were self-reported amateur or professional musicians with formal training in various disci-
plines such as performance, composition, music theory, and sound engineering. Participants
who were not a�liated with the authors’ lab were compensated with 10 Canadian dollars.

Stimuli

Several sound sets consisting of synthetic sounds were created by independently controlling
the values of spectral centroid, spectral spread, and spectral skewness in the synthesis
process. All of the spectral manipulations described in this section were applied to a flat
harmonic spectrum (harmonics set at equal amplitude) with a fundamental frequency (f0)
of 120 Hz and harmonics up to 21,960 Hz (99.6% of the Nyquist frequency). The choice
of using an f0 at 120 Hz was based on that fact that it was found to be high enough to
construct complex periodic tones without audible roughness that can be induced by the
relative phases of the partials, and low enough to provide an adequate resolution of the
harmonics when shaping spectra according to probability distributions for achieving specific
values of statistical moments (described below).

The stimuli were synthesized in Matlab version R2015b (The MathWorks, Inc., Nat-
ick, MA) using additive synthesis at a sampling frequency of 44.1 kHz with 16-bit amplitude
resolution. The peak amplitude of the waveforms was normalized to 0.5 and the duration
was set to 600 ms, gated with 10-ms raised-cosine ramps. Due to substantial di↵erences
among the spectral envelopes the stimuli were loudness-normalized according to the algo-
rithm of Moore, Glasberg, and Baer (1997) as implemented in the Loudness Toolbox v.1.2
(Genesis S. A., 2009), and further adjusted by the authors who observed that the algorithm
overestimated the loudness of sounds that had most of their energy in the higher frequen-
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cies, an observation in line with the results of Schlittenlacher, Ellermeier, and Hashimoto
(2015).

Spectral centroid Two obvious strategies that can be used to modify the spectral cen-
troid of harmonic sounds while preserving their overall harmonic structure and fundamental
frequency are: i) preserving the spectral slope and increasing or decreasing the number of
harmonics, and ii) preserving the number of harmonics and altering the spectral slope as
in Caclin et al. (2005). In the former case, changing the number of harmonics will cause
changes in spectral spread whereas in the latter case, changes in amplitude slope will cause
changes in spectral spread and skewness. In order to counteract such side e↵ects, which
would not allow for the independent control of centroid from spread and skewness, the
stimuli were constructed by shaping the flat harmonic spectrum described above to follow
a normal probability mass function. The normal distribution is a two-parameter family of
curves and as such enables the construction of spectra with di↵erent centroids (means) for
a given spread (standard deviation, �) and zero skewness.

To set a fixed spread throughout this sound set there had to be a compromise between:
i) the level of di�culty of the ordering task (smaller spreads would make the task easier as
in the extreme case the spectrum would consist of just one harmonic), and ii) the lowest
centroid to be included in the sound set, which is constrained by the f0 used in the initially
flat spectrum. After these considerations, the spread was set to 480 Hz (four times the f0),
which allows for a minimum centroid of 1640 Hz and a minimum bandwidth (or full width
at half maximum of the distribution) of nine harmonics for each stimulus spectrum. The
number of harmonics H that fall inside the bandwidth of the normal distribution is given
by:

H =
j
2�

p
2 ln 2/f0

k
(2.1)

In total, the stimulus set consisted of 15 centroids at {1640, 1800, 2000, 2280, 2560, 2880,
3240, 3680, 4160, 4760, 5400, 6200, 7120, 8200, 9560} Hz chosen to be centered approxi-
mately at one-ERBN steps on the ERBN-number scale (Moore & Glasberg, 1983) {19.31,
20.08, 20.95, 22.05, 23.01, 23.98, 24.95 25.98, 26.96, 28.02, 28.99, 30.01, 31.01, 31.99, 33.00}
respectively, as shown in Fig. 2.1. It should be noted that for all stimuli, the harmonic
spacing of the components ensured a (virtual) pitch percept at the f0.

Spectral spread The normal distribution was again used to construct stimuli with fixed
centroids, zero skewness, and variable spreads. The stimuli were constructed based on the
rationale that when the spectrum is normalized at unit amplitude, it can be considered as
a probability distribution of the harmonic amplitudes, therefore reducing the spread will
cause an increase in the relative amplitude of the centroid. More formally, we consider that
a particular normalized spectrum i defines the probability distribution of the harmonic
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Fig. 2.1 Spectral envelopes of stimuli in the spectral centroid set. The dots
on the last five Gaussian curves indicate the positions of harmonics. The har-
monics within the rest of the Gaussian curves are omitted for display purposes.

amplitudes:

Ai(fh) =
1

�i

p
2⇡

exp

 
�(fh � fc)

2

2�2

i

!
(2.2)

where fh and fc denote the harmonics and spectral centroid, respectively. We can then
compute the desired spread �i+1 according to the ratios of (desired) amplitude values and
in relation to a given spread �i:

Ai+1(fc)

Ai(fc)
=

�i

�i+1

(2.3)

This approach was constrained by: i) the number of maximum audible successive di↵erences
in decibels of the centroid that could be achieved between successive spreads (�i+1), ii) the
choice of the initial spread (�1), which was further constrained by the centroid and f0, and
iii) the spacing resolution of the harmonics.

After taking into account these restrictions, three sound sets were constructed with
centroids of 1640, 5600, and 7800 Hz, and initial spreads of 480, 1440, and 1800 Hz,
respectively. The choice of the initial spreads allowed for ten stimuli per sound set for
which the centroids’ relative amplitudes di↵ered by approximately 2 dB in succession. An
example of this process is shown in Fig. 2.2 for the 7800 Hz centroid sound set.

Spectral skewness The Skew-normal distribution (Azzalini, 2005) is a three-parameter
family of curves and was employed for constructing stimuli with di↵erent skewness while
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Fig. 2.2 Spectral envelopes of the stimuli in the spectral spread set at a
spectral centroid of 7800 Hz. Line segments connect harmonics to keep the
figure readable.

the centroid and spread were being kept constant. The probability density function of the
Skew-normal distribution with shape parameter ↵ 2 R, scale ✓ 2 R+, and location ⇠ 2 R,
is given by:

f(fh; ⇠, ✓, ↵) =
2

✓
�

✓
fh � ⇠

✓

◆
�

✓
↵

✓
fh � ⇠

✓

◆◆
, fh 2 R (2.4)

where � is the normal probability density function and � its cumulative distribution func-
tion. The restrictions that were taken into account with respect to centroids and spreads
were similar to the ones mentioned above, with the additional constraint that skewness in
the Skew-normal distribution only vary within a range of (–0.9953, 0.9953). For testing
both positive and negative skewness separately, three sets of nine stimuli were constructed
for each condition with centroids spaced at 1640, 5600 and 7800 Hz and spreads at 360,
1080, and 1440 Hz, respectively. After informal listening tests, the authors concluded that
it was easier to distinguish between successive positive skewness value when increased log-
arithmically, whereas for negative skewness a linear spacing seemed to work better. Given
the spacing of harmonics and spreads, it was also noticed that skewness values close to the
extremes of |0.995| caused the first or last harmonic (depending on whether the distribution
was positively or negatively skewed) to clearly stand out of the harmonic complex, some-
thing that might confuse listeners in the ordering task and was therefore avoided. Based
on these observations, the following sets of values were used for positive and negative skew-
ness, respectively: {0, 0.2496, 0.4428, 0.5924, 0.7082, 0.7979, 0.8674, 0.9211, 0.9628}, and
{0, –0.1106, –0.2211, –0.3317, –0.4422, –0.5528, –0.6633, –0.7739, –0.8844}. Example spec-
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tral envelopes with negative skewness and a centroid of 7800 Hz are shown in Fig. 2.3.
Note that the values reported above were computed in continuous frequency and were only
used as references to construct the stimuli. The measured values, which were computed in
discrete frequency and after synthesizing the stimuli, di↵ered slightly due to the spacing
resolution of the harmonics and the parameter estimation of the Skew-normal distribution
(see Appendix).
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Fig. 2.3 (Color online) Spectral envelopes with three values of negative skew-
ness (low and high anchors and mid-point value) and a 7800 - Hz spectral
centroid. Markers represent harmonics.

Procedure

Before the experiment, participants signed an informed-consent form. Afterwards, they
passed a pure-tone audiometric test at octave-spaced frequencies from 125 Hz to 8 kHz
(ISO 389-8, 2004; Martin & Champlin, 2000) and were required to have thresholds at or
below 20 dB HL to proceed to the experiment. The instructions that described the task
and user interface were presented on paper and were further explained by the experimenter.
Any questions had to be asked during the practice trials for which the experimenter was
also present in the booth.

In each trial, participants were presented two sounds, which served as anchors and
which had the minimum and maximum values of a given audio feature. The task was
to order the rest of the sounds in between those anchors according to “any criteria that
di↵erentiate them the most.” Any verbal labeling of the anchors was intentionally avoided.
The stimuli were presented in the form of sound boxes on which participants could click to
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hear each stimulus and then drag them to the desired position for the ordering task. The
user interface consisted of two main panels. In each trial the top panel contained only two
stimuli (i.e., the anchors), which had the minimum and maximum values of a particular
audio feature and between which the ordering of the rest of the stimuli would take place.
The rest of the stimuli were presented in randomized order in the lower panel. The task
was completed when all of the stimuli in the lower panel were dragged and re-arranged
according to the desired order in the top panel.

In each trial and for each participant, the stimuli were presented in random order, but
the sound sets were presented in the following (fixed) order: 1) practice trial, 2) centroid,
3) spread with centroid at 5600 Hz, 4) positive skewness with centroid at 5600 Hz, 5) neg-
ative skewness with centroid at 5600 Hz, 6) negative skewness with centroid at 1640 Hz,
7) positive skewness with centroid at 1640 Hz, 8) negative skewness with centroid at 7800
Hz, 9) positive skewness with centroid at 7800 Hz, 10) spread with centroid at 7800 Hz,
11) spread with centroid at 1640 Hz. The order of presentation was intentionally kept
fixed, following an increasing and then decreasing level of di�culty (empirically estimated)
so that trials including stimuli that were harder to order would be presented around the
middle of the experiment. The practice trial consisted of ordering stimuli that had the
same spectral centroids with the ones used in the main experiment, but which had half
the amount of spectral spread, and thus exemplified the experimental task by making the
ordering easier. This session took approximately 40 minutes to complete.

Apparatus

The experimental session was run with the PsiExp computer environment (Smith, 1995).
Sounds were amplified through a Grace Design m904 monitor (Grace Digital Audio, San
Diego, CA) and presented diotically over Sennheiser HD600 headphones (Sennheiser Elec-
tronic GmbH, Wedemark, Germany). The sound pressure levels had a range of 54.4–74
dB SPL (A-weighted) as measured with a Brüel & Kjær Type 2205 sound-level meter with
a Brüel & Kjær Type 4153 artificial ear to which the headphones were coupled (Brüel &
Kjær, Nærum, Denmark). Listeners were seated individually in an IAC model 120act-3
double-walled audiometric booth (IAC Acoustics, Bronx, NY).

Data analysis

Because of the ordering task, nonparametric tests were used on participants’ stimulus rank-
ings. For each stimulus set, separate Friedman tests were used to evaluate the main e↵ect
of each audio descriptor. To account for the nonsphericity present in the data, which can
transmit to Friedman ranks (Beasley & Zumbo, 2009), the main e↵ects of each audio fea-
ture were also tested with a proportional-odds mixed model (McCullagh, 1980), which had
a full random e↵ects structure with random intercepts for each participant and random by-
participant slopes for the fixed factor of sound set (Barr, Levy, Scheepers, & Tilly, 2013).
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The main e↵ect was evaluated by a likelihood ratio test (in which the maximum likelihood
was estimated by the Laplace approximation) between the full model and a reduced model,
which had the same random e↵ects structure but excluded the e↵ect of interest from the
fixed factors. The main trends of the data were identified through forward stepwise ordinal
regression with orthogonal polynomials constructed with the modified Gram-Schmidt al-
gorithm (Ho↵man, 1989) on ranked stimulus values. In cases where the dependent variable
could be perfectly determined by the predictors (i.e., complete separation: Albert and An-
derson (1984)), a linear regression model was used instead. Two-tailed post hoc Wilcoxon
signed-rank tests were used to examine whether the rank of each stimulus was significantly
di↵erent from the rest and thus, to identify stimulus combinations that were confused by
the listeners. Due to the large number of multiple comparisons within each stimulus set, the
post hoc tests were corrected with the Holm-Bonferroni method (critical ↵ = 0.05)), which
controls the family-wise error rate (Holm, 1979). Although the aligned-rank transform
(Higgins & Tashtoush, 1994) and its variants allow for nonparametric analyses of vari-
ance to test for interaction e↵ects on ranked data, the transform was originally developed
for continuous dependent variables and recent studies suggest that it is not appropriate
for ordinal responses (Luepsen, 2017). As such, a proportional odds mixed model, which
had a nested random e↵ects structure with random intercepts for each participant and
the subsets of stimuli nested within each participant, was used to examine the interaction
e↵ects between the ranking of the stimuli along a given descriptor and the subsets with
di↵erent values of a parameter, such as spectral centroid or fundamental frequency, used in
each subset of the same descriptor (e.g., the ranking of spectral spread between the sound
sets centered at three di↵erent centroids). The interactions were examined after fitting the
model using sum coding for the predictor variables and performing an ANOVA on the fixed
e↵ects (Barr et al., 2013). All the statistical analyses were done in Matlab. Although
analyses are conducted on ranks, in all data graphs, the actual stimulus values are plotted
on the x axis, at times appearing concave or convex even though a linear relation may exist
between physical ranks and mean response ranks.

2.2.2 Results

Both the Friedman and likelihood ratio tests shown in Table 2.1 confirmed the main e↵ect
of each audio descriptor. Fig. 2.4 and Fig. 2.5 show the mean rankings for spectral centroid
and the three sound sets used for spectral spread for which only a linear trend between
the ranked stimulus values and the mean rankings was found to be significant (Table 2.2).
Fig. 2.6 shows the ratings for the sound sets of negative and positive skewness. For negative
skewness, the sets with centroids at 1640 and 7800 Hz showed a linear trend, whereas for
the set at 5600 Hz both linear and quadratic terms significantly described the trend of the
data (Table 2.2). For positive skewness with a centroid at 1640 Hz, linear and quadratic
terms both significantly described the patterns of the mean rankings of the stimuli, whereas
for the other two sets, only a linear term was found to be significant (Table 2.2).
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Table 2.1 Friedman (�2

F ) and likelihood ratio tests (�2

LRT ) for the stimulus
sets of Session A. sc = spectral centroid, df = degrees of freedom; *p < 0.001

Stimulus sets sc (in Hz) df �
2

F �
2

LRT

centroid - 12 296.30* 113.12*

spread 1640 7 171.13* 86.28*

spread 5600 7 172.71* 86.13*

spread 7800 7 173.77* 87.05*

neg. skewness 1640 6 70.11* 41.51*

neg. skewness 5600 6 105.69* 67.00*

neg. skewness 7800 6 109.80* 61.77*

pos. skewness 1640 6 114.31* 54.30*

pos. skewness 5600 6 129.19* 75.92*

pos. skewness 7800 6 141.98* 76.37*
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Fig. 2.4 Spectral centroid: mean rankings of spectral centroid stimuli be-
tween the anchors. Error bars represent 95% confidence interval (CI).
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Fig. 2.5 Spectral spread: mean rankings of spectral spread stimuli between
the anchors. sc = spectral centroid. Error bars represent 95% confidence
interval (CI).

Table 2.2 Ordinal regression coe�cients for the stimulus sets of Session A.
sc = spectral centroid; L, Q: linear and quadratic terms respectively.

Stimulus sets sc (in Hz) Term b t p <

centroid - L –535.51 –12.89 .001

spread 1640 L –176.55 –12.64 .001

spread 5600 L –206.16 –11.90 .001

spread 7800 L –243.21 –10.62 .001

neg. skewness 1640 L –23.55 –9.70 .001

neg. skewness 5600 L –37.93 –11.27 .001

Q –11.45 –3.27 .010

neg. skewness 7800 L –45.48 –11.94 .001

pos. skewness 1640 L –58.53 –11.97 .001

Q –13.40 3.04 .010

pos. skewness 5600 L –64.93 –12.29 .001

pos. skewness 7800 L –110.54 –12.30 .001
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Fig. 2.6 Spectral skewness: mean rankings of negative and positive spectral
skewness stimuli between the anchors. sc = spectral centroid. Error bars
represent 95% CI.



28
Ordinal scaling of timbre-related audio descriptors: Spectral envelope features

Interaction e↵ects between the stimulus ranks and the fixed parameters of the stim-
uli used in the di↵erent subsets of each descriptor were only found to be significant for
negative skewness, F (12, 504) = 2.05, p = 0.02. Table 2.3 lists pairs of stimuli from the
negative skewness sound sets, the rankings of which were found to be nonsignificant in in
the post hoc analysis and were thus confused by most listeners. The results indicate that
confusion between stimuli within di↵erent sound sets (indicating potential di�culties in
discrimination) decreased with increasing values of spectral centroid and thus with higher
values of spectral spread, because in each stimulus set the amount of maximum allowable
spread increased with increasing centroid (Section 2.2.1). For the rest of the descriptors,
the post hoc tests were all significant (|z| � 3.39, padj  0.001, |z| � 4.12, padj  0.001,
and |z| � 2.03, padj  0.042 for the sound sets of spectral centroid, spread, and positive
skewness, respectively), indicating that all stimuli within each sound set could be ordered
correctly and were not confused with each other.

Table 2.3 Stimulus pairs of nonsignificant rankings (critical ↵ = 0.05) for
negative skewness stimuli. The values of stimulus pairs correspond to spectral
skewness. sc = spectral centroid.

Stimulus sets (sc) Stimulus pairs

neg. skewness (1640 Hz) �0.75,�0.64

�0.54,�0.43

�0.54,�0.32

�0.43,�0.32

�0.43,�0.22

�0.32,�0.22

�0.22,�0.11

neg. skewness (5600 Hz) �0.77,�0.66

�0.77,�0.55

�0.66,�0.55

�0.33,�0.22

neg. skewness (7800 Hz) �0.77,�0.66

�0.55,�0.44

�0.33,�0.22

2.3 Experimental Session B

The experimental procedure was the roughly same for both sessions (notably Participants
and Apparatus), and therefore only di↵erences with Session A are reported below.
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2.3.1 Method

Stimuli

Several sound sets consisting of synthetic sounds were created by controlling the values
of spectral slope, odd-to-even ratio, and spectral deviation in the synthesis process. For
each audio feature, three f0 at 120, 300, and 720 Hz were used to test whether di↵erent
frequency regions would have an e↵ect on the ratings. Loudness normalization and the
general synthesis procedure following the spectral manipulations (described further below)
were the same as described in Session A.

Spectral slope The stimuli of these sound sets were constructed by varying their spectral
slopes. The spectral slope was controlled by reducing the di↵erences between the amplitude
levels of successive harmonics. The reduction was performed in nine logarithmic steps
between the extremes of a flat spectrum and a 1/h4 or 1/((H+1)–h)4 harmonic (amplitude)
spectrum for negative and positive slopes, respectively, where h is the harmonic number
and H is the total number of harmonics. An example of this process is shown in Fig. 2.7.
Note that the slopes are linear in log-frequency.
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Fig. 2.7 The negative spectral slopes used for synthesizing the stimuli of the
spectral slope sound set.

In total, three sound sets with f0 at 120, 300, and 720 Hz were constructed for both
positive and negative slopes. Each set contained nine di↵erent slopes. In all conditions, nine
harmonics were used for ensuring that roughness would not be a major factor in listeners’
ratings, as the di↵erences in ERBN between the 8th and 9th harmonics were approximately
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0.92, 0.97, and 0.87 for f0 at 120, 300, and 720 Hz, respectively. At this point, it should
also be noted that the computation of spectral slopes on the synthesized stimuli reported
in Section 2.3.2 was performed using linear regression over the power in dB of log-spaced
harmonics (Fig. 2.7), and not over linear amplitudes as in Peeters et al. (2011).

Odd-to-even harmonic ratio The odd-to-even ratio was controlled by equally atten-
uating the level in dB of the even harmonics while keeping the odd ones fixed at 0 dBFS
(dB relative to digital full scale). In total, three sound sets with f0 at 120, 300, and 720
Hz were constructed with the following attenuation levels for the even harmonics: {–60,
–30, –20, –15, –10, –5 –1, 0}. The values of –30 and –1 dBFS were used to test whether
listeners actually perceived di↵erences between –60 and –20 dBFS, and between –5 and
0 dBFS respectively (in an otherwise limited set of only four stimuli to be ordered), by as-
suming that the di↵erences between –1 and 0 dBFS, and between –60 to –30 dBFS would
be imperceptible with respect to the presentation level.

Although ideally an equal number of odd and even harmonics should have been used for
achieving an odd-to-even ratio of 1 when all harmonics have a value of 0 dBFS, only nine
successive harmonics were used instead. This decision was based on the authors’ informal
listening tests during which it was noticed that the successive reductions in level of the
last (even) harmonic were clearly audible, and might have been used as the major cue in
listeners’ ratings, preventing them from focusing on the overall reduction level of the even
harmonics. This issue was mitigated by having the last harmonic to be odd, which o↵ered
the additional advantage of having a constant spectral centroid and skewness throughout
the sound set and minimal successive di↵erences between the spectral spreads.

Spectral deviation Spectral deviation was calculated as the average deviation of each
harmonic amplitude from the average of itself and its two harmonic neighbors (Peeters et
al., 2011). Although it is possible to achieve spectral deviations that vary monotonically
across the stimuli by sampling spectra constructed by randomizing the amplitudes of the
harmonics according to some probability distribution, this process does not guarantee that
other perceptually important parameters will not also vary monotonically, such as the
level of the f0, the spectral centroid or the rest of spectral moments, to name a few. A
nonmonotonic variation of these parameters would be confusing for listeners with respect
to which parameter they should be focusing on when completing an ordering task on the
stimuli.

To circumvent the nonmonotonic variations of parameters, a sample of one thousand
amplitude distributions was generated by uniform randomizations of the levels of the har-
monics in the range of [–25, 0] dBFS. The amplitude distribution, which had the greatest
spectral deviation along with an odd-to-even ratio of approximately 1, and the greatest
T2 tristimulus value below the level of the f0, was then chosen as the reference for con-
structing stimuli with controlled deviations. The decision to choose an odd-to-even ratio



2.3 Experimental Session B 31

of approximately 1 ensured that this sound set did not vary predominantly according to
that parameter (which was tested separately), whereas the choice of having the greatest
possible T2 ensured that most of the deviation resulted from di↵erences in levels among
the upper harmonics.

In total, three sound sets were constructed consisting of nine stimuli each with f0 at
120, 300, and 720 Hz. The reference distribution of amplitudes was rescaled to the range of
[–60, 0] dBFS, and the deviation was controlled by reducing the di↵erences in level between
successive harmonics in nine logarithmic steps until all harmonics had reached a level of
0 dBFS. For these sound sets, the number of harmonics was increased to 16 (as opposed
to 9), which facilitated the generation of a more uniform sample of amplitude distributions
and the evaluation of a wider range of deviations among the higher harmonics. An example
of this process is shown in Fig. 2.8.
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Fig. 2.8 An example of high and low spectral deviation across harmonic
amplitudes. spdev = spectral deviation.

Procedure

In each trial and for each participant, the sounds in a given set were presented in random
order but the sound sets were presented in the following (fixed) order for the same reason as
described in Section 4.2.1: 1) spectral deviation, 2) odd-to-even harmonic ratio, 3) negative
slope, and 4) positive slope. Each sound set was presented with three di↵erent f0. The order
of the three subsets was randomized within the sound set. This session took approximately
20 minutes to complete.
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2.3.2 Results

As with the previous sets of descriptors, both the Friedman and likelihood ratio tests
(Table 2.4) confirmed the main e↵ect of the descriptors tested in this session. Fig. 2.9
shows the mean rankings for spectral deviation1. For the spectral deviation sets with
fundamental frequencies at 120 and 300 Hz the trend analysis indicated that both linear
and quadratic terms significantly described the pattern of the data on the ranked stimulus
values (Table 2.5). For the set at 720 Hz, a linear term estimated by linear regression
perfectly predicted the data.

Table 2.4 Friedman (�2

F ) and likelihood ratio tests (�2

LRT ) for the stimulus
sets of Session B. df = degrees of freedom; OER: odd-to-even ratio; *p < 0.001

Stimulus sets f0 (in Hz) df �
2

F �
2

LRT

deviation 120 6 143.73 82.71

deviation 300 6 146.19 86.43

deviation 720 6 150.00 79.95

neg. slope 120 6 150.00 79.95

neg. slope 300 6 148.87 83.09

neg. slope 720 6 147.67 82.40

pos. slope 120 6 148.77 82.55

pos. slope 300 6 149.18 79.12

pos. slope 720 6 149.59 79.85

OER 120 5 115.51 70.89

OER 300 5 119.56 72.29

OER 720 5 122.87 69.78

The same perfect linear relationship was found for the negative spectral slopes with f0

at 120 Hz (Table 2.5), the mean rankings of which1 are shown in Fig. 2.10. A linear trend
was also observed for the set at 300 Hz, whereas for the set at 720 Hz both linear and
quadratic terms were found to be significant. For positive slopes at 120 Hz, the linear and
quadratic terms were also significant, whereas for the two other sets the analyses indicated
a strong linear trend.

Fig. 2.11 shows the mean rankings for the sound sets of odd-to-even ratios. For the
set with f0 at 300 Hz the trend was linear, whereas for the other two sets both linear and
quadratic terms were significant (Table 2.5). All the interaction e↵ects between the stimulus

1Although anchoring the highest value of a particular feature at rank 1, and the lowest value at the
highest rank might seem counterintuitive, we plot the results in the order that the anchor stimuli were
presented to the listeners (i.e., the lowest rank corresponds to the left anchor, and the highest rank to the
right anchor).
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Fig. 2.9 Spectral deviation: mean rankings of spectral deviation. Error bars
represent 95% CI.

