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Probabilistic models of expectation violation predict
psychophysiological emotional responses to live
concert music

Hauke Egermann & Marcus T. Pearce &

Geraint A. Wiggins & Stephen McAdams

# Psychonomic Society, Inc. 2013

Abstract We present the results of a study testing the often-
theorized role of musical expectations in inducing listeners’
emotions in a live flute concert experiment with 50 participants.
Using an audience response system developed for this purpose,
wemeasured subjective experience and peripheral psychophys-
iological changes continuously. To confirm the existence of the
link between expectation and emotion, we used a threefold
approach. (1) On the basis of an information-theoretic cognitive
model, melodic pitch expectations were predicted by analyzing
the musical stimuli used (six pieces of solo flute music). (2) A
continuous rating scale was used by half of the audience to
measure their experience of unexpectedness toward the music
heard. (3) Emotional reactions were measured using a
multicomponent approach: subjective feeling (valence and
arousal rated continuously by the other half of the audience
members), expressive behavior (facial EMG), and peripheral
arousal (the latter two being measured in all 50 participants).
Results confirmed the predicted relationship between high-
information-content musical events, the violation of musical
expectations (in corresponding ratings), and emotional reac-
tions (psychologically and physiologically). Musical structures
leading to expectation reactions were manifested in emotional
reactions at different emotion component levels (increases in
subjective arousal and autonomic nervous system activations).
These results emphasize the role of musical structure in

emotion induction, leading to a further understanding of the
frequently experienced emotional effects of music.

Keywords Emotion . Music . Expectation . Statistical
learning . Computational modeling . Psychophysiology

Music has been shown to induce emotional reactions that are
accompanied by activations in several reaction components:
subjective feelings, psychophysiological activations, and ex-
pressive behavior (Juslin & Västfjäll, 2008). However, most
previous experimental research has been rather exploratory,
showing that music induces emotion, but not providing theo-
retically founded explanations for the phenomena observed.
More than a decade ago, Scherer and Zentner (2001) noted:
“This is a bad omen for future research, since it is to be feared
that additional, isolated research efforts with little or no theo-
retical underpinnings are more likely to add to the current
confusion than to the insight to which the researchers aspire”
(p. 382). However, beginningwith Scherer and Zenter’s paper,
several theoretical attempts have been made to explain the
underlying mental processes that are involved in creating
emotional responses tomusic. Scherer and Zentner formulated
“production rules” describing in detail several mental mecha-
nisms that could be used to explain emotional responses to
music. A few years later, Juslin and Västfjäll continued this
idea and presented a seminal review paper, positing seven
possible ways to explain the observed effects of music.
Here, they summarized previous ideas about emotion induc-
tion mechanisms in general and those specific to music:
cognitive appraisal of music and the listening situation, brain
stem reflexes to acoustic characteristics, visual imagery in-
duced through sound, evaluative conditioning from pairing
music with another emotion-inducing stimulus, emotional
episodic memory associated with the music, emotional conta-
gion through emotional expressions in the music, and musical
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expectation. The last mechanism will be the focus of the study
presented here. There have been many theoretical and empir-
ical attempts to link musical structures and expectations, but
empirical evidence explicitly investigating the connection
between expectation and emotion in music is limited.
Therefore, we conducted an experiment in which we tested
whether statistical properties of composed musical structures
violate or confirm subjective expectations, and also whether
they lead to emotional reactions in subjective, expressive, and
physiological response components. In order to maintain a
naturalistic research paradigm, we conducted the experiment
in a live concert setting, using an audience response system
developed in-house that measured participants’ reactions in
real time. Advancing the theory on the underlying mecha-
nisms of musical expectation, we furthermore used a compu-
tational machine-learning algorithm to analyze the music
presented and predict human expectations and emotions.

