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Abstract 

Musical sounds can be combined into timbral blends with perceptual properties that result from 

the overall acoustic features of the mixture. We examine the affective qualities of blended sounds. 

Previous studies have found that instrumental blends can have a range of distinct timbral 

characteristics that are different from those of the constituent sounds, which makes the perceived 

affects of an instrumental blend unknown and requires further research. In our experiment, 40 

participants listened to 45 blended unison pairs created from 10 sustained instruments at pitch 

D#4. They were asked to rate the perceived affect along three dimensions (valence, tension arousal, 

and energy arousal). They also rated the degree of blend for each blended pair in a separate block 

and completed a musical sophistication questionnaire at the end of the experiment.  

Our findings showed that blending not only creates new sounds with distinct timbral 

properties but also evokes people’s perception of affects that are different from those of the 

constituent sounds, and which are related to different audio descriptors than those of the 

constituent sounds. Blended sounds also span a broader range of the emotion space than the 

constituent sounds, so it may be helpful for musicians to use blends to express more varied 

emotions. A small set of acoustic features was useful to explain the affects of both the blended and 

individual sounds, and we found the variance over time of the acoustic features may play a more 

important role in the perception of the blended sounds than of individual sounds. In the three-

dimensional affect space, the composite sounds are not simply in between the constituent sounds 

but in a triangular configuration. Some blends are within the emotional scope of the constituents, 

whereas others are beyond that scope. Also, some constituents dominate in their influence on the 

affect of the blend. We did not find a direct relationship between the degree of blend and perceived 

affect, but “good blenders” may tend to “soften” the sound and might thus lower the perception of 

arousal. Although blend in musical contexts is not always limited to the instrumental unison dyads 

used in the present study, this study does attest to the importance of timbral and orchestration 

features in conveying affect. 
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Résumé 

Les sons musicaux peuvent être combinés pour former des mélanges timbrales dont les 

propriétés perceptives résultent des caractéristiques acoustiques globales du mélange. Nous 

examinons les qualités affectives des sons mélangés. Des études antérieures ont montré que les 

mélanges instrumentaux peuvent avoir une gamme de caractéristiques timbrales distinctes qui 

sont différentes de celles des sons constitutifs, ce qui rend l'émotion perçue d'un mélange 

instrumental inconnue et nécessite des recherches plus approfondies. Dans notre expérience, 40 

participants ont écouté 45 paires d'unissons mélangés créés à partir de 10 instruments soutenus à 

la hauteur D#4. On leur a demandé d'évaluer l'affect perçu selon trois dimensions (valence, tension 

et énergie), ainsi que le degré de mélange pour chaque paire mélangée dans des blocs distincts. Ils 

ont également répondu à un questionnaire sur leur sophistication musicale à la fin de l'expérience.  

Nos résultats ont montré que le mélange ne crée pas seulement de nouveaux sons avec des 

propriétés timbrales distinctes, mais évoque également la perception d'affects qui sont différents 

de ceux des sons constitutifs, qui sont par ailleurs liés à des descripteurs acoustiques différents de 

ceux des sons constitutifs. Les sons mélangés couvrent également une gamme plus large de l'espace 

émotionnel que les sons constitutifs, de sorte qu'il peut être utile pour les musiciens d'utiliser des 

mélanges pour exprimer des émotions plus variées. Un petit ensemble de caractéristiques 

acoustiques a permis d'expliquer les effets des sons mélangés et des sons individuels, et nous avons 

constaté que la variation au cours du temps des caractéristiques acoustiques peut jouer un rôle plus 

important dans la perception des sons mélangés que dans celle des sons individuels. Dans l'espace 

émotionnel tri-dimensionnel, les sons composites ne se situent pas simplement à un point 

intermédiaire entre les sons constitutifs, mais dans une configuration triangulaire. Certains 

mélanges se situent dans le champ émotionnel des constituants, tandis que d'autres se situent au-

delà de ce champ. De même, certains constituants dominent dans leur influence sur l'affect du 

mélange. Nous n'avons pas trouvé de relation directe entre le degré de mélange et l'affect perçu, 

mais les « bons mélangeurs » peuvent avoir tendance à « adoucir » le son et donc à diminuer la 

perception de l'activation. Bien que le mélange dans les contextes musicaux ne soit pas toujours 

limité aux dyades instrumentales à l'unisson utilisées dans la présente étude, celle-ci atteste de 

l'importance des caractéristiques timbrales et orchestrales dans la transmission de l'affect. 
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1 INTRODUCTION 

It is widely acknowledged that the emotional impacts are one of the greatest motivating factors for 

people to listen to music and engage in musical activities (Juslin & Laukka, 2004; Krumhansl, 2002;  

Sloboda & O’Neill, 2001). It is always a topic of interest for music listeners, performers, composers, 

and researchers. The relationship between emotional effects and music has been widely studied, 

especially for global structural music cues such as melody, harmony, tempo, and so on (Cespedes-

Guevara & Eerola, 2018). Timbre, as a multidimensional music attribute, has recently caught the 

attention of researchers and has been studied in terms of its emotional impact over the years. Some 

acoustic correlates of timbre have already been used to interpret the listener’s perceived emotion. 

At the same time, musical sounds can be combined into timbral blends with perceptual properties 

that result from the overall acoustic features of the mixture. Blend or the fusion of concurrent 

sounds is very common in music today, and composers also try to use these techniques to convey 

emotion. However, it is hard to find a study investigating the emotion of blends. The present study 

investigates the perceived affect of sustained instrumental blends. This section will report the 

background on emotion studies in music, especially on timbre, and the background of studies on 

blends. Finally, the motivation, research questions, and structure of the thesis will be illustrated. 

1.1 Music and Emotion 
Research has investigated the relationship between emotion and music. Many musical cues, such 

as pitch and tempo, have been studied in terms of their role in emotion perception (Cespedes-

Guevara & Eerola, 2018). In this thesis, we prefer to use the term “affect”  as it includes emotions, 

moods and also all evaluative or valenced (positive/negative) states (Juslin & Sloboda, 2010). 

Emotions are considered to be more intense and shorter-term, whereas moods are less intense and 

longer-term. The term “affect” used in this thesis is to take into account the fact that music can not 

only cause changes in emotion but may also lead to some fluctuations in mood, and no matter 
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whether an emotion, mood, or other evaluative states are involved in music listening, they all 

belong to affective response. At the same time, some related studies continue to use the terms 

“emotion” and  “affect” interchangeably (e.g., McAdams et al., 2017), so these two terms are also 

used alternately in this thesis. 

1.1.1 Locus of Emotion 

The notion of “locus of emotion” was proposed by Evans and Schubert (2008) and indicates 

whether the study addresses felt (induced) emotions or perceived (recognized) emotions. A review 

by Eerola and Vuoskoski (2013) pointed out that the fundamental question of music and emotion 

studies—“How does music evoke emotions in listeners?”—can be broken down into separate 

questions. Among the questions, felt emotion would be mainly related to “What are the putative 

emotions induced by music?” In contrast, perceived emotion is related to “What are the emotions 

conveyed by music?” The reason we distinguish these two concepts is that sometimes listeners may 

not feel the same emotion as the emotion the music conveys (e.g., Vuoskoski & Eerola, 2017), and 

thus they need to be treated differently in research. In a word, perceived emotion refers to the 

ability of a listener to identify an emotion that has been conveyed without necessarily experiencing 

that emotion (Juslin & Västfjäll, 2008). In the present study, we focus on perceived emotion. 

1.1.2 Emotion Models 

A review by Eerola and Vuoskoski (2013) concluded from 251 studies that the theoretical models 

of emotion could be generally divided into four classes: discrete, dimensional, miscellaneous, and 

music-specific. The discrete model is related to the theory of basic emotions, which holds that all 

emotions can be derived from a finite set of basic emotions, including fear, anger, disgust, sadness, 

and happiness. They found that categories are easy to discriminate and to be explained and 

recognized. However, the choice of emotion categories may be limited, and it may be hard to 

compare the results across different studies because researchers don’t always use same set of 

categories. Miscellaneous models for emotion in music consist of a diverse group of emotion 

concepts, such as intensity, preference, similarity, tension, or any other concept that is closely 

associated with emotions in general. Researchers try to characterize the aspects that are ignored by 

individual models, but it is hard to find concepts that can provide a deep enough understanding 

of emotions in music. Music-specific models only employ the emotions and underlying factors 
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that are directly relevant for music, such as Zentner et al. (2008). It is encouraging that some 

models share many factors (feeling moved, nostalgic, relaxed, and enchanted) and provide 

uniquely aesthetic emotions, but there is no evidence that music-specific emotions would be easier 

to perceive or express than the common discrete emotions.  

 Dimensional models represent emotions as a mixture of core dimensions. The commonly 

used dimensional models have two or three dimensions. The most representative study adopting 

a two-dimensional model is Russell’s circumplex model (Russell, 1980). This model includes two 

core bipolar dimensions: valence (describes the evaluation of the emotion, from pleasure to 

displeasure) and arousal (describes the activity of the emotion, from arousal to sleep), which are 

orthogonal and continuous in the affect space.  However, Schimmack and Grob (2000) found that 

the two-dimensional model does not fit the data, and they suggested that the poor fit of two-

dimensional model is due to the arousal dimension being poorly defined in the pleasure–arousal 

model. Therefore, they proposed a three-dimensional (3D) affect model including valence, tension 

arousal, and energy arousal  (Schimmack & Grob, 2000). Tension arousal measures the affective 

state from tension to relaxation, and energy arousal measures it from awake to sleepiness. The 3D 

model provides a more thorough model to capture affects, as the tension arousal and energy 

arousal do not need to collapse into a single dimension. For example, excitement and astonishment 

could have positive valence and high energy arousal but excitement has low tension arousal 

whereas astonishment has high tension arousal, so it is hard to represent in a two-dimensional 

modal with only one arousal dimension. Also, a 3D model provides the possibility of collapsing to 

a two-dimensional models if there is a high correlation between two of the dimensions (Eerola & 

Vuoskoski, 2011). At the same time, the present study was designed to be compared to the results 

of McAdams et al. (2017), who also used a 3D model. Therefore, to include more subtle and 

broader emotions and be more flexible in analysis and comparison, the present study chose to 

adopt a 3D affect model to investigate the effect of blends. 

1.1.3 Emotion studies on Timbre 

According to Holmes (2011), it has been reported that performers and composers utilize timbre to 

convey their intended emotional expression to their audience. Timbre, a multidimensional acoustic 

attribute comprised of spectral, temporal, and spectrotemporal acoustic factors (McAdams et al., 
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1995), has recently captured the interest of emotion researchers. The fact that people can perceive 

emotion from timbre is supported by a listener’s ability to perceive emotion from extremely short 

sound samples. According to previous research conducted by Peretz et al. (1998) and Filipic et al. 