Table 2.5 Ordinal regression coe�cients for the stimulus sets of Session
B. OER: odd-to-even ratio; L, Q: linear and quadratic terms respectively; -:
perfect correlation.

Stimulus sets f0 (in Hz) Term b t p <

deviation 120 L –188.32 –7.68 .001

Q 68.70 4.23 .001

deviation 300 L –237.71 –6.17 .001

Q 96.71 4.04 .001

deviation 720 L 26.46 - .001

neg. slope 120 L 26.46 - .001

neg. slope 300 L –206.31 –9.51 .001

neg. slope 720 L –219.82 –6.94 .001

Q 60.70 2.92 .010

pos. slope 120 L –312.44 –4.14 .001

Q 100.56 2.26 .050

pos. slope 300 L –227.82 –8.60 .001

pos. slope 720 L –264.73 –7.08 .001

OER 120 L –90.03 –10.69 .001

Q –15.58 –2.28 .050

OER 300 L –116.57 –10.60 .001

OER 720 L –175.30 –6.48 .001

Q –39.91 –2.13 .050
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Fig. 2.10 Spectral slope: mean rankings of negative and positive spectral
slopes. Error bars represent 95% CI.

rank and f0 were found to be nonsignificant (p > 0.05). Although the post hoc tests were
all significant (|z| � 2.76, padj  0.006 ), it can be clearly seen from the corresponding
figures, that in the sets of spectral deviation and odd-to-even ratio, the variability of the
rankings tended to decrease with increasing fundamental frequency.

2.4 Discussion and Conclusions

We synthesized stimuli that varied predominantly according to a given audio feature for
testing whether listeners are able to perceive di↵erences and order sounds varying according
to one descriptor between the extreme values of each sound set. The synthesis strategies
developed for constructing the stimuli were successful, because in each trial listeners were
able to identify the attribute under study by exploring the range of feature values and
without receiving any verbal explanation from the experimenters about the features on
which the ordering task was to be based. The analyses indicated significant main e↵ects of
all descriptors tested, and in most cases, listeners could accurately order the stimuli over a
wide range of descriptor values.

Skewness had a very narrow range restricted by the allowable values of the Skew-normal
distribution, which allowed control of this parameter independently of spectral centroid and
spread. This constraint was partly responsible for making this the hardest descriptor to or-



2.4 Discussion and Conclusions 35
R

a
n

k

5 10 15 20 25 30 35 40

1

2

3

4

5

6

7
f
0
 = 120 Hz

5 10 15 20 25 30 35 40

Odd-to-Even Ratio

1

2

3

4

5

6

7
f
0
 = 300 Hz

5 10 15 20 25 30 35 40

1

2

3

4

5

6

7
f
0
 = 720 Hz

Fig. 2.11 Odd-to-Even ratio: mean rankings of odd-to-even ratio. Error
bars represent 95% CI.

der. The ordering was performed more accurately for higher centroids, but we assume that
this is not due to the centroid values per se, because higher centroid values also allowed for
greater spectral spreads in each sound set and thus greater discriminability among stimuli.
We hypothesize that the increase in the number of spectral components led to more across-
channel comparisons performed by listeners and made the task easier. The great amount of
confusion found for negative skewness, when compared to the judgments for positive skew-
ness, can be attributed to the asymmetry of auditory filters, which are negatively skewed
with steep slopes on the higher-frequency sides (Glasberg & Moore, 1990). Fig. 2.12 shows
the excitation patterns of stimuli exhibiting negative, zero, and positive skewness. From
these patterns, it can be inferred that when the spectrum is progressively negatively skewed
by a small amount (as in the present case), the resulting excitation patterns are very simi-
lar, leading to identical percepts. On the contrary, spectra that are progressively positively
skewed lead to more drastic changes in the excitation patterns with steeper slopes on the
low-frequency side of the envelope and make the di↵erentiation between successive stimuli
easier. For example, the slopes of the excitation patterns shown in Fig. 2.12 computed
through a linear regression on the low-frequency sides of the envelopes, and below 6 dB
of each envelope’s maximum SPL down to 0 dB, have values at {0.07, 0.09, 0.14, 0.21,
0.43} per ERBN, for stimuli with skewness of {–0.9, –0.4, 0, +0,4 +0.9}, respectively. At
this point, it should be mentioned that before calculating the excitation patterns, the root
mean squared amplitude values of the analyzed waveforms were calibrated to match the
SPL (A-weighted) presentation levels of the respective stimuli.

For spectral deviation and odd-to-even ratio, the variability of the rankings decreased
with increasing fundamental frequency, indicating that listeners were more sensitive in
detecting spectral bumps at higher fundamental frequencies. This result is in general qual-
itative agreement with the results of Yost and Hill (1978) who found in their experiments
using sinusoidal rippled noise spectra that sensitivity was a U-shaped function of the spac-
ing between spectral peaks, and that best sensitivity occurred when the spacing was from
200 to 500 Hz, deteriorating severely below 200 and above 1000 Hz. The fact that in our
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Fig. 2.12 Auditory excitation patterns of stimuli with negative, zero, and
positive skewness.

experiment sensitivity was best at a higher f0 of 720 Hz, compared to their 500 Hz ripple,
might be due to the di↵erences in stimuli between the two studies (purely harmonic versus
rippled noise). In order to also observe a U-shaped function, we would most likely need to
test higher f0.

The results of this experiment show that it is possible to proceed to subsequent psy-
chophysical scaling experiments based on interval and ratio estimations, as there was no
prior evidence that stimuli varying along the features tested here could be perceived on
an ordinal scale, the existence of which is a prerequisite for constructing interval and ratio
scales. Given the lack of prior knowledge on just noticeable di↵erences of these parameters,
the identification of values of a given feature that are not clearly distinguishable, as well as
the trend analyses, also enable the construction of supraliminal stimuli which are required
for deriving interval and ratio scale measurements.

The ordinal measurements derived from the present experiment indicate that spec-
tral audio features carry perceptual contours, which can be used to compare, and group
sounds according to their spectral shape. The contour is di↵erent from an interval because
it contains only the signs of magnitude-changes and not the actual di↵erences between
magnitudes. McDermott, Lehr, and Oxenham (2008) provided evidence that listeners can
recognize transpositions of contours in loudness and spectral centroid, and that the con-
tours of these features are also useful for recognizing familiar melodies that are normally
conveyed via pitch. In this study we have demonstrated the ordinal scalability of several
spectral audio features, which suggests that listeners are also able to perceive contours
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other than those in spectral centroid and loudness. In conclusion, the results of the ordinal
scaling experiment provide evidence that all of the spectral features tested here are per-
ceptually valid. In addition to the majority of previous timbre studies that have relied on
correlational analysis, the present study has outlined trajectories of spectral features that
causally correspond to listeners’ perceptions.

Appendix

If a random variable Z follows the Skew-normal distribution with shape parameter ↵
(Z ⇠ SN(↵)), and Y = ⇠ + ✓Z, then Y ⇠ SN(⇠, ✓2, ↵) with scale parameter ✓, and lo-
cation ⇠. The mean, variance, and skewness (�1) of Y are given by the following equations
(Azzalini, 2005):

E{Y } = ⇠ + ✓µz (2.5)

var{Y } = ✓
2(1� µ

2

z) (2.6)

�1 =
4� ⇡

2

µ
3

z

(1� µ2
z)

3/2
(2.7)

where µz = �

p
2/⇡, � = ↵/

p
1 + ↵2,2 (�1, 1), and therefore ↵ = �/

p
1� �2. In order to

control skewness independently from a given mean and variance we estimate the parame-
ters of the distribution sequentially by inverting the above equations. From the skewness
equation we get the value of µz:

µz = ± 1r
1 +

⇣
(4�⇡)/2

�1

⌘2/3 (2.8)

The scale and location parameters for a given variance and mean can then be derived from
Eqs. (2.5) and (2.6).
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Chapter 3

Ordinal scaling of timbre-related
audio descriptors:
Amplitude-envelope features and
inharmonicity

This chapter is based on the following research article:

Kazazis, S., Depalle, P. and McAdams, S. (in preparation). Ordinal scaling of timbre-
related audio descriptors: Amplitude-envelope features and inharmonicity. Manuscript
prepared for submission to Journal of the Acoustical Society of America.

Abstract Temporal audio features play an important role in timbre perception and sound
identification. An experiment was conducted to test whether listeners are able to rank
order synthesized stimuli over a wide range of feature values restricted within the range of
instrument sounds. The following features were tested: attack and decay time, temporal
centroid with fixed attack and decay time, and inharmonicity. The spectral envelope played
an important role when ordering stimuli with various inharmonicity levels, whereas the
shape of the amplitude envelope was an important parameter when ordering stimuli with
various attack and decay times. Linear amplitude envelopes made the ordering of various
attack times easier and caused the least amount of confusion among listeners, whereas
exponential envelopes were more e↵ective when ordering various decay times. Although
there were many confusions in ordering short attack and decay times, listeners performed
well in ordering temporal centroids even at very short attack and decay times. A meta-
analysis of six timbre spaces was therefore conducted to test the explanatory power of
attack time versus the attack temporal centroid (ATC) along a perceptual dimension. The
results indicate that ATC has greater overall explanatory power than attack time itself.
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3.1 Introduction

The attack (or rise) time and decay time, temporal centroid, and inharmonicity, are all
considered here as temporal features that play an important role in timbre perception.
Vos and Rasch (1981) defined the perceptual onset (POT) of a musical tone as the mo-
ment in time at which the stimulus is first perceived. Based on experiments of isochronous
adjustments between tones of di↵erent attack times and a prediction model, the authors
concluded that the perceptual onset is related to the time at which the amplitude envelope
crosses a relative threshold below the maximum level of the tone, and that this threshold
depends on the presentation level of the stimulus. Gordon (1987) defined perceptual attack
time (PAT) as the time a tone’s moment of attack or rhythmic emphasis is perceived, and
claimed that Vos and Rasch’s definition of POT coincides with his own definition of PAT.
Nevertheless, he made a distinction between these two terms and argued that although
for some instruments (e.g., percussive) the perceptual attack and onset may coincide, for
some other instruments (e.g., reeds) it is possible for listeners to hear both an onset and
a later attack. Based on experiments of isochronous and synchronous judgments between
synthetic tones, he proposed a model for predicting PAT that takes into account not only
a relative threshold to the maximum of the amplitude envelope, but also a threshold based
on the slope of the envelope through the attack portion of the sound. However, POT was
not quantified, and its influence on predicting PAT was only indirectly evaluated comparing
models that were solely based on attack time (i.e., the time the amplitude envelope reaches
its maximum value) or on fixed amplitude thresholds (i.e., the time the amplitude enve-
lope crosses an absolute amplitude threshold) against models that incorporated relative
thresholds (Fig. 3.1).

The attack time is important in many discrimination tasks and has been shown to play
an important role in dissimilarity ratings between pairs of sounds, which is a basic exper-
imental method on which many timbre studies have relied (Grey, 1977; Grey & Gordon,
1978; Iverson & Krumhansl, 1993; Lakatos, 2000; McAdams et al., 1995). The dissimi-
larity ratings are often analyzed with multidimensional scaling (MDS) techniques, which
aim to project the data onto a low-dimensional space such that the proximities between
all pairs of sounds in the full-dimensional space are preserved as much as possible in the
lower-dimensional space (usually two to three dimensions). The analysis result is commonly
referred to as a timbre space. Except for Grey (1977), and Grey and Gordon (1978), the
rest of the aforementioned timbre studies found that attack time correlated significantly
with one of the MDS axes and concluded that attack time is a perceptually salient feature
for explaining dissimilarity ratings between instrumental sounds.

The decay time, temporal centroid, and inharmonicity have received less attention but
nevertheless have been shown to be important for discrimination tasks, especially when the
experimental paradigm is switched from judging the dissimilarities between pairs of sounds
to identification and tone-quality judgments between sounds of similar timbres. McAdams,
Chaigne, and Roussarie (2004) found a two-dimensional MDS solution for dissimilarity rat-
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ings of impacted bar sounds that were generated by physical modeling synthesis (Chaigne
& Doutaut, 1997). The first dimension was related to mass density and bar length and
correlated with fundamental frequency. The second dimension was related to damping
parameters and correlated with a linear combination of decay time constant and spectral
centroid computed on the ERB-rate scale (Moore & Glasberg, 1983). In a similar study,
participants also had to identify the material of the struck object as being made of glass
or aluminum, and the damping properties proved to be more reliable for material catego-
rization (McAdams, Roussarie, Chaigne, & Giordano, 2010).

Temporal centroid (or the center of gravity of the energy envelope) has been proposed as
a feature for distinguishing between percussive and sustained sounds in music information
retrieval tasks (Peeters, Giordano, Susini, Misdariis, & McAdams, 2011), and more recently
has been shown to be an important feature for quantifying the similarities between action
categories (i.e., sound-producing events such as strike, drop, rattle) on di↵erent material
categories. Hjortkjær and McAdams (2016) found a two-dimensional MDS solution on
dissimilarity ratings between sounds produced with di↵erent actions on di↵erent material
categories in which one of the dimensions was related to the identification of the action
category and was correlated strongly with temporal centroid.

Inharmonicity is not only an essential feature directly related to the timbre of some
instruments such as the piano (Galembo, Askenfelt, Cuddy, & Russo, 2004) and acoustic
guitar (Järveläinen & Karjalainen, 2006), for example, but also plays an important role in
emotional responses to sound. Farbood and Price (2017) found that sounds with increasing
degree of inharmonicity elicited higher emotional tension even in the case where no other
spectral feature was positively correlated with inharmonicity. In the context of the present
study, inharmonicity is considered to be a temporal feature because slight mistuning of
the harmonic components within a complex induces modulations in the temporal domain,
which provide cues for detecting inharmonicity.

In the following, an experiment is presented that investigated whether listeners can
rank order stimuli with varying attack and decay times, with temporal centroids having
fixed attack and decay times, and with di↵erent levels of inharmonicity (Section 3.2). The
potential e↵ect of di↵erent amplitude and spectral envelopes, and fundamental frequency
(for inharmonicity) on the ratings was also tested. The statistical analysis reveals listeners’
confusions between stimuli within a sound set constructed for testing a particular audio fea-
ture. It also compares qualitatively and quantitatively the results between di↵erent sound
sets of the same feature (e.g., the rankings of attack time between sound sets constructed
with di↵erent amplitude envelopes) and across di↵erent features (e.g., the rankings of attack
versus decay times). The results of that experiment suggested conducting a meta-analysis
on the dissimilarity ratings from previous timbre studies, in which the degree to which
attack temporal centroid (ATC) can explain variation along a given MDS dimension (Sec-
tion 3.3) is estimated. For the sake of brevity, and to avoid confusion between the various
terms used throughout this paper, the following definitions are provided: attack time refers
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to the time the amplitude envelope of a waveform reaches its maximum value; perceptual
attack time (PAT) refers to the time at which the amplitude envelope crosses a (relative)
threshold level below its maximum; temporal centroid refers to the center of gravity of the
amplitude envelope (the exact formulation is given further below); attack temporal centroid
(ATC) refers to the temporal centroid computed only up to attack time or PAT, ignoring
the rest of the amplitude envelope. Fig. 3.1 exemplifies the above definitions by displaying
their respective metrics along the time-axis of an exponential amplitude envelope. Note
that the PAT and its corresponding ATC are labelled with the threshold level given in dB.
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Fig. 3.1 Computations of attack time (AT), temporal centroid (TC), per-
ceptual attack time (PAT) and attack temporal centroid (ATC) on an ex-
ponentially increasing amplitude envelope. See the main text for definitions.
Dashed lines indicate the respective metrics on the time-axis. ATC (0 dB):
ATC computed up to attack time; PAT (–20 dB): PAT computed at 20 dB
below the maximum level of the envelope; ATC (–20 dB): the corresponding
ATC of PAT (–20 dB).

3.2 Experiment: Ordinal scaling

3.2.1 Method

Participants

Twenty-eight participants, 9 female, 18 male, and 1 “prefer not to answer”, with a median
age of 26.5 years (range: 18–34) were recruited from the Schulich School of Music, McGill
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University. All of them were self-reported amateur or professional musicians with formal
training in various disciplines such as performance, composition, music theory, and sound
engineering. Only 25 out of the 28 participants had thresholds at or below 20 dB HL (Sec-
tion 3.2.1) and were allowed to proceed to the experiment. Furthermore, the results of one
participant were not included in the statistical analysis because the experimenters noticed
that the participant was occupied with their mobile phone during testing. Participants who
were not a�liated with the authors’ lab and were allowed to proceed to the experiment
and were compensated for their time.

Stimuli

Several sound sets were constructed for testing the discernibility between successive attack
and decay times, temporal centroids, and amounts of inharmonicity. The stimuli were
synthesized using additive synthesis in Matlab version R2015b (The MathWorks, Inc.,
Natick, MA) at a sampling frequency of 44.1 kHz with 16-bit amplitude resolution. The
peak amplitude of the waveforms was normalized to 0.5.

Inharmonicity Inharmonicity was tested by constructing sound sets of ten inharmonic
stimuli with nine components at equal or 1/n2 amplitude levels (for inharmonic components,
n is not integer), and at three f0s of 120, 300, and 720 Hz. 1/n2 amplitude levels were
preferred over 1/n because it was assumed that this spectral envelope would have a bigger
influence on perceived inharmonicity when compared to the inharmonicity produced by a
flat spectrum. All stimuli had a duration of 600 ms, gated with 10-ms raised-cosine ramps
and were loudness-normalized according to the algorithm of Moore, Glasberg, and Baer
(1997).

In a first attempt at constructing the stimuli, di↵erent inharmonicity levels were cre-
ated by progressively increasing the amount of random, simultaneous mistuning of the
harmonics. After several listening tests, the authors concluded that even slight random
simultaneous mistuning of the eight components promoted multiple simultaneous entities
(Hartmann, McAdams, & Smith, 1990). As such, within each sound set, there was no clear
monotonic increase of perceived inharmonicity, but rather a percept of indeterminable
“density” due to segregation e↵ects.

A parametric model which had the following form and which is related to the inhar-
monicity of piano strings was found to be more appropriate (Fletcher, 1964):
fn = nf0

p
1 + Bn2, where n is the component’s rank and B is the inharmonicity coe�-

cient. For each sound set, the following ten inharmonicity coe�cients were used (⇥10�4):
{0.10, 1.00, 2.16, 3.66, 5.60, 8.10, 11.34, 15.51, 20.91, 27.88}. The coe�cients were spaced
logarithmically (base e), and the maximum value was chosen so that the frequency of the
last mistuned component would not exceed the frequency value of its next harmonic. This
deterministic model led to no segregation e↵ects and to a systematic monotonic increase
in perceived inharmonicity.
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Attack and Decay times All stimuli had a f0 of 300 Hz with nine harmonics at equal
amplitude. The attack and decay times were spaced approximately logarithmically (base
10) and ranged between 40 to 500 ms. The following 20 attack and decay times (in ms)
were tested: {40, 47, 53, 60, 67, 77, 90, 100, 117, 133, 150, 173, 197, 227, 257, 293, 337,
383, 437, 500}. For these attack times, three sound sets were constructed based on three
di↵erent types of amplitude envelopes for determining whether the shape of the envelope
would have an e↵ect on the ordering. The envelopes were constructed in a breakpoint
fashion connecting three di↵erent segments (Fig. 3.2). The first segment was a linear ramp
reaching –40 dBFS (dB relative to full digital scale) in the first 18 ms and was common to
all envelopes. The second segment, which actually di↵erentiates the three envelopes, had
a duration of the attack time minus the duration of the first segment, and was constructed
according to y(t) = mt

c, where m is a constant that controls the slope of the attack time,
and c is the curvature constant, which controls the shape of the envelope. For each of
the three sound sets, the curvature constant was given the values of c = 1 (linear), c = 3
(exponential) and c = 10 (“heavy” exponential). The last segment was a 10-ms raised-
cosine decay gate and was also common to all envelopes.

The use of the first and last (fixed) segments ensured that all amplitude envelope manip-
ulations were above –40 dBFS thereby minimizing the possibility that listeners’ judgments
would be based on the e↵ective (or perceived) duration of the stimuli (Peeters et al., 2011).
In all cases, the envelopes were applied to the waveforms so that the peak of the amplitude
envelope matched the absolute peak of the waveform. Furthermore, the concatenation of
the first linear ramp with the middle segment was made at a zero-crossing point of the
waveform to minimize any amplitude discontinuities. The same amplitude envelopes in re-
verse direction were used for the sound sets of decay times. All stimuli had a total duration
of attack time plus decay time.

Temporal Centroids The discriminability between temporal centroids was tested by
creating sound sets in which the temporal centroids varied by way of changes in the ampli-
tude envelopes while the attack and decay times were kept constant (Fig. 3.3). All stimuli
had a fundamental frequency of 300 Hz with nine harmonics at equal amplitude. The
temporal centroid (tc) was computed according to:

tc =

NX

i=1

i · e(i)

fs

NX

i=1

e(i)

(3.1)

where i is the sample index, e(i) the corresponding value of the amplitude envelope, N is
the total duration of the envelope in samples, and fs the sampling frequency of 44.1 kHz.
In total, five sound sets, each with ten linearly spaced temporal centroids, were created for
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Fig. 3.2 Amplitude envelopes (displayed in dB) of stimuli with 90-ms attack
time. The initial rise time reaching –40 dBFS (1st segment) and the decay
time (3rd segment) is common to all envelopes. m = slope of attack time;
c = curvature value.

five attack times, the values of which are shown in Table 3.1. The maximum and minimum
temporal centroids of each sound set were calculated first by applying amplitude envelopes
constructed in the same way as described in the previous section, with curvature values of
c = 10 and c = 0.33. The intermediate linearly spaced centroid values were achieved by
calculating their corresponding curvature values, which define the shape of the amplitude
envelope during the attack time. In all cases, the initial rise time over the first 18 ms and
the decay time, as described in the previous subsection, were kept constant in duration
and shape for all sounds. A similar procedure was used for generating five sound sets of
temporal centroids based on decay times, which had the same value with the attack times
shown in Table 3.1. All stimuli had a total duration of attack time plus decay time.

Procedure

Before the experiment, participants signed an informed-consent form. Afterwards, they
passed a pure-tone audiometric test at octave-spaced frequencies from 125 Hz to 8 kHz
(ISO 389-8, 2004; Martin & Champlin, 2000) and were required to have thresholds at or
below 20 dB HL to proceed to the experiment. The instructions that described the task
and user interface were presented on paper and were further explained by the experimenter.
Any questions had to be asked during the practice block for which the experimenter was
also present in the booth.
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Fig. 3.3 Amplitude envelopes of stimuli with 67-ms attack time in the tem-
poral centroid set, and their corresponding temporal centroids. tc = temporal
centroid.

Table 3.1 Attack times, temporal centroids, and the curvature values that
were used to generate the amplitude envelopes of stimuli in the temporal
centroid set.

Attack Time
Temporal Centroids (ms)

Curvature Values

40 ms
40.85 39.99 39.14 38.28 37.42 36.57 35.71 34.85 34.00 33.14

10.00 5.55 3.69 2.63 1.93 1.44 1.06 0.77 0.53 0.33

67 ms
64.67 62.86 61.04 59.23 57.41 55.60 53.78 51.96 50.15 48.33

10.00 5.61 3.76 2.70 1.99 1.48 1.09 0.78 0.54 0.33

132 ms
123.55 119.41 115.28 111.14 107.00 102.87 98.73 94.60 90.46 86.32

10.00 5.56 3.75 2.70 1.99 1.48 1.09 0.79 0.54 0.33

257 ms
231.81 223.46 215.10 206.74 198.39 190.03 181.67 173.32 164.96 156.61

10.00 5.47 3.70 2.67 1.98 1.48 1.09 0.79 0.54 0.33

500 ms
444.94 428.31 411.68 395.05 378.42 361.79 345.16 328.53 311.91 295.28

10.00 5.39 3.66 2.65 1.97 1.47 1.09 0.78 0.54 0.33
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The task of the participants was to order a set of stimuli according to “any criteria
that di↵erentiate them the most.” Any verbal labeling of possible criteria was intentionally
avoided. The stimuli were presented in the form of sound boxes on which participants could
click to hear each stimulus and then drag them to the desired position for the ordering task.
The user interface consisted of two main panels. In each trial the top panel contained only
two stimuli (i.e., the anchors), which had the minimum and maximum values of a particular
audio feature and between which the ordering of the rest of the stimuli would take place.
The rest of the stimuli were presented in randomized order in the lower panel. The task
was completed when all of the stimuli in the lower panel were dragged and re-arranged
according to the desired order in the top panel. In each trial and for each participant, the
stimuli were presented in random order, but the sound sets were presented in the following
(fixed) order: 1) practice block, 2) attack time, 3) temporal centroid for a particular attack
time, 4) inharmonicity, 5) decay time, 6) temporal centroid for a particular decay time. The
practice block consisted of five trials, one trial for each of the afore-mentioned features with
a maximum of five stimuli per feature set. The experiment took approximately 90 minutes
to complete.

Apparatus

The experimental session was run with the PsiExp computer environment (Smith, 1995).
Sounds were amplified through a Grace Design m904 monitor (Grace Digital Audio, San
Diego, CA) and presented diotically over Sennheiser HD600 headphones (Sennheiser Elec-
tronic GmbH, Wedemark, Germany). The sound pressure levels had a range of 55.6–66.9
dB SPL (A-weighted) as measured with a Brüel & Kjær Type 2205 sound-level meter with
a Brüel & Kjær Type 4153 artificial ear to which the headphones were coupled (Brüel &
Kjær, Nærum, Denmark). Listeners were seated individually in an IAC model 120act-3
double-walled audiometric booth (IAC Acoustics, Bronx, NY).