Musical expectations

As early as the 1950s, Leonard B. Meyer (1956, 1957) began
to theorize about the relationships between musical structures
and listener’s expectations (which may be confirmed or vio-
lated). Emphasizing the role of cultural learning through ex-
posure to the syntactical properties of music, he engendered a
great deal of scholarship and empirical research, describing
and testing which musical properties create which expecta-
tions. Reviewing this work, Huron (2006) suggested that there
are four different types of expectation associated with music
and created by different auditory memory modules. Veridical
expectations are derived from episodic memory and contain
knowledge of the progression of a specific piece. Schematic
expectations arise from being exposed to certain musical
styles and contain information about general event patterns
of different musical styles and music in general (based on
semantic memory).Dynamic expectations are built up through
knowledge stored in short-termmemory about a specific piece
that one is currently listening to and are updated in real time
through listening. Finally, Huron also described conscious
expectations that contain listeners’ explicit thoughts about
how the music will sound.

Expectations brought up by melodic, harmonic, and rhyth-
mic features have been studied and researched extensively.
However, because it remains difficult to experimentally differ-
entiate between the different forms of expectation (Huron,
2006), research has focused mostly on the role of different
musical features in evoking expectations. Rhythmic periodic-
ities of music have been shown to create preattentive hierar-
chical expectations of beat and meter in listeners (Ladinig,
Honing, Háden, & Winkler, 2009), which have psychophysi-
ological correlates in high-frequency gamma-band activity in
the auditory cortex (Zanto, Snyder, & Large, 2006). Harmonic

expectations have been investigated by comparing responses
to chords varying in harmonic relatedness to the context with
more distantly related chords (assumed to be less expected)
leading to longer reaction times in priming tasks
(Bharucha & Stoeckig, 1986, with chord distance quan-
tified by the number of shared parent keys), delayed
and lower completion/expectation ratings (Bigand &
Pineau, 1997; Schmuckler & Bolz, 1994), and several specific
event-related brain potentials, such as the P300 (Carrión&Bly,
2008; Janata, 1995). Concerning melodic expectations, several
theoretical models making expectation-related predictions
have been suggested (Larson, 2004; Margulis, 2005;
Ockelford, 2006) with partial empirical support. Music theorist
Eugene Narmour (1990, 1992) was among the most popular,
proposing several melodic principles in his implication-
realization theory, which are intended to describe the expected
melodic continuation of implicative intervals. Some of those
principles, such as the principle of pitch proximity, have been
confirmed in experimental testing (Cuddy & Lunney, 1995;
Schellenberg, 1996, Thompson & Stainton, 1998). Unlike
Meyer (1956), Narmour conceived some of his melodic orga-
nization principles as universal, innate, and bottom-up process-
es, similar to Gestalt principles of perception. However, recent
theories of auditory statistical learning, also supported by
evidence reported by Huron (2006) and Pearce and Wiggins
(2006), propose that melodic expectations do not rely on
underlying patterns of universal bottom-up principles but have
merely been formed through exposure to syntactic relation-
ships within musical structures of a given culture (Abdallah &
Plumbley, 2009; Pearce & Wiggins, 2006).

Furthermore, computational simulations of this learning
process have yielded robust predictions of perceptual ex-
pectations, outperforming other rule-based models like
Narmour's (1990, 1992). For that reason, our experiment
uses a computational model of auditory expectation to spec-
ify precise, quantitative measures of structural predictability
for each note in a melody (the information dynamics of
music model [IDyOM]). The model itself has been presented
(Pearce 2005; Pearce, Conklin, & Wiggins, 2005; Pearce &
Wiggins, 2004) and evaluated (Pearce, 2005; Pearce, Ruiz,
Kapasi, Wiggins, & Bhattacharya, 2010; Pearce & Wiggins,
2006) elsewhere, so here we just provide a brief overview.

The central feature of the model is that it learns about
sequential dependencies between notes in an unsupervised
manner through exposure to melodies. At any given point in
processing a melody, the model generates a probability
distribution governing some property of the next note
(e.g., its pitch or onset time). This probability distribution
reflects the prior experience of the model and represents its
expectations about the next note in the melody. The learning
and generation of probabilities is achieved using a Markov
or n-gram model (Manning & Schütze, 1999), which com-
putes the conditional probability of a note given the n−1
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preceding notes in the melody. The quantity n−1 is called
the order of the model. In IDyOM, basic Markov modeling
is extended in three ways.