(2010), it has been observed that as little as 250 ms of a musical excerpt holds enough information 

to perceive emotion in a consistent manner across listeners. Bigand et al. (2005) also found that 

even a single note provides listeners with enough cues to form an emotional judgment. Moreover, 

musical expertise does not have a significant effect on the recognition of the music and the 

emotional evaluations based on minimal acoustic cues. 

Based on this, many perceptual studies on the emotion of timbre have been conducted over 

the years. Juslin and Laukka (2004) found that timbre is related to certain discrete emotions; in 

general, bright sounds are associated with happiness, dull sounds with sadness, sharp sounds with 

anger, and soft sounds with both fear and tenderness. Eerola et al. (2012) systematically 

investigated the affect qualities of 110 isolated instrumental sounds with different timbres. They 

conducted three experiments with two sets of sounds (the second set was selected from the first 

one, and the acoustic features were manipulated) to investigate the role of timbre in the perception 

of affective dimensions in music. The rating scales included valence (pleasant/unpleasant), energy 

arousal (awake/tired), tension arousal (tense/relaxed), and preference (like/dislike). They 

confirmed that listeners were able to rate isolated instrument samples along the affect dimensions 

and found the affect structure in the experiments to be best represented by two dimensions (valence 

and energy arousal) due to high correlation between energy arousal and tension arousal. They 

found that valence was significantly correlated with the ratio of high-frequency to low-frequency 

(HF-LF) energy (brightness), spectral regularity (the degree of uniformity of the successive peaks 

of the spectrum), and sub-band no.6 flux (the frequency of fluctuation of the energy in the 800–

1600 Hz frequency band) across the original instrumental sounds and the manipulated sounds. The 

energy was significantly correlated with the Ratio of HF-LF energy, spectral skewness 

(asymmetricity of spectrum around spectral centroid), and temporal envelope centroid 

(percussive–sustained). According to the results, the acoustic features selected, as well as the affect 

ratings for sounds in both experiments, were mainly stable across the dimensions. They confirmed 

that a small set of acoustic features can be used to predict the listeners’ ratings. 

McAdams et al. (2017) investigated individual sounds in a 3D affective model of valence 

(displeasure-pleasure), energy arousal (tired-awake), and tension arousal (tension-relaxation) 
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across a broad range of pitch registers playing a D# pitch class. They found that changes in pitch 

are accompanied by significant changes in timbral properties and their corresponding perceived 

emotions.  

However, to our knowledge most emotion studies on timbre have been done on individual 

sounds, and it is difficult to find an emotion study on instrumental blends. At the same time, the 

instrument selection process by composers and arrangers is careful and aimed at producing specific 

characteristics and emotional nuances within the musical framework (Schutz et al., 2008). It is 

time to pay attention to the perceived emotion of instrumental blends. 

1.2 Instrumental Blends 

1.2.1 Perceptual Studies on Instrumental Blends 

Generally speaking, blend is very common in many non-solo musical pieces, and it has also been 

a deep problem for composers and researchers. It is always a fascinating topic because blending 

may create new timbres. Sandell (1991) concluded that a blend can augment existing timbres, 

soften timbres, invent timbres, and be used for timbral imitation. At the same time, Auditory Scene 

Analysis (Bregman, 1990) has also provided psychological support for the perception of 

concurrent sounds, as concurrent grouping principles result in the fusion of acoustic information 

into auditory events with emergent properties. McAdams (2019, p. 218) indicated that timbre 

emerges from this perceptual fusion into a single auditory event, which may be conceived as 

resulting in “virtual” sound source created from the blending of separate instrumental sounds. As 

for this new “virtual” sound, Sandell (1995) also indicated that instrumental blends could have a 

range of timbres that are distinct from those of their constituent sounds. 

To evaluate blend, Sandell (1991) concluded from treatises and empirical studies that blend 

spans a continuum and is not an all-or-nothing effect, which means that a group of concurrent 

sounds could blend very well or poorly. Some instrumental pairs tend to blend very well, such as 

the trumpet and clarinet pair. They are more likely to fuse into one sound that may create an 

emergent timbre. Some instrumental pairs, like the violin and trumpet, may blend poorly, and 

listeners can probably recognize both sounds separately with equal clarity. To achieve a better 

blend, Bregman (1990) mentioned that onset synchrony can override other cues that promote 

segregation, thereby improving fusion. Sandell (1991) concluded from orchestration manuals that 

authors always emphasize the synchronized onsets for obtaining blend as well. McAdams (1984) 
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mentioned that concurrent grouping is affected by perceived coherent cues, such as onset 

synchrony, harmonicity, and coherent frequency and amplitude behaviour. Several of these cues 

are related to the Gestalt principle of common fate, in which the sounds that change in similar 

ways are likely to be perceived as coming from the same source (Bregman, 1990). The present 

study also used these coherent cues to create blend stimuli in the onset synchronization procedure.  

The acoustic features of constituent and composite sounds can also influence how well they 

blend, in other words, the degree of blend. Sandell (1995) investigated the acoustic correlates of 

the degree of blend. He used synthesized instrumental tones at Eb4 from Grey’s (1975) study to 

create 120 blended unisons. The results suggested that as the overall spectral centroid of composite 

sounds, the difference in attack time between constituent sounds, and the dissimilar of temporal 

loudness increased, the blend worsened. Notably, he designed a rating scale with “oneness” and 

“twoness” at the end points, which also inspired our experiment design. Tardieu and McAdams 

(2012) reported that a better degree of the blend is related to lower spectral centroids and slower 

attacks for combinations of pitched impulsive and sustained sounds. 

Based on these studies, my thesis will begin with relatively well-blended, sustained unison 

dyads and investigate the correlation between the degree of blend and perceived emotion. We 

wanted to test whether the degree of blend influences the perceived affect and what acoustic 

features underlying timbre perception are related to blend and emotion perception. 

1.2.2 Blend Space 

1.2.2.1 Multidimensional scaling (MDS) 

Multidimensional scaling (MDS) is a useful technique to visualize and analyze the similarities or 

dissimilarities among sounds with different timbres. It models the dissimilarity ratings as 

Euclidean distances, and the output is a space with a small number of perceptual dimensions shared 

among listeners. Researchers have adopted this method to create timbre spaces to analyze the 

perceptual dimensions of timbre (such as Grey, 1977; Lakatos, 2000; McAdams et al., 1995). As 

with timbre space, MDS is also very useful for visualizing and analyzing blends. Kendall and 

Carterette (1991) asked participants to rate the similarity of blend dyads and adopted the MDS to 

create a 3D blend timbre space. They interpreted the three dimensions as nasality, richness, and 

complexity. Sandell (1991) used MDS to analyze blend ratings. He took the degree of blend as a 

measure of proximity and used MDS to analyze and create a two-dimensional blend space to 
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interpret the degree of blend among all the pairs, where the closer the instrument is, the better they 

blend. He found the first dimension to be correlated with perceptual attack time and pitch 

variability of the tones, and the second dimension to be correlated with spectral centroid and 

acoustic dissonance. Kendall and Carterette (1993) used a similar approach as Sandell (1991) to 

rate the degree of blend and create a blend space for unison pairs using MDS, which they found to 

be nearly identical to the blend space created by a musicologist based on a mental image of timbre. 

The present study also adopted this blend-rating method to investigate the blend space. 

1.2.2.2 Social Network Analysis 

Social Network Analysis (SNA) is a commonly used tool in social science to understand a 

community's social structure. Usually, a node represents an individual in the network, and the edge 

represents the relationship between individuals. To the best of our knowledge, there is no previous 

study using SNA to analyze the degree of the blend. We propose that blend is also a small “social 

relationship” between instrumental sounds, so we adopted SNA in the present study to uncover 

relations among the sounds in terms of the degree of blend as a supplement to MDS.  

1.3 Current Study 

1.3.1 Motivation and Objectives 

As shown above, previous studies have shed light on the perceived emotion of isolated sounds. 

However, many timbral effects need to be studied to elucidate aspects of orchestration practice. 

We want to help answer the following questions: when composers combine different sounds or 

synthesize new sounds, what kind of sound could help convey the intended emotion? When the 

performer and conductor try to adjust the performance together with each other, what kind of 

resulting concurrent sound could help to express the emotion? Also, how do listeners perceive the 

emotion from the timbral effects? This study starts with relatively basic sustained timbral blends 

to try to uncover the emotion they convey.  

Also, instrumental blend is probably the most fundamental building block for many 

orchestration techniques and sound effects. So, the more profound question is: can we extend our 

study of the emotional effect conveyed by unison blended sounds to more complicated 

orchestration techniques and more general sounds (such as vocal blend, synthesized sounds, and 

daily life sounds used in music)? Do the acoustic features provide us with an answer? Also, as we 
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have many thorough studies on the emotion of the timbres of individual sounds, can we use those 

timbres to predict the emotion of composite sounds? This study makes a first step toward 

answering this question. 

1.3.2 Research Questions and Hypothesis 

In this study, the main research question is to investigate the perceived affects of sustained 

instrumental blends. This question can be broken down into these sub-questions: 

• Do different blends result in different perceived emotions? 

• What is the relationship between the emotion of constituent sounds and composite sounds? 

Can the constituent sounds be used to predict the emotion of composite sounds? 

• What audio descriptors are correlated to listeners’ perceived emotion of blended sounds? 

• Will the degree of blend influence the perceived emotion? 

• Will the musical sophistication of listeners influence the perceived emotion of timbre? 

As shown in the previous study, blend creates a new “virtual sound source” (McAdams, 

2019); therefore, we hypothesize that different blends are able to result in different perceived 

emotions. We also hypothesize that it is possible to use constituent sounds to predict the emotion 

of composite sounds. As in the previous study, a small group of audio descriptors can interpret a 

listener’s perceived emotion, so we hypothesize this will also be the case for blended sounds. As 

the degree of blend is an essential perceptual feature of blend, we hypothesize that it might be a 

helpful feature in interpreting the perceived emotion. Moreover, for musical sophistication, we 

assume that will be a covariate that potentially influences the perceived emotion, with participants 

having higher musical sophistication being more sensitive to emotion perception and thus 

perceiving more extreme measures of valence and arousal. 