Data analysis

Because of the ordering task, nonparametric tests were used on participants’ stimulus rank-
ings. For each stimulus set, separate nonparametric Friedman tests were used to evaluate
the main e↵ect of each audio descriptor. To account for the nonsphericity present in the
data, which can transmit to Friedman ranks (Beasley & Zumbo, 2009), the main e↵ects
of each audio feature were also tested with a proportional-odds mixed model (McCullagh,
1980), which had a full random e↵ects structure with random intercepts for each par-
ticipant and random by-participant slopes for the fixed factor of sound set (Barr, Levy,
Scheepers, & Tilly, 2013). The main e↵ect was evaluated by a likelihood ratio test (in
which the maximum likelihood was estimated by the Laplace approximation) between the
full model and a reduced model, which had the same random e↵ects structure but excluded
the e↵ect of interest from the fixed factors. The main trends of the data were identified
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through forward stepwise ordinal regression with orthogonal polynomials constructed with
the modified Gram-Schmidt algorithm (Ho↵man, 1989) on ranked stimulus values.

Two-tailed post hoc Wilcoxon signed-rank tests were used to examine whether the rank
of each stimulus was significantly di↵erent from the rest and thus to identify stimulus
combinations that were confused by the listeners. Due to the large number of multiple
comparisons within each stimulus set, the post hoc tests were corrected with the Holm-
Bonferroni method (critical ↵ = 0.05), which controls the family-wise error rate (Holm,
1979). A proportional-odds mixed model was used with a nested random e↵ects structure
having random intercepts for each participant and the subsets of stimuli nested within each
participant. The aim of this analysis was to examine the interaction e↵ects between the
ranking of the stimuli along a given descriptor and the subsets with di↵erent values of a
parameter, such as attack time or fundamental frequency, used in each subset of the same
descriptor (e.g., the ranking of temporal centroid between the sound sets constructed at
di↵erent attack times). The interactions were examined after fitting the model using sum
coding for the predictor variables and performing an ANOVA on the fixed e↵ects (Barr
et al., 2013). Although analyses are conducted on ranks, in all data graphs, the actual
stimulus values are plotted on the x-axis. As such, the graphs at times appear concave or
convex even though a linear relation may exist between physical ranks and mean response
ranks. All the statistical analyses were done in Matlab (The MathWorks, Inc., Natick,
MA).

3.2.2 Results

Both the Friedman and likelihood ratio tests shown in Table 3.2 confirmed the main e↵ect
of each temporal feature. All the interaction e↵ects between the stimulus rank and ampli-
tude envelopes, or f0 and spectral envelopes (for the inharmonicity sets) were found to be
nonsignificant (p > 0.05).

Fig. 3.4 shows the mean rankings for the inharmonicity sets at di↵erent f0 and spectral
envelopes, and Table 3.3 displays the results of ordinal regression. For the sound set at
120 Hz and with the 1/n2 spectral envelope, all terms up to cubic were significant, whereas
the rest of the sound sets exhibited only a linear trend. Table 3.4 lists the pairs of stimuli
that were confused by most listeners. The confusions generally increased with increasing
f0, and at 720 Hz the sound set with equal amplitudes had double the number of confusions
compared to the 1/n2 spectral envelope. The di↵erences between the mean rankings of the
rest of stimuli were all significant (|z| � 2.62, padj  0.045 and |z| � 2.4, padj  0.049, for
the sound sets with flat and 1/n2 spectral envelopes, respectively).

The mean rankings for the sound sets of attack and decay times are shown in Fig. 3.5.
The results of ordinal regression (Table 3.3) confirmed a linear trend of these rankings
with increasing value of the rank-ordered parameters. Table 3.5 lists the pairs of stimuli
without significant di↵erences in rankings as determined by the post hoc analysis and which
were thus confused by most listeners. For the attack times, the confusion increased with
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Table 3.2 Friedman (�2

F ) and likelihood ratio tests (�2

LRT ). att = attack
time (in ms); dec = decay time (in ms); c = curvature constant; tc: temporal
centroid set; inhA: inharmonicity set with spectral components at equal am-
plitude; inhB: inharmonicity set with spectral components at 1/n2 amplitude;
f0 in Hz; df = degrees of freedom; *p < 0.001

Stimulus sets df �
2

F �
2

LRT

att (c = 1) 17 401.40* 125.02*

att (c = 3) 17 398.95* 124.40*

att (c = 10) 17 391.77* 124.67*

tc (att = 40) 7 138.10* 74.87*

tc (att = 67) 7 147.46* 83.26*

tc (att = 132) 7 150.46* 79.73*

tc (att = 257) 7 146.46* 72.78*

tc (att = 500) 7 161.51* 82.07*

inhA (f0 = 120) 7 154.00* 82.59*

inhA (f0 = 300) 7 148.74* 75.79*

inhA (f0 = 720) 7 138.92* 73.95*

inhB (f0 = 120) 7 150.93* 73.49*

inhB (f0 = 300) 7 152.38* 75.58*

inhB (f0 = 720) 7 144.24* 70.87*

dec (c = 1) 17 393.33* 124.13*

dec (c = 3) 17 395.68* 123.50*

dec (c = 10) 17 372.89* 120.04*

tc (dec = 40) 7 131.68* 77.70*

tc (dec = 67) 7 137.38* 76.36*

tc (dec = 132) 7 151.11* 81.01*

tc (dec = 257) 7 160.89* 82.68*

tc (dec = 500) 7 165.46* 86.30*



54
Ordinal scaling of timbre-related audio descriptors: Amplitude-envelope

features and inharmonicity

Inharmonicity Coefficient (  10-4)

R
a

n
k

0 5 10 15 20
1

2

3

4

5

6

7

8

9
f
0
 = 120 Hz, components at equal amplitude

0 5 10 15 20
1

2

3

4

5

6

7

8

9
f
0
 = 300 Hz, components at equal amplitude

0 5 10 15 20
1

2

3

4

5

6

7

8

9
f
0
 = 720 Hz, components at equal amplitude

0 5 10 15 20

1

2

3

4

5

6

7

8

9
f
0
 = 120 Hz, components at 1/n 2 amplitude

0 5 10 15 20

1

2

3

4

5

6

7

8

9
f
0
 = 300 Hz, components at 1/n 2 amplitude

0 5 10 15 20

1

2

3

4

5

6

7

8

9
f
0
 = 720 Hz, components at 1/n 2 amplitude

Fig. 3.4 Mean rankings (sounds 2-9) of inharmonicity stimuli between the
anchors. The top and bottom panels display the sound sets with flat and 1/n2

spectral envelopes, respectively. Error bars represent the 95% CI.



3.2 Experiment: Ordinal scaling 55

Table 3.3 Ordinal regression coe�cients. L, Q, C: linear, quadratic, and
cubic terms, respectively; att = attack time (in ms); dec = decay time (in
ms); c = curvature value; tc: temporal centroid set; inhA: inharmonicity
set with flat spectral envelope; inhB: inharmonicity set with 1/n2 spectral
envelope; f0 in Hz.

Stimulus sets Term b SE t p <

att (c = 1) L –343.38 16.47 –20.85 0.001

att (c = 3) L –281.41 13.30 –21.16 0.001

att (c = 10) L –205.37 9.51 –21.59 0.001

dec (c = 1) L –218.37 10.15 –21.51 0.001

dec (c = 3) L –248.74 11.68 –21.30 0.001

dec (c = 10) L –158.95 7.31 –21.74 0.001

tc (att = 40) L 58.12 4.47 13.00 0.001

tc (att = 67) L 72.47 5.57 13.02 0.001

Q –9.61 4.79 –2.01 0.045

tc (att = 132) L 83.47 6.53 12.79 0.001

Q –21.12 6.45 –3.28 0.001

C 6.86 2.98 2.30 0.021

tc (att = 257) L 74.92 5.71 13.11 0.001

tc (att = 500) L 137.62 10.60 12.99 0.001

tc (dec = 40) L 50.64 3.95 12.82 0.001

tc (dec = 67) L 54.81 4.24 12.93 0.001

tc (dec = 132) L 82.68 6.36 13.00 0.001

Q 135.93 10.89 12.48 0.001

Q –23.72 8.28 –2.86 0.004

tc (dec = 500) L 190.61 15.89 12.00 0.001

inhA (f0 = 120) L –93.87 7.16 –13.11 0.001

inhA (f0 = 300) L –73.19 5.59 –13.10 0.001

inhA (f0 = 720) L –58.10 4.48 –12.97 0.001

inhB (f0 = 120) L –92.51 7.34 –12.60 0.001

Q –24.56 7.51 –3.27 0.001

C –10.15 3.37 –3.01 0.003

inhB (f0 = 300) L –93.01 7.11 –13.09 0.001

inhB (f0 = 720) L –69.90 5.33 –13.11 0.001
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Table 3.4 Stimulus pairs with nonsignificant di↵erences in rankings for in-
harmonicity stimuli. f0: the fundamental frequency (in Hz) that was used in
each of the inharmonicity sound sets; inhA: inharmonicity of stimulus pairs
with flat spectral envelope; inhB: inharmonicity of stimuli pairs with 1/n2

spectral envelope.

f0 inhA
f0 inhB

120 – 120 –
300 2.16, 3.66 300 1.00, 2.16
720 2.16, 3.66 720 2.16, 3.66

2.16, 5.60 3.66, 5.60
3.66, 5.60 –
5.60, 8.10 –

increasing curvature value. For the decay times, the overall amount of confusion was greater
as compared to the attack times (mainly due to the sound set with linear envelopes), but
it did not increase with increasing curvature value because the sound set with curvature
value of c = 3 had about half the number of confusions compared to the sound sets with
linear and c = 10 decay-envelopes. The di↵erences between the mean rankings of the rest
of the stimuli were all significant (|z| � 2.76, padj  0.041 and |z| � 2.87, padj  0.049, for
the sound sets of attack and decay time, respectively).

Fig. 3.6 and Fig. 3.7 show the mean rankings for the sound sets of temporal centroids
at di↵erent attack and decay times. For the sound sets with attack times at 40, 257, and
500 ms the trend was linear, for 67 ms both linear and quadratic terms were significant, and
for 133 ms terms up to cubic were all significant (Table 3.3). For the sound sets with decay
times at 40, 67, and 500 ms the trend was linear, whereas for the other two sets both linear
and quadratic terms significantly described the pattern of the data. As can be seen from
Table 3.6, the number of confusions between the stimuli of these sound sets did not decrease
monotonically with increasing attack or decay times. For the sound sets at di↵erent attack
times, most confusions mainly occurred between the middle curvature values. Confusions
between the temporal centroids of decay times only occurred for the earliest decay times
at 40 and 67 ms, and for the first few highest curvature values. The di↵erences between
the mean rankings of the rest of the stimuli were all significant (|z| � 2.49, padj  0.038
and |z| � 2.65, padj  0.04, for the sound sets of attack and decay temporal centroids,
respectively).

3.2.3 Discussion

Overall, the experiment showed that listeners could rank order stimuli with various attack
and decay times, temporal centroids with fixed attack and decay times, and inharmonicity
levels, over a wide range of feature values. However, there were confusions in the stimulus
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Fig. 3.5 Mean rankings (sounds 2-19) of attack (top panel) and decay time
(bottom panel) stimuli between the anchors. c = curvature value. Error bars
represent the 95% CI.
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Table 3.5 Stimulus pairs with nonsignificant di↵erences in rankings for at-
tack and decay time stimuli. c: curvature values that were used to generate
the amplitude envelopes of stimuli in the attack- and decay-time sound sets.

c Attack Times (ms) c Decay Times (ms)
1 47, 53 1 47, 53

53, 60 47, 60
60, 67 53, 60
117, 133 67, 77

– 77, 90
– 90, 100
– 100, 117
– 117, 133
– 133, 150
– 173, 197

3 47, 53 3 47, 53
53, 60 60, 67
60, 67 77, 90
77, 90 90, 100
117, 133 133, 150
197, 227 –

10 47, 53 10 47, 53
53, 60 53, 60
60, 67 60, 67
90, 100 60, 77
117, 133 60, 90
150, 173 67, 77
173, 197 90, 100
197, 227 117, 133
227, 257 133, 150

– 173, 197
– 257, 293
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Fig. 3.6 Mean rankings (sounds 2-9) of temporal centroid stimuli between
the anchors. att = attack time. Error bars represent the 95% CI.

Table 3.6 Stimulus pairs with nonsignificant di↵erences in rankings for tem-
poral centroid stimuli. att, dec: attack and decay times (in ms), respectively,
that were used in each of the temporal centroid sound sets; tc: temporal
centroids of stimulus pairs (in ms).

att tc dec tc
40 36.57, 37.42 40 16.05, 15.19

38.28, 39.14 13.48, 12.62
– 13.48, 11.77
– 12.62, 11.77

67 57.41, 59.23 67 24.75, 22.93
– 22.93, 21.12
– 21.12, 19.30
– 19.30, 17.48
– 17.48, 15.67

132 102.87, 107.00 132 –
257 181.67, 190.03 257 –

206.74, 215.10 –
500 – 500 –
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Fig. 3.7 Mean rankings (sounds 2-9) of temporal centroid stimuli between
the anchors. dec = decay time. Error bars represent the 95% CI.

rankings depending on the feature (attack versus decay), the type of the amplitude envelope
used for each stimulus set, and the spectral envelope in the case of inharmonicity.

For inharmonicity, the sound sets with 1/n2 spectral envelopes caused less confusion
than the sound sets with flat envelopes. With respect to the presentation levels of this
stimulus set (in average: 63.3 dB SPL), this may be attributed to the detection of beats
that are caused by the interaction of the mistuned components with combination tones
produced by the ear. As advanced by Moore, Peters, and Glasberg (1985), because the
combination tones occur at a level at least 15 dB below the level of the primary tones
(Goldstein, 1967), the beats can be heard more distinctly if the levels of the mistuned
components are reduced. In comparison to the flat spectral envelope, the 1/n2 envelope
may have resulted in an increase in the modulation depth due to the interaction of the
primary tones with the combination tones, thus giving rise to more distinct beats. This
beating would then be used as a detection cue for the perceived inharmonicity.

For the attack times, the results showed that confusions increased with increasing curva-
ture value. If listeners were detecting the perceptual attack time (PAT) according to a single
threshold criterion such as the one proposed by Vos and Rasch (1981) and thus ignoring
the shape of the amplitude envelope during the attack, then the results would have shown
less confusions with increasing curvature value because the PATs of exponential envelopes
occur later and are spaced farther apart than the PATs of the linear amplitude envelopes.
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These results indicate that listeners were not using just a single amplitude threshold for
ordering the attack time. They were also using a cue of how fast this threshold is reached
with respect to the onset time, which is related to the shape of the amplitude envelope
during the attack time and the importance of which is also underlined in Gordon’s (1987)
model.

There was a striking di↵erence between the number of confusions that occurred in
ordering the attack times with ramped linear amplitude envelopes versus the decay times
with damped linear envelopes (4 versus 10 confusions, Table 3.5). This result provides
further evidence for a temporal asymmetry in the auditory system(Moore, Glasberg, Plack,
& Biswas, 1988; Patterson & Irino, 1998). One explanation for these results could be that
damped sounds have been shown to be perceived as being shorter when compared to ramped
sounds of equal duration (Schlauch, Ries, & DiGiovanni, 2001). Therefore, if sounds with
short attack times (and a fixed decay) are poorly discriminated, then it can be expected to
observe more confusions between sounds having the same short decay times while keeping
the attack time fixed. However, this explanation does not seem to fully apply in these data
mainly because, the number of confusions between damped and ramped sounds was about
the same for the curvature value of c = 3 (in fact, there was less confusion for the damped
sounds: 5 versus 6, Table 3.5). Most importantly, the overall amount of confusion between
attack and decay times cannot be attributed to perceived duration because Schlauch et al.
(2001) also found a weak coupling between subjective duration and duration discrimination
between ramped and damped sounds. Furthermore, the subjective duration e↵ects were
controlled for by restricting the amplitude envelope manipulations above –40 dBFS.

Stecker and Hafter (2000) proposed a cognitive explanation for context e↵ects of the
temporal asymmetry on loudness judgments between ramped and damped sounds, which
was also supported by Moore (2013). According to their viewpoint, sounds with damped
envelopes are perceived to have two di↵erent segments, one being associated with the source
sound and the other one with its reverberant tail. In the present study, the decay times
with curvature values of c = 3 caused half the number of confusions when compared to
the decay times with linear envelopes, which is opposite to the e↵ect observed for attack
times, for which the confusions increased with increasing curvature value (Table 3.5). If
a damped sound is perceived to be a unitary and unmodulated source (Patterson, 1994),
at least for short decay times, then according to Stecker and Hafter’s (2000) explanation,
the listeners in the present experiment must have been making judgments on the durations
of the reverberant tails and the attributed reverberant quality due to context e↵ects when
ordering stimuli with a short and fixed attack time but of di↵erent decay times. In terms of
attributing a reverberant quality to stimuli constructed with linear decay envelopes (c = 1)
and with extreme exponential envelopes (c = 10), when the envelopes are viewed on a dB
scale rather than in linear amplitude units, it becomes apparent that both envelops inhibit
the reverberant tail of the stimulus: in the former case (c = 1), the source part is extended
in time causing the stimulus to sound unreverberated, whereas in the latter case (c = 10),
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the reverberant tail has faded out too quickly to be perceived and therefore, the stimulus
sounds unreverberated as well. To the contrary, the exponential decay envelope with c = 3
leads to an almost linear decrease in dB per unit time, which enhances the di↵erence in
duration between the source sound and its reverberant tail and makes the discrimination
between the tails of the stimuli easier to perceive. This may explain why decaying sounds
with a curvature value of c = 3 were ordered more accurately when compared to linearly
decaying envelopes that caused confusions comparable to those of the sounds with c = 10,
in which the reverberant tail faded out too quickly to be perceived.

Surprisingly, listeners performed well in ordering the di↵erences between temporal cen-
troids even at very short attack times with one to two confusions happening mainly between
the middle curvature values of each sound set; no confusions were found for the longest
attack time of 500 ms (Table 3.6). The fact that the number of confusions did not mono-
tonically decrease with increasing attack time indicates that the judgments of the sound
sets with short attack times were unrelated to the judgments of the sound sets with longer
attack times. It is hypothesized that in the former case listeners were making judgments
based on the spectral di↵erences between stimuli, which were caused by the shapes of the
short amplitude envelopes, whereas in the latter case they performed the ordering task by
judging the temporal evolution of the stimuli during the attack time.

For the temporal centroids of decay times, the amount of confusion for the shortest decay
times was much higher than that observed for corresponding attack times and occurred
between the first few highest curvature values, which caused the reverberant tail to be
heavily suppressed. According to the previous discussion, this indicates that the highest
temporal centroids of short decay times had little perceptual e↵ect on the source part of
the stimulus when compared to the temporal centroids of short attack times, and that
listeners were again using the temporal evolution of the reverberated part as a cue. Also,
the fact that there were no confusions between the temporal centroids of longer decay times
(> 68 ms) indicates that listeners could track the temporal evolution of the decay more
accurately than that of the attack.

In conclusion, listeners were able overall to order the stimuli given the presented spacing
of feature values. The interpretation of the reported results underpinned the importance of
the spectral envelope shape in judgments of inharmonicity, and the shape of the amplitude
envelope when ordering attack and decay times. Whereas there were many confusions in
ordering short attack and decay times, listeners performed very well in ordering temporal
centroids constructed with di↵erent amplitude envelopes of fixed duration. Based on these
results, in the following section a meta-analysis is presented on the dissimilarity ratings of
previous timbre studies, in which the explanatory power of attack time, which has been
identified from past research as a primary temporal perceptual dimension, is compared to
that of the attack temporal centroid (ATC).
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3.3 The explanatory power of Attack Temporal Centroid in a
Meta-Analysis of Timbre Spaces

The early studies of Grey (1977), and Grey and Gordon (1978) interpreted qualitatively
the resultant dimensions of the MDS analysis. Grey (1977) associated the first dimension
with the overall “energy distribution” and features similar to spectral centroid and spectral
spread. The second dimension was related with spectrotemporal features such as “spectral
fluctuation” and the synchronicity in the attack and decay times of individual harmonics.
The third dimension was also related to the temporal patterns of the spectral distribution,
and the presence of inharmonicity occurring during the attack. Grey and Gordon (1978)
gave similar qualitative interpretations of their three-dimensional MDS solution to Grey’s
(1977), but also o↵ered a quantitative interpretation for the purely “spectral” axis which
correlated most strongly with the spectral centroid weighted by the loudness function of
Zwicker and Scharf’s (1965) model.

Later studies attempted to interpret the MDS dimensions with quantitative measures.
Iverson and Krumhansl’s (1993) MDS analysis on truncated instrumental tones with du-
rations of 80 ms resulted in two dimensions, one of which was correlated with attack time.
McAdams et al. (1995) found a three-dimensional timbre space in which one of the axes
correlated strongly with log-attack time. Similarly, Lakatos (2000) found a two-dimensional
timbre space of harmonic and non-percussive sounds in which one of the dimensions corre-
lated strongly with log-attack time. Although Grey (1977), and Grey and Gordon (1978)
did not directly associate any of their MDS dimensions with attack time, they interpreted
two of the axes according to spectrotemporal features that occur during the attack. The
rest of the abovementioned studies directly associated one dimension of the resultant timbre
space with attack time. Based on the results reported in the previous section, according
to which short attack times were poorly discriminated, one might argue that the observed
correlations between attack time and a given MDS dimension might have been coincidental:
if one of the MDS dimensions relates to a temporal feature but listeners cannot reliably
judge di↵erences between similar attack times, then there must have been another feature
that listeners used in their dissimilarity ratings and which causally relates to the temporal
dimension of a given timbre space. To test this hypothesis, a meta-analysis on the afore-
mentioned timbre spaces was conducted in which the explanatory power of attack time was
compared to that of the ATC.

3.3.1 Methods

The stimuli and dissimilarity ratings from the previous studies were available in the lab and
had been previously analyzed with the same MDS algorithm for a di↵erent research project
(McAdams & Giordano, 2006). More precisely, the dissimilarity ratings were analyzed with
the extended CLASCAL algorithm following the procedures described in McAdams et al.
(1995). Iverson and Krumhansl (1993) and Lakatos (2000) used di↵erent sets of stimuli
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throughout their experiments. For the purposes of the current study, only the stimulus set
of “complete tones” and “onsets” used in Iverson and Krumhansl’s (1993) study, and the
“harmonic set” of Lakatos’s (2000) study were analyzed. The rest of the aforementioned
studies used only a single stimulus set for deriving the timbre spaces, which were reanalyzed
here. The results of the present analysis are expected to be di↵erent than the results
reported in the previous studies not only because of the di↵erent MDS algorithms used but
also due to di↵erences in the computation of attack time1.

For some stimuli, especially for non-synthetic and recorded sounds, computing the at-
tack time based on the absolute maximum value of the waveform resulted in very long
attack times on the order of hundreds of milliseconds, which were way longer than the
previously reported values. Although these overestimations could be attributed to playing
techniques (e.g., long vibratos) or miking artifacts, it remains unclear how the previously
reported values were derived when these artifacts had been taken into account. A more
robust alternative was to compute the attack times and their respective ATC through the
squared amplitude envelope (i.e., the power envelope) of the waveform. The amplitude
envelopes of the stimuli were extracted by computing the root-mean-squared (RMS) values
of the positive and negative parts of the waveform, over a sliding window approximately
equal to the period of the f0, and then averaging the two parts together. Power envelopes
were preferred over amplitude envelopes because the sum of squared amplitude values used
in the calculation of temporal centroid relates in physical terms to the energy of the signal,
and also because power envelopes were shown to correlate more strongly than the amplitude
envelopes with PAT in Gordon’s (1987) study. The envelopes were then normalized relative
to their maximum values (0 dBFS) and were truncated below a threshold of –60 dBFS to
avoid including background noise and the silent segments of some sound files occurring
before the beginning of each tone. The ATC was computed by Eq. (3.1) where N was
confined to the attack time (in samples).

Vos and Rasch (1981) proposed that the PAT depends on presentation level and can
be estimated using a threshold of about 6 to 15 dB below the maximum level of the tone,
whereas Gordon’s (1987) model used a much lower threshold of 22 dB. In order to relate
the results of this analysis not only to attack time but also to PAT and its respective
ATC, the following thresholds for computing PATs were also used (in dB): {6, 10.5, 15,
22}. In this case, the corresponding ATC was computed according to Eq. (3.1), but N was
confined to the duration of each PAT. The attack times, PATs, and their respective ATCs
of each stimulus set were then correlated with each axis of the MDS analysis. A percentile
bootstrap (Efron & Tibshirani, 1993) was used to test the statistical significance between the
di↵erences of the correlation coe�cients of attack time or PATs, and the respective ATCs.
The .95 confidence intervals were adjusted using Wilcox and Muska’s (2001) correction,

1For McAdams et al.’s (1995) study, only the ratings of 24 out of 98 participants, who were assigned to
the group of “professional musicians”, were used in the meta-analysis in order to compensate for the fact
that in the rest of the studies all participants were musically sophisticated.
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which is suitable for small sample sizes.

3.3.2 Results and Discussion

The number of MDS dimensions using the extended CLASCAL algorithm in the meta-
analysis was the same with the original studies. Table 3.7 summarizes the results for the
MDS dimension of each study that correlated significantly (p < 0.05) with attack time and
its temporal centroid. With the exception of the dimension for Iverson and Krumhansl’s
(1993) “onsets” sound set, the rest of the MDS dimensions of other studies correlated more
strongly with the logarithm of the attack time and its temporal centroid. Although in
general, PATs correlated more strongly than attack time [except for the Lakatos’s (2000)
study], the thresholds at which PAT exhibited the strongest correlations were di↵erent
across studies.