First, the model is of variable order, incorporating an
interpolated smoothing strategy to combine probabilities from
models of different order. This allows the system to benefit
from both the structural specificity of longer (but relatively
rare) contexts and the statistical power of more frequent (but
less specific) low-order contexts. Second, the model is con-
figured with two subcomponents: a long-term model (LTM),
which is exposed to an entire corpus (modeling learning based
on a listener’s long-term exposure to music), and a short-term
model (STM), which is exposed only to the current musical
material (modeling local learning of the structure and statistics
in the current listening episode). The full model (BOTH)
generates probability distributions by combining those gener-
ated by the LTM and STM.

Third, the system has the ability to use a combination of
different features, or viewpoints, to predict the properties of
notes. We do not use this aspect of the system in the present
research but refer the interested reader to the literature on
multiple viewpoint systems (Conklin & Witten, 1995; Pearce
et al., 2005).

The use of this system as a cognitive model of auditory
expectation is motivated by empirical evidence of implicit
learning of statistical regularities in musical melody and other
sequences of pitched events (Oram & Cuddy, 1995; Saffran,
Johnson, Aslin, & Newport, 1999). Consistent with an ap-
proach based on statistical learning, melodic pitch expectations
vary between musical styles (Krumhansl et al., 2000) and
cultures (Carlsen, 1981; Castellano, Bharucha, & Krumhansl,
1984; Eerola, 2004; Kessler, Hansen, & Shepard, 1984,
Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola,
1999), throughout development (Schellenberg, Adachi,
Purdy, & McKinnon, 2002), and across degrees of musical
training and familiarity (Krumhansl et al., 2000; Pearce, Ruiz,
et al., 2010). The use of LTMs and STMs is motivated by
evidence that pitch expectations are informed both by long-
term exposure to music (Krumhansl, 1990) and by the
encoding of regularities in the immediate context (Oram &
Cuddy, 1995). Tillmann and colleagues have shown that target
chords are processed more accurately and quickly when they
are related both to the local and to the global harmonic contexts
(previous chord and prior context of six chords, respectively;
Tillmann, Bigand, & Pineau, 1998) and that these ef-
fects can be explained by a mechanism of implicit
statistical learning of sequential harmonic patterns in
music (Tillmann, Bharucha, & Bigand, 2000).

With regard to melodic expectation, the model summarized
above has been tested by comparing its pitch expectations with
those of human listeners (Omigie, Pearce, & Stewart, 2012;
Pearce, Ruiz, et al., 2010; Pearce &Wiggins, 2006). In a series
of reanalyses of existing behavioral data (Cuddy & Lunney,

1995;Manzara,Witten, & James, 1992; Schellenberg, 1997), it
was shown that this model predicts listener’s expectations
better than do existing models of melodic expectation based
on innate principles (Narmour, 1990; Schellenberg, 1997).
Using a novel visual cueing paradigm for eliciting auditory
expectations without pausing playback, Pearce, Ruiz, et al.
(2010) confirmed that the model predicts listeners’ expecta-
tions in melodies without explicit rhythmic structure.