1.3.3 Thesis Overview 

Chapter 2, “Methodology,” describes the design of the experiment, stimuli, apparatus, and 

information about participants. Chapter 3, “Results and Analysis,” presents the experimental 

results and analyses, including ANCOVAs, lasso and linear regressions, geometric analysis, 

multidimensional scaling, and social network representation analysis. Chapter 4, “Discussion,” 

interprets the data in light of the hypotheses and discusses some observations based on the results. 
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The final chapter, “Conclusion,” will provide a general conclusion on the current study and discuss 

some ideas for future studies. 
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2 METHODOLOGY 

Experiments were conducted to test the hypothesis posed in 1.3.2. Participants rated the perceived 

affective qualities and the degree of blend for each stimulus in separate blocks. Subsequently, a 

questionnaire was administered to evaluate the musical sophistication of each participant. 

Acoustic descriptors were also extracted from all the sounds used in the experiment for further 

data analysis. 

2.1 Experiments 

2.1.1 Participants 

Forty participants consisted of 23 females, 16 males, and 1 who preferred not to disclose their 

gender (age M = 24.03, SD = 5.82). We recruited the participants from either a mailing list at McGill 

University or a web-based advertisement in the general Montreal community. Before the 

experiment, participants passed a pure-tone audiometric test with octave-spaced frequencies from 

125 Hz to 8000 Hz at a hearing threshold of 20 dB HL (ISO 389–8, 2004; Martin & Champlin, 

2000). All participants passed the audiometric screening and were compensated for their 

participation. This study was certified for ethical compliance by the McGill University Research 

Ethics Board II. 

2.1.2 Stimuli 

Forty-five stimuli were used in the experiments. The blend stimuli were created from all different 

pairs of ten selected sustained individual sounds. 
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2.1.2.1 Constituent sustained sounds 

The individual sound samples were carefully selected based on the research results in McAdams et 

al. (2017). As the pitch was shown to influence the emotion of sounds in their study, and our 

research is mainly concerned with blend and not pitch, we selected the sounds with the same pitch. 

To have as many instruments as possible and reasonable differences in the emotion space, we used 

all the sustained sounds at pitch D#4. Ten sustained sounds were selected: tuba (abbreviated as 

“Tu” in tables and figures in this thesis; same for the other instruments), tenor trombone (Tb), 

horn (Hn), trumpet (Tp), bassoon (Bn), B♭ clarinet (Cl), oboe (Ob), English horn (EH), alto flute 

(Fl), and cello (Vc). The mean affective qualities of these sounds in the 3D emotion space from the 

experimental results across 40 participants of McAdams et al. (2017) are shown in Figure 2.1 

(Valence vs. Energy Arousal) and Figure 2.2 (Valence vs. Tension Arousal).  

The sounds were taken from the Vienna Symphonic Library (https://vsl.co.at). Audio 

signals were sampled at 44.1 kHz with 16-bit amplitude resolution. As in the study of McAdams et 

al. (2017), the stimuli were edited to have a consistent duration of 500 ms with a raised-cosine 

ramp applied to fade them out over the final 50 ms. The dynamic level was forte. 

 
Figure 2.1  Valence-Energy Arousal plot of constituent sounds in the McAdams et al. (2017) 

emotion space.  
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Figure 2.2  Valence-Tension Arousal plot of constituent sounds in the McAdams et al. (2017) 

emotion space. 

2.1.2.2 Blend pairs 

Loudness Equalization: As this study is mainly concerned with the emotion of unison blended 

sounds, other musical parameters that may affect the affective qualities should be controlled as 

much as possible. As we have already controlled the pitch, duration, and dynamics, another 

important factor is loudness. To equalize the perceived loudness, eight music researchers 

participated in a loudness-matching experiment in which they had to adjust the level of each 

individual sound to match that of the standard sound. The bassoon was selected as the standard 

sound, because we all agreed that it was the most comfortable sound that could be listened to over 

and over again in the loudness-matching process. The median adjusted sound level across these 

listeners was used to equalize the 10 individual sounds. (The values of loudness equalization 

applied to individual sounds are documented in Appendix A. Loudness-Matched Level.) 

Onset Synchronization: As our study focuses mainly on the emotion of timbral blends, other 

factors influencing blend should be controlled. Besides the timbre itself, onset synchronization has 

proven to be a significant factor in perceptual fusion in auditory scene analysis (McAdams, 2019). 

Physically synchronizing onsets, however, does not guarantee perceptual attack synchronization 

due to differences in perceptual attack times between instruments (Gordon, 1987). Therefore, after 
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the loudness equalization, eight music researchers were invited to adjust the temporal offset of 

loudness-compensated unison dyads until they were perceived as maximally synchronized. The 

median offset time was used to generate the final 45 pairwise experimental stimuli. (The values of 

onset synchronization applied to generate the 45 stimuli are documented in Appendix B. Onset 

Synchronization) 

We generated two versions of the stimuli: a dichotic version with each instrument in a 

different speaker and a monophonic version with a mix of both sounds coming from both speakers. 

We choose to use dichotic version in the main experiment rather than the mono version, because 

we found that with the dichotic version, it was much clearer to identify the degree of blend 

according to the feedback from our pilot study participants. It also avoided phase-interference 

effects present in the mono mix that distorted the timbres. 

2.1.3 Experimental design 

2.1.3.1 Procedure 

The experiment consisted of two parts: affect ratings and blend ratings, followed by a questionnaire 

on musical sophistication (Gold-MSI; Müllensiefen et al., 2014). For each rating part, the 

experiment was a one-way repeated-measures design with a covariate. The repeated-measures 

factor was the 45 instrument pairs, and the covariate was the music sophistication score. The 

perceived Affect Rating and Blend Rating experiments were conducted sequentially with a short 

break in between.  

2.1.3.1.1 Experiment 1: Perceived Affect Ratings 

Terminology was defined for the participants before beginning the experiment. To help 

participants differentiate perceived emotion from felt emotion, we defined perceived emotions as 

the emotions they think the music or sound is trying to convey or communicate to listeners. And 

we also mentioned that perceived emotion may or may not be the same as the emotions they are 

currently feeling in response to the sound. The inconsistency between perceived emotion and felt 

emotion was also illustrated to help participants understand the terminology. We then described 

the three dimensions of emotions as follows: valence describes the range of pleasantness on a rating 

scale from unpleasant on the left to pleasant on the right; tension arousal describes the degree of 

tension an emotion might have on a scale from relaxed to tense; and energy arousal describes the 
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amount of energy an emotion might have on a scale from tired to awake. We also provided 

concrete examples, such as happiness has a positive valence, but sadness has a negative valence, to 

help participants understand the terminology. To compare these results with the affective qualities 

of individual instrument timbres in McAdams et al. (2017), we used the same affective dimensions 

and scale endpoint labels. 

Participants were instructed on the procedure of the experiment verbally and through 

written instructions. Following the instructions, they completed six practice trials to familiarize 

themselves with the interface, which followed the same format and paradigm as the experimental 

blocks. The practice stimuli were selected according to the results of a pilot study to cover the whole 

range of each dimension of emotion with the aim of helping participants establish an idea of the 

possible range of emotions. The experimenter was with the participants during the practice session, 

and they were allowed to pose questions of clarification regarding the procedure before beginning 

the experimental session. 

The experimental session had one block of 45 trials. The 45 blended pair stimuli were 

played in random order for each participant. In each trial, the participant was instructed to play 

the stimulus by clicking on “Play”, and then they were asked to rate the perceived emotion along 

the three dimensions on sliders with a continuous scale from 1 to 9 (interface shown in Figure 2.3). 

Ratings were scaled to 0–1 for the following analyses. The order of the three dimensions was also 

random for each participant but consistent across trials for a given participant. Participants were 

allowed to play the stimuli a maximum of twice to refresh their memories and determine their 

ratings.  

 
Figure 2.3  Emotion rating interface 
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2.1.3.1.2 Experiment 2: Blend Rating 

Following a brief break, participants were given instructions for this experiment. To eliminate the 

ambiguity of the definition of blend, we defined it as a perceptual phenomenon characterizing the 

fusion of different sounds into a perceptual unity. Also, we mentioned that a strongly blended 

sound is perceived as coming from a single source and cannot be separated into more than one 

source. The more easily the two constituent sounds can be perceived as coming from separate 

sound sources, the lower the degree of blend. According to participants frequently asked questions, 

we also mentioned that the stimulus consists of two individual sounds, and “more than one” can 

be perceived as anywhere from one to two. After the definition, participants were shown two 

examples of instrumental pairs that were perceived as strongly blended (bassoon and tuba) and 

relatively less blended (oboe and tuba pair with oboe delayed by 60 ms), based on the results of the 

pilot study. 

Similarly to the experiment on perceived affect rating, participants were instructed on the 

procedure of the experiment verbally and through written instructions. Before the experimental 

session, participants completed six practice trials with the experimenter to become familiar with 

the interface. The stimuli were selected according to the results of a pilot study, which tried to cover 

the whole range of degrees of blend. 

The experimental session had one block of 45 trials with stimuli presented in random order 

for each participant. In each trial, the participants clicked “Play” to hear the stimulus, and then 

they were asked to rate how well the two sounds blended on a slider with a continuous scale from 

0 to 8 (interface shown in Figure 2.4). Ratings were scaled to 0–1 for the following analyses. The 

stimuli could only be played once in each trial. 

 
Figure 2.4  Blend rating interface. 
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2.1.4 Questionnaire 

Based on our hypothesis that music sophistication may have a potential effect on perceived affect, 

we included music sophistication as the covariate. Therefore, after the two rating experiments, 

participants were instructed to fill out a Goldsmiths Musical Sophistication Index (Gold-MSI) 

questionnaire (Müllensiefen et al., 2014). The Gold-MSI is a self-reported inventory for individual 

differences in music sophistication that measures the ability to engage with music.  

(See the questionnaire: https://exp.music.mcgill.ca/questionnaire/blendemotion.php) 

2.1.5 Apparatus 

The experiment was conducted in the Music Perception and Cognition Lab at McGill 

University. The experimental session was run with the PsiExp computer environment (Smith, 

1995). Sounds stored on a Mac Pro 5 computer running OS 10.6.8 (Apple Computer, Inc., 

Cupertino, CA) were amplified through a Grace Design m904 monitor (Grace Digital Audio, San 

Diego, CA) and presented over Dynaudio BM6a loudspeakers (Dynaudio International GmbH, 

Rosengarten, Germany) arranged at about 60°, facing the listener at a distance of 1.5 m. 

Participants were seated in an IAC model 120act-3 double-walled audiometric booth (IAC 

Acoustics, Bronx, NY). The amplification level of the monitor was chosen in advance by the 

experimenter after pilot sessions to ensure a comfortable level (Maximum = 81.3 dB, M = 76.3 dB, 

SD = 2.1 dB) for listening to all stimuli in the experiment and remained fixed for all participants. 