In almost all cases, the ATCs (computed over the attack time and PATs) correlated
with the MDS dimensions equally or stronger than the attack times and PATs per se.
Although the sample sizes were relatively small, ranging from 16 to 18 sounds across studies,
the di↵erences between the ATCs’ and attack times’ or PATs’ bootstrapped correlation
coe�cients were significant (p < 0.05) in six out of 30 cases (Table 3.7). In cases of sounds
with short attack times, the corresponding PATs are of even shorter duration (Fig. 3.1).
According to the discussion of the previous section, it is unlikely that listeners would have
been able to discriminate between those sounds if their dissimilarity ratings were only
based on that feature. The observed correlations indicate that when they are significantly
di↵erent, the ATC is a more robust feature than attack time for explaining dissimilarity
ratings between instrumental sounds. That is of course only true if the shape of the
amplitude envelopes between stimuli is su�ciently di↵erent, otherwise the ATC has the
same explanatory power as the attack time. In cases of sounds with similar but longer
attack times, in which their amplitude envelopes usually di↵er (at least for instrumental
sounds), and assuming that attack time is perceived on a logarithmic scale, it is expected
that the attack temporal centroid would have a greater explanatory power than attack
time per se, because it is related to the overall shape of the amplitude envelope during the
attack time.

3.4 Conclusions

The ordinal scaling experiment showed that in general listeners could rank order stimuli
with varying attack and decay times, temporal centroids of di↵erently shaped amplitude en-
velopes with fixed attack and decay times, and inharmonicity levels. Furthermore, the trend
analysis confirmed a linear trend of the rankings with increasing parameter values. The
shape of the spectral envelope was an important parameter when ordering inharmonicity
levels, because there were less confusions in the stimulus set constructed with 1/n2 spectral
envelope compared to the set constructed with flat spectral envelope at a f0 of 720 Hz. The
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Table 3.7 Significant correlations (p < 0.05) and percentile bootstrap analy-
sis of attack time (AT), perceptual attack time (PAT) with the threshold used
for each computation given inside parenthesis, and attack temporal centroid
(ATC), with MDS dimensions. Grey: Grey’s (1977) sound set; GreyGor: Grey
and Gordon’s (1978) sound set; IvKrOn, IvKrWh: Iverson and Krumhansl’s
(1993) “onset” and “whole” sound sets, respectively; Lakatos: Lakatos’s (2000)
“harmonic set”; McAdams: McAdams et al.’s (1995) sound set; r: correlation
coe�cient between a particular MDS dimension with AT or PAT; rATC : cor-
relation coe�cient between a particular MDS dimension with ATC computed
up to AT or the corresponding PAT; r⇤ and r⇤ATC : correlation coe�cients
computed on log-transformed values of AT, PAT and ATC; di↵CI: 95% CI of
the bootstrapped di↵erences between r and rATC ; p: probability of the ab-
solute di↵erence between r and rATC being zero. The p-value of significant
correlations (p < 0.05) are indicated in boldface; –: nonsignificant correlation
(p > 0.05).

Sound sets Statistics AT PAT(–6 dB) PAT(–10.5 dB) PAT(–15 dB) PAT(–25 dB)

Grey

r
⇤ 0.70 0.73 0.73 0.76 0.74

r
⇤
ATC 0.72 0.72 0.74 0.76 0.74

di↵CI (–0.07, 0.02) (–0.05, 0.03) (–0.05, 0.03) (–0.05, 0.04) (–0.05, 0.05)
p 0.23 0.47 0.63 0.83 0.92

GreyGor

r
⇤ – 0.58 0.60 0.62 0.65

r
⇤
ATC – 0.60 0.61 0.63 0.66

di↵CI – (–0.04, 0.01) (–0.04, 0.02) (–0.04, 0.03) (–0.05, 0.04)
p – 0.06 0.39 0.69 0.72

IvKrOn

r – 0.54 0.56 0.55 0.59
rATC – 0.58 0.59 0.57 0.60
di↵CI – (–0.13, 0.01) (–0.10, 0.02) (–0.10, 0.03) (–0.06, 0.03)
p – 0.07 0.16 0.25 0.57

IvKrWh

r
⇤ 0.59 0.68 0.65 0.60 0.61

r
⇤
ATC 0.61 0.68 0.65 0.61 0.61

di↵CI (–0.07, 0.00) (–0.06, 0.03) (–0.06, 0.05) (–0.07, 0.06) (–0.05, 0.05)
p 0.01 0.39 0.69 0.99 0.97

Lakatos

r
⇤ 0.61 0.51 0.48 0.52 0.49

r
⇤
ATC 0.62 0.54 0.51 0.54 0.52

di↵CI (–0.02, 0.05) (–0.01, 0.05) (0.00, 0.07) (–0.01, 0.09) (–0.01, 0.10)
p 0.48 0.10 0.03 0.12 0.08

McAdams

r
⇤ 0.68 0.75 0.75 0.79 0.83

r
⇤
ATC 0.73 0.80 0.79 0.82 0.84

di↵CI (0.01, 0.10) (0.01, 0.10) (0.01, 0.10) (0.00, 0.07) (–0.01, 0.05)
p 0.00 0.00 0.00 0.04 0.24
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shape of the amplitude envelope was found to be an important parameter when ordering
the stimulus sets of attack and decay times. For attack time, listeners’ confusions increased
with increasing curvature value, which produced linear, exponential and “extreme” expo-
nential amplitude envelopes. For decay time, the sound set constructed with an exponential
envelope caused the lowest confusion in the ordering task because according to Stecker and
Hafter’s (2000) cognitive explanation, both the linear and extreme exponential decaying
envelopes used in this study suppress the perception of the reverberant tail of the stimulus
(when viewed on a dB scale), and lead to similar percepts.

Although there were many confusions in the ordering of short attack and decay times,
listeners performed very well in ordering the temporal centroids with fixed attack and decay
times, which indicates that they were sensitive to the di↵erences between the shapes of the
amplitude envelopes even at very short durations. However, for short durations (e.g., for
attack times of 40 or 67 ms), we hypothesize that these di↵erences perceptually manifest as
spectral, because as advanced by Hartmann and Wolf (2009), there are cases in which the
amplitude envelope contributes importantly to the power spectrum of the signal presented
to a listener, especially for stimuli of short duration. This hypothesis is also supported by
the fact that the confusions between temporal centroids did not decrease with increasing
attack time, which led to the conclusion that at short attack times listeners’ judgments
were based on the spectral di↵erences between stimuli, whereas for longer attack times their
judgments were based on tracking the temporal evolution of the amplitude envelopes. The
results also indicate that listeners could track the temporal evolution of the envelopes during
the decay more accurately than during the attack time because there were no confusions
between temporal centroids at decay times above 68 ms.

In the ordinal scaling experiment, many confusions were observed between attack times
occurring at least below 133 ms, a value which encompasses the attack time of most in-
strument sounds, but good performance in ordering temporal centroids even at very short
attack times was found. A meta-analysis of six timbre spaces was therefore conducted in
which the explanatory power of attack time was compared to that of the temporal centroid
of the attack. The analysis showed that the ATC correlated more strongly with a given
MDS dimension than did attack time or PATs per se, and that in a few cases the di↵er-
ences between the two correlation coe�cients were significant. The meta-analysis of timbre
spaces indicates that ATC is a robust feature for explaining dissimilarity ratings along a
perceptual dimension. However, based on the discussion of the previous paragraph, this
dimension might be referred to as spectrotemporal rather than temporal because di↵erences
between short ATCs most likely relate to perceived spectral di↵erences, whereas longer
ATCs relate to perceived di↵erences between the temporal evolutions of the respective
amplitude envelopes during the attack time.
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Chapter 4

Interval and ratio scaling of spectral
audio descriptors

This chapter is based on the following research article:

Kazazis, S., Depalle, P. and McAdams, S. (in preparation). Interval and ratio scaling of
spectral audio descriptors. Manuscript prepared for submission to Frontiers in Psychology.

Abstract Two experiments were conducted for the derivation of psychophysical scales
of the following audio features: spectral centroid, spectral spread, spectral skewness, odd-
to-even harmonic ratio, spectral deviation, and spectral slope. The stimulus sets of each
audio feature were synthesized and (wherever possible) independently controlled through
appropriate synthesis techniques. Partition scaling methods were used in both experiments,
and the scales were constructed by fitting well-behaving functions to the listeners’ ratings.
In the first experiment, the listeners’ task was the estimation of the relative di↵erences be-
tween successive levels of a particular audio feature. The median values of listeners’ ratings
increased with increasing feature values, which confirmed listeners’ abilities to estimate in-
tervals. However, there was a large variability on the reliability of the derived interval scales
depending on the stimulus spacing in each trial. In the second experiment, listeners had
control over the stimulus values and were asked to divide the presented range of values into
perceptually equal intervals, which provides a ratio scale. For every feature, the reliability
of the derived ratio scales was excellent. With the exception of spectral centroid, for which
the zero point of the scale was assigned empirically, the rest of the scales were assigned a
zero point that also has a physical meaning. The unit of a particular scale was assigned
empirically as well, so as to facilitate comparisons between the derived perceptual ratio
scales of all audio features. The construction of psychophysical scales based on univariate
stimuli, allowed for the establishment of cause and e↵ect relations between audio features
and perceptual dimensions, contrary to past research that has relied on multivariate stimuli
and has only examined the correlations between the two.
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4.1 Introduction

Audio features have been widely used in timbre research for explaining quantitatively
the dimensions of timbre spaces (Grey & Gordon, 1978; Iverson & Krumhansl, 1993;
Lakatos, 2000; McAdams, Winsberg, Donnadieu, Soete, & Krimpho↵, 1995), a↵ective rat-
ings (Farbood & Price, 2017; Laurier, Lartillot, Eerola, & Toivianen, 2009; McAdams,
Douglas, & Vempala, 2017), and the perceptual similarity of short music clips (Siedenburg
& Müllensiefen, 2017). Most often, the spectral features are derived from statistical com-
putations on a spectrogram, whereas the temporal features are usually extracted from the
raw waveform. The time-series of these features, derived from a frame-by-frame analysis
on the spectrogram, are then compressed through summary statistics into single numbers,
which are presumed to serve as the spectrotemporal imprint of a stimulus and thereby
designate its timbre. The systematic development of such features started with the work
of Krimpho↵, McAdams, and Winsberg (1994) for explaining quantitatively the perceptual
dimensions of Krumhansl’s (1989) timbre space. The set of features started expanding
with the appearance of the MPEG-7 standard (ISO/IEC, 2002)according to which the
audio features would be termed as audio descriptors.

Timbre research has mainly relied on correlational analysis between audio features and
listeners’ perception, and there have only been a few attempts for establishing causal re-
lations between psychological and acoustic dimensions. One of these attempts is the con-
firmatory study of Caclin, McAdams, Smith, and Winsberg (2005), who validated with
synthesized stimuli the saliency of attack time, spectral centroid, and the odd-to-even har-
monic ratio, but not spectral “flux” for explaining dissimilarity ratings. Another study is
from Almeida, Schubert, Smith, and Wolfe (2017) who attempted with synthesized stimuli
to derive a ratio scale of brightness as a function of spectral centroid, albeit within a limited
range of 1.46 octaves, and at a single fundamental frequency of 500 Hz. In fact, neither of
the aforementioned studies evaluated directly the spectral centroid, but rather the spectral
slope, which co-varies with spectral spread, skewness, and under certain circumstances is
linearly dependent on spectral centroid. More recently, Kazazis et al. (in preparation)
validated through ordinal scaling with synthesized stimuli several audio features by con-
trolling each spectral feature independently of the rest, thus isolating the e↵ect that each
feature had on the stimulus rankings. The results of those experiments have served as the
basis for the present study, because there was no prior evidence that stimuli varying along
a particular audio feature could be perceived on an ordinal scale, the existence of which is
a prerequisite for constructing perceptual interval and ratio scales.

Di↵erent experimental procedures are needed for testing di↵erent scales: an ordinal scale
indicates whether listeners are able to rank order the stimuli; an interval scale, whether
they can judge the relative size of intervals between stimuli; and, a ratio scale, whether
ratios between stimuli can be perceived. However, the most informative scale is the ratio
scale, which satisfies all the criteria of an interval scale, but also enables the derivation of
ratios between stimuli. In other words, the ratio scale subsumes the interval scale and the
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experimental procedure should devise operations for determining the following relations
among stimuli (Stevens, 1946): equality; rank order; equality of intervals; and, equality of
ratios.

There are some important methodological considerations that need to be taken into
account before designing experiments for deriving either interval or ratio scales of audio
features. Interval and ratio scaling methods are part of “global psychophysics” rather than
“local psychophysics”, where the aim is usually to derive just noticeable di↵erences (JNDs)
among stimuli, which do not predict the results of global psychophysical experiments. A
psychophysical experiment is said to be global if the extreme stimuli of a stimulus set are al-
most perfectly identified in a 2-stimulus absolute identification design (Luce & Krumhansl,
1988). This has certain implications in the construction and selection of appropriate stimuli,
which will be discussed further below. The methods used for constructing psychophysical
interval and ratio scales, based on direct estimations of subjective magnitudes, can be clas-
sified in two general categories: magnitude estimation (or production), where listeners are
instructed to assign numbers of their choice to stimuli so as to reflect subjective ratios in
relation to a reference stimulus (or standard), which is usually located in the middle of
the presented range of values; and, category Scaling (or di↵erence estimation) where the
lower and upper limits of the response scales are defined, and listeners are instructed to
assign scale values along the continuum between the extremes so as to preserve subjective
di↵erences (or psychological distances) between stimuli. Irrespective of the method used,
in most scaling experiments, the physical attributes of study can be easily explained and
identified by the listeners and are often associated with a perceptual correlate such as loud-
ness or pitch. One of the issues and challenges that arise in psychophysical scaling of audio
features is that the experimenter cannot explain with clarity and in a simple manner the
attribute of study to the listeners, without resorting to a purely technical formulation of
a particular audio feature, and which in most cases will not be understandable by “näıve”
participants (e.g., musicians without a physics background). In Stevens’s (1946) terms, this
di�culty often arises because audio features are measured on derived physical scales con-
structed by mathematical functions of certain magnitudes derived from fundamental scales
for which a perceptual correlate can be more easily found (e.g., loudness for intensity). In
the present case which deals with audio features, the fundamental scales are represented
by fundamental frequency, and the amplitude-frequency pairs of spectral components.

4.1.1 The Present Study

In a first attempt to derive ratio scales, we designed a pilot experiment based on magnitude
estimation, in which the largest e↵ects are produced by the range of stimuli, the distance
from threshold (if a threshold exists for a particular feature), and the degree of freedom
given to listeners for choosing the lowest and the highest number for their responses (Poul-
ton, 1968). The standard was positioned in the middle of a particular stimulus set and
listeners were limited to one judgement per stimulus, which reduces the biases due to range
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and spacing of stimuli (Stevens, 1971). In each trial, listeners were presented with a sin-
gle stimulus along with the standard (reference stimulus) and were instructed to assign
a number of their choice that reflected the subjective magnitude ratio between the two.
Throughout the trials, the standard was positioned always in the middle of a particular
stimulus set, and the presentation of just a single stimulus in each trial (instead of asking
listeners to make simultaneous judgments on two or more stimuli with respect to the stan-
dard) was done in order to reduce the biases due to range and spacing of stimuli (Stevens,
1971). In addition, there were no limitations on the available set of numbers used as
responses for both the stimulus and the standard other than the requirement of being posi-
tive, because any such limitations have shown to increase the bias in magnitude estimation
experiments (Hellman & Zwislocki, 1961). We consider this experiment to be unsuccessful,
because the sensation magnitudes were poorly apprehended which can be mainly attributed
to the experimental design. First of all, for some audio features, the stimuli were hardly
discriminable leading to poor independent judgments when each stimulus was presented in
isolation from the rest. In some other cases, stimuli were very distant from the standard,
which is considered to be a source of bias in magnitude estimation experiments, because
although stimuli near to the standard are judged relative to the standard, stimuli far from
the standard are not (Gescheider & Hughson, 1991). Most importantly, listeners were
not given any indication of which attribute they were judging between presented stimuli
other than the written instruction “. . . according to any criteria that di↵erentiate them
the most.” Due to the nature of the stimuli and because of the reasons related to the psy-
chophysical scaling of audio features described above, the attribute of study could only have
been identified by the listeners if the experimental design had allowed for the discovery of
invariances among stimuli through the exploration of a particular stimulus set, instead of
a presentation of stimuli in isolation. Finally, experiments based on magnitude estimation
place a heavy load on listener’s memory and given the unfamiliarity of the listeners with
the presented stimuli, this was considered to be an additional reason for which the magni-
tudes in this experiment were poorly apprehended. This last implication could have been
avoided if the method of absolute magnitude estimation (Hellman & Zwislocki, 1961) had
been used instead, in which listeners match numbers to stimuli without the presentation of
a standard, and independently of the previous matches. However, an experimental design
based on this method would not have been able to overcome the above-mentioned hurdles
and provide positive results, mainly because it is di�cult to make absolute judgments on
timbral attributes.

In a second pilot experiment, the listeners’ task was the same with the experiment
described in the beginning of the previous paragraph except that in this one, in each trial
listeners were making simultaneous judgments with respect to a standard on the whole
stimulus set of a particular audio feature. As in the previous experiment, they could assign
numbers of their choice to both the standard and the stimuli. From a methodological point
of view, this design is a compromise between category scaling (or di↵erence estimation) and
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magnitude estimation, but it has also been shown to lead to a compromise between the
derived scales of the two (Montgomery, 1975). Although this design allowed listeners to
explore a range of stimuli, and thus identify the attribute of study more e↵ectively than the
previous experiment, this design had its own pitfalls. The most important bias resulted
from the spacing of stimuli, which magnitude estimation methods aim to control for by
restricting listeners to perform one judgment per stimulus. In other words, the derived
scales may not be generalizable, in a sense that a di↵erent spacing of stimulus values might
have led to di↵erent scales. However, there were also some practical issues, which limited
the credibility of the results. Given that the order of presentation was random (i.e., stimuli
were not presented in ascending or descending series of physical magnitude), and the large
number of stimuli presented in a single trial, some listeners might only have focused on rank
ordering, when verifying their judgments by listening to the stimuli sequentially and indexed
according to their magnitude estimations, instead of making more accurate judgments
between the stimuli and the standard. In addition, some listeners complained about the
di�culty of the task, and reported that they were performing comparisons across all the
presented stimuli, although it was clearly stated in the instructions that the comparisons
should only be performed between a single stimulus and the standard. Such operations
considerably increased the cognitive load of the listeners, which might have had a strong
impact on the accuracy of their judgments.

Because of all the above-mentioned issues of each experimental design, we resorted to
partition scaling methods (Stevens, 1975) for constructing both interval and ratio scales
of audio features. These methods have been successfully used in the past, such as for
the derivation of the Mel scale for pitch (Stevens & Volkmann, 1940). In the following
sections, we present the experiments used to derive psychophysical scales of the following
audio features: spectral centroid, spectral spread, spectral skewness, odd-to-even harmonic
ratio, spectral deviation, and spectral slope. A mathematical formulation along with a
detailed description of each feature can be found in (Peeters, Giordano, Susini, Misdariis,
& McAdams, 2011). This manuscript is organized as follows. In Section 4.2 we present the
synthesis processes used to construct each audio feature’s stimulus set and the experiment
for the derivation of interval scale measurements. Given the lack of previous knowledge of
JNDs on audio features, this experiment could be considered as a confirmatory experiment
on whether listeners are actually able to perceive intervals before proceeding to the next
experiment with its additional operations needed for deriving ratio scales (described in
Section 4.3 ). Finally, in Section 4.4 we present concluding remarks on the validity of the
obtained results and implications for timbre perception.

4.2 Experiment 1: Interval Estimation

The aim of this experiment was to investigate whether listeners perceive intervals of audio
features and the construction of interval scales. The listeners’ task was the estimation of
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the relative di↵erences between successive levels of a particular audio feature, and thus this
experiment provided interval scale measurements.

4.2.1 Method

Participants

Twenty-five participants, 11 female, 13 male, and 1 “prefer not to answer”, with a median
age of 23 years (range: 18–40) were recruited from the Schulich School of Music, McGill
University. All of them were self-reported amateur or professional musicians with formal
training in various disciplines such as performance, composition, music theory, and sound
engineering. Participants were compensated for their time. One participant fallen asleep
during the trials but after taking a short break he was able to complete the experiment. The
study was certified for ethical compliance by the McGill University Research Ethics Board
II. Before the experiment, participants had to sign an informed consent form. Afterwards,
they passed a pure-tone audiometric test at octave-spaced frequencies from 125 Hz to 8 kHz
(ISO 389-8, 2004; Martin & Champlin, 2000) and were required to have thresholds at or
below 20 dB HL to proceed to the experiment.

Stimuli and Presentation

Several sets consisting of synthetic sounds were created by independently controlling the
values of the above-mentioned features in the synthesis process. For spectral centroid,
spread, and skewness, all the spectral manipulations were applied to a flat harmonic spec-
trum (harmonics set at equal amplitude) with a fundamental frequency (f0) of 120 Hz
and harmonics up to Nyquist limit. For the rest of the features, separate sound sets were
synthesized at f0s of 120, 300, and 720 Hz with the number of harmonics ranging from 9 to
16, depending on the feature. Following the spectral manipulations, the stimuli were syn-
thesized in Matlab version R2015b (The MathWorks, Inc., Natick, MA) using additive
synthesis at a sampling frequency of 44.1 kHz with 16-bit amplitude resolution. The peak
amplitude of the waveforms was normalized to 0.5 and the duration was set to 600 ms,
gated with 10-ms raised-cosine ramps. All stimuli were loudness normalized according
to the algorithm of Moore, Glasberg, and Baer (1997) as implemented in the Loudness
Toolbox v.1.2 (Genesis S. A., 2009) and further adjusted by the authors because it was
observed that the algorithm overestimated the loudness of sounds that had most of their
energy centered at high frequencies.

For each feature, and for a particular spectral centroid or f0, the stimuli were presented
in three di↵erent sequences of feature values, under the constraint that the values of two
successive stimuli should be di↵erent for each sequence. The spacing of stimulus values
presented in each sequence was based on the results of Kazazis’ et al. (in preparation)
ordinal scaling experiment, in which listeners’ confusions between successive stimuli were
identified. This allowed for a supraliminal stimulus set within each sequence. In the
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following subsections we present the synthesis methods used for the construction of stimuli
that led to independent control of the values of each feature. Table 4.1 lists the ranges of all
feature values computed on a number of sounds generated for a testing a particular feature.
From this table can be inferred that within a particular stimulus set, most feature values
remain relatively constant or vary within a very narrow range compared to the ranges
of feature values according to which the stimulus set was generated. The most notable
exceptions are the stimulus sets of spectral slope and odd-to-even ratio. This is because
spectral slope covaries with spectral centroid, spread, and skewness and resulted in a greater
skewness range than the stimulus set of spectral skewness due to the constraints imposed
in the sound synthesis process that are outlined in the following subsections. In a similar
way, the odd-to-even ratio is directly related to the computation of spectral deviation, and
its respective stimulus set had a greater range of spectral deviation than the dedicated
stimulus set of spectral deviation.

Table 4.1 Ranges of feature values within designated stimulus sets. The
ranges of feature values according to which each stimulus set was generated
are shown in bold. The number of sounds on which the feature values were
computed are shown inside parenthesis. The reported ranges for the spectral
spread and skewness stimulus sets were computed on stimuli with 5600-Hz
spectral centroid. -: linear regression over normally distributed spectral am-
plitudes is futile.