Music and emotion

Here, the term emotion is used in the sense of the component
process model presented by Scherer (2004, 2005).
According to this model, an emotion episode consists of
coordinated changes in three major reaction components: (1)
physiological arousal, (2) motor expression, and (3) subjec-
tive feelings. There are two major theoretical positions
concerning emotional effects of music. The cognitivist po-
sition states that music is capable only of representing
emotion, and not of inducing emotions similar to those
occurring in everyday life with synchronized reaction com-
ponents and object focus (e.g., being angry about something
that presents an obstacle to reaching one’s personal goals;
Kivy, 1990; Konečni, 2008). According to the emotivist
view, music does indeed induce emotions similar to those
induced by other events in everyday life, often demonstrated
by citing the research that shows emotional reactions in all
components (Juslin & Västfjall, 2008). For example,
Lundqvist, Carlsson, Hilmersson, and Juslin (2008) showed
that music-induced feelings of happiness or sadness were
associated with activations of the autonomic nervous system
(measured through skin conductance) and activations of
expressive facial muscles. In addition, Grewe, Kopiez, and
Altenmüller (2009) showed that strong emotional responses
to music, like the chill response (experience of shivers or
goose bumps), have been accompanied by increases in felt
emotional intensity, skin conductance, and heart rate (HR).
Finally, it has also been shown recently that those strong
music-induced emotions are manifested neurochemically by
dopamine release in the reward system in the human brain,
in a similar manner to other pleasurable stimulations such as
food intake, sex, or drugs (Salimpoor, Benovoy, Larcher,
Dagher, & Zatorre, 2011). However, cognitivists often argue
that all this empirical evidence does not demonstrate
that the music itself stimulated these emotional re-
sponses, because external emotional objects might also
have been associated with the music, making it appear
to induce emotion (Konečni, 2008). In order to prove
that music is able to induce emotions on its own, one
would have to show that musical structures by them-
selves generate emotional responses in listeners without
external reference (Cochrane, 2010).
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Linking expectation and emotion

Musical expectation is a good candidate for demonstrating
this emotional induction by the music itself without the help
of any external association. Huron (2006) proposed the
ITPRA theory of expectation giving a detailed account of
five different response types (grouped into two pre- and
three postevent responses). The imagination response ac-
counts for emotional reactions to imaginative processes
before the occurrence of a musical event. The tension re-
sponse functions as physiological preparation for an antici-
pated event by adjusting the needed arousal. After this
musical event has occurred, the prediction and reaction re-
sponses happen simultaneously. Here, the accuracy of the
prediction is rewarded or punished (prediction response),
and the pleasantness of the outcome itself is evaluated in a
fast and less accurate way (reaction response) and in a
slower and more elaborated way leading to the appraisal
response. Thus, there are several affective phenomena asso-
ciated with expectation that are more or less related to
everyday emotions. Imagination responses may be very
subtle and difficult to separate in measurement from re-
sponses to the event itself. Tension responses to music have
been researched widely (Krumhansl, 1996, 2002) and are
likely to lack a coordinated event-related onset. The three
postevent responses described by Huron are more likely to
create reactions that are synchronized across emotional
components and measurable in an experimental research
design. These responses might create surprise (potentially
leading to strong emotions like chills), pleasure from mak-
ing correct predictions or appraising false predictions as not
harmful, and also displeasure from making wrong predic-
tions (Huron, 2006). However, expectation might also in-
fluence musical experience in another way. It may be
necessary to differentiate event-related emotions from the
perceptual qualities that arise from statistical properties of
musical structures like the scale degree qualia in tonality or
rhythm that, according to Huron, produce feelings of clo-
sure, tendency, and pleasure. Those qualities may be differ-
ent from emotions, at least as we have defined them, in
being undetectable consciously (Margulis & Levine, 2006)
and too weak to measure in a real-time listening context.

Some of the first empirical evidence for a link between
expectation and emotion was presented by Sloboda (1991),
who reported that musical structures like unexpected harmo-
nies can induce strong emotions. However, this finding must
be viewed as merely suggestive, because it is based only on
retrospective reports in a survey. To our knowledge, there are
only three published empirical studies explicitly linking musi-
cal expectation to emotional responses (Koelsch, Fritz, &
Schlaug, 2008; Koelsch, Kilches, Steinbeis, & Schelinski,
2008; Steinbeis, Koelsch, & Sloboda, 2006). Steinbeis et al.
and Koelsch, Kilches, et al. showed that harmonies that

contravene the principles of Western tonal harmony (presum-
ably violating listeners’ expectations) lead to increases in ret-
rospective emotion ratings and continuous tension ratings,
with corresponding increases in skin conductance but no cor-
related changes in continuous emotion rating and HR.
Employing a similar research paradigm, Koelsch, Fritz, and
Schlaug further demonstrated that irregular chord sequences
ending on a Neapolitan sixth chord instead of the tonic chord,
thus being presumably less expected, lead to bilateral activa-
tions of the amygdala (associated with negative emotional
processing) and are also rated as being less pleasant.
However, both of these studies are limited in their external
validity, because only the effects of listening to intensively
repeated and artificially recomposed chord progression end-
ings were measured and participants provided no ratings of
subjective expectation.