2.2 Acoustic description 

2.2.1 Audio Representations 

Considering the perceptual multidimensionality of timbre, it is necessary for us to analyze multiple 

acoustic features to determine the features potentially influencing participants’ perception of 

emotion and the degree of blend. We used the Timbre Toolbox (Peeters et al., 2011, recently 

updated by Kazazis et al., 2022). The Timbre Toolbox works in three steps. In the first step, the 

audio files are analyzed to estimate the temporal and spectral parameters for each input audio 

representation. The audio representations we used here are Temporal Energy Envelope 

representation (TEErep), which uses the power amplitude envelope of the audio signal, as well as 

the raw waveform; the Harmonic representation (HARMrep), which relies on partial tracking for 

https://exp.music.mcgill.ca/questionnaire/blendemotion.php
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estimating harmonic and inharmonic components; the Audio Signal representation (ASrep), 

which is computed directly from the raw audio signal; and the Equivalent Rectangular Bandwidth 

representation (ERBrep), which depends on a Short-Term Fourier Transform (STFT) with a 

frequency scale transformed to a physiological scale related to the distribution of frequencies along 

the basilar membrane in the inner ear as modelled by a scale derived from the Equivalent 

Rectangular Bandwidth representation (Moore & Glasberg, 1983).  

The second step is to extract the audio descriptors from each representation. The 

descriptors derived from TEErep are scalar values that capture the global temporal features of a 

sound. Each scalar is capable of summarizing one specific aspect of the temporal characteristics of 

a sound and was used directly for further analysis. The descriptors derived from HARMrep, 

ERBrep, and ASrep are time series. The local features extracted from each window at each hop 

constitute the time series. In terms of computing, for TEErep, the waveform is first segmented 

using a window length of 200 ms and a hop size of 100 ms. For HARMrep, the window length is 

2048 samples, and the hop size is 512 samples. For ERBrep and ASrep, the window length is 20 ms 

and a hop size is 10 ms. All other parameters are used from default settings in Timbre Toolbox. 

The third step in the Timbre Toolbox is to summarize the time series descriptors according 

to summary statistics. In our study, the median value and the interquartile range (IQR) value were 

used to summarize the descriptors from HARMrep, ERBrep, and ASrep, which represent robust 

versions of central tendency and variability, respectively.  

2.2.2 Hierarchical Cluster Analysis  

Peeters et al. (2011) showed that many acoustic features were highly correlated with each other 

and clustered together for a wide range of musical instrument sounds. To avoid using very highly 

co-linear descriptors in the following regressions, hierarchical cluster analyses were used to select 

the representative acoustic features. As the acoustic features may differ between the composite and 

constituent sounds, we conducted a hierarchical cluster analysis for each set. The correlation 

matrixes of the acoustic features were transformed into distance matrixes to calculate the clusters. 

As shown in Figure 2.5, the red line indicates the height at 0.8 (Pearson’s r = 0.2) where the 

correlation is small enough to choose the representative audio descriptors in each cluster. At this 

height, we have 13 clusters of acoustic features for blended sounds and 9 clusters for individual 
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sounds. The final chosen acoustic features are shown in Table 2.1. In order to compare the two sets 

of descriptors, we tried to choose similar audio descriptors and also considered the features of the 

sounds and the commonly used descriptors in relevant studies (such as McAdams et al., 2017; 

Tardieu & McAdams, 2012). 

 

 
Figure 2.5  Hierarchical cluster dendrogram of individual (left) and blended sounds (right). 
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Table 2.1  Audio descriptors for composite sounds and constituent sounds. 

Composite Sound Descriptors Constituent Sound Descriptors 
Spectral Centroid (Median, IQR) Spectral Centroid (Median) 
Spectral Spread (Median)  
Spectral Skewness (Median) Spectral Skewness (Median) 
Spectral Variation (Median, IQR) Spectral Variation (Median) 
Spectral Flux (Median) Spectral Flux (Median) 
Spectral crest (IQR)  
RMS Energy (IQR)  
Harmonic Odd-to-Even Ratio (Median) Harmonic Odd-to-Even Ratio (Median) 
Tristimulus 2 (Median) Tristimulus_2 (Median) 
 Temporal Centroid 
Log Attack Time Log Attack Time 
Decrease Slope Decrease Slope 

 

For the composite sounds, we chose spectral centroid, spectral spread, spectral skewness, 

spectral variation, spectral flux, spectral crest, spectral variation, harmonic odd-to-even ratio, 

tristimulus 2, RMS energy, log attack time, and decrease slope. For the constituent sounds, we 

chose spectral centroid, spectral skewness, spectral variation, spectral flux, temporal centroid, 

harmonic odd-to-even ratio, tristimulus 2, log attack time, and decrease slope. 

• Spectral descriptors (from ERBrep). Spectral centroid refers to the spectral centre of 

gravity, which is related to auditory brightness (low centroid values indicate a dark sound, 

and high values a bright sound). It also increases in the presence of noise, and it tends to 

fluctuate to a great extent during the transient regions of sound events. Spectral spread 

measures the standard deviation of the spectrum around the spectral centroid, where high 

values indicate a rich spectrum. Spectral crest is a measure of the peakiness of the spectrum, 

where low values indicate a flat spectrum and high values indicate a peaky spectrum 

consisting of strong sinusoidal components. Spectral skewness is a measure of the 

asymmetry of the spectrum around the spectral centroid, where zero skewness indicates a 

symmetric distribution, negative skewness indicates more energy at lower frequencies, and 

positive skewness indicates more energy at higher frequencies. Spectral flux represents the 

amount of variation in the spectrum over time. Similar to spectral flux, spectral variation is 

another measure of spectrum variability over time, where low values indicate low 

amplitude waveform segments or a stationary spectrum, which can be noisy, and high 
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values indicate strong spectral changes. The difference between the spectral flux and 

spectral variation is that spectral flux is calculated as the Euclidean distance between two 

spectra of consecutive frames, whereas spectral variation is calculated as the cosine distance 

between two spectra of consecutive frames, which is more focused on the dissimilarity 

between spectra. 

• Harmonic descriptors (from HARMrep). The harmonic odd-to-even ratio is the ratio of 

energies of the odd to the even harmonics, where a high ratio indicates more energy in the 

odd harmonics (e.g., the clarinet) and often results in “hollow” sounds, and a lower ratio 

indicates a smoother spectrum and a “fuller” sound. The second tristimulus value 

(tristimulus 2) is defined as the relative amplitude of harmonics 2–4 compared to that of all 

frequency components.  

• Audio signal descriptors (from ASrep). RMS energy is computed as the root mean square 

of the frame energy of the signal. 

• Temporal energy envelope descriptors (from TEErep). Attack time is defined as the time 

it takes the waveform to reach its maximum level from a defined threshold level (0 dBFS). 

Decrease slope measures the rate of decrease of the signal energy during the sustained part 

of the sound. Temporal centroid represents the centre of gravity of the energy envelope over 

the duration of the sound. 

 

Notably, the results of hierarchical cluster analyses both for the ten constituent sounds and 

the 45 composite pairs show different acoustic clusters at the same cluster height of 0.8, which 

indicates that the structure of the acoustic features of the composite sounds is different from that 

of the constituent sounds. As shown in Table 2.1, more IQR (Interquartile Range) values appeared 

in clusters that are independent of the median values for composite sounds compared to 

constituent sounds, which suggests that the composite sounds have more unique features on both 

the variance of the spectral properties (spectral centroid, spectral crest, spectral variation) and one 

temporal property (RMS energy). 
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3 RESULTS AND ANALYSIS 

Emotion ratings of blended pairs were evaluated through descriptive analysis, correlation analysis, 

and ANCOVA analysis. Descriptive analysis was used to show the overall distribution of the 

Emotion ratings. Correlation analysis was used to show the relationships among valence, energy, 

and tension. ANCOVA was used to investigate the influence of different combinations of sustained 

instruments on perceived affect with the covariate of musical sophistication. After analyzing the 

emotion ratings of composite sounds, a comparative analysis of perceived emotion between the 

composite sounds and constituent sounds was conducted. Geometric analysis was used in the 

affective space to uncover the relationship of the perceived affect between the composite sounds 

and corresponding constituent sounds. 

Acoustic analyses were then conducted to determine whether a small set of audio 

descriptors could be found to interpret the acoustic origins of participants’ perceived emotions and 

the differences between the perceived emotions of composite and constituent sounds. 

The degree-of-blend ratings were then analyzed using correlation analysis, 

multidimensional scaling, and a social network representation. The correlation analysis was used 

to find the linear relationship between the perceived emotion and the degree of blend. 

Multidimensional scaling and the social network representation were used to discover participants’ 

perceived space of the degree of blend. Additional acoustic analyses were also used to help interpret 

each dimension of the degree-of-blend space. 
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3.1 Affective Analysis  

3.1.1 Affective Analysis for Blended Pairs 

3.1.1.1 Validity Check 

Before we calculated the statistics, Cronbach’s α and average inter-participant correlation were 

computed to check the validation of data. The Cronbach’s alpha is excellent, and the average inter-

participant correlation is within the ideal range (Piedmont, 2014) for 45 ratings across 40 

participants, as shown in Table 3.1. Also, a jackknife analysis of the Cronbach alphas with each 

participant removed is also excellent (see Appendix C: Participant Validation). 

 

Table 3.1  Statistics for Cronbach's α and average inter-participant correlation. 

Estimate Cronbach’s α Average inter-participant 
correlation 

Point estimate 0.924 0.251 
95% CI lower bound 0.907 0.210 
95% CI upper bound 0.938 0.292 

 

3.1.1.2 Correlation Analysis among Dimensions of Valence, Energy, and 

Tension 

Correlation analysis was conducted to examine the overall relationship among the three 

dimensions. All ratings were averaged across 40 participants for each blend stimulus. As shown in 

Table 3.2, among the three dimensions of affect ratings of the blended pairs, energy arousal and 

tension arousal were highly positively correlated (95%). However, we continued using three 

dimensions in the following analyses in order to compare with the McAdams et al. (2017) study. 
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Table 3.2  Pearson correlation matrix for valence, tension, energy, and blend. 