Feature Ranges
Stimulus Sets (# sounds)

Centroid (Hz) Spread (Hz) Skewness Odd-to-Even Ratio Deviation Slope (dB/octave)

Centroid (505) [1642, 9560] [479, 480] [0.00, 0.02] [1.00, 1.00] [0.00, 0.00] -

Spread (100) [5600, 5600] [181, 1439] [0.00, 0.00] [1.00, 1.00] [0.00, 0.00] -

Skewness (97) [5600, 5600] [1079, 1080] [–0.88, 0.96] [1.00, 1.00] [0.00, 0.00] -

Odd-to-Even Ratio (349) [1260, 1500] [768, 848] [0.00, 0.21] [0.25, 1250.00] [0.00, 0.11] [–11.67, –2.62]

Deviation (265) [1723, 2550] [1292, 1396] [0.00, 0.28] [1.00, 1.19] [0.00, 0.06] [0.00, –5.04]

Slope (349) [332, 2082] [134, 785] [–1.04, 6.68] [1.25, 15.05] [0.00, 0.03] [–24.00, 5.44]

Spectral Centroid The stimuli of these sound sets were constructed by shaping the
flat harmonic spectrum described above to follow a normal probability mass function that
enabled the construction of spectra with di↵erent centroids (means), for a given spread
(standard deviation) and zero skewness1(Figure 4.1). The amount of spectral spread was
set to 479 Hz (four times the f0), which for the f0 at 120 Hz allowed for a minimum cen-
troid of 1640 Hz and a fixed bandwidth of 9 harmonics for each stimulus’s spectrum. It
should also be noted that the harmonic spacing of the components ensured a (virtual) pitch
percept at the f0. The spectral centroid values (in kHz) presented in each sequence (Seq.)
were the following:

1The actual computed values (in discrete frequency) di↵er slightly from the theoretical values (calculated
on continuous frequency) used in the synthesis processes due to round-o↵ errors.
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Seq.1: {1.64, 2.28, 3.68, 6.20, 9.56}
Seq 2: {1.64, 2.88, 3.68, 4.76, 9.56}
Seq.3: {1.64, 1.80, 3.68, 8.20, 9.56}

Spectral Spread The normal distribution was again used for constructing stimuli with
fixed centroids, zero skewness and variable spectral spreads, by precisely controlling its
bandwidth (Figure 4.1). The range of the allowable spreads in the synthesis process was
constrained by the centroid and f0 used in each stimulus set, as well as the spacing res-
olution of the harmonics. Three sound sets were constructed with centroids centered at
1640, 5600, and 7800 Hz that allowed for maximum spreads (with respect to the f0) of 479,
1439, and 1800 Hz, respectively. For each of these sound sets (i.e., for each of the three
spectral centroids), the spectral spread values (in Hz) where presented in the following
three sequences:
Seq.1: {62, 96, 152, 241, 479}, {181, 287, 455, 722, 1439}, {227, 359, 569, 902, 1800},
for spectral centroids at 1640, 5600, and 7800 Hz respectively;
Seq.2: {62, 121, 191, 303, 479}, {181, 362, 573, 909, 1439}, {227, 452, 717, 1136, 1800}
Seq.3: {62, 76, 191, 381, 479}, {181, 228, 573, 1144, 1439}, {227, 285, 717, 1430, 1800}

Spectral Skewness The Skew-normal distribution (Azzalini, 2005) is a three-parameter
family of curves and was employed for constructing stimuli with di↵erent skewness while
the centroid and spread were being kept constant (Figure 4.1). The restrictions in the
synthesis process that were taken into account with respect to the selection of centroids
and spreads were similar to the ones mentioned above, with the additional constraint that
skewness in the Skew-normal distribution can only vary within a range of (�0.9953, 0.9953).
Three sound sets were constructed with centroids spaced at 1640, 5600, and 7800 Hz, and
spreads at 360, 1080, and 1439 Hz, respectively. The spectral skewness values presented in
each sequence for a particular centroid were the following:
Seq.1: {–0.88, –0.33, 0.00, 0.71, 0.96}
Seq.2: {–0.88, –0.11, 0.25, 0.60, 0.96}
Seq.3: {–0.88, –0.55, 0.00, 0.87, 0.96}

Odd-to-Even Ratio The stimuli of these sound sets were constructed with 9 harmonics
for ensuring that roughness would not be a major factor in listeners’ ratings. The odd-to-
even ratio was controlled by equally attenuating the level in dB of the even harmonics while
keeping the odd harmonics fixed at 0 dBFS (dB relative to full scale), and by attenuating
the level of the odd harmonics while keeping the even harmonics fixed. In each of those
cases, the f0 level was kept fixed at 0 dBFS (Figure 4.1). Three sound sets with the same
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attenuation levels were constructed for each of the three f0s at 120, 300, and 720 Hz. The
odd-to-even ratio values presented in each sequence for a particular f0 were the following:
Seq.1: {0.251, 0.648, 1.25, 3.14, 1250}
Seq.2: {0.251, 0.501, 1.25, 4.98, 1250}
Seq.3: {0.251, 0.881, 1.25, 1.98, 1250}

Spectral Deviation The reference spectrum was selected from a sample of one thou-
sand amplitude distributions that were generated by randomly choosing the level of each
harmonic from a uniform distribution covering the range of [�60, 0] dBFS. The amplitude
distribution that had the greatest spectral deviation along with an odd-to-even ratio of
approximately 1 and the greatest T2 tristimulus value (Peeters et al., 2011) below the level
of the f0 was chosen as the reference spectrum for constructing stimuli with controlled
deviations. The decision to choose an odd-to even ratio of approximately 1 (Table 4.1) en-
sured that this sound set did not vary predominantly according to that parameter (which
was tested separately), whereas the choice of having the greatest possible T2 ensured that
most of the deviation resulted from the di↵erences in level among the upper harmonics.
The spectral deviation was then controlled by reducing the di↵erences in level between the
successive harmonics of a reference spectrum until all harmonics had reached a level of
0 dBFS (Figure 4.1). In total, three sound sets with f0’s at 120, 300, and 720 Hz were
constructed. For these sound sets, the number of harmonics was increased to 16, which
enabled the generation of a more uniform sample of amplitude distributions and the evalu-
ation of a wider range of deviations that occur between the higher harmonics. The spectral
deviation values presented in each sequence for a particular f0 were the following (⇥102):
Seq.1: {0, 2.42, 4.76, 5.45, 5.75}
Seq.2: {0, 3.40, 5.17, 5.62, 5.75}
Seq.3: {0, 1.68, 4.58, 5.52, 5.75}
At this point it should be mentioned that the odd-to-even ratio stimulus set had a greater
range of spectral deviation (Table 4.1) because all the odd or even harmonic components
had a minimum level of –60 dBFS, whereas in the spectral deviation sets only one out of
the sixteen components had a level at –60 dBFS (Figure 4.1).

Spectral Slope The spectral slope of each stimulus was controlled by reducing, or in-
creasing, the levels in dB of 9 successive harmonics between the extremes of a flat and 1/n4

(i.e., 24 dB/octave), or 1/((N + 1) � n)4, harmonic amplitude spectra for negative and
positive slopes respectively, where n is the harmonic number and N is the total number of
harmonics (Figure 4.1). In total, three sound sets with f0’s at 120, 300, and 720 Hz were
constructed for both positive and negative slopes the values of which were computed using
linear regression over the power in dB of log-spaced harmonics. The spectral slope values
(in dB/octave) presented in each sequence for a particular f0 were the following:
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Seq.1: {–24, –12, –1, 2, 5}
Seq.2: {–24, –16, –4, 0, 5}
Seq.3: {–24, –6, 0, 4, 5}

Procedure

In every trial, listeners were first presented with a sequence of five stimuli that varied
(monotonically) along an audio feature. Then, they had to adjust the spacing of five
markers presented on screen (the first and last markers corresponding to the first and last
stimulus were kept fixed) according to their perception of the relative spacing of the five
stimuli in terms of di↵erences between their successive audio feature levels. In other words,
the separation between the markers reflected how far apart from each other the stimuli were
perceived to be. The order presentation of features and the corresponding f0’s or centroids
of a given feature were randomized. For each feature, the three di↵erent sequences of
stimulus values were presented randomly and in both ascending and descending orders.
The experiment took approximately 60 minutes to complete.

The user interface was programmed in PsiExp (Smith, 1995). Sounds were amplified
through a Grace Design m904 monitor (Grace Digital Audio, San Diego, CA) and presented
diotically over Sennheiser HD600 headphones (Sennheiser Electronic GmbH, Wedemark,
Germany). The range of the presentation levels over all stimuli was 53.4 – 74 dBA as
measured with a Brüel & Kjær Type 2205 sound-level meter with a Brüel & Kjær Type 4153
artificial ear to which the headphones were coupled (Brüel & Kjær, Nærum, Denmark).
Listeners were seated individually in an IAC model 120act-3 double-walled audiometric
booth (IAC Acoustics, Bronx, NY).

4.2.2 Results

The interval scales were constructed by fitting a proper function on the median values of
the ratings computed by first averaging each participant’s ratings on the ascending and
descending sequences of stimulus values in order to control for any hysteresis e↵ects, which
occur when the order of presentation a↵ects the judgment of successive intervals between
stimuli (Stevens, 1975). The criteria used for choosing the form of the function were that of
monotonicity and maximum explained variance (R2). The best fitting function in relation
to the above criteria was determined after evaluating the performance of exponential, power,
and polynomial functions which ranged from linear to the maximum allowable degree. In
cases where the best fitting function was a power function, it was necessary to first transpose
the feature values of the stimuli to strictly positive by adding an (o↵set) constant before
applying the fitting algorithm. The reliability of listeners’ ratings on a particular sequence
of feature values was estimated according to Cronbach’s alpha (↵), which was computed on
the averaged ratings of each participant between the ascending and descending conditions of
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Fig. 4.1 Spectral envelopes of anchor stimuli used in Experiments 1 and
2, and of mid-point stimuli used in the rating scale of Experiment 2. The
spectral envelopes of the mid-point stimuli correspond to the middle sound of
each stimulus set reported in Table 1. Dots indicate harmonics (for the spread
and skewness plots the dots are omitted for display purposes). sc = spectral
centroid.
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each sequence (Stevens, 1975). Cronbach’s alpha was estimated separately for each sequence
rather on the combined ratings of all sequences, because some stimuli were presented in
more than one sequence whereas some other where presented in just a single one. For
qualitatively interpreting Cronbach’s alpha we used the rule of thumb proposed by George
and Mallery (2003): less than 0.5 – Unacceptable; between 0.5 and 0.59 – Poor; between
0.6 and 0.69 – Questionable; between 0.7 and 0.79 – Acceptable; between 0.8 and 0.89
good; above 0.9 – Excellent. The final median and interquartile ranges of listeners’ ratings,
and the fitting functions that are shown in the respective plots, were computed on each
stimulus value after combining its ratings from all the sequences in which was presented
and after averaging each participant’s ratings for the ascending and descending conditions.
For cases in which the fitting function had to be applied on transposed stimulus values,
the respective plots display the actual stimulus values on the x-axis. All the analyses were
done in Matlab and R (R Core Team, 2013).

Spectral Centroid

Figure 4.2 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences, and the shape of the fitting function, from which it can be seen that
the ratings increase monotonically for increasing spectral centroid. The second sequence
in which the intermediate stimulus values were clustered around the middle one, had a
good reliability score (↵ = 0.82). The first sequence in which the intermediate values were
more equidistant had a considerably lower but still acceptable reliability score (↵ = 0.72).
The third sequence in which the intermediate values were clustered around the edges near
the first and last stimuli had the lowest score which indicated a lower than poor reliability
(↵ = 0.41). The fitting function was a power function of the form:

f(x) = –1284 · x–0.1824 + 337.2, R
2 = 0.99 (4.1)

Spectral Spread

Figure 4.3 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences (top panel), and the shape of the fitting function (bottom panel). The
median ratings increased monotonically for increasing spectral spread with the exception
of the sound set at a centroid of 7800 Hz, in which the second stimulus in the combined
spacing was overestimated by most listeners. Overall, the reliability was good to marginally
acceptable for the interval estimations of spectral spread, with ↵ ranging from 0.86 to 0.69.
The only exceptions were the third sequences which had their intermediate values clustered
around the edges of the first and last stimuli with centroids at 5600 and 7800 Hz, and which
exhibited questionable to less than poor reliability with ↵’s at 0.6 and 0.34 respectively.
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Fig. 4.2 Boxplots and shape of the fitting function for spectral centroid.
Whiskers extend to 2.7 SD.

For the sound sets with centroids at 1640 and 7800 Hz the fitting function was a quadratic
polynomial with the following coe�cients for the two sound sets respectively:

f1640(x) = (�34.61 · 10�5)x2 + (41.59 · 10�2)x� 22.36, R
2 = 0.99 (4.2)

f7800(x) = (�1.371 · 10�5)x2 + (8.84 · 10�2)x� 15.04, R
2 = 0.98 (4.3)

For the sound set with centroid at 5600 Hz the fitting function was a power function of the
following form:

f5600(x) = 10.02 · x0.3917 � 75.15, R
2 = 0.99 (4.4)

The fact that the fitting functions are of di↵erent forms, and with considerably di↵erent co-
e�cients, reflects the unequal spacing of spectral spread between the sound sets of di↵erent
spectral centroids.

Spectral Skewness

Figure 4.4 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences, and the shape of the fitting function. The sequences that had the lowest
reliability scores ranging from less than poor to questionable were the first (↵ = 0.58) and
third (↵ = 0.46) with centroid at 1640 Hz, as well as the third one (↵ = 0.68) with centroid
at 7800 Hz. For the rest of the sequences the reliability ranged from acceptable to good
(0.72  ↵  0.80). From the boxplots in the left panel of Figure 4.4 it can be seen that
although the median ratings increase monotonically for increasing spectral skewness, the
stimuli seem to be grouped in three di↵erent clusters: 2 to 4, 5 to 6, and 7 to 9. This
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Fig. 4.3 Boxplots and shape of the fitting functions for spectral spread. sc:
spectral centroid. Whiskers extend to 2.7 SD.
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trend of the data was best captured with a fifth order polynomial which had the following
coe�cients for each sound set with centroids at 1640, 5600, and 7800 Hz respectively:

f1640(x) = 91.21x5 � 24.86x4 � 83.3x3 + 24.59x2 + 61.63x+ 37.37, R
2 = 0.99 (4.5)

f5600(x) = 99.72x5 � 9.505x4 � 88.99x3 + 15.49x2 + 55.97x+ 34.24, R
2 = 0.99 (4.6)

f7800(x) = 95.34x5 � 17.78x4 � 96.95x3 + 19.02x2 + 66.96x+ 38.97, R
2 = 0.99 (4.7)

Odd-to-Even Ratio

Figure 4.5 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences, and the shape of the fitting function. From the boxplots it can be seen
that the median ratings increased monotonically with increasing odd-to-even ratio. The
reliability of interval estimations ranged from poor to excellent (0.53  ↵  0.89). The
first sequence had a questionable reliability score with ↵’s at 0.64, 0.63, and 0.66, for f0’s
at 120, 300, and 720 Hz, respectively. The second sequence had ↵’s at 0.53, 0.77, and 0.56,
and the third sequence had ↵’s at 0.89, 0.56 and 0.67, for f0’s at 120, 300 and 720 Hz,
respectively.

Because of the large range of odd-to-even ratios, the values were first log10-transformed.
All the stimulus sets were best fit with a power function and were therefore transposed to
strictly positive before fitting the function according to: x0 = log10(x) + 10, where x is the
original stimulus value. The constant value of +10 ensured that the scale includes ratio
values greater than log10(10�10). The following coe�cients were used for each sound set
with f0’s at 120, 300, and 720 Hz respectively:

f120(x
0) = (�2.904 · 1010)x0�8.63 � 109.6, R

2 = 0.98 (4.8)

f300(x
0) = (�2.061 · 1010)x0�8.499 + 107.7, R

2 = 0.99 (4.9)

f720(x
0) = (�9.95 · 1010)x0�9.196 + 108, R

2 = 0.98 (4.10)

Spectral Deviation

Figure 4.6 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences, and the shape of the fitting function plotted on the actual stimulus
values of spectral deviation. With the exception of the stimulus set at the f0 of 720 Hz,
in which the third stimulus was ranked higher than its preceding and succeeding stimu-
lus values, the rest of the median values in all sound sets increased monotonically with
increasing spectral deviation. The highest reliability scores were good and were observed
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Fig. 4.4 Boxplots and shape of the fitting functions for spectral skewness.
sc: spectral centroid. Whiskers extend to 2.7 SD.
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Fig. 4.5 Boxplots and shape of the fitting functions for odd-to-even ratio.
Whiskers extend to 2.7 SD.
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for the second sequence in which the intermediate stimuli were spaced closer to the middle
stimulus value than the edges and had ↵’s at 0.83, 0.80, and 0.86 for f0’s at 120, 300,
and 720 Hz respectively. The reliability scores for the first and third sequences were 0.72,
0.70, 0.76, and 0.56, 0.76, 0.08, for f0’s at 120, 300, and 720 Hz, respectively. For all the
sound sets, the best fitting function was a power function and, as in the previous case, the
values were transposed to strictly positive according to: x0 = x+ 1, where x is the original
stimulus value and 1 is an arbitrary constant. The following coe�cients were used for each
sound set with f0’s at 120, 300, and 720 Hz respectively:

f120(x
0) = (14.22 · 10�3)x0156.1 + 10.7, R

2 = 0.98 (4.11)

f300(x
0) = (47.76 · 10�3)x0134.6 + 9.563, R

2 = 0.98 (4.12)

f720(x
0) = (55.78 · 10�4)x0173.3 + 9.844, R

2 = 0.98 (4.13)

Spectral Slope

Figure 4.7 shows the combined median ratings and interquartile ranges calculated over all
stimulus sequences, and the shape of the fitting function plotted on the actual stimulus
values of spectral slope. In all sound sets, the median values increased monotonically
with increasing spectral slope. As in the previous feature set of spectral deviation, the
highest reliability scores were observed for the third sequence of this sound set in which the
intermediate stimuli were spaced closer to the middle stimulus value than the edges. For
that sequence, the reliability scores were overall marginally excellent with ↵’s at 0.92, 0.89,
and 0.89 for f0’s at 120, 300, and 720 Hz respectively. The first and second sequences had
overall lower reliability with ↵’s at 0.85, 0.71, 0.75 and 0.64, 0.71, 0.64 for f0’s at 120, 300,
and 720 Hz, respectively. The second sequence in which the intermediate stimulus values
ranged from negative to zero spectral slope seems to have had an e↵ect on the reliability of
stimulus ratings, which were overall questionable. The fitting function was again a power
function, and, as in the previous cases, the values had to be rescaled to strictly positive
before applying the fitting function according to: x

0 = x + 24, where x is the original
stimulus value. The rescaling constant of +24 allowed values above –24 dB/octave to be
included in the scale. The coe�cients of the power function for sound sets with f0’s at 120,
300, and 720 Hz respectively, are the following:

f120(x
0) = 0.8718x01.393 + 0.7432, R

2 = 1 (4.14)

f300(x
0) = 1.144x01.303 + 2.16, R

2 = 1 (4.15)

f720(x
0) = 1.02x01.336 + 2.46, R

2 = 0.99 (4.16)



4.2 Experiment 1: Interval Estimation 91

 1  2  3  4  5  6  7  8  9 10 11

Spectral Deviation - Rank Ordered Stimulus Values

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 120 Hz

0   0.01 0.02 0.03 0.04 0.05

Spectral Deviation

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 120 Hz

 1  2  3  4  5  6  7  8  9 10 11

Spectral Deviation - Rank Ordered Stimulus Values

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 300 Hz

0   0.01 0.02 0.03 0.04 0.05

Spectral Deviation

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 300 Hz

 1  2  3  4  5  6  7  8  9 10 11

Spectral Deviation - Rank Ordered Stimulus Values

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 720 Hz

0   0.01 0.02 0.03 0.04 0.05

Spectral Deviation

0

20

40

60

80

100

R
a

tin
g

 S
ca

le

f0 = 720 Hz

Fig. 4.6 Boxplots and shape of the fitting functions for spectral deviation.
Whiskers extend to 2.7 SD.
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Fig. 4.7 Boxplots and shape of the fitting functions for spectral slope.
Whiskers extend to 2.7 SD.
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4.2.3 Discussion

With the exception of the two anomalous points in one of the sound sets of spectral spread
and spectral deviation, the rest of the median values of the interval estimations increased
monotonically with increasing stimulus values, which indicates that the experiment was
successful, and that the listeners were able to estimate intervals of the tested audio features.
However, it is well-known that one of the biases of interval scales usually results from the
initial selection and the limited pool of stimuli used for the estimations. This bias was
controlled for by presenting subsets of an initial pool of stimuli covering a wide range of
each feature with di↵erent spacing in each trial. Furthermore, any hysteresis e↵ects were
taken into account by presenting the stimulus sequences in both ascending and descending
directions. Although we tried to control for the aforementioned biases, another important
source of bias that was not possible to account for was the centering tendency, which a✏icts
all rating scales (Stevens, 1975). As became evident from most of the plots of the fitting
functions, listeners tended to use the more central positions of the rating scale and avoid
the extremes.

The forms of the derived fitting functions were the same within each audio feature
when tested at di↵erent ranges albeit with di↵erent coe�cients which indicates that the
listeners’ perceptions of these features depend on the spectral location at which each feature
is presented in terms either of fundamental frequency or of spectral centroid. One exception
to this was the interval estimations of spectral spread where the derived fitting functions
within the whole tested range were not of the same kind, which reflects the unequal spacing
of spread values between the stimuli constructed at di↵erent spectral centroids.

The large variability of the reliability scores measured according to Cronbach’s alpha for
each set of stimuli within the same feature and for a particular sequence indicates that the
spacing of the stimuli had a big e↵ect on the internal consistency of the listeners. The lowest
alphas were observed for the stimuli of spectral skewness with centroid at 1640 Hz, and
for the odd-to-even ratio. In addition, the overall lowest reliabilities were mainly observed
for the sequences in which the stimuli were not (approximately) equidistantly spaced, and
when the second and next-to-last stimuli were placed closer to the edges rather than to
the middle stimulus value of the sequence. We hypothesize that this could be because
listeners might were using the middle stimulus of the sequence as a reference (standard
stimulus) for their interval estimations and as mentioned in the Introduction section as
well, judgments tend to be more accurate for stimuli placed closer to the standard rather
than far away from it (Gescheider & Hughson, 1991). Another factor that might have played
a role in the observed variance of interval estimations, the anomaly points, and for some
cases in the relatively low reliability scores, could be that for some features, the audible
di↵erences between the stimuli in the combined set were marginally supraliminal (albeit
clearly supraliminal within each sequence). However, this was a direct consequence of the
narrow perceivable range of some features (e.g., odd-to-even ratio) and the constraints
imposed from the synthesis procedure for constructing the stimuli (e.g., narrow permissible
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range of spectral skewness due to the Skew-normal distribution).
In conclusion, the largest biases of the derived interval scales resulted from the center-

ing tendency of the listeners and in some cases from the marginally supraliminal spacing
of stimulus values. Despite these biases, the experiment should be considered as an ex-
ploratory step, which confirmed the ability of the listeners to estimate intervals of the tested
audio features. It also allowed us to proceed to the construction of ratio scales presented
in the next section.

4.3 Experiment 2: Equisection Scaling

The aim of this experiment was the derivation of ratio scales of audio features provided
that listeners are able to estimate intervals, which was confirmed from the results of Exper-
iment 1. In this experiment, listeners had control over the stimulus values and were asked
to equisect a continuum of a particular audio feature. Each equisection was performed
using the progressive solution (Gescheider, 1997) according to which listeners progressively
partition the continuum formed by the stimuli into a number of equal-sounding intervals.
The equality of sensory intervals implies that the intervals themselves have ratio proper-
ties (Marks & Gescheider, 2002) and thus, the results of this experiment led to ratio scale
measurements.

4.3.1 Method

Participants

Twenty participants, 6 female and 14 male, with a median age of 25 years (range: 18–41)
were recruited from the Schulich School of Music, McGill University. All of them were
self-reported amateur or professional musicians with formal training in various disciplines
such as performance, composition, music theory, and sound engineering. Participants were
compensated for their time. One participant reported perfect pitch, and another one synes-
thesia.

Stimuli and Presentation

All the stimulus sets were constructed with the procedures described in Subsection 4.2.1
and at the same f0’s and spectral centroids. In order to create a continuum within a
range of a particular feature, several stimuli were constructed with multiple imperceptible
successive di↵erences. The total number of sounds used for each stimulus set and the ranges
of feature values for a particular set are indicated in Table 4.1. The extreme feature values
of each stimulus set were the same as those used in Experiment 1. Figure 4.1 shows for a
particular stimulus set, the spectral envelopes of the anchor and mid-point stimuli used in
the rating scales of the present experiment.
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Procedure

Other than the experimental task, the general procedure was the same as the one used in
Experiment 1. In a first step, listeners divided the continuum of an audio feature into two
equal-sounding intervals, by triggering each stimulus with a cursor along a horizontal bar
that contained the stimuli, and by placing a marker over the stimulus-bar. Each section
was then bisected in the next step. In total there were three bisections: the first one was
made between the stimuli of the total range, and the other two between the lower and
upper bisected ranges. The order of presentation of the upper and lower half bisections
was randomized. In a final step, listeners were presented with all their bisections and were
instructed to make further fine adjustments so that all four intervals they had created in the
previous steps sounded equal. The order of presentation of features and the f0 or spectral
centroid of each feature was randomized. As in the previous experiment, the stimuli were
presented in both ascending and descending conditions at separate trials: i.e., the stimulus
bar would start either from the lowest (ascending condition) or the highest (descending
condition) stimulus value of the feature set. The experiment took approximately 60 minutes
to complete.

4.3.2 Results

The ratio scales were constructed by fitting a function to the median values of each equi-
section computed on both the ascending and descending presentations of the stimulus sets.
As in the previous experiment, whenever the best fitting function was a power function, it
was necessary to first transpose the stimulus values to strictly positive before fitting the
function. The criteria used for choosing the form of the function were again monotonicity
and maximum explained variance, but also good continuation outside the tested range (i.e.,
no oscillations outside the tested range). After identifying the form of the function, the
zero point of the scale was determined either empirically by extrapolating the function to
a point that marks the lower limit of perception for a particular audio feature, or wherever
applicable, according to the physical stimulus value in which case “zero” has a physical
meaning (e.g., zero skewness). Finally, the units of the psychophysical scales were defined
by assigning specific numerals to the points of the equisection scale. Cronbach’s alpha was
again used to evaluate the reliability of the derived scales across listeners. In all cases, the
reliability was overall excellent, with the scales of spectral centroid, and spectral skewness
with centroid at 7800 Hz having the highest reliability (↵ = 0.96). The lowest reliability
was observed for the equisections of spectral spread with centroid at 7800 Hz (↵ = 0.89),
and odd-to-even ratio with f0 at 720 Hz (↵ = 0.78).

Spectral Centroid

Figure 4.8 on the left shows the fitted power function on top of the median ratings and
interquartile ranges. At that point, the ordinate was assigned arbitrary units which rep-
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resent equal spectral centroid-distances as perceived by listeners. Figure 4.8 on the right
shows the extrapolated function for centroids in the range of 20 Hz to 20 kHz. The location
of the zero point on the ordinate was assigned the value of 20 Hz, which marks the lowest
limit of pitch perception, and finally, the units of the scale were derived by assigning the
numeral 10 to the 1 kHz spectral centroid. The coe�cients of the final fitting equation
after the unit assignment are:

f(x) = �34.61x�0.1621 + 21.2985, R
2 = 1 (4.17)
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Fig. 4.8 Equisection and psychophysical scales of spectral centroid. On the
left: boxplots and fitting function on the median ratings. Whiskers extend to
2.7 SD. On the right: psychophysical scale and extrapolated fitting function.

Spectral Spread

Figure 4.9 shows the fitted power functions on top of the median ratings and interquartile
ranges for the sound sets of spectral spread with centroids at 1640 (R2 = 1), 5600 (R2 = 1),
and 7800 Hz (R2 = 1), respectively. In order to find a single psychophysical function of spec-
tral spread covering the entire range independently of the centroid used in each sound set,
the three functions for the overlapping tested ranges needed to be combined. To this end,
Torgerson’s (1958) method was used according to which the scale values in the lower and up-
per ranges are converted into scale units of the middle range, resulting in a single function.
The conversion was performed for the overlapping portions of spectral spread’s range by
linearly regressing both the lower (R2 = 1) and upper ranges (R2 = 1) over the mid-range.
The conversion equations for the lower and upper ranges were fl(x) = 0.7345x� 1.159, and
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fu(x) = 1.086x+ 0.3256 respectively, and their respective plots are shown in the top panel
of Figure 4.10. The final fitting power function (R2 = 1) covering the entire tested range
is shown on the left of the bottom panel of Figure 4.10 where the vertical distances on the
graph represent spectral-spread distances as perceived by the listeners.
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Fig. 4.9 Equisection scales of spectral spread. Boxplots and fitting function
on the median ratings. Whiskers extend to 2.7 SD.