Aims of the study

While the idea that expectation confirmation and violation in
musical listening can induce affective responses has a vener-
able history (e.g., Meyer, 1956), quantitative empirical evi-
dence for this impact has not yet been established. We aim to
provide such evidence, using both a computational model of
auditory expectation (Pearce, 2005) and subjective ratings to
quantify the expectedness of events in a live performance of
solo flute music and to relate these measures quantitatively to
the psychophysiological emotional state of the audience.

In doing so, we address the identified limitations of previ-
ous work by using real, naturally performed compositions and
by gathering subjective unexpectedness ratings during listen-
ing. In order to increase ecological validity, the study was
conducted during a live concert using an audience response
system developed by the research team. Previous research
suggests that continuous subjective experience ratings in sim-
ilar settings can be successfully employed to assess the emo-
tional effects of large-scale music structures (McAdams,
Vines, Vieillard, Smith, & Reynolds, 2004) or audience re-
sponse to dance (Stevens et al., 2009). However, in the present
study, additional assessment of physiological indicators of
emotional experience was added. Furthermore, in contrast to
previous research on expectation and emotion, we also predict
listeners’ expectations using a computational model that is
theoretically grounded in statistical auditory learning
(Pearce, 2005). We also focus in this study on expectations
generated by complex melodic styles that have not previously
been investigated in this context.

We predicted that musical events with low conditional
probability, as compared with those with high probability,
would be experienced as unexpected and would, at the same
time, induce emotions that are manifest as changes in the
activity of all three response components measured: increased
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autonomic arousal, expressive facial muscle activity, and
subjective feeling. By identifying highly unexpected and
expected musical events using a computational model of
auditory cognition, we ensure that we include events whose
expectedness is based on implicit schematic memory and is
therefore not available to conscious introspection (Huron,
2006). However, the cognitive model can capture only the
effects of statistical learning and memory from the local
musical context and global schematic musical context. It does
not, for example, account for the effects of veridical knowl-
edge or audiovisual performance cues on expectations.
Therefore, in a second part of our analyses, we used the
continuous unexpectedness ratings of participants to identify
events in the entire performance that were highly unexpected
and tested whether they were also accompanied by emotional
reactions.

Method

Participants

Participants were recruited via several e-mail lists. They
were screened with the help of an online questionnaire
before taking part to ensure that they had some familiarity
with and preference for classical music, had normal hearing,
would show willingness to be filmed, and were willing to
wear no makeup and to shave (due to facial electrode
placement for females and males, respectively). Fifty partic-
ipants were selected (21 female), with an average age of
23 years (SD = 6 years). With the exception of two non-
musicians, all were recruited as amateur (n = 32) or profes-
sional (including university music students; n = 16)
musicians. We made this decision because, in general, mu-
sicians were assumed to be more practiced at listening to
music analytically and, thus, were presumably better at the
continuous unexpectedness rating task. They have also been
previously shown to react more emotionally to music than
nonmusicians (Grewe et al., 2009; Grewe, Nagel, Kopiez, &
Altenmüller, 2007), increasing the probability of finding
expectation-induced emotional responses. Participants were

randomly assigned to two different continuous rating tasks.
One half continuously rated their subjective feelings listen-
ing to the music, and the other continuously rated the
unexpectedness of the musical events presented. All were
paid $10 Canadian as compensation.

Stimuli description and analyses

The music was selected to represent different musical
styles, chosen from the performing musician’s current
repertoire. Table 1 presents all six pieces used in this
concert. First, two recorded flute pieces were presented
to participants to familiarize them with the continuous rating
task. Subsequently, a highly recommended flute performance
student played the other four pieces live on stage.