  Valence Tension Energy Blend 
Valence r —    

 p —    

Tension r .304* —   
 p .042 —   

Energy r .501*** .953*** —  
 p < .001 < .001 —  

Blend r –.441** –.352* –.398** — 
 p .002 .018 .007 — 
      

* p < .05, ** p < .01, *** p < .001    

 

3.1.1.3 ANCOVA 

To investigate the influence of different combinations of sustained instruments on perceived affect 

with the covariate of musical sophistication, a one-way ANCOVA was conducted for each affect 

dimension (Valence, Tension, and Energy). Ratings were range-normalized from 0 to 1 for each 

participant before analysis. An assumption check was conducted before the test. According to the 

Q-Q plots, which compare the sample distribution with a normal distribution (Appendix D: 

Assumption Check), all the ratings of the three dimensions can be considered normally distributed. 

According to Levene’s test, the homogeneity of variance assumption of valence ratings (p = 0.360) 

and tension ratings (p = 0.573) was satisfied, but the assumption for energy ratings (p = 0.013) was 

slightly violated. Considering that we had done participant-wise correlation before to check for 

outliers and had a very large sample size (1800 ratings for each dimension), we selected to continue 

analysis with all three dimensions. 

For both ANCOVAs, the dependent variable was the perceived emotion rating, the 

independent variable was the 45 blend stimuli, and the covariate was each participant’s General 

Musical Sophistication score. 

As shown in Table 3.3, our results indicated that the musical sophistication score had no 

significant unique effect on perceived valence, F(1, 1754) < 1, and tension, F(1, 1754) < 1, beyond 

that of the instrumental blend pairs. The music sophistication score had a significant unique effect 
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on perceived energy; however, the effect size is very small, F(1, 1754) = 4.11, p = .043, ω2 = .001. 

Therefore, we did not further consider the musical sophistication score in our analyses. 

Different combinations of blended pairs have significantly different perceived emotions, 

confirming that blended sounds have distinct timbral properties that give rise to perceived affect 

[valence: F(44,1754) = 1.72, p = .002, ω2 = .017; tension: F(44,1754) = 13.20, p < .001, ω2 = .230; 

energy: F(44,1754) = 20.37, p < .001, ω2 = .321]. Note that the effect size for valence is an order of 

magnitude smaller than that for the arousal dimensions. 

 

Table 3.3  ANCOVA result for valence, tension, and energy. 

Cases Sum of Squares df Mean Square F p ω² 
Valence       

stimuli 3.139 44 0.071 1.72 .002 .017 
rawSophistication 0.001 1 0.001 0.04 .852 0 
Residuals 72.652 1754 0.041    

       

Tension       

stimuli 23.444 44 0.533 13.20 < .001 .23 
rawSophistication 0.015 1 0.015 0.37 .543 0 
Residuals 70.794 1754 0.04    

       

Energy       

stimuli 35.388 44 0.804 20.37 < .001 .321 
rawSophistication 0.162 1 0.162 4.11 .043 .001 
Residuals 69.253 1754 0.039    

 

 

3.1.2 Comparative Geometric Analysis  

3.1.2.1 Emotion Space  

In order to investigate whether we could use the affective qualities of constituent sounds to predict 

those of the composite sounds, a geometric analysis was used (Caetano et al., 2022). As shown in 

Figure 3.1 and Figure 3.2, we found that, in general, the blended sounds occupied more of the 

emotion space than the individual sounds, especially in energy arousal: blended sounds could thus 
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have higher or lower energy arousal than the individual constituent instruments. The blended 

sounds could also have higher tension arousal ratings. For valence, participants tended to give the 

same compact ratings of blended sounds as the individual sounds. Note that the range of variation 

of average valence ratings is about 0.2, whereas that of the arousal dimensions is about 0.45-0.5, 

indicating greater variation of the ratings of blend stimuli on these latter dimensions. 

 
Figure 3.1  Scatter plot of mean energy arousal and valence for both composite sounds and 
constituent sounds. The values of the affective qualities of constituent sounds are taken from 
McAdams et al.’s (2017) data. 

TuTb

TuHn
TuTp

TuBn

TuCl

TuOb

TuEH

TuFl

TuVc

TbHn
TbTp

TbBn TbCl

TbObTbEH

TbFl

TbVc

HnTp

HnBn

HnCl

HnOb

HnEH

HnFl

HnVc

TpBn

TpCl

TpOb

TpEH

TpFl

TpVc

BnCl

BnOb

BnEH

BnFl

BnVc

ClOb

ClEH

ClFl

ClVc

ObEH ObFl

ObVc

EHFl

EHVc

FlVc

Tu

Tb

Hn

Tp

Bn

Cl

Ob

EH

Fl

Vc

0.3

0.4

0.5

0.6

0.7

0.8

0.45 0.50 0.55 0.60 0.65
Valence

En
er

gy
 A

ro
us

al

Composite
Constituent



28  Results and Analysis 

 
Figure 3.2  Scatter plot of tension arousal and valence for both composite sounds and constituent 
sounds. The values of the affective qualities of constituent sounds are taken from McAdams et 
al.’s (2017) data. 

3.1.2.2 Geometric Configuration of Constituent Sounds and Composite Sounds  

In the affective space, with two constituent sounds S1 and S2 and the composite sound B, it is 

possible to have three geometric configurations among their coordinates in the space—Triangle, 

Geodesic, and Linearity (Caetano et al., 2022)—as shown in Figure 3.3.  

  
Figure 3.3  Geometric configuration types.  
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We took the mean value of each perceptual quality of both constituent sounds and 

composite sounds in the 3D emotion space and calculated the distances δ:	𝑠1	 = 𝛿(𝑆1, 𝐵),  

𝑠1	 = 𝛿(𝑆2, 	𝐵), 𝑏	 = 𝛿(𝑆1, 𝑆2). All 45 instrumental combinations reveal a triangular relationship, 

which means that the emotional quality of a blended sound does not simply lie on a line between 

the constituent sounds in the emotion space. There are also some interesting patterns. 

Internal and Beyond: As shown in Figure 3.4, the position of the affect of the composite 

sound can be somewhere in between the two constituent sounds, like the Tuba–Oboe pair, 

although it can also be beyond the range of constituent sounds, as with the Trumpet–Trombone 

pair. In the first case, the values of valence, energy arousal, and tension arousal of composite sound 

are all less than the maximum and greater than the minimum of the corresponding values of 

constituent sounds. In the second case, the composite sound would be rated higher or lower in 

either one of the affective dimensions than both constituents. So energy and valence coordinates 

of TuOb are between the corresponding ranges of coordinates of Ob and Tu, whereas the 

coordinates of TbTp are outside the range of coordinates of Tp and Tb on both dimensions. 

 
Figure 3.4  Valence-Energy arousal plot for Trumpet-Trombone and Oboe-Tuba blended pairs. 

Intermediateness and Dominance: Furthermore, the composite sound is perceptually 

intermediate between the two constituent sounds in none of the pairs, and the affect of some of 

the blended sounds are dominated by the one of their constituent sounds. As shown in Figure 3.5, 

calculating the difference d between the distances from the blend position to both constituent 
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sound positions reveals that some instruments show dominance in the perceived emotion space. 

For example, in the Oboe–Tuba pair, the Oboe “drags” the blend position closer to it and away 

from the Tuba. If 𝑑 is zero, in other words, 𝑠1	 equals to 𝑠2, it means that the blended sound is 

perceptually intermediate between the two constituent sounds. However, there are no sounds 

showing this feature in this study, although some are quite close s1-s2 equality. 

 
Figure 3.5 Graphic representation of dominant difference and intermediateness.  

As shown in the results of geometric analysis, the composite sounds are not simply in 

between the constituent sounds but in a triangular configuration. It appears difficult to develop a 

generalizable formula to predict the emotion coordinates of blended sounds across all blended 

pairs from the emotion coordinates of the individual sounds, but there are still some patterns 

showing that some blends are situated within the range of the constituents’ coordinates, whereas 

others are beyond that range. Also, some constituents dominate in their influence on the affect of 

the blend.  

3.2 Acoustic Analysis 
Acoustic analyses were used to interpret the timbral cues underlying people’s perception of the 

emotional qualities of the sounds. We first selected audio descriptors using hierarchical cluster 

analysis for both composite and constituent sounds, as shown in 2.2.2. In this part, lasso regression 

was used to reduce the pool of descriptors, and multiple linear regression was used to analyze the 

relationship between the selected audio descriptors and the perceived emotion ratings. 

3.2.1 Regression Analysis  

We performed lasso regressions for variable selection (Tibshirani, 2011) among the 13 audio 

descriptors for composite sounds and 9 for individual sounds, we first use lasso regression to 

reduce the dimensionality to reduce overfitting and increase interpretability. Then multiple linear 
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regression was applied to the selected variables to determine the relationship between the audio 

descriptors and the perceived affects. R was used to conduct the analyses (R Core Team, 2022), 

where glmnet package (Friedman et al., 2010) was used to conduct cross validation. 

3.2.1.1 Lasso Regression and Multiple Linear Regression Analyses 

Lasso stands for “least absolute shrinkage and selection operator” (Tibshirani, 1996). It performs 

both variable selection and regularization to enhance prediction accuracy and interpretability with 

multiple independent variables. Regularization is a technique to avoid overfitting and helps to 

reduce the number of parameters and simplify the model. Lambda is the parameter that controls 

the amount of regularization in lasso regression. Usually, cross-validation is used to select the 

optimal value of lambda. Cross-validation is a technique to evaluate the prediction performance 

of a model by splitting the data into multiple subsets and using some subsets for testing after 

modelling the remaining items in the dataset. For example, as shown in Figure 3.6, we can use the 

trace plot of the cross-validation curve to select lambda: on the x-axis at the bottom are the 

logarithm values of lambda and the values at the top are the corresponding numbers of parameters; 

the y-axis shows the mean cross-validation error and the vertical bars on each MSE measure show 

plus and minus one standard deviation. Mean-Squared error (MSE) is adopted in the R glmnet 

package and was used in the present study to measure the cross-validation error. The two dashed 

lines indicate two methods to select the optimal value of lambda—one-standard-error criterion 

(1se) and minimum criterion (min). The 1se method chooses the largest lambda such that the MSE 

is within one standard error of the minimum, which means a more conservative and simpler model. 

The min method chooses the lambda that gives the minimum MSE, which means the model that 

fits the data better but is more complex. In the present study, min was adopted if it did not select 

too many variables that decrease the interpretability (i.e., more than four variables), otherwise, 1se 

was adopted to get a simpler and more compact model. 

3.2.1.1.1 Blended sounds 

The regularization parameter lambda was determined using 10-fold cross-validation out of the 

initial set of 13 predictor variables for 45 blended sounds in predicting each affective dimension. 