The bottom panel of Figure 4.10 on the right, shows the extrapolated power function
in the range of 0 Hz to 10 kHz2. The zero point on the ordinate was assigned the value
of 0 Hz because in this case, a spectral spread of 0 Hz has a physical meaning indicating
the presence of just a single component in the spectrum. The units of the final scale were
derived after assigning the numeral 10 to the spread of 10 kHz. The final fitting equation
covering the entire tested range and after the unit assignment is:

f(x) = 0.6134x0.3031
, R

2 = 1 (4.18)

Spectral Skeweness

Figure 4.11 shows the fitted third-order polynomial functions on top of the median ratings
and interquartile ranges for the sound sets of spectral skewness with centroids at 1640,
5600, and 7800 Hz. The skewness values were the same in all sound sets, so the aim was
not to derive a single function independent of the centroid used, as in the previous case,
but to derive psychophysical functions of spectral skewness centered at di↵erent locations
in the spectrum. Figure 4.11 on the right shows the extrapolated functions in the range
of –6 to 6 spectral skewness. As in the previous case, a value of 0 skewness has a physical
meaning indicating a gaussian spectral distribution and therefore, the zero point on the

2The power function requires that all data points be strictly positive, and therefore the actual value
used was 2–52 Hz instead of 0 Hz.
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Fig. 4.10 Combined equisection and psychophysical scales of spectral. Top
panel: equisection scales as a function of middle-spread range; Bottom panel:
unified equisection scale (on the left) and psychophysical scale (on the right).
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ordinate was assigned the value of 0 skewness. Finally, the units of the scale were derived
after assigning the numeral 0.1 to the skewness of 1. The fitting equations after the unit
assignment for skewness at centroids of 1640, 5600 and 7800 Hz are:

f1640(x) = 0.03334x3 + 0.005587x2 + 0.06107x, R
2 = 0.99 (4.19)

f5600(x) = 0.04435x3 + 0.02014x2 + 0.03551x, R
2 = 1 (4.20)

f7800(x) = 0.02951x3 + 0.01567x2 + 0.05482x, R
2 = 1 (4.21)

Odd-to-Even Ratio

The best fitting function for the odd-to-even ratio was a power function. Because of the
large range of stimulus values (x), these were first log10-transformed and transposed to
strictly positive before fitting the power function according to: x

0 = log10(x) + 10. Fig-
ure 4.12 (left panel) shows the fitted functions on top of the median ratings and interquar-
tile ranges for the sound sets with f0’s at 120, 300, and 720 Hz. The abscissa holds the
log-transformed values of the odd-to-even ratio, and the arbitrary units on the ordinate
represent equal odd-to-even ratio-distances as perceived by the listeners. Because the per-
ception of this feature depends on fundamental frequency (Kazazis et al., in preparation),
the aim was not to find a single function independent of fundamental frequency but to de-
rive more precise psychophysical functions of odd-to-even ratio at the di↵erent f0’s tested.

The right panel of Figure 4.12 shows the extrapolated functions in the range of –0.9 to 3
of the log10-transformed odd-to-even ratios. The zero point of the scale was defined at the
odd-to-even ratio of 1, and since the values were log-transformed this point corresponds to
the zeros on the abscissas in the right panel of Figure 4.12 . The units of the ordinate were
derived after assigning the numeral 2 to the odd-to-even ratio of 2. The fitting equations
after the unit assignment for the stimuli at f0’s of 120, 300 and 720 Hz are respectively:

f120(x
0) = �1.49 · 1011x0�10.29 + 7.60, R

2 = 1 (4.22)

f300(x
0) = �1.798 · 1011x0�10.38 + 7.55, R

2 = 1 (4.23)

f720(x
0) = �1.808 · 1011x0�10.38 + 7.55, R

2 = 1 (4.24)

Spectral Deviation

The best fitting function for the spectral deviation stimuli was a power function, and as
in the previous case the stimulus values (x) were transposed to strictly positive before
fitting the function according to x

0 = x+ 1. Although it would have been possible to
perform the fitting after adding a small constant just to the stimulus of zero spectral
deviation, the numerical accuracy of the algorithm, and thus the fit, was found to be poorer
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Fig. 4.11 Equisection and psychophysical scales of spectral skewness. Left
panel: boxplots and fitting function on the median ratings. Whiskers extend
to 2.7 SD; Right panel: psychophysical scale and extrapolated fitting function.
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Fig. 4.12 Equisection and psychophysical scales of odd-to-even ratio. Left
panel: Boxplots and fitting function on the median ratings. Whiskers extend
to 2.7 SD; Right panel: psychophysical scale and extrapolated fitting function
on log10-transformed stimulus values.
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when compared to shifting all the values by a larger constant, possibly due to round-o↵
errors. Figure 4.13 (left panel) shows the fitted functions on top of the median ratings and
interquartile ranges for the stimuli with f0’s at 120, 300, and 720 Hz where the abscissas
hold the actual stimulus values.

The right panel of Figure 4.13 shows the fitted functions in the extrapolated range of 0 to
0.07 spectral deviation after the unit assignment. The zero point of the scale was naturally
assigned the value of 0, which maps to zero spectral deviation, and finally, the units on
the ordinate were derived after assigning the numeral 1 to the 0.01 spectral deviation. The
final fitting equations for the stimuli at 120, 300, and 720 Hz are, respectively:

f120(x
0) = 5.302x017.37–5.30, R

2 = 1 (4.25)

f300(x
0) = 4.267x021.16–4.27, R

2 = 1 (4.26)

f720(x
0) = 4.504x020.15–4.50, R

2 = 1 (4.27)

Spectral Slope

The best-fitting function for the stimuli of spectral slope was again a power function and
the stimulus values (x) were rescaled to strictly positive before applying the fitting function
according to: x0 = x+24, where x is the original stimulus value. The rescaling constant of
+24 allowed values above –24 dB/octave to be included in the scale. Figure 4.14 (left panel)
shows the fitted functions for stimuli at 120, 300, and 720 Hz, on top of the median ratings
and interquartile ranges for the actual stimulus values of spectral slope. The right panel of
Figure 4.14 shows the psychophysical scale in the range of –24 dB/octave to +6 dB/octave
slope. The zero point of the scale was naturally assigned the value of 0 which corresponds
to zero spectral slope, and the units of the scale were derived after assigning the numeral
1 to the value of +1 spectral slope. The final fitting equations for stimuli at 120, 300, and
720 Hz, after the unit assignments are, respectively:

f120(x
0) = 9.673 · 10�2

x
01.586–14.95, R

2 = 0.99 (4.28)

f300(x
0) = 21.06 · 10�2

x
01.385–17.19, R

2 = 1 (4.29)

f720(x
0) = 16.46 · 10�2

x
01.448–16.42, R

2 = 1 (4.30)

4.3.3 Discussion

For almost all features, the reliability of the derived scales within the tested range was
excellent as indicated by Cronbach’s alpha. The equisection of the physical continuum
for each feature was performed on stimuli presented in both ascending and descending
directions, which controlled for any hysteresis e↵ects on the derived scales. With the
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Fig. 4.13 Equisection and psychophysical scales of spectral deviation. Left
panel: boxplots and fitting function on the median ratings. Whiskers extend
to 2.7 SD; Right panel: psychophysical scale and extrapolated fitting function.
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Fig. 4.14 Equisection and psychophysical scales of spectral slope. Left
panel: boxplots and fitting function on the median ratings. Whiskers ex-
tend to 2.7 SD; Right panel: psychophysical scale and extrapolated fitting
function.
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exception of spectral skewness, for which the best fitting function on the median (averaged)
ratings was a third-order polynomial, for the rest of descriptors the best fitting functions
were all power functions albeit exhibiting significantly di↵erent shapes, which indicates that
each descriptor is perceived on a di↵erent psychophysical scale. At this point, it should
also be pointed out that Torgerson’s (1958) method, which was used for deriving a single
psychophysical scale of spectral spread, would not have been applicable if listeners were
not internally consistent. The linearity of the functions used to convert the overlapping
scale values of the upper and lower ranges into the values of the middle range indicates
that the estimated equisection points were in fact a function of spectral spread and not of
the presented range.

With the exception of spectral centroid, for which the zero point of the scale was derived
by extrapolating the fitting function, the rest of the scales were assigned a zero point that
has a physical meaning and maps naturally to the physical value of the stimulus. For
spectral centroid, which is related to the perception of auditory brightness (see, for instance,
Schubert & Wolfe, 2006), the zero point was assigned empirically at 20 Hz, which marks
the lower limit of pitch perception. Although it can be argued that the centroid will in
general have values above 20 Hz, there can still be cases in which the centroid is evaluated
on spectra with minimal or zero spectral spread. With respect to such cases, in which the
spectral centroid would match the stimulus fundamental frequency, and after taking into
account Schubert and Wolfe’s (2006) conclusion that brightness is dependent upon f0 to the
extent that increasing f0 also increases spectral centroid, it was concluded that frequencies
as low as 20 Hz should not be excluded from the psychophysical ratio scale of spectral
centroid. The numerical ranges of the scales corresponding to the minimum and maximum
physical values of the audio features are all comparable in terms of magnitude, because the
unit assignment, albeit arbitrary, was performed in such a way as to facilitate comparisons
between di↵erent audio features when these are extracted from a given stimulus.

In previous experiments on ordinal scaling (Chapter 2) it was shown that the perception
of some audio features depends on the fundamental frequency or its spectral centroid, and
therefore, with the exception of the scales of spectral centroid and spectral spread, the psy-
chophysical scales for the rest of the features were derived separately for each fundamental
frequency or centroid tested. A scale for a particular f0 or spectral centroid that falls in
between the tested range of this study, can be derived by using a weighted interpolation
scheme between the coe�cients of the fitting functions in log-frequency. Of course, that
could not have been possible if the fitting functions that were used to derive the ratio scales
of a particular feature and at each f0 or centroid were not of the same form.

4.4 Conclusion

The aim of the present study was to test listeners’ abilities to estimate intervals of audio
features, and the construction of perceptual ratio scales, when each of the presented fea-
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tures was independently controlled through specifically designed synthesis algorithms. The
experimental design used in both experiments controlled for the biases of order e↵ects, in
which listeners’ judgments of a particular stimulus often depend on 1) the preceding stim-
uli, 2) hysteresis e↵ects in which judgments are biased from the ascending or descending
presentations of stimulus values, and wherever possible, 3) for range e↵ects, which occur
when listeners’ judgments are performed on a limited range of stimulus values. However,
for the stimulus sets of spectral centroid, spread, and especially skewness, the range e↵ects
were the hardest to control for due to the constraints imposed by the synthesis algorithms
such as: the choice of using nine harmonics at a fixed f0 for keeping the spectral spread
and skewness fixed in the centroid stimulus sets; bandwidth restrictions due to fixed f0,
centroid and skewness for the spectral spread stimulus sets; or, the narrow permissible
range of skewness in the Skew-normal distribution, which was employed for keeping the
centroid and spread fixed in the skewness stimulus sets.

In the first experiment, listeners made estimations based on successive di↵erences be-
tween stimuli of a given audio feature, and thus this experiment provided interval scale
measurements. There was a large variability in the reliability of the ratings measured ac-
cording to Cronbach’s alpha, which was dependent on the presented spacing of stimuli.
The largest biases of the derived interval scales resulted from the centering tendency of
the listeners, and for some features, from the marginally supraliminal stimuli used in the
combined stimulus set. Despite these biases, the experiment is to be considered successful
because in general, the median values of the interval estimations increased monotonically
with increasing stimulus value, and thus confirmed the ability of listeners to estimate in-
tervals between stimuli of a given audio feature.

The method of equisectional scaling, which was employed in Experiment 2, leads to
equal sensory intervals that have built-in ratio properties and thus, the results of that ex-
periment provided ratio scale measurements. The interval scaling in Experiment 1 was a
prerequisite for proceeding to the construction of ratio scales, which was the ultimate goal
of this study, because without any prior evidence that listeners were actually capable of
estimating intervals of audio features, the results of the second experiment would have been
subject to the uncertainty of whether they were visually bisecting or quartering the dis-
played range of stimulus values, instead of performing estimations according to prescribed
psychophysical ratios (i.e., halving and quartering) of auditory stimuli. As evidenced by
Cronbach’s alpha, the reliabilities of the derived psychophysical scales were overall excellent.
With the exception of spectral centroid, where the zero point was derived by extrapolating
the fitting function, the rest of the zero points of the derived psychophysical scales were
mapped naturally to the stimulus physical values, and the units, albeit arbitrary, were
assigned as to facilitate in a listeners’ mind any comparisons across the values of di↵erent
features when these are extracted from a single stimulus. Due to constraints imposed in
the synthesis process for independently controlling each tested feature value and construct-
ing perceptually uncorrelated stimuli, the extreme values of the psychophysical scales were
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derived by extrapolating the fitting functions. Nevertheless, although the extrapolation
was well behaved (in terms of monotonicity) further experiments are needed to verify the
presented scales on the extrapolated regions.

The results of the two experiments are not directly comparable because in the first ex-
periment, the listeners’ task was to estimate intervals between successive stimuli, whereas
in the second experiment the task was to equisect a given range of each features’ contin-
uum, which after the zero point assignment on the fitting function, led to ratio scales with
internally consistent judgments. In addition, in the first experiment, the reliability scores
for some stimulus sequences of a particular feature were considerably lower than the overall
excellent reliability observed in the ratio scaling experiment. However, in both experiments,
the form of the fitting functions on the interval and ratio estimations of each feature were of
the same kind (i.e., power functions), with the exception of spectral spread and skewness.
For spectral spread, the fitting function for the stimulus sequences with 1640 and 7800 Hz
spectral centroid were quadratic polynomials, whereas for the intermediate values of spec-
tral spread with 5600 Hz centroid the fitting function was a power function which was also
used on the results of the ratio scaling experiment. For spectral skewness, although in
the first experiment the best fitting function was a fifth-order polynomial whereas in the
second experiment was a third-order polynomial, the resultant shapes of both functions
highlight the asymmetrical judgments between negative and positive skewness, which were
also pointed out in Chapter 2.

If interval measurements are needed, then these can be derived from the ratio scales,
because ratio scales subsume the interval scales. In most cases, in order to test over a wide
range of each features’ values, separate scales were derived for each of the fundamental
frequencies or spectral centroids used within each stimulus set. If a psychophysical scale
for a feature at an intermediate fundamental frequency or centroid is needed, it can be
derived by interpolating the coe�cients of the fitting functions derived from the present
study. However, for sounds having fundamental frequencies or centroids that are located
below or above the tested range of this study, the derived scales should be used with caution,
as their validity remains questionable before conducting any further experiments.

The construction of psychophysical scales based on univariate stimuli, allowed for the es-
tablishment of cause and e↵ect relations between audio features and perceptual dimensions,
contrary to past research that has relied on multivariate stimuli and has only examined
the correlations between the two. Finally, the psychophysical scaling of audio features pre-
sented in this study is a prerequisite and essential step before one starts to study timbre as
a phenomenon that emerges from a combination of audio features and explore its attributes
through perceptual dominance hierarchies of those features.



108



109

References

Almeida, A., Schubert, E., Smith, J., & Wolfe, J. (2017). Brightness scaling of periodic
tones. Attention, Perception & Psychophysics , 79:1892 .

Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scan-
dinavian Journal of Statistics , 32 , 159–188.

Caclin, A., McAdams, S., Smith, B. K., & Winsberg, S. (2005). Acoustic correlates of
timbre space dimensions: A confirmatory study using synthetic tones. Journal of the
Acoustical Society of America, 118 , 471–482.

Farbood, M. M., & Price, K. C. (2017). The contribution of timbre attributes to musical
tension. Journal of the Acoustical Society of America, 141 , 471–482.

Genesis S. A. (2009). History and description of loudness models.
(s.l.: Loudness Toolbox for Matlab)

George, D., & Mallery, P. (2003). Spss for windows step by step: A simple guide and
reference (4th ed.). Boston: Allyn & Bacon.

Gescheider, G. (1997). Psychophysics: The fundamentals (3rd ed.). Mahwah, NJ: Lawrence
Erlbaum Associates.

Gescheider, G., & Hughson, B. A. (1991). Stimulus context and absolute magnitude
estimation: A study of individual di↵erences. Perception & Psychophysics , 50:45 .

Grey, J. M., & Gordon, J. W. (1978). Perceptual e↵ects of spectral modifications on
musical timbres. Journal of the Acoustical Society of America, 63 , 1493–1500.

Hellman, R. P., & Zwislocki, J. (1961). Some factors a↵ecting the estimation of loudness.
Journal of the Acoustical Society of America, 33 , 4687–694.

ISO 389-8. (2004). Acoustics – Reference Zero for the Calibration of Audiometric Equipment
– Part 8: Reference Equivalent Threshold Sound Pressure Levels for Pure Tones and
Circumaural Earphones. (International Organization for Standardization, Geneva,
Switzerland)

ISO/IEC. (2002). MPEG-7: Information Technology – Multimedia Content Description
Interface - Part 4: Audio. (ISO/IEC FDIS 15938–4:2002)

Iverson, P., & Krumhansl, C. L. (1993). Isolating the dynamic attributes of musical timbre.
Journal of the Acoustical Society of America, 94 , 2595–2603.

Krimpho↵, J., McAdams, S., & Winsberg, S. (1994). Caracterisation du timbre des sons
complexes. 2: Analyses acoustiques et quantification psychophysique. [Characteri-



110 References

zation of the timbre of complex sounds. 2: Acoustic analysis and psychophysical
quantification]. Journal de Physique, 4 , 625–628.

Krumhansl, C. L. (1989). Why is musical timbre so hard to understand? In S. Nielzén &
O. Olsson (Eds.), Structure and perception of electroacoustic sound and music (Vol.
1989, pp. 43–53). Amsterdam: Excerpta Medica.

Lakatos, S. (2000). A common perceptual space for harmonic and percussive timbres.
Perception & Psychophysics , 62 , 426–1439.

Laurier, C., Lartillot, O., Eerola, T., & Toivianen, P. (2009). Exploring relationships
between audio features and emotion in music. In Proceedings of the 7th Triennial
Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009)
(pp. 260–264). Jyväskylä, Finland.
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Chapter 5

Conclusion

The aim of this thesis was to investigate whether, how, and to what extent listeners per-
ceive magnitude di↵erences along timbre-related audio descriptors. To this end, several
experiments were conducted to test whether audio features can be perceived on ordinal
and interval scales, and to finally construct psychophysical ratio scales of each descriptor.
Throughout these experiments, the following spectral and temporal audio descriptors were
tested: spectral centroid, spread and skewness; harmonic odd-to-even ratio, spectral de-
viation, and spectral slope; attack and decay time, temporal centroid with fixed attack
and decay times, and inharmonicity. The results of those experiments indicated that all
the spectral (Chapter 2) and temporal (Chapter 3) audio features that were tested can
be perceived on ordinal scales. Furthermore, the results of the experiments described in
Chapter 4 indicated that listeners can perceive intervals and ratios between spectral feature
values and therefore, enabled the construction of perceptual ratio scales for each feature
tested, which is the most informative type of scale.

An important and determinant factor of the experimental methodology, was the con-
struction of synthesized stimuli by controlling each feature independently of the rest, as well
as determining empirically, after numerous informal listening tests, the appropriate ranges
and intermediate feature values that would be presented in the experiments, with respect
to each feature’s peculiarities and the imposed limitations by the synthesis algorithms used
to construct each feature’s stimulus set. Another issue, which would not have been re-
solved without using the appropriate synthesis techniques and making a proper selection
of stimulus values, is that throughout all the experiments, listeners had to discover the
attribute of study (i.e., which audio descriptor was being tested) themselves by exploring
the presented ranges and intermediate stimulus values of a particular audio feature, and
without receiving any verbal indication from the experimenters. That is because contrary
to common perceptual attributes such as pitch or loudness, which musically sophisticated
participants would have been familiar with, presenting a consistent description and expla-
nation of audio features to participants prior to the experiment, would require the use of
the mathematical formulations that were used to define each audio feature, and the use of
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technical terminology with which participants may not have been familiar with. Instead,
the experimental methods allowed participants to develop a mental representation of each
audio feature by identifying the covariance and invariances of audio feature values within
a stimulus set.

5.1 Summary of Methods and Results

Chapter 2 perceptually validated spectral audio features through an ordinal scaling ex-
periment. The results indicate that listeners were overall able to sort the stimuli of a
particular feature set when presented with an appropriate spacing of feature (magnitude)
values. However, there were cases in which most listeners could not discriminate magnitude
di↵erences between some feature values of a stimulus set (most notably for spectral skew-
ness) and thus, these stimuli were not ordered correctly. An inspection of the respective
auditory excitation patterns of these stimuli revealed that these patterns were very similar
despite the equidistant spacing of feature values either on a linear or logarithmic scale, and
led to almost identical percepts, which explains listeners’ confusions in the ordering task.
As a result of this analysis, a practical outcome of this experiment was also the identifica-
tion of clearly discriminable feature values among the stimulus sets. Discriminability was
required before conducting the interval and ratio scaling experiments described in Chap-
ter 4, because the di↵erences between stimulus values in such experiments (i.e., global
psychophysical experiments) need to be supraliminal.

A similar approach was followed in Chapter 3, which presented an experiment in which
the listeners’ task was to rank order stimuli that varied according to temporal audio features
including inharmonicity. The results underpinned the importance of amplitude envelope
features in the discrimination between di↵erent attack times and decay times, and the im-
portance of spectral envelope features for discriminating between di↵erent inharmonicity
levels. In addition, the results provided further evidence for the asymmetry found in the
auditory system when processing the attack and decay times of stimuli constructed with a
slow attack and a fast decay, versus stimuli constructed with a fast attack and a slow decay.
The synthesis process used for constructing the stimulus sets of temporal centroids enabled
us to disentangle attack time (or decay time) from temporal centroid by keeping the at-
tack (or decay) time fixed and controlling the temporal centroid by shaping the amplitude
envelope during the attack segment (or decay). Although there were many confusions in
ordering short attack and decay times, listeners performed well in ordering temporal cen-
troids even at very short attack and decay times. A meta-analysis of six timbre spaces was
therefore conducted to test the explanatory power of attack time versus the attack tem-
poral centroid (ATC) along a perceptual dimension derived from multidimensional scaling
(MDS). The results indicate that ATC is a robust feature for explaining dissimilarity rat-
ings along a spectrotemporal dimension, which has overall greater explanatory power than
attack time itself.
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Chapter 4 presented the interval and ratio scaling experiments of spectral audio features.
There were two main factors that needed to be taken into account before concluding on
which experimental method would be the most appropriate for the purpose of each exper-
iment. The first factor was that most participants (excluding sound engineers or listeners
familiar with psychoacoustic experiments) rarely experience most of the tested features in
isolation and thus, as previously mentioned, they were not familiar with the attributes
of study. The second factor is that some features are essentially perceived by detecting
loudness di↵erences between individual spectral components and therefore have a narrow
usable range (e.g., harmonic odd-to-even ratio). This factor has important consequences for
the pool of stimuli that experimenters have at their disposal when conducting magnitude
estimation experiments, for which the presentation of supraliminal stimuli is a requirement.
After conducting several pilot experiments that took these factors into account, it was con-
cluded that partition scaling methods were the most appropriate for deriving interval and
ratio scale measurements of spectral audio features. Moreover, the experimental design
used in each of the two experiments allowed us to control for the biases of order, hysteresis,
and range e↵ects.

The listeners’ task in the first experiment was the estimation of the relative di↵erences
between successive levels of a particular audio feature, and thus this experiment provided
interval scale measurements. The results of this experiment indicate that listeners were
overall able to perceive intervals of spectral audio features. As previously mentioned, for
this particular task, it was imperative that the presented stimuli were supraliminal, which
were therefore chosen based on the results of the ordinal scaling experiment described in the
second chapter of this thesis. Contrary to the first experiment, which was based on interval
estimation and in which listeners had no control over the stimulus values, in the second
experiment, listeners had total control over the stimulus values and were asked to partition
a continuum into a number of equal-sounding intervals. The equality of sensory intervals
implies that the intervals themselves have ratio properties and thus, the results of that
experiment led to ratio scale measurements that enabled the construction of psychophysical
ratio scales of spectral audio features.

At this point, the reader should be reminded that a main di↵erence between interval
and ratio scales is that the former are constructed using an arbitrary point across all the
possible stimulus values as a reference, whereas the latter are constructed using the point
of absolute zero as a reference. According to Stevens (1975), the absolute zero point in
psychophysical scaling is only an abstraction because if literally interpreted it would in-
dicate the total absence of the stimulus rather than a perceptual threshold above which
sensation levels can be measured. However, most audio features do exhibit an absolute
zero: zero spectral spread indicates the presence of just a single frequency component in
the spectrum, which has the same value with the spectral centroid; zero skewness indicates
a symmetrical distribution around the spectral centroid; zero spectral slope indicates a
flat spectrum; zero spectral deviation indicates that each spectral component has the same
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amplitude with the average of itself and its two neighbor components, leading to a smooth
(averaged) amplitude distribution of harmonic components rather than to a “jagged” am-
plitude distribution; a zero point mapped to an odd-to-even ratio of one, indicates that the
odd frequency components have the same energy with the even components and therefore,
the result of subtracting the energies of the two would be zero. The only exception is
spectral centroid, which is related to the perception of timbral brightness, and for which
the zero point was assigned empirically at 20 Hz, which marks the lower limit of pitch
perception.