The computational model used to analyze this music was
set up as follows. On the basis of the composed MIDI
representation of the music, the pitch of each note in the
six pieces was predicted using a variable-order context and a
simple pitch viewpoint (i.e., no derived viewpoints such as
pitch interval, contour, or scale degree were used in
predicting pitch; cf. Pearce et al., 2005). The model was
configured using a combination of the LTM and STM (i.e., a
BOTH configuration; see description above). The LTM is
intended to reflect the schematic effects of long-term expo-
sure to music on expectations, whereas the STM is intended
to reflect the effects of online learning of repeated structures
within each individual composition. The LTM was trained
on a corpus of 903 melodies from Western folk songs and
hymns as used by Pearce and Wiggins (2006); therefore, the
expectations encoded by the LTM are for tonal music.

For each note in each melody, the model returns an
estimate of the conditional probability of the note's pitch
given the pitches appearing previously in the melody. These
probabilities are converted into information content (IC), the
negative logarithm to the base 2 of the probability, which is
a lower bound on the number of bits required to encode an
event in context (Mackay, 2003). The IC represents the
model's estimate of how unexpected the pitch of each note
is. Thus, for every piece, a time series of one IC value per
note was generated and used for further analysis.

Table 1 Music stimuli presented

Order of
presentation

Title Composer Presentation mode Duration
(min:s)

1. Acht Stücke Für Flöte Allein: VI. Lied, Leicht Bewegt Paul Hindemith recorded 0:38

2. Un Joueur de Flûte Berce les Ruines Francis Poulenc recorded 1:18

3. Density 21.5 Edgar Varèse live 3:30

4. Syrinx Claude Debussy live 2:35

5. Solo Partitas for Flute, A-minor: 2nd Movement “Corrente” Johann S. Bach live 1:53

6. Solo Partitas for Flute, A-minor: 3rd Movement “Sarabande” Johann S. Bach live 2:11
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Measurements

All participants were equipped with an iPod Touch (Apple
Inc., Cupertino, CA) that was fixed on the thigh of the
dominant leg (assessed by self-reported handedness) with
the help of a Velcro strip. Both groups of participants were
asked to keep their finger on the iPod surface during the
presentation of each complete piece.

Continuous rating of emotion

For one half of the participants, the iPod displayed an emotion
space, based on the two-dimensional emotion model with
vertical arousal and horizontal valence dimensions (Russell,
1980). The heuristic value of the two-dimensional emotion
space has been confirmed in numerous previous studies mea-
suring emotional expressions and inductions through music
(e.g., Egermann, Grewe, Kopiez, & Altenmüller, 2009;
Egermann, Nagel, Altenmüller, & Kopiez, 2009; Nagel,
Kopiez, Grewe, & Altenmüller, 2007; Schubert, 1999) and, as
a consequence, was also adopted in the present study in order to
capture participants’ emotional responses. Bymoving the index
finger of their dominant hand from left to right, participants
were instructed to indicate how pleasant the effect of the music
was (left = negative and unpleasant; right = positive and pleas-
ant). We followed Russell’s original definition of valence as
“pleasantness of the induced feeling,” instead of the also com-
monly used “emotion valence,” where participants have to rate
the valence of this emotion as it would occur in everyday life
(Colombetti, 2005). Bymoving their finger from top to bottom,
participants indicated the degree of their emotional arousal
while listening to the music (top = excited; bottom = calm).
Participants were instructed to rate their current emotional state
on both dimensions simultaneously, with the finger position at
each moment reflecting their emotional response to the piece as
they were listening. They were also asked not to rate emotions
recognized, but only their own emotional response. In order to
help participants to scale their ratings, the extremes of the rating
scales were defined to represent the extremes of participants’
emotional reactions to music in general in everyday life.