Considering that min selected too many parameters, we used 1se to select the simpler model, as 

shown in Figure 3.6, Figure 3.7, and Figure 3.8 for valence, tension arousal and energy arousal, 

respectively. 
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For valence, lasso regression selected a subset of two predictors from the initial set. The 

selected predictors were the median and IQR of the Spectral Centroid. For tension arousal, the 

three selected predictors were the medians of Spectral Centroid, Spectral Spread, and Spectral 

Skewness. For the energy arousal, five predictors were selected: Spectral Centroid (Median and 

IQR), Spectral Spread (Med), Spectral Skewness (Med), and Log Attack Time. Multiple linear 

regressions were conducted to investigate further the relationship between the perceived affect and 

the acoustic predictors selected by lasso regression. All predictors identified by lasso regression 

were included in the multiple linear regression model. As shown in Table 3.4, blended sounds with 

higher spectral centroid and spectral spread tend to have more positive energy arousal and tension 

arousal. Energy arousal also positively related to shorter log attack time. Blended sounds with a 

larger median and IQR of spectral centroid tend to have more positive valence. 

 
Figure 3.6  Trace plot of cross-validation curve for lasso regression of valence for blended sounds. 

 
Figure 3.7  Trace plot of cross-validation curve for lasso regression of tension arousal for blended 
sounds. 
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Figure 3.8  Trace plot of cross-validation curve for lasso regression of energy arousal for blended 
sounds. 

Table 3.4  Linear regression coefficients and adjusted R2 for blended sounds. 

  Valence Tension Energy 
Adjusted R2 .382 .783 .789 
SpectCent 0.053* 0.308*** 0.339*** 
SpectVar    

OddToEvenRatio    

SpectSpread  0.169** 0.158* 
SpectSkew  –0.029 –0.089 
LogAttTime   –0.104* 
SpectCent (IQR) 0.093***  0.086 
SpectCrest (IQR) 0.053   
*** p < 0.001, ** p < 0.01, * p < 0.05 

 

3.2.1.1.2 Individual sounds 

Considering the relatively small sample size (10 sounds) of the individual sounds, the 

regularization parameter was determined using 5-fold cross-validation out of the initial set of 9 

predictor variables. We used the min criterion to select predictors for valence because the 1se 

method selected no parameter, as shown in Figure 3.9. Considering that the 1se criterion did not 

increase the MSE much more than the min for tension and energy, we used 1se to select the 

predictors for these dependent variables, as shown in Figure 3.10 and Figure 3.11. 

For valence, lasso regression selected the medians of Spectral Centroid, Spectral Flux, and 

Tristimulus_2, as well as Log Attack Time. For tension arousal, the two selected predictors were 

the medians of Spectral Centroid and Harmonic Odd-to-Even Ratio. For energy arousal, only the 
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median of Spectral Centroid was selected. The multiple linear regression model included all 

predictors identified by lasso regression. The results are shown in Table 3.5. Individual sounds 

with a higher spectral centroid tend to have higher tension and energy arousal. Sounds with a lower 

spectral centroid, higher spectral flux, and sharper log attack time have more positive valence. 

Comparing the regression results of blended and individual sounds, we found that the 

arousal resulting from both individual instrument timbres and blended timbres had similar 

acoustic features, although different properties underlie valence perception in the two sound sets. 

Notably, the IQR values played a more important role in blended sounds than in individual sounds. 

Table 3.5  Linear regression coefficients and adjusted R2 for individual sounds. 

 Valence Tension Energy 
Adjusted R2 .820 .871 .634 
SpectCent –0.071* 0.364*** 0.177 
SpectFlux 0.098*   

OddToEvenRatio 0.044   

Tristim2 –0.069   

LogAttTime –0.119*   

TempCent   –0.140 
*** p < 0.001, * p < 0.05    

 

 
Figure 3.9  Trace plot of cross-validation curve for lasso regression of valence for individual 

sounds. 
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Figure 3.10  Trace plot of cross-validation curve for lasso regression of tension for individual 

sounds. 

 
Figure 3.11  Trace plot of cross-validation curve for lasso regression of energy for individual 

sounds. 

3.2.1.1.3 Dominance analysis 

We also conducted lasso and multiple linear regression analyses for the dominant 

difference. The dominant difference d is the difference between the distances from the composite 
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sound to each of the two constituent sounds in the 3D emotion space, as shown in the previous 

section (Figure 3.5). In the regression for the difference d, we use d as the dependent variable and 

the difference of acoustic features between s1 and s2 to predict d. The min criterion was used in 

lasso regression for selecting predictors since min and 1se both selected one predictor, as shown 

in Figure 3.13 and Table 3.7. Only the difference between spectral centroids of constituent sounds 

was selected for the linear regression. The result shows that the difference between spectral 

centroids is negatively correlated with the difference d, which means that the composite sound's 

perceived affect was closer to that of the constituent sound with a higher spectral centroid 

(adjusted R2 = .54): brighter timbres appear to be more dominant in the perceived emotion of 

blended sounds.  

 
Figure 3.12  Trace plot of cross-validation curve for lasso regression of dominant difference. 

Table 3.6  Linear regression coefficient and adjusted R2 for dominant difference. 

  Estimate coefficient 
Adjusted R2 .54 
Spectral Centroid –0.370*** 
*** p < 0.001   
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In conclusion, using small sets of acoustic features is helpful to understand listeners’ 

perceived affects. Notably, audio feature variability may play a more important role in blended 

sounds than individual sounds. At the same time, acoustic features are also helpful to explain the 

dominance of individual constituents in the affect of a blended sound.  

3.3 Analysis of the Role of Degree of Blend 
We conducted a correlation analysis to determine the relationship between the perceived degree 

of blend and the perceived emotion, followed by multidimensional scaling and social network 

representation analyses to reveal the perceived relations among sounds in terms of their degree of 

blend. 

3.3.1 Correlation analysis  

The correlation analysis tested whether the degree of blend predicts the perceived affect. As shown 

in Table 3.2, the correlations between the degree of blend and each of the emotion dimensions, 

although significantly different from 0, were all weak and negative (for valence, r = –0.44; for 

tension, r = –0.35; for energy, r = –0.40). The linear regressions all show low explained variance 

(adjusted R2 < 17%), suggesting that the degree of blend is not a strong predictor for perceived 

affects. Therefore, we did not further consider degree of blend as a factor in the interpretation of 

perceived emotion in this study. We will focus on the blend space in the following analyses. 

3.3.2 Multidimensional Scaling of Blend Space 

Multidimensional scaling (MDS) was used to find the latent dimensions of the perceived space of 

degree of blend. Given that we had blend ratings for all sound pairs, we flipped all the blend ratings 

to get dissimilarity values as the input for the MDS algorithm. SMACOF (Scaling by Majorizing a 

Complicated Function) was used as the main algorithm (de Leeuw & Mair, 2009). A jackknife 

strategy was also used to reduce bias, which systematically leaves out one or more observations 

from the dataset, estimating the statistic of interest each time, and then calculating the bias and 

variance based on these repeated estimates (Elliott et al., 2013). R was used to conduct MDS 

algorithm (R Core Team, 2022) with the SMACOF package (de Leeuw & Mair, 2009 ; Mair et al., 

2022) and maximum dimensions were set to seven for this experiment. 
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In our analysis, we compared three MDS algorithms, including Identity MDS, INDSCAL 

(Individual Differences Scaling), and IDIOSCAL (Individual Differences in Orientation Scaling). 

Among the three algorithms, Identity is the simplest model, which assumes that all listeners use 

the same perceptual dimensions in their ratings. INDSCAL is a more general model, which allows 

individual listeners to have different perceptual weights for different dimensions. IDIOSCAL is the 

most general model, which allows individuals to not only have different perceptual weights but 

also to have different relative orientations for different dimensions.  

All three algorithms have the lowest Akaike information criterion (AIC)(Akaike, 1973) 

(evaluating how well a model fits the data it was generated from) for a two-dimensional model, as 

shown in Figure 3.13. At the same time, INDSCAL and IDIOSCAL did not show much 

improvement in R2 beyond the two-dimensional model, as shown in Figure 3.14. Therefore, we 

chose a two-dimensional Identity MDS model as the final derived space, shown in Figure 3.15. 

This derived space could be understood as a blend space, in which instruments perceived to blend 

better are closer in the space. For instance, the Tuba–Bassoon pair has the highest degree of blend 

in Figure 3.16 and also has the closest distance in MDS blend space; the English Horn–Cello pair 

has the lowest degree of blend and also has the farthest distance in the blend space. 

 
Figure 3.13  AIC for different dimensionalities in Identity MDS. 
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Figure 3.14  R2 for different MDS dimensionalities of Identity, INDSCAL, and IDIOSCAL 
algorithms. 

 

Figure 3.15  MDS blend space. 
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3.3.3 Geometric Analysis for Blend Space 

To investigate the relative success of blending of instruments with all other instruments, we 

designed a geometric analysis that calculates the sum of the distances between each instrument 

and all other instruments. The blend distance sum is shown in Figure 3.17. It is clear to see that 

flute is the best blender, followed by the bassoon and tuba. Cello is the poorest blender. Notably, it 

was the only string instrument among the constituent sounds. 

 
Figure 3.16  The degree of blend for each pair. 
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Figure 3.17  The sum of blend distances. 

3.3.4 Acoustic Analysis for Blend Space 

As with the perceived emotion space, acoustic analysis was also helpful in interpreting the 

dimensions of the blend space (Figure 3.18). Lasso regression was first conducted for both 

dimensions. The regularization parameter was determined using 5-fold cross-validation from the 

same set of 9 predictor variables as the individual sounds. We used the minimum criterion to select 

predictors, as shown in Figure 3.20. 

For the first dimension, the medians of Spectral Variation, Spectral Flux, Temporal 

Centroid, and Tristimulus_2 were selected. According to the linear regression results in Table 3.7, 

Temporal Centroid and Spectral Flux were significant, and the adjusted R2 was high (89%). It is 

evident  in the blend-space plot that the first dimension of the blend space divided the instrument 

families, as shown with the three background colours in Figure 3.18 (orange–string; green–brass; 

purple–woodwind). Therefore, it makes sense that both temporal and spectral descriptors are 

significant in interpreting the dimension. The medians of Spectral Flux and Temporal Centroid, 

as well as Log Attack Time, were selected for the second dimension. Temporal Centroid 

significantly predicted the dimension (adjusted R2 = 80%), as shown in Table 3.8. This result 
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indicates that the second dimension of the blend space is more likely related to a temporal 

descriptor: the more similar the family of instruments (predicted by both temporal centroid and 

spectral flux) and the closer the temporal centroid of the instruments, the greater the degree of 

blend. 