5.2 Contributions to knowledge

To the best of our knowledge, there have been no previous attempts in psychophysical scal-
ing of timbre-related audio features other than perhaps the preliminary results of Almeida,
Schubert, Smith, and Wolfe (2017) who attempted to derive a ratio scale of auditory bright-
ness as a function of spectral centroid. However, the authors only provide an equation that
approximates the spectral centroid ratio needed to double the perceived brightness, and
which is only valid for centroids in the range of 500 to 1160 Hz. It should also be noted
that the spectral centroid of those stimuli was adjusted by varying the spectral slope, which
although in that particular case was linearly dependent on centroid, also co-varied strongly
with spectral spread and skewness (see also Caclin, McAdams, Smith, & Winsberg, 2005 for
a similar approach used for adjusting the spectral centroid). Therefore, it can be concluded
that the presented equation of perceived brightness should relate not only to changes in
spectral centroid but also to changes in both spectral spread and skewness. In the present
thesis, a significant amount of e↵ort was invested in constructing synthesized stimuli by
controlling each feature independently of the rest, which therefore allowed the establish-
ment of cause and e↵ect relations between each of the tested audio features and perceptual
dimensions through a preplanned sequence of psychophysical scaling experiments.

Throughout this thesis, the sequence of conducted experiments was determined accord-
ing to the perceptual hierarchy of scales, starting from the least informative ordinal scale
and progressing to the most informative ratio scale. However, a reader might question the
necessity of the experiments conducted prior to the experiment which provided ratio scale
measurements, and to whom we may respond by posing the following rhetorical questions:
i) Would the results of the interval estimation experiment and the derived interval scales
be trustworthy if the assumption of ordinal scalability was violated? Or in other words,
could we confidently attribute all the observed variances in listeners’ ratings to imprecise
interval estimations without presuming ordinal scalability of the presented features? ii)
Would the production of equal sensory intervals and thus, the ratio scale measurements
be trustworthy, if listeners had not been able to estimate intervals in the first place? And
how should the results be interpreted if we had observed a minimum (or in some cases
even zero) variance between listeners’ equisections? Would that imply that listeners could
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estimate ratios with extreme precision, or should the results be regarded as disappointing
and attributed to a bad experimental design, given that a certain amount of variance was
to be expected from the results of the interval estimation task?

The results of the ordinal scaling experiment on spectral audio features (Chapter 2)
outlined trajectories of spectral audio features that causally correspond to listeners’ per-
ceptions. In addition, the ordinal scalability of all the tested features suggests that people
can perceive contours in other audio features as well, besides spectral centroid and loudness
that have been previously examined from McDermott, Lehr, and Oxenham (2008). These
authors reported that contours in those features are nearly as useful as pitch contours for
recognizing familiar melodies that are normally conveyed via pitch. More recently, Sieden-
burg and Müllensiefen (2017) empirically demonstrated that timbre-related audio features
play a major role in listeners’ similarity judgments of short music clips with a maximum
duration of 800 ms. Thus, the concept of timbral contours (i.e., contours extracted from
timbre-related audio descriptors) could lead to better audio processing strategies for mu-
sic information retrieval (MIR) tasks such as music recommendation or genre classification
systems that would better reflect listeners’ notions of genre and musical similarity. Another
potential application field for timbral contours would be the development of computational
music theory tools for the analysis of contemporary music, especially for musical works
where pitch itself plays a minor role, as well as contours in other features that dominate
listeners’ perceptions of the musical material (see, for instance, Noble & McAdams, 2020).

The results of the ordinal scaling experiment on temporal audio features (Chapter 3)
suggest that the ordinal scalability of attack and decay time does not solely depend on
those features alone, but also on the shape of the amplitude envelope which is implicitly
encoded in the temporal centroid computed over the attack (i.e., the attack temporal cen-
troid: ATC) or decay time. Although the slope of attack time (Peeters, Giordano, Susini,
Misdariis, & McAdams, 2011) also captures some aspects of the amplitude envelope dur-
ing the attack time, it has only been used as a variable for refining predictive models of
perceptual attack time (Collins, 2006; Gordon, 1987), and its perceptual relevance has not
been directly investigated. In addition, its computation as o↵ered in the Timbre Toolbox
(Peeters et al., 2011) and the MIRtoolbox (Lartillot & Toiviainen, 2007) give inaccurate
predictions to empirical results derived from listening experiments (Nymoen, Danielsen, &
London, 2017). A qualitative interpretation of the results related to the ordinal scaling of
temporal centroids leads to the conclusion that di↵erences between short temporal centroids
perceptually manifest as spectral, whereas di↵erences between longer temporal centroids
manifest as temporal. The above conclusion combined with the results of the meta-analysis
on previously reported timbre spaces, indicates that the temporal centroid and attack time
collapse onto a single spectrotemporal perceptual dimension associated with ATC, which
in the previous studies had been considered to be strictly temporal and was associated only
with attack time. This finding has practical implications in blend prediction models that
rely on timbre spaces and which take into account not only the spectral but also the tem-
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poral aspect of the constituent sounds (Kendall & Carterette, 1993; Sandell, 1995; Tardieu
& McAdams, 2012). In addition, given that ATC is a robust descriptor for explaining
dissimilarity ratings along a spectrotemporal perceptual dimension, it could also be used
as an additional constraint in sound morphing strategies, which would therefore lead to
perceptually smoother transitions between the morphed amplitude envelopes of the source
and target sounds.

Some researchers have suggested that the timbre dimension associated with spectral
centroid may only exist on an ordinal scale (McAdams & Siedenburg, 2019). However, the
results of the interval and ratio scaling experiments (Chapter 4) demonstrate that listeners
can also perceive intervals as well as ratios between spectral descriptor values, which allows
for the construction of psychophysical ratio scales. The assigned units on the derived
psychophysical ratio scales are all of comparable orders of magnitude, in order to ease
quantitative comparisons between perceptual intervals of di↵erent descriptors. The derived
scales along with their respective units designate a perceptual coordinate system of audio
features, in which sounds can be grouped and ordered (on an approximately uniform grid
formed by the units of the scales) according to their perceived sound qualities that relate
to each descriptor. This approach expands the concept of timbre spaces, which are derived
from MDS algorithms, by limiting the possibility of having metameric matches between
perceptually di↵erent sounds located within a perceptual feature space. The perceptual
coordinate system of descriptor values could potentially act as a “control surface” for music
technology applications that include computer aided orchestration, perceptually motivated
sound e↵ects and synthesis algorithms, and constrained approaches to sound morphing
(Chapter 1).

As mentioned in Chapter 1, audio descriptors have been widely used as predictor vari-
ables in statistical regression models for interpreting and predicting listeners’ responses on
a variety of tasks that relate to timbre. However, the physical values of these predictors
may lead to false-positive interpretations about their perceptual significance on a particular
task. The derived scales allow timbre researchers to use perceptually informed values of
spectral descriptors as predictors in their statistical models that may lead to more sustain-
able conclusions and accurate interpretations in terms of perception. In addition, a practi-
cal consequence of using perceptually informed descriptor values is that descriptors which
may be physically correlated may become uncorrelated when measured on psychophysical
scales, which o↵ers many advantages in the statistical analyses. However, the opposite is
also true: descriptors that may be physically uncorrelated may become correlated when
measured on perceptual scales. In that unfortunate scenario, the researchers at least have in
their disposal the units of the psychophysical scales that can be used as indicators for eval-
uating the (individual) magnitude contributions of each descriptor in terms of perceptual
feature-intervals between stimuli.
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5.3 Limitations and future directions

Unlike controlled experimental conditions that use synthesized stimuli such as the ones
in the presented experiments and in which audio descriptors remained constant over the
duration of the stimuli, in most applications descriptor values vary over successive analysis
frames (especially during the attack time). Although time series of descriptor values have
been used in sound morphing (Appendix 2), computer orchestration environments (Car-
pentier & Bresson, 2010), and for evaluating the quality of synthesized sounds that imitate
natural instrument sounds (Kendall, Carterette, & Hajda, 1999), their e↵ect on the per-
ception of timbral contours remains unclear. In order to derive timbral contours extracted
from sounds presented either in isolation or sequentially, further research is needed for de-
termining perceptually relevant temporal windows over which descriptors are computed, or
the appropriate summary statistics of descriptor values (e.g., mean, median, interquartile
ranges) when computed over several successive analysis frames.

This thesis has only investigated interval and ratio perception of spectral descriptors. A
similar experimental paradigm could be used for investigating interval and ratio perception
of temporal descriptors. However, such undertaking would first require having a reliable
estimation method for predicting perceptual attack time (PAT), which is a complicated
phenomenon that relates both to the spectral envelope and amplitude envelope character-
istics of a particular sound, but not necessarily to attack time itself. Current models of
PAT do not generalize to all kinds of sounds and are only useful for a subset of stimuli
with similar spectrotemporal properties (for a recent overview of available models see Bech-
told & Senn, 2018; London et al., 2019). Nonetheless, experiments on that direction could
start by investigating the interval and ratio properties of temporal centroid, which can be
partly disentangled from the total duration of a stimulus when a procedure such as the one
described in Chapter 3 is used.

For some descriptors, especially for the spectral descriptors centroid, spread, and skew-
ness, the synthesis procedure used for constructing the stimuli imposed limitations on the
control of range e↵ects. In other words, the scales for those descriptors were derived from
stimuli that covered only a portion of each descriptor’s total usable range and by extrapolat-
ing the fitting function outside the tested range. Therefore, more experiments are needed to
validate the derived scales outside the tested range. In addition, the psychophysical scales
were derived according to listeners’ estimations on harmonic stimuli. Even though this
procedure has its own advantages, it would be instructive to test in the future whether the
scales derived from harmonic stimuli can generalize to sounds that exhibit noisy spectra.

The perceptual coordinate system of descriptor values, with its axes derived from the
psychophysical scales of each descriptor, does not yet constitute a timbre space. The reason
for that is because, although most of the tested descriptors are physically independent, the
independence in the descriptor space may not hold along orthogonal perceptual dimensions,
which is the basic premise of MDS algorithms that are used to derive the axes of a timbre
space. This thesis has provided evidence that individual descriptors can be perceived
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on perceptual scales when the rest remain constant, but it did not test the extent to
which each descriptor is independently perceived when multiple descriptors covary. Indeed,
several studies have pointed out the perceptual interference among audio features (Caclin
et al., 2005; McAdams, Beauchamp, & Meneguzzi, 1999; McDermott et al., 2008) and pose
the question of whether the source of these dependencies is from learned associations (or
covariation) between timbre, pitch, and dynamics found in mechanical instruments, music
in general, or in speech (McAdams, Tse, & Wang, 2016; McDermott et al., 2008) . Along
those lines, further experiments are needed to test the relative perceptual importance of
each descriptor when their values covary, and the results of this thesis constitute an essential
first step toward that direction.

In addition, it would be interesting to conduct experiments using the experimental
paradigm of functional measurement (Anderson, 1970) for identifying conditions under
which psychological dimensions result from a combination of descriptors. For instance,
in Chapter 3 a spectrotemporal dimension was identified through a single descriptor con-
structed by a combination of attack time with temporal centroid. In general, such dimen-
sions are most likely to arise from a combination of physically interrelated descriptors such
as spectral slope, odd-to-even ratio, spectral deviation, and harmonic tristimulus values,
that are possible to individually control (up to a certain extent), and which all contribute
to a description of the global spectral envelope. However, in most studies, the psycholog-
ical dimensions that may result from a combination of descriptors are usually interpreted
through correlational analyses between listeners’ ratings and a set of descriptors derived
after data reduction techniques (e.g., PCA), which are agnostic with respect to the relative
contributions of individual descriptors and their potential interactions (McAdams, Rous-
sarie, Chaigne, & Giordano, 2010). The experimental paradigm of functional measurement
in conjunction with the perceptual scales derived from the present thesis would allow tim-
bre researchers to abandon such agnostic approaches, which only pertain to a particular
stimulus set, in favor of perceptually informed metrics that could generalize along a broader
set of sounds generated either from mechanical or electroacoustic sound sources.

5.4 Concluding remarks

Although indeed, Timbre is a Many-Splendored Thing (Thoret, Goodchild, & McAdams,
2018), I chose to follow a relatively unexplored timbre path full of cobwebs, which fortu-
nately led to the establishment of psychophysical correspondences between perception and
several timbre-related audio descriptors. It is also true that if any of my initial hypotheses
tested throughout the various stages of this research were violated (i.e., ordinal, interval,
and ratio scalability of audio descriptors), I would have been thesis-less by now, a possi-
bility that was also brought up by one of the committee members who commented on my
initial thesis proposal. Fortunately, the facts show otherwise. The findings of this thesis
advance the current knowledge on timbre perception both by establishing cause-and-e↵ect
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relations between audio descriptors and perceptual dimensions, and by expanding previous
research in which the acoustical interpretations of perceptual dimensions were made solely
under the prism of correlational analyses. The psychophysical correspondences between
perception and audio descriptors reported in this thesis will hopefully serve as a basis for
future research, which may attempt to study timbre as a phenomenon that emerges from a
combination of audio features and explores its psychophysical attributes through perceptual
dominance hierarchies of those features.
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Appendix A

A Performance Evaluation of the
Timbre Toolbox and the MIRtoolbox
on Calibrated Test Sounds

This appendix is based on the following conference paper:

Kazazis, S., Esterer, N., Depalle, P. and McAdams, S. (2017). A performance evaluation
of the Timbre Toolbox and the MIRtoolbox on calibrated test sounds. In Proceedings of
the 2017 International Symposium on Musical Acoustics (ISMA2017), Montreal, Canada,
June 18–22, 2017

Abstract We evaluate the accuracy of the Timbre Toolbox (v.1.2) and the MIRtoolbox
(v.1.6.1) on audio descriptors that are putatively related to timbre. First, we report and fix
major bugs found in the current version of the Timbre Toolbox, which have gone previously
unnoticed in publications that used this toolbox as an analysis tool. Then, we construct
sound sets that exhibit specific spectral and temporal characteristics in relation to the
descriptors being tested. The evaluation is performed by comparing the theoretical (real)
values of the sound sets to the estimations of the toolboxes.

A.1 Introduction

The Timbre Toolbox [1] and the MIRtoolbox [2] are two of the most popular MATLAB [3]
toolboxes that are used for audio feature extraction within the music information retrieval
(MIR) community. They have been recently evaluated according to the number of pre-
sented features, the user interface and computational e�ciency [4], but there have not been
performance evaluations of the accuracy of the extracted features. The aim of this paper is:
(1) to detect and summarize the bugs in the current version of the Timbre Toolbox and (2)
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to evaluate the robustness of audio descriptors these toolboxes have in common and that
are putatively related to timbre. For this purpose, we synthesized various sound sets using
additive synthesis, calculated the theoretical (real) values of each descriptor tested, and
compared these values with the estimations of the toolboxes. Section A.2 summarizes the
bugs found in the current publically available version of the Timbre Toolbox (v.1.2). Sec-
tion A.3 describes the construction of the sound sets used for evaluating the performance
of the MIRtoolbox (v.1.6.1) and a beta version of the Timbre Toolbox, which fixes the re-
ported bugs. Section A.4 presents the results of the evaluation and Section A.5 summarizes
our findings.

A.2 Points of consideration and bug fixing in the Timbre
Toolbox

In this section, we report the bugs found in the current version of the Timbre Toolbox and
some issues related to user interaction. The Timbre Toolbox incorporates the following
sound models of the time-domain signal for extracting audio descriptors: the temporal
energy envelope; the short-term Fourier transform (STFT) on a linear amplitude scale
(STFTmag) and a squared amplitude scale (STFTpow); the output of an auditory model
based on the concept of the Equivalent Rectangular Bandwidth, which is either calculated
using recursive gammatone filters (ERBgam), or their finite impulse response approxima-
tion using the fast Fourier transform (ERB↵t); and a sinusoidal harmonic model [1].

In some cases, especially when the amplitude of the lower frequencies is lower than
the upper ones, the harmonic representation using the default amplitude threshold for
detecting harmonics will not analyze even strictly harmonic sounds. Furthermore, the
default analysis limit of 20 harmonics could also be problematic for analyzing low-frequency
sounds having spectral energy that increases with harmonic number. However, this scenario
is very unlikely to occur in natural sounds, but it is still possible with synthetic sounds used
in psychoacoustic experiments (e.g., [5]) or in electroacoustic music. Another conceptual
bug is the estimation of inharmonicity: according to Eq. A.1, which is presented in [1],
a signal with a fundamental frequency of 100 Hz and a partial at 150 Hz will be less
inharmonic than a signal with the same fundamental and a partial at 190 Hz even though
the partial of the second signal is only detuned by 10 Hz below the next harmonic.
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In v.1.2, the end user only had access to summary statistics, and as such it was not
possible to evaluate the time-varying patterns of audio descriptors. Furthermore, the export
format of the results was a text file. This did not facilitate further processing of the results
especially in the case of a batch analysis where the output consists of several text files.
Also, MATLAB ran out of memory when the Timbre Toolbox processed long audio files.
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According to Peeters et al. [1], the window that should be used for the harmonic analysis
is a Blackman window. However, in the toolbox’s implementation, the window is a boxcar
(i.e., no window weighting at all), but we also noticed that the removal of the window’s
energy contribution to the input sound was implemented incorrectly. Furthermore, some
calculations on audio descriptors returned the results in normalized frequency (including
the spectral centroid) without warning the user and led to misinterpretations (e.g., [6]).

Although the actual sampling rate is read directly from the file, in some sound models it
was not actually used: the parameters related to the FFT analysis were specified according
to a fixed sampling rate of 44.1 kHz no matter the actual sampling rate of the input
file. Finally, in most of the employed sound models, the computations of spectral spread,
skewness, kurtosis and spectral slope were implemented incorrectly.

The analysis results presented in this paper are based on a beta version of the Timbre
Toolbox that fixes and takes into consideration all of the above-mentioned points except the
calculation of inharmonicity and the threshold settings used in the harmonic representation.

A.3 Construction of the test sound sets

The sounds were constructed using additive synthesis, which allows for a direct computation
of the audio descriptors. Each sound set was designed to exhibit specific sound qualities that
are directly related to the descriptors being tested. In this way, we are able to systematically
test the performance of the toolboxes by tracking the circumstances under which certain
audio descriptors are poorly calculated. All sounds were synthesized at 44.1 kHz with 16-
bit resolution and peak amplitude of 6 dB relative to full scale (dBFS). To avoid spectral
spread induced by an abrupt onset and o↵set when performing the FFT on these synthetic
sounds, we applied a 10-ms raised inverse cosine ramp to all sounds except the ones used
to test the attack time and the attack and decrease slopes. Durations were fixed at 600 ms
and all sounds contained harmonics up to (but not including) the Nyquist frequency.

We used the following fundamental frequencies for all the sound sets except those related
to the temporal energy envelope: C#1 (34.65 Hz), D2 (73.42 Hz), D#3 (155.56 Hz),
C4 (261.63 Hz), E4 (329.63 Hz), F5 (698.46 Hz), A5 (880 Hz), F#6 (1479.98 Hz), G7
(3135.96 Hz) and B7 (3951.07 Hz). The C4 was slightly detuned from 261.63 Hz to 258 Hz
in order to match exactly the frequency of an FFT bin and to test whether the estimations
would be improved; for a sampling frequency of 44.1 kHz and an FFT size of 1024 samples
(default setting of the Timbre Toolbox) the bins are spaced 43 Hz apart. We used such
a wide frequency range because as the fundamental frequency increases and approaches
the Nyquist limit, the number of “significant” FFT bins decreases, which may a↵ect the
accuracy of the results, especially in the presence of noise.
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A.3.1 Attack Time, Attack Slope and Decrease Slope

The Timbre Toolbox uses the “weakest e↵ort method” for estimating the attack time and
the attack and decrease slopes [1], whereas the MIRtoolbox uses a similar method based
on Gaussian curves [2]. In these adaptive methods, the threshold energy level that the
signal must surpass is not fixed, but is determined as a proportion of the maximum of the
signal’s energy envelope. The attack and decrease slopes are then estimated as the average
temporal slope during the start and end times of the attack portion. An ‘e↵ort’ is defined
as the time it takes for the signal to go from one threshold value to the next. It is therefore
logical to assume that if the signal varies rapidly and non-linearly during the attack time,
the true attack time values may be poorly estimated.

For testing the accuracy of this method, we constructed nine attack envelopes for each
of ten logarithmically spaced attack times ranging from 1 to 300 ms. The shape of the
envelopes was determined by:

y(t) = mt
b (A.2)

where m controls the slope of the attack time and b is a curvature constant which was
assigned the following values: 3, 2.5, 2 and 1.5 for an exponential shape; 1 for a linear
shape; and 0.67, 0.5, 0.4 and 0.33 for a logarithmic shape. The attack envelopes were then
applied to a flat harmonic spectrum with a fundamental frequency of 258 Hz and a total
duration of 600 ms. A similar procedure was used for testing the estimations of decrease
slope.

A.3.2 Spectral Centroid

For this sound set, we used a flat spectrum with octave-spaced harmonics and included in
the above-mentioned set a lower fundamental of C0 (16.35 Hz). In order to systematically
test the accuracy of spectral centroid estimation, we iteratively removed just one harmonic
from the initial spectrum up to the last one for every fundamental. This way, the sounds
generated from the last fundamental just contain a single frequency component, because
there is only one harmonic present due to the Nyquist limit, and therefore the spectral
centroid ideally should match the value of the fundamental frequency estimation.

A.3.3 Spectral Spread, Skewness, Kurtosis and Roll-o↵

For testing the estimations of spectral spread, skewness, kurtosis, and roll-o↵, we designed
a sound set in which the sounds vary by fundamental frequency and according to spectral
slopes. By precisely controlling the spectral slopes, we directly alter in a predictable way the
higher statistical moments of the spectrum and the frequency below which 95% of the signal
energy is contained. In our analysis, we took into account the fact that the MIRtoolbox uses
a default value of 85%. For every fundamental, we constructed a spectrum that contained
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both odd and even harmonics with a 1/n2 power decrease, where n denotes the harmonic
number. Then in nine steps we altered linearly the energy distribution of the harmonics
until we reached a flat spectrum. The same procedure was repeated by starting from a
flat spectrum and reaching in nine steps a positive slope of the harmonics which had an n

2

power increase.

A.3.4 Harmonic Spectral Deviation and Spectral Irregularity

Spectral deviation (in the Timbre Toolbox) and spectral irregularity (in the MIRtoolbox)
are the same descriptors but are computed slight di↵erently with respect to a scaling factor.
MIRtoolbox o↵ers two estimation methods based on Jensen [7] and Krimpho↵ et al. [8].
Here, we only tested the estimation based on Krimpho↵’s method (Eq. A.3.), which is the
only option available in the Timbre Toolbox. For every fundamental, we started from a
flat spectrum that only contained the fundamental with even harmonics, and we gradually
increased the level of the odd ones until we reach a flat spectrum in ten steps.

dev =
H-1X

h=2

����ah �
ah�1 + ah + ah+1

3

���� (A.3)

A.3.5 Spectral Flatness

To evaluate the accuracy of the estimations of spectral flatness, we applied a Gaussian
spectral window centered at the middle harmonic to a flat spectrum that contained both
odd and even harmonics, and progressively altered its standard deviation in ten steps so
that the last window resulted in an extremely peaky spectrum. For altering the width of
the window we used the following coe�cients, which are proportional to the reciprocal of
the standard deviation: 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7 and 8. This process was done for the
whole range of fundamentals.

A.3.6 Inharmonicity

This sound set is similar to A.3.2, but here we used inharmonic spectra. The inharmonic
components were kept fixed in the whole sound set, and were spaced according to an
inharmonicity coe�cient that controlled the amount of deviation from each harmonic, which
varied linearly from 0 to 0.5 with respect to the harmonic number. Inharmonicity was
increased by gradually increasing the amplitude of the inharmonic components instead of
increasing their deviation from the harmonics. The inharmonic components were initially
attenuated with a 1/n2 envelope to reach a flat spectrum in ten steps µ by gradually
increasing linearly their energy distribution.
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A.4 Results

We evaluate toolbox performance by analyzing the sound sets with each toolbox and cal-
culating the normalized root mean squared (RMS) error between their output and the
theoretical values. The theoretical values were calculated using either the power or magni-
tude scale depending on the input representation being tested. MIRtoolbox’s default input
representation using ‘mirspectrum’ is based on a STFT with a Hamming window and a half
overlapping frame length of 50 ms, which is similar to the ‘STFTmag’ representation used
in the Timbre Toolbox. For the Timbre Toolbox, we tested all the available input represen-
tations because there is no default option. For analyzing the sounds, we used the default
settings of each toolbox, and the summary statistics from the frame-by-frame analysis were
derived using the median values.

A.4.1 Temporal Energy Descriptors

MIRtoolbox uses two estimation methods for calculating the attack and decrease slopes:
‘Di↵’, which computes the slope as a ratio between the magnitude di↵erence at the be-
ginning and end of the attack period and the corresponding time di↵erence; and ‘Gauss’,
which is similar to Peeters’ method [1]. Table A.1 shows the results of the error analysis.
The observed general trend for both toolboxes was that short attack times (about less than
40 ms) were significantly overestimated, whereas longer attack times were mainly under-
estimated. The Timbre Toolbox also systematically estimated the exponential attacks as
being longer than the logarithmic attacks.

Descriptors Timbre Toolbox MIRtoolbox
(Di↵ / Gauss)

Attack Time 24.40 21.57
Attack Slope 36.85 36.15 / 36.82
Decrease Slope 37.31 37.53 / 37.36

Table A.1 RMS error (%) of temporal energy descriptors.

A.4.2 Spectral and Harmonic Descriptors

Although we tested the accuracy of extracted descriptors on all sound sets, due to space
limitations, the evaluation results presented in Table A.2 are based only on the designated
sets for each descriptor, which were presented in the previous section. Also, we only report
the most accurate results (i.e., the minimum RMS error) among the Timbre Toolbox’s
di↵erent input representations. In the following, we present a qualitative inspection of the
errors with respect to the sound sets.
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Centroid: MIRtoolbox always overestimates slightly the centroids, whereas the Timbre
Toolbox returns accurate results for fundamentals of 65.4 Hz and above.