Continuous rating of unexpectedness

For the other half of the participants, the iPod displayed a one-
dimensional vertical unexpectedness rating scale, which was
developed in an internal pretest (n = 9) comparing four differ-
ent interface designs that could be used to continuously capture
expectation: (1) continuous assessment of the fit of the current
musical event to previous context (similar to Krumhansl et al.,
2000), (2) feeling of surprise (Huron, 2006), (3) continuous
rating of unexpectedness of musical events (Pearce, Ruiz, et
al., 2010), and (4) buttonpresses indicating unexpected musical
events. Interface (3) was finally chosen for the concert

experiment on the basis of participants’ evaluations concerning
ease of use and comprehensibility of instructions. In the con-
cert experiment, participants were instructed to rate continu-
ously with their index finger during the music presentation the
unexpectedness of the musical events. Both rating interfaces
and instructions employed are presented in the Appendix.

Psychophysiological measurements

Physiological measurements were recorded through 50
ProComp Infiniti (Thought Technology Ltd., Montreal,
Canada) units that were taped to the back of the participants’
seats. Each ProComp Infiniti was connected with four others
via an optical cable and an optical-to-USB converter to a
functionally expanded Asus router. This device converted
incoming signals into TCP/IP packets that were sent via
network cables to several switches that were all connected to
oneMac Pro workstation (Apple Inc., Cupertino, CA). Here, a
custom program received all data packets and stored them on
an internal hard disk. Respiration was measured using a belt
with a stretch sensor attached around the chest. Blood volume
pulse (BVP) was measured using a photoplethysmograph on
the palmar side of the distal phalange of the middle finger of
the nondominant hand. Skin conductance was measured using
electrodes on the distal phalanges of the index and middle
fingers of the nondominant hand. Expressive muscle activa-
tions were measured using two electromyography (EMG)
electrodes (MyoScan-Pro surface EMG sensors) placed on
the corrugator supercilii (associated with frowning) and
zygomaticus major (associated with smiling) muscles
(Cacioppo, Petty, Losch, &Kim, 1986). EMG electrodes were
placed on the side of the face contralateral to the dominant
hand (with positive and negative electrodes aligned with the
respective muscles and the reference electrodes placed on the
cheek bone/forehead).

Questionnaires

Participants completed questionnaires on a clipboard after
every piece, including a question about their familiarity with
the piece (rated on a 7-point scale from 1 = unfamiliar to 7 =
familiar). At the end of the concert, participants also filled in
a general questionnaire including background variables
about socio-demographic characteristics, musical training,
and music preferences.

Audiovisual recordings and analyses

Three different HD video cameras (Sony XDCAM) recorded
the entire experiment with synchronized time code. One faced
the performer, and the other two each faced a different half of
the audience in order to be able to monitor participants’ be-
havior during the experiment. Two pairs of microphones
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attached to two of the three cameras recorded the music
performed: one about 2 m away from the flute performer
(DPA 4011), and the other one binaurally using a dummy head
placed in the middle of the concert hall (Neumann KU100
Kunstkopf). The signal recorded with the DPA 4011 micro-
phones was also recorded in a low sample-rate version on the
computer together with the physiological signals in order to
synchronize behavioral and physiological data with the audio
recording, using corresponding time codes and visual identifi-
cation of the time lag between the two types of recordings. The
audio signal from the two DPA 4011 microphones was also
recorded in high quality on a MacBook Pro with an external
sound card; this high-quality recording was then used to detect
the onset times of the notes played during the concert. In this
way, all MIDI versions created from the composed score were
visually overlaid on the peak pitch display of all six audio
recordings using Sonic Visualizer (Cannam, Landone, &
Sandler, 2010). Subsequently, MIDI note events were manu-
ally aligned with the performed notes creating a MIDI repro-
duction of the performance, used to align analyses of event-
related responses of participants.

Procedure

The experiment was conducted in Tanna Schulich Recital Hall
at McGill University starting at 7:00 p.m. Participants were
asked to come in 1 hour earlier to allow enough time for
seating and sensor placement. At the entrance, they were
handed written instructions with questionnaires and the respi-
ration belt. They were shown how to fix it on their own and
were handed skin cleaning tissues to clean their face and finger
tips. Subsequently, they were assigned a seat number in the
first eight rows of seats (