 
Figure 3.18  Blend space with colour indicating the instrumental family along Dimension 1. 

 

 
Figure 3.19  Trace plot of cross-validation curve for lasso regression of first dimension of blend 

space. 

Tu

Tb

Hn

Tp
Bn

Cl

Ob

EH

Fl
Vc

−0.4

0.0

0.4

−0.8 −0.4 0.0 0.4
Dimension 1

D
im

en
si

on
 2

Brass String Woodwind



Results and Analysis  43 

Table 3.7  Linear regression coefficients of the first dimension of blend space. 

 Estimate Std. Error t  Pr(>|t|) 
(Intercept) 0.187 0.152 1.227 0.27 
SpectralVariation –0.070 0.184 –0.382 0.72 
SpectralFlux –0.778 0.162 –4.796 0.005** 
TemporalCentroid 0.825 0.203 4.069 0.010** 
Tristimulus_2 0.173 0.129 1.340 0.24 
     

*** p < 0.001, ** p < 0.01     

Adjusted R2:  0.89    

 

 
Figure 3.20  Trace plot of cross-validation curve for lasso regression of the second dimension. 

Table 3.8  Linear regression coefficients of the second dimension of blend space. 

 Estimate Std. Error t  Pr(>|t|) 
(Intercept) 1.087 0.122 8.923 0.0001*** 
SpectralFlux –0.374 0.186 –2.015 0.09 
TemporalCentroid –0.524 0.210 –2.489 0.047* 
LogAttackTime –0.409 0.248 –1.648 0.18 
     

*** p < 0.001, * p < 0.05     

Adjusted R2:  0.80    
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3.3.5 Social Network Analysis 

Social Network Analysis (SNA) (Wasserman & Faust, 1994) is a useful tool in sociology to 

investigate and visualize social structures based on measures of proximity or strength of relation 

between individuals. To the best of our knowledge, no research has yet used this tool to analyze 

blend data. Blend can also be understood as a proximity relationship between each pair of 

instruments. The degree of blend can also be understood as the strength of the relationship. We 

took each instrument as a node, the blended relationship as an edge, and the degree of the blend 

as the weight of the edge to analyze the relationship, which was also indicated in the thickness of 

edge (the higher the degree of blend, the thicker the edge). The ForceAtlas2 algorithm (Jacomy et 

al., 2014) was used, which is helpful to spatialize small world and scale-free networks, where Gephi 

0.9.7 (Bastian et al., 2009) software was used to visualization the network. ForceAtlas2 is a force 

layout, which has the specificity of placing each node depending on its relation to the other nodes. 

In this way, nodes that are more connected or similar are placed closer together, whereas nodes 

that are less connected or different are farther apart. As we are using the degree of blend 

representing the similarity, the nodes blends well if they are placed closer to each other. Therefore, 

it is very useful for showing the “community” of timbres, where the timbres will cluster together if 

they blend well. 

As shown in Figure 3.21, the resulting network is a 2D representation of the network, and 

nodes are connected to each other because we used a complete set of pair-wise data. In this network, 

it is easy to see that instruments were much easier to blend within the same family as they clustered 

together. Cello was the only one that did not blend very well with other instruments but was also 

the only one that belonged to the string family. However, some of the instruments are also blend 

well across families, such as the Tuba and Bassoon, which are clustered very closely.  
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Figure 3.21  Social network representation of blend relationship. 

In conclusion, the degree of blend shows weak correlation with all affective qualities, but 

the role of blend in perceived affect still needs to be studied in the future. As for the degree of blend, 

MDS and SNA are useful to analyze the blend space. A small set of spectral and temporal acoustic 

features can well explain the dimensions of perceptual blend space. 
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4 DISCUSSION 

4.1 Timbral blend and emotion 
In previous studies (Eerola et al., 2012, McAdams et al., 2017), it was evident that single 

instrumental sounds can provide enough information to convey a wide range of emotions. At the 

same time, researchers have asserted that new timbres can be created from the emergence of 

instrumental blends (McAdams, 2019). Sandell (1995) concluded from a review of orchestration 

treatises that blend can “invent timbres.” Therefore, in the present study, we hypothesized that 

these new timbres created by blends can also provide enough acoustic information to be perceived 

as having a wide range of emotions. 

The result of ANCOVA analyses on valence, tension arousal, and energy arousal indicated 

that different combinations of blended pairs have significantly different perceived emotions after 

controlling for the participants’ musical sophistication. Furthermore, according to the result of 

geometric analysis, the blends also occupy an expanded range of emotions compared to the 

constituent sounds alone. These results suggest that the new timbres created by blend can thus 

have a wider range of emotions. 

However, one limitation in the geometric analysis is that the experimental context of the 

present study and McAdams et al. (2017) is different. Participants were exposed to different sets of 

stimuli in the two studies, so the ratings of the two experiments need to be standardized. In 

particular, the wider range of sounds in McAdams et al. (2017) may have resulted in a more 

compact structure of the subset of constituent samples used in the present study. A supplemental 

experiment will be conducted in the near future to standardize the experimental context of affect 

ratings on individual sounds and blended sounds. All ten individual sounds will be included along 

with some of the blended stimuli samples, which will be randomly selected from the stimulus set 

used in this experiment. The selection strategy may refer to Eerola et al.’s study (2012) in selecting 
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18 sounds from 110 sounds according to the affect space of 110 sounds, which used an even grid 

(3 * 3, defined by 33.3% and 66.7% percentiles in data) overlaid on the emotion space with two 

sounds being sampled from the original sounds in each cell of the grid. This strategy will be 

adopted to make sure the blended stimuli covering the whole affective space. All geometric analysis 

will be reconducted using the standardized data. 

4.2 Relation of emotions of constituent sounds to composite 

sounds 
According to the geometric analysis, all pairs of constituent sounds and their corresponding 

composite sounds have a triangular relationship, and there was no intermediateness, which means 

that the emotion of a blend does not simply lie on a line between the emotions of the constituent 

sounds. It is therefore difficult to predict the position in emotion space of the blended sound from 

the positions of the constituent sounds. It is interesting to observe that many of the pairs reveal 

certain patterns: the affect of a blend may be internal to or beyond the emotional scope of the 

constituents and may also be dominated by one constituent over the other. We found that the 

dominance of a constituent can be well explained by the spectral centroids of the constituent 

sounds with the sound having a brighter timbre tending to pull the blend closer to it in the emotion 

space. However, we have not found a way to predict when the perceived emotion of a blended 

sound will be within or beyond the range of coordinates in emotion space of the constituent sounds. 

In Sandell’s (1991) study, he analyzed the degree of blend using the difference and the sum of the 

audio descriptors of constituent sounds, which maybe also useful in analyzing the relations in 

triangles in the future. 

4.3 Acoustics and emotion 
In general, according to our results, a small number of acoustic features (less than eight) is useful 

to interpret listeners’ perceived emotion. The valence of blended sounds is positively correlated 

with spectral centroid; in other words, brighter sounds may result in a more positive valence. 

Valence is also positively correlated with the IQR of spectral centroid, which means that blended 

sounds with more changes in brightness may also have a more positive valence. Similar to valence, 

tension and energy arousal are positively correlated with spectral centroid, and they are also 
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positively correlated with spectral spread, which means that brighter blended sounds with a richer 

spectrum may have higher arousal. Also, energy arousal is significantly negatively correlated with 

the log attack time, which means the blended sounds with a sharper attack may have higher energy 

arousal. In the present study, 38% of the variance in valence, 78% of the variance in tension arousal, 

and 79% of the variance in energy arousal were explained by audio descriptors. So valence remains 

somewhat more elusive in terms of its acoustic underpinnings. 

Compared to the emotional qualities of ten individual sounds selected from McAdams et 

al. (2017), tension arousal shows a similar positive correlation with spectral centroid. Although 

energy arousal did not have a significant predictor, the spectral centroid was still selected by lasso 

regression, and the coefficient had similar trends as the energy arousal of blended sounds. However, 

valence has a different relation to spectral centroid. It is also negatively correlated with the log 

attack time and positively correlated with the tristimulus 2, similar to Eerola et al. (2012). However, 

when compared to the Principal Components (PC) result in McAdams et al. (2017) for all 137 

instrumental sounds, the acoustics for valence show consistency with our results, which were 

positively correlated with spectral centroid median and IQR in PC1. Therefore, we found that 

arousal shows more consistency, and the acoustic features usually show a good ability to explain 

the variance across different studies. Although the audio descriptors can moderately explain the 

variance in valence, it is still hard to find the overall consistency across the studies, which may need 

more musical context to evaluate. Eerola et al. (2012) also found that valence was hard to predict, 

and arousal was much more robustly explained by audio descriptors. 

Differences between the acoustic features of blended and individual sounds still need to be 

discussed. According to the Hierarchical Cluster Analysis, the temporal variability (the IQRs of 

acoustic features) of audio descriptors shows more uniqueness in blended sounds than in 

individual sounds. Similarly, the IQR of spectral centroid is a highly significant predictor of valence. 

This shows that the variance of the acoustic features may play an important role in the emotional 

perception of the blend, which is not that obvious in individual sounds. 

4.4 The degree of blend 
In the present study, the similarity of constituent sounds in terms of spectral flux and temporal 

centroid had the most significant influence on the degree of blend (as the sounds are closer in 



50  Discussion 

blend space with similar spectral flux and temporal centroid), which means the similar variance of 

the spectrum and the similar behaviour of the amplitude envelope could achieve a better degree of 

blend. This result is also consistent with the Gestalt principle of common fate according to which 

sounds that change in a similar manner are likely to be perceived as originating from the same 

source (Bregman, 1990). Compared to the acoustic result from Sandell (1991), although we are 

using different audio descriptors, we both found that the similarity of both spectral and temporal 

behaviour achieves a better blend.  

 As for the visualization of the blend space, the social network analysis shows a similar set of 

relations as MDS structure in the present study, which could also be a choice to analyze blend. 

Furthermore, it is very simple to use and has a lot of settings and parameters to finetune the 

visualization. It is also very helpful to see the structural information in the data, such as clusters, 

which means a group of sounds blend well with each other in this context. However, given the 

small size of our dataset, this technique may be more useful for a larger stimulus set. 