Higher-order moments of the spectrum and roll-o↵: the MIRtoolbox was numerically
unstable returning ‘Not a Number’ (NaN) in the estimation of spectral centroid for the
sets with fundamentals of 34.65 Hz and 73.42 Hz. Table A.2 summarizes the results after
removing the sounds for which MIRtoolbox returned NaNs. Timbre Toolbox’s STFTpow
representation provides overall the most accurate estimations even when all sounds were
included in the analysis, in which case it produced a 1.37% RMS error for spectral roll-o↵.

Spectral Flatness: MIRtoolbox again returned Not a Number for some of the sounds
with fundamentals of 34.65 Hz and 73.42 Hz, and although this sound set was not designed
to test the estimation of spectral irregularity, MIRtoolbox did not provide any results for
the estimation of this descriptor and exited with an error message. We also noted that in
both toolboxes, as the fundamental frequency increases and spectral spread decreases, the
estimations of spectral spread become more erroneous, although limited within a small mar-
gin. Although the spectral centroid and higher moments were estimated quite accurately
in both toolboxes, the estimation of spectral flatness was inaccurate.

Spectral irregularity (or deviation): Harmonic spectral deviation is only available in the
harmonic representation of the Timbre Toolbox. However, we were not able to run the
analysis on the whole sound set using the default amplitude threshold setting for harmonic
detection: as the fundamental frequency increases, the settings should be lowered, otherwise
the sound will not be further analyzed (in the beta version tested here, the user gets warned
whenever this situation occurs). The MIRtoolbox also proved to be erroneous for the
estimation of this descriptor. However, both toolboxes returned quite accurate results for
the spectral centroid and higher-order moments for this sound set.

Inharmonicity: The estimations of inharmonicity could not be quantitatively evaluated
due to the current behavior of the Timbre Toolbox, as mentioned previously, and the
unavailability of the precise equation used by MIRtoolbox. Qualitatively, and given the way
this sound set was constructed (section A.3.6), we expect the estimation of inharmonicity
to increase for the subsets of each fundamental. Fig. A.1 shows the estimations of the
MIRtoolbox, which seem to be more plausible after the fifth set of fundamentals (i.e., from
F5 up to B7, section A.3).

A.5 Conclusions

Before evaluating the accuracy of the toolboxes, we reported and fixed in a beta version
the major bugs, configuration, and presentation issues that were encountered in the current
version of the Timbre Toolbox (v. 1.2). Our evaluation on synthetic test sounds shows that
for spectral descriptors, the Timbre Toolbox performs more accurately and on some sound
sets outperforms the MIRtoolbox, with the short-term Fourier transform power represen-
tation (STFTpow) being overall the most robust. The estimations of spectral centroid and
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Fig. A.1 Inharmonicity estimation in the MIRtoolbox. The horizontal axis
indicates the sound index DN , and the vertical axis the relative deviation of
the partials from purely harmonic frequencies. The missing values correspond
to NaN.
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higher order moments of the spectrum were quite accurate with small errors except the
estimation of spectral flatness, which both toolboxes estimated erroneously. The Timbre
Toolbox failed to analyze some sounds using the harmonic representation with the default
settings even though all sounds were strictly harmonic. In the beta version tested here, if
this situation occurs, the estimation of fundamental frequency is automatically set to zero,
which a↵ects the calculation of all descriptors related to this representation. However, the
user receives a warning message in order to alter the default settings appropriately. The
MIRtoolbox’s estimations of spectral centroid on some sounds, and spectral irregularity
and inharmonicity on a specific sound set proved to be numerically unstable returning
NaN, or exiting with error messages without providing any results. For descriptors that
are based on the estimation of the temporal energy envelope, both toolboxes perform al-
most equally but poorly. We noticed that in this case the errors depend both on the
attack or decay times and on the shape of the slopes. The test sound sets are available
at:https://www.mcgill.ca/mpcl/resources-0/supplementary-ma-terials

Descriptors Timbre Toolbox MIRtoolbox

Centroid 01.21 (STFTpow) 03.56

Spread 00.00 (STFTpow) 02.95

Skewness 02.06 (STFTmag) 03.82

Kurtosis 04.31 (STFTmag) 06.87

Roll-o↵ 00.00 (STFTpow) 01.57

Flatness 34.87 (ERBgam) 51.82

Irregularity N/A 31.36

Table A.2 RMS error (%) of spectral energy descriptors. In the Timbre
Toolbox, spectral irregularity could not be evaluated after the fifth set of
fundamentals (section A.3).

https://www.mcgill.ca/mpcl/resources-0/supplementary-materials
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Appendix B

Sound Morphing by Audio
Descriptors and parameter
interpolation

This appendix is based on the following conference paper:

Kazazis, S., Depalle, P. and McAdams, S. (2016). Sound morphing by audio descrip-
tors and parameter interpolation. In Proceedings of the 19th International Conference on
Digital Audio E↵ects (DAFx16), Brno, Czech Republic, September 5–9, 2016

Abstract We present a strategy for static morphing that relies on the sophisticated
interpolation of the parameters of the signal model and the independent control of high-level
audio features. The source and target signals are decomposed into deterministic, quasi-
determini-stic and stochastic parts, and are processed separately according to sinusoidal
modeling and spectral envelope estimation. We gain further intuitive control over the
morphing process by altering the interpolated spectrum according to target values of audio
descriptors through an optimization process. The proposed approach leads to convincing
morphing results in the case of sustained or percussive, harmonic and inharmonic sounds
of possibly di↵erent durations.

B.1 Introduction and related work

Sound morphing plays an important role in many areas including sound design for compo-
sitional applications and video games, speech manipulation, and in generating stimuli with
specific and controllable acoustic parameters that are used in psychoacoustic experiments
[1, 2]. Despite the extensive literature on this topic, there is no consensus on a single
definition of audio morphing, and an extensive discussion on di↵erent viewpoints can be
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found in [3]. In this paper we present a strategy for stationary morphing, as opposed to
dynamic morphing, in which a source sound gets continuously transformed over time into a
target sound. We consider static morphing as a process that hybridizes a source sound with
target sounds, or target audio features, through the independent manipulation of acoustic
parameters.

Additive synthesis is one of the most flexible techniques, and as such many morphing
strategies rely on interpolating the parameters of a sinusoidal model [4, 5, 6, 7, 8]. Tellman
et al. [4] first pair the partials of the two sounds by comparing their frequency ratios to
the fundamental frequency, and afterwards they interpolate their frequency and amplitude
values. They also time-scale the two sounds to morph between their tremolo and vibrato
rates based on assumptions that usually do not hold in the case of most natural sounds.
Osaka [5] first performs dynamic time warping (DTW), and then he finds partials’ corre-
spondences by dynamic programming. The residual is modeled with short partials and is
morphed according to stochastic parameter interpolation with hypothesized distributions.
Fitz et al. [6] estimate the parameters of the “Bandwidth Enhanced Model” [9] by reas-
signed spectrograms, and use morphing envelopes to control the evolution of the frequency,
amplitude, bandwidth and noisiness of the morph. Haken et al. [7] use a similar technique
to morph in real time between pre-analyzed sounds that are placed in a three-dimensional
timbre control space. Boccardi and Drioli [8] use Gaussian Mixture Models (GMM) to
morph only the partials’ magnitudes, which are derived from Spectral Modeling Synthesis
(SMS) [10]. According to Boccardi and Drioli, since the morphing is based only on magni-
tude transformations, the source and target signals should belong to the same instrument
family.

Other morphing strategies rely on interpolating the parameters of a source-filter model.
Slaney et al. [11] construct a multidimensional space that encodes spectral shape and fun-
damental frequency on orthogonal axes. Spectral shape is derived through Mel-Frequency
Cepstral Coe�cients (MFCC) and fundamental frequency by the residual spectrogram.
The optimum temporal match between the source and target sounds is found using DTW
based on MFCC distances. The smooth and pitch spectrograms are interpolated separately.
Ezzat et al. [12] argue that interpolating the spectral envelopes by simple cross-fading, as
in [11], does not account for proper formant shifting. They describe a method for finding
correspondences between spectral envelopes so as to encode the formant shifting that oc-
curs from a source to a target sound. The morphing is based on interpolating the warped
versions of the two spectral envelopes, and morphing between the residuals is left for future
work.

Other authors claim to control synthesis parameters or to mor-ph according to per-
ceptual dimensions by using high-level audio features. Ho↵man and Cook [13] propose a
general framework for feature-based synthesis according to an optimization scheme that
maps synthesis parameters to target feature values. The results are very preliminary: the
source sound consists of stationary sinusoids and noise that is spectrally shaped through
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MFCCs; the target features are limited to spectral centroid, spectral roll-o↵ and funda-
mental frequency histograms. Park et al. [14] treat single features as modulation signals
that are applied to a source sound. According to their proposed scheme, di↵erent features
cannot be controlled independently and thus the combination of multiple target features
leads to unpredictable results. Mintz [15] uses linear constrained optimization on audio
descriptors to control the parameters of an additive-plus-noise synthesizer. Williams and
Brookes [16] morph using SMS according to verbal attributes that correlate with audio
descriptors and in [17] employ a similar technique to morph between prerecorded sounds
and sounds captured in real time. Hikichi and Osaka [18] adjust the parameters of a phys-
ical model using the spectral centroid as a reference to morph between piano and guitar
sounds, and Primavera et al. [19] focus on the importance of decay time when morphing
between percussive sounds of the same family. Coleman and Bonada [20] derive analytic
relations for the spectral centroid and standard deviation to control adaptive e↵ects for
resampling and band-pass equalization. Caetano and Rodet in [21] investigate spectral
envelope representations, which lead to linearly varying values of audio descriptors when
linearly interpolated according to a morphing factor, and in [22] use optimization tech-
niques based on genetic algorithms to obtain morphed spectral envelopes that approximate
target audio descriptor values.

Other approaches rely strictly on the time domain [23] or on time-frequency represen-
tations [24, 25]. Röbel [23] models the signals as dynamical systems using neural networks
and morphs by interpolating their corresponding attractors. According to the author, the
attractors of the two sounds should be topologically equivalent for achieving a convincing
morphing. Ahmad et al. [24] propose a scheme for morphing between transient and non-
stationary signals using the discrete wavelet transform (DWT) along with singular value
decomposition (SVD) for interpolating the wavelet coe�cients. Olivero et al. [25] propose
a sound morphing technique without making any presumptions about the nature of the
signal or its underlying model. The technique relies on the interpolation of Gabor masks
and its penalty-based version is shown to encompass typical cross-synthesis strategies used
in computer music applications. Furthermore, the interpretation of one of the strategies in
terms of Bregman divergences allows them to include constraints that force morphing in-
termediates to exhibit a predesigned temporal sequence of centroids. This approach works
well only as long as there is overlapping energy between the sounds and in our opinion, cer-
tain presumptions about the nature of the signal are necessary for choosing an appropriate
morphing strategy.

Table B.1 shows a brief comparison between the above-presented methods that are
applicable to static morphing and the current approach. In Section B.2 we present an
overview of our proposed approach. Section B.3 describes in detail the morphing process
based on parameter interpolation, and Section B.4 presents the optimization scheme used
for morphing based on higher-level audio features. In Section B.5 we present our concluding
remarks and future improvements of our method.
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Author(s) and
papers

Sound model & morph-
ing strategy

Partial
match-
ing

High-level au-
dio features

Osaka [5]

Sinusoidal modeling. The
residual is modeled with
short partials according to
hypothesized distributions.

Yes No

Tellman et al. [4]
Sinusoidal modeling. No
treatment of the residual.

Yes No

Haken et al. [7]
Noise-enhanced sinusoidal
modeling.

No
Amplitude and
fundamental
frequency

Boccardi and Drioli
[8]

GMM applied to SMS. No
treatment of the residual.

No No

Caetano and Rodet
[22]

Spectral envelopes for the
deterministic and stochastic
parts.

No
Spectral audio
descriptors

Röbel [23] Dynamical systems.
Not ap-
plicable

No

Ahmad et al. [24] DWT with SVD.
Not ap-
plicable

No

Olivero et al. [25]
Gabor transform with con-
strained Gabor masks.

Not ap-
plicable

Arithmetic, har-
monic and geo-
metric centroids

Kazazis et al.
[present document]

Sinusoidal modeling and
spectral envelopes.

Yes
Spectral and
harmonic audio
descriptors

Table B.1 A brief comparison of methods for static morphing.
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B.2 A hybrid approach to sound morphing

The morphing scheme presented here requires a source sound, to which we apply timbral
transformations according to a morphing factor “↵” (0  ↵  1), and a target. A value
of ↵ = 0 corresponds to the source sound and a value of ↵ = 1 corresponds to the target
sound. The target could consist only of specific audio descriptor values that are obtained
according to a morphing factor ↵d and applied to the source sound, or it could be a di↵erent
sound from which we extract the audio descriptors that we want to morph accordingly, but
we also interpolate between the spectrotemporal fine structures of the two according to a
morphing factor ↵p. Depending on their spectral content, the source and target sounds can
be decomposed into three parts as in [5]: a deterministic part, which is related to harmonic
and inharmonic qualities; a quasi-deterministic part, which is more related to transients
and spectrotemporal irregularities; and a stochastic part, which is related to noise color.
The deterministic and quasi-deterministic parts are estimated through sinusoidal modeling
from which we obtain the time-varying frequencies, amplitudes and phases of the partials.
The stochastic parts are derived by subtracting the deterministic and quasi-deterministic
parts from the original signals [10] and are modeled by estimating their spectral envelopes.

In the next step, we compute the time-varying audio descriptors on each of the three
parts and for each analysis frame. Audio descriptors that are applicable to the current ap-
proach are presented in detail in [26]. For the purposes of this study we have experimented
with: spectral centroid and higher order statistical moments of the spectrum including the
standard deviation (referred to as spectral spread), spectral skewness, and spectral kurto-
sis; spectral decrease; and spectral deviation, which is only computed on the deterministic
part of the signal. Descriptors that are applicable exclusively to harmonic (or slightly
inharmonic) signals, such as tristimulus values and the odd-to-even harmonic ratio, are
also applicable. Natural sounds, however, rarely exhibit such well-defined properties, and
thus such descriptors would be more suitable in the case of synthetic or simplified natural
sounds. Once we calculate the descriptors of the source and target sounds we can compute
intermediate values according to the morphing factor ↵d, and we interpolate the model
parameters of the deterministic, quasi-deterministic and stochastic parts separately. The
intermediate values of audio descriptors are applied to the parameter-interpolated signals
using the optimization scheme described in Section B.4.

We chose to model di↵erently the stochastic part, on the one hand, and the deterministic
and quasi-deterministic parts, on the other hand, because not all sounds exhibit a strong
formant structure. As such, spectral envelopes would be a poor estimation of the signal,
unless they are estimated by the tracked partials, as in [10, 27, 28]. On the other hand,
it is well known that if the signal is stochastic-only, sinusoidal modeling usually leads to
artifacts and so a morphing scheme based exclusively on this model would degrade the
sound quality. The separation into deterministic and quasi-deterministic parts is necessary
for improving the estimation of partial-to-partial correspondences, as we discuss in Section
B.3.1.1. In the following we assume that the source and target sounds are equalized in



138 Sound Morphing by Audio Descriptors and parameter interpolation

loudness, have the same fundamental frequencies, and can be of di↵erent durations.

B.3 Parameter interpolation

In this section we describe the interpolation schemes based on the parameters of the sinu-
soidal model and the parameters that model the spectral envelopes of the residuals.

B.3.1 Deterministic and quasi-deterministic parts

The following scheme is used for both the harmonic and quasi-harmonic parts. Before
interpolating the parameters of the sinusoidal model, it is necessary to find partial-to-
partial correspondences between the source and target sounds.

Estimating partial-to-partial correspondences

The deterministic part consists of partials that are long in duration, with respect to the total
duration of the analyzed sound, whereas the quasi-deterministic part consists of shorter
partials that are generally unstable in frequency (short chirps), have lower amplitude values,
and surround the harmonic or inharmonic partials of the deterministic part. Such partials
may also occur as artifacts of the sinusoidal analysis algorithm, especially in cases where
the sinusoids are of low amplitude and the tracking algorithm fails to perform a reliable
peak-to-peak matching.

A one-to-one correspondence between the partials of the sour-ce and target sounds is
very unlikely to occur unless we limit the number of tracked partials to the most prominent
ones with respect to their durations and amplitude thresholds. However, there are cases
in which even if there is a limit to the number of tracked partials, the assumption of a
one-to-one correspondence as described in [21] could be problematic. For example, when
morphing from a sound that has odd and even harmonics to a sound that has only odd ones,
we would ideally interpolate only the frequency and amplitude values of the odd harmonics
of the two sounds to avoid the artifacts that would result from interpolating the odd with
both the odd and even harmonics of the two sounds.

For finding correspondences between the partials of the source and target sounds, we
use a k-nearest neighbors classifier (k-NN) based on Euclidean frequency proximity, and
under the condition that the vector that is to be classified must have the same or a smaller
number of partials. Obviously, the k-NN classifier does not return a one-to-one, but rather
a many-to-one, mapping, so we choose the closest neighbor in frequency, and we treat the
rest of the neighbors as unmatched partials. The unmatched partials retain their original
frequencies but are initialized with zero amplitude levels, which gradually increase according
to the morphing factor. After experimenting with di↵erent sounds, we concluded that such
treatment does not lead to perceptual stream segregation, but rather to a seamless partial
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fade-in e↵ect that facilitates the morphing between inharmonic sounds or between sounds
that consist of unequal numbers of partials (see Fig. B.1).

Fig. B.1 Partial-to-partial correspondences and parameter interpolation of
the deterministic part. Morphing from a clarinet sound to a bassoon with
↵p = 0.5. Gray-level values correspond to the partials’ amplitude values.

Interpolation of partials’ breakpoint values

We represent each partial according to its start and end times, and with time breakpoints
that are set according to its frequency and amplitude variations. If the source and target
sounds have a di↵erent number of breakpoints, we simply interpolate the breakpoint values
of the shorter one in order to match the number of breakpoints of the longer one. This
representation enables us to interpolate the parameters at the level of events, which o↵ers
greater control over the morphing process as opposed to parameter interpolation between
time frames. If the partials of the source and target sounds di↵er in duration, we are able
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to achieve intermediate durations by interpolating the breakpoint values of each partial
according to the morphing factor. Interpolating between the start and end times of the
partials also allows us to morph their onset asynchrony. We use the following expressions
for calculating the interpolated values of partials’ frequencies and amplitudes, respectively:

f(↵p) = ↵pfs + (1� ↵p)ft (B.1)

log
10
(g(↵p)) = ↵p log10(gs) + (1� ↵p) log10(gt) (B.2)

where the subscripts “s”, “t” denote the source and target, respectively, and ↵p is the
morphing factor related to parameter interpolation. Though Fig. B.1 does not show a
typical harmonic spectrum of the analyzed sounds because of the very low amplitude de-
tection threshold (�90 dB) that was used in the partial-tracking algorithm, and which
subsequently gave rise to auxiliary harmonic components, it clearly illustrates the estima-
tion of partial-to-partial correspondences and the interpolation of the partials’ breakpoint
values.

B.3.2 Stochastic part

For morphing the stochastic part, we first estimate for every analysis frame its spectral en-
velope using Linear Predictive Coding (LPC), because we assume that the modeled signal
is random, which fits exactly the basic assumption of LPC. We then get a temporal se-
quence of spectral envelopes (one for each frame), which allows us to render a time-varying
Power Spectral Density (PSD) of the stochastic part. In order to morph, we interpolate for
each time between the spectral envelope of the source and the target at this corresponding
time. For a high-quality interpolation of the spectral envelopes, it is necessary to convert
the LPC transverse coe�cients to an alternative representation, because they do not inter-
polate well and might lead to unstable filters. Line Spectral Frequencies (LSF), Reflection
Coe�cients (RC) and Log Area Ratio (LAR) have been shown to interpolate smoothly,
lead to stable intermediate filters, and lead to linear variations of audio descriptors when
linearly interpolated [21, 29]. We choose to interpolate the LAR coe�cients (Eq. 3) as
they both guarantee the filter’s stability and have a physical interpretation, which could
be specifically useful when trying to morph between sounds that were created by physical
modeling synthesis as in [5, 2]. The filters’ coe�cients are interpolated according to Eq.
(2).

lar(r↵) = ↵plar(rs) + (1� ↵p)lar(rt) (B.3)

where lar is a vector the coe�cients of which read:

lar(r)[i] = ln

✓
1� r(i)

1 + r(i)

◆
, 1  i  n (B.4)

and n is the number of reflection coe�cients r. The morphed residual is synthesized by
filtered white noise after the inversion of the LAR coe�cients to LPC coe�cients.
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B.3.3 Temporal Energy Envelope

In the present approach, the temporal energy envelope is a consequence of morphing.
The parts of the signal that were morphed independently are added together to form
the parameter-interpolated signal and thus, the energy envelope is constructed from the
time-varying amplitudes of the partials and the gains of the filter.

B.4 Feature interpolation

The desired values of descriptors along with the interpolated spectrum form an underdeter-
mined system because in theory there are an infinite number of sounds that have the same
audio descriptor values. As previously described in Section B.2, the target may consist only
of target descriptor values Da, in which case the morphing is based exclusively on high-
level features. Fig. B.2 shows an example of two sounds exchanging time-varying spectral
centroids, where ↵p = 0, since the source is the Timpani without any parameter-based
morphing, and ↵d = 1, because we apply to the source spectrum the spectral centroid
values of the Tuba, which is the target.

For each time frame, we match the audio descriptor values obtained according to a
specific ↵d to the interpolated spectrum by optimizing the amplitudes of the sinusoids or
FFT bins of the interpolated spectrum xj under the constraints of the target values of
descriptors Da. More formally this can be expressed as:

minx

NX

j=1

|xj � gj| subject to D(x) = Da (B.5)

where gj are the parameter-interpolated amplitude values according to ↵p, N is the total
number of partials or FFT bins, and Da is the target value of D(x), which can be one of
the following descriptors (Eq. (6) – (11)).

m1 =
NX

j=1

fj · pj (B.6)

m2 = (
NX

j=1

(fj �m1)
2 · pj)1/2 (B.7)

m3 = (
NX

j=1

(fj �m1)
3 · pj)/m3

2
(B.8)

m4 = (
NX

j=1

(fj �m1)
4 · pj)/m4

2
(B.9)
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Fig. B.2 The spectral centroid time series of a Tuba sound applied to a
Timpani (the actual values of the time series are shown in Fig. B.3.)

decr =
1

PN
j=2

xj

NX

j=2

xj � x1

j � 1
(B.10)

dev =
1

N

NX

j=1

(xj � SE(fj)) (B.11)

where pj are the normalized values of xj [27]:

pj =
xjPN
j=1

xj

(B.12)

dev denotes the harmonic spectral deviation and SE(fj) is the value of the spectral envelope
at frequency fj, which is estimated by averaging the values of three adjacent partials; decr
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denotes the spectral decrease; m1,m2,m3 and m4 denote the spectral centroid, spectral
spread, spectral skewness and spectral kurtosis respectively. The optimization is run in
Matlab using the “fmincon” function along with the “sqp” method, which are suitable
for solving constrained and non-linear problems [30]. Since the audio descriptors have
di↵erent ranges, it is necessary to normalize them for assessing the convergence of the
algorithm. Using this optimization scheme, we are able to set di↵erent morphing factors
for each descriptor independently, as long as a feasible solution among these values exists.
Furthermore, the choice of the objective function (Eq. 5) forces the optimized spectrum to
be as close as possible to the interpolated one by keeping its frequency content unchanged
and by altering its amplitude values as little as possible. Fig. B.3 shows an example
of morphing the parameter-interpolated signal according to varying morphing values of
spectral centroid and spectral spread while preserving a constant value for the rest.

Fig. B.3 Morphing the parameter interpolated signal by audio descriptors.
Spectral centroid and spectral spread vary according to the morphing factor
↵. The rest of descriptors preserve constant target values according to their
median when interpolated with ↵d = 0.5.

Using a sinusoidal model for the deterministic and quasi-deterministic parts, the opti-
mized values correspond directly to the parameters of additive synthesis, and the residual
reaches its target values by altering the energy of the FFT bins. As in Section B.3.1.2, if
the source and target sounds are of di↵erent durations, we simply interpolate the descriptor
values of the shorter one in order to match them to the analysis frames of the longer one.

B.5 Conclusions and future work

We presented a hybrid approach to sound morphing based on sinusoid-plus-noise modeling
and higher-level audio features. Dividing the signal into deterministic, quasi-deterministic,
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and stochastic parts and processing them separately allows for finer control of the synthe-
sis parameters and also enables us to morph between deterministic and quasi-deterministic
signals of di↵erent durations. The morphed sound is synthesized using additive synthe-
sis for the deterministic and quasi-deterministic parts and filtered white noise for the
stochastic part. The spectrum of the morphed signal is further refined according to
target audio descriptor values through an optimization process. We have shown that
this process allows us to control accurately and independently several audio features,
provided that a feasible solution among them exists. Audio examples are available at:
https://www.mcgill.ca/mpcl/resources-0/ supplementary-materials. The proposed scheme
is more suitable for sustained and percussive sounds, which can either be harmonic or
inharmonic, rather than textural sounds. Their residuals however, should be stationary
(or pseudo-stationary) as opposed to sound texture, the residual of which is usually non-
stationary and may consist of sharp transients. A refinement of our approach would be
to find sophisticated ways to interpolate between di↵erent tremolo and vibrato rates while
preserving the overall spectrotemporal complexity of the partials. Finally, we by no means
claim that the use of high-level audio features enables a perceptually based sound morph-
ing. Rather, it o↵ers a more intuitive control over the morphing process, as in the case of
adaptive e↵ects [31]. Up to now only spectral centroid and log-attack time have been shown
to be significantly correlated with perceptual dimensions, cf. [1, 32]. If and how such audio
features collapse to single perceptual dimensions remains to be empirically determined.
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