4.5 Emotion and the degree of blend 
One of our hypotheses was that the degree of blend could be used to interpret listeners’ perceived 

affects. However, the correlations between the degree of blend and all three dimensions of affect 

are small. There are, nonetheless, some interesting patterns that the degree of blend could also help 

to interpret. In Figure 3.17, the flute, bassoon, and tuba show the best degree of a blend among all 

the instruments; it is interesting to see that the energy of many of the pairs with these three 

instruments becomes lower than the energy of at least one of the constituent sounds as shown in 

Figure 3.16, such as the FlEH, TuTp, and BnVc pairs. Also, all pairs with low energy and tension 

arousal (<0.4; normalized from 0 to 1) include flute, tuba, or bassoon. This may be because good 

blenders such as flute, tuba, or bassoon “soften” the other sound and thus be perceived as 

conveying a lower degree of arousal. Interestingly, Sandell (1991) found that some orchestration 

treatises mentioned good blenders “softening” other timbres, and he found that the most frequent 

agent for softening other instruments is the flute. Rogers (1951), for example, stated that, “The 

high brass loses brilliance when doubled in unison by woodwinds. Its tone becomes thicker but 

less incisive. Some of the flashing edges are lost.” (p. 105) 
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Therefore, although we could not find a direct linear relationship between the degree of 

blend and the perceived affects, it is still early to say that there is no relationship. More studies can 

be done to investigate their relations in the future. 

4.6 Musicians and nonmusicians 
Although we did not specifically recruit participants in musician and nonmusician groups, and the 

results did not show a significant effect of musical sophistication on emotion, we still observed 

some differences during the experiment. Participants’ ratings were not very different in the 

emotion rating part, but participants who reported having a musical background tended to finish 

the blend rating part faster than the nonmusicians according to observations during the 

experiment. We also found that it is usually more difficult for nonmusician participants to 

understand the concept of blend, perhaps because we used relatively well-blended stimuli so the 

differences in blend may have been subtle. However, after the practice phase and based on informal 

reports after the experiment, nonmusicians were able to judge the degree of blend as well as 

musicians. According to this observation, we think it may be because the concept of the blend is 

used more often in the music field. So nonmusicians may find it hard to understand, but the ratings 

of blend show consistency among the participants. 
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5 CONCLUSION 

5.1 General conclusion 
This study investigated listeners’ perceived affect of sustained instrumental blends. Forty-five 

sustained instrumental blended pairs were investigated. The experiment was a self-report 

experiment with two separate blocks of emotion ratings and blend ratings. According to our 

analysis, a blend creates a new timbre with emergent acoustic features and conveys different 

emotions. Blended sounds may also span a broader range of the emotion space than the constituent 

sounds, so it may be helpful for musicians to use blends to express more varied emotions. A 

compact set of acoustic features was useful to explain the emotional qualities of both the blended 

and individual sounds, and we found that the variability over time of the acoustic features often 

plays a more important role in the perception of the blended sounds than of individual sounds.  

 In the emotion space, the composite sounds are not simply in between the constituent 

sounds but in a triangle configuration: some blends are within the emotional scope of the 

constituents, whereas others are beyond that scope. Also, some constituents dominate in their 

influence on the affect of the blend. It is still hard to simply use the emotion of constituent sounds 

to predict the emotion of the blended sounds; more patterns and the relationship between the 

acoustic features may help in the future. We did not find a direct relationship between the degree 

of blend and perceived affect, but “good blenders” tend to “soften” the timbre and thus might lower 

the perception of arousal. A deeper relationship could be investigated in the future. Although blend 

in a musical context is not always limited to instrumental unison dyads like those used in the 

present study, this study does attest to the importance of timbral and orchestration features in 

conveying affect. 
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5.2 Future study 
A supplemental experiment will be conducted in the near future to standardize the experimental 

context of affect ratings on individual sounds and blended sounds. All ten individual sounds will 

be included, and some blended stimuli will be randomly selected from the stimulus set used in this 

experiment. The selection strategy may refer to Eerola et al.’s study (2012) as mentioned in section 

4.1. 

Broader future research could examine the affect conveyed by timbre in more complicated 

orchestration techniques and include more musical context. This could start from commonly used 

orchestration combinations, like string quartet, wind quintet (e.g., Kendall & Carterette, 1991), etc. 

Some broader contexts of timbre, like contemporary sound effects, synthesized sounds, vocals and 

instruments, and cross-cultural instrumental blends, could also be investigated in the future. 
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Appendix A: LOUDNESS-MATCHED LEVELS  

Table A.1  Level adjustment applied to each constituent sound in loudness matching to the 
bassoon sound. 

Instrument Loudness Adjustment (dB) 
Tu 2.27 
Tb 3.37 
Hn –1.15 
Tp 0.82 

Bn (standard) 0.00 
Cl 0.42 
Ob –0.52 
EH –0.21 
Fl 0.06 
Vc –1.71 
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Table A.2  Sound pressure level for final stimuli. 

Blend 
Pairs 

Sound 
Level (dB) 

Blend 
Pairs 

Sound 
Level (dB) 

Blend 
Pairs 

Sound 
Level (dB) 

TuTb 74.0 TpBn 75.2 ObEH 78.7 
TuHn 77.7 TpCl 77.5 ObFl 77.0 
TuTp 76.1 TpOb 75.4 ObVc 77.4 
TuBn 80.5 TpEH 78.3 EHTu 77.1 
TuCl 79.2 TpFl 75.5 EHTb 76.6 
TuOb 76.9 TpVc 74.4 EHHn 76.5 
TuEH 76.7 BnTu 81.3 EHTp 76.7 
TuFl 75.8 BnTb 75.3 EHBn 77.1 
TuVc 74.1 BnHn 79.1 EHCl 78.1 
TbTu 74.2 BnTp 74.6 EHOb 78.4 
TbHn 76.4 BnCl 79.0 EHFl 77.2 
TbTp 73.5 BnOb 77.9 EHVc 77.8 
TbBn 75.2 BnEH 76.9 FlTu 76.3 
TbCl 75.0 BnFl 78.6 FlTb 73.4 
TbOb 76.9 BnVc 73.9 FlHn 76.3 
TbEH 75.5 ClTu 77.3 FlTp 75.4 
TbFl 72.3 ClTb 73.6 FlBn 80.2 
TbVc 71.0 ClHn 78.5 FlCl 79.1 
HnTu 76.8 ClTp 76.5 FlOb 75.8 
HnTb 74.3 ClBn 78.7 FlEH 74.2 
HnTp 74.8 ClOb 75.4 FlVc 72.5 
HnBn 79.1 ClEH 77.8 VcTu 73.4 
HnCl 79.5 ClFl 76.5 VcTb 69.9 
HnOb 78.4 ClVc 76.2 VcHn 75.6 
HnEH 76.8 ObTu 76.9 VcTp 74.8 
HnFl 77.2 ObTb 76.2 VcBn 71.9 
HnVc 76.6 ObHn 77.3 VcCl 76.3 
TpTu 75.2 ObTp 79.9 VcOb 76.7 
TpTb 73.2 ObBn 77.4 VcEH 75.8 
TpHn 75.4 ObCl 76.9 VcFl 73.1 
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Appendix B: ONSET SYNCHRONIZATION 

Table B.1  Time offsets between constituents of each blend pair (values are the number of 
milliseconds that a row’s stimulus should be delayed to be in perceived in synchrony with a 
column’s stimulus), e.g., EH precedes Vc by 21.05 ms, whereas flute is delayed relative to Vc by 
10.20 ms. 

Median 
Offset 
(ms) 

Tu Tb Hn Tp Bn Cl Ob EH Fl Vc 

Tu – – – – – – – – – – 
Tb 14.55 – – – – – – – – – 
Hn 23.20 –12.35 – – – – – – – – 
Tp 21.80 –2.90 2.20 – – – – – – – 
Bn 8.70 –16.70 –6.55 –8.70 – – – – – – 
Cl –16.70 –44.25 –26.10 –47.15 -24.65 – – – – – 
Ob 23.25 0.75 6.55 –8.70 7.25 26.10 – – – – 
EH 23.20 4.35 4.35 –2.20 7.30 23.25 –4.40 – – – 
Fl –7.95 –13.10 –18.15 –23.20 –5.10 7.25 –13.05 –29.00 – – 
Vc 26.10 –12.35 8.70 –13.10 1.45 50.05 –13.05 –21.05 10.20 – 
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Appendix C: PARTICIPANT VALIDATION 

Table C.1  Cronbach’s α table for individual participant reliability statistics. The second column 
“Cronbach’s α if item dropped” shows how the overall Cronbach’s α would change if one 
participant is removed from the dataset. The third column “Item-rest correlation” shows the 
correlation between each participant and the rest of the participants in the scale. 

Participant 
ID 

Cronbach’s α 
if item dropped 

Item-rest 
correlation 

1 0.921 0.550 
2 0.921 0.510 
3 0.922 0.483 
4 0.922 0.477 
5 0.922 0.552 
6 0.922 0.467 
7 0.922 0.433 
9 0.919 0.676 

10 0.921 0.644 
11 0.922 0.479 
12 0.920 0.570 
13 0.921 0.577 
14 0.922 0.519 
16 0.921 0.552 
17 0.922 0.450 
18 0.922 0.478 
19 0.923 0.363 
20 0.924 0.191 
21 0.922 0.434 
22 0.922 0.448 
23 0.922 0.475 
24 0.922 0.572 
25 0.922 0.408 
26 0.922 0.415 
27 0.922 0.484 
28 0.924 0.277 
29 0.923 0.361 
30 0.920 0.610 
31 0.922 0.487 
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Participant 
ID 

Cronbach’s α 
if item dropped 

Item-rest 
correlation 

32 0.920 0.601 
33 0.923 0.387 
34 0.921 0.563 
35 0.924 0.299 
37 0.922 0.429 
40 0.922 0.523 
41 0.923 0.345 
42 0.921 0.538 
43 0.920 0.622 
44 0.921 0.561 
45 0.922 0.462 
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Appendix D: ASSUMPTION CHECK 

 
Figure D.1  Q-Q plot for normality check of perceived valence for blended sounds. 

 
Figure D.2  Q-Q plot for normality check of perceived energy for blended sounds. 

 
Figure D.3  Q-Q plot for normality check of perceived tension for blended sounds. 
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Table D.1  Homogeneity of variance of perceived valence for blended sounds. 

Test for Equality of Variances (Levene’s)  
F df1 df2 p 
1.064  44  1755  0.360  

 
Table D.2  Homogeneity of variance of perceived energy for blended sounds. 

Test for Equality of Variances (Levene’s)  
F df1 df2 p 
1.540  44  1755  0.013  

 
Table D.3  Homogeneity of variance of perceived tension for blended sounds. 

Test for Equality of Variances (Levene’s)  
F df1 df2 p 
0.946  44  1755  0.573  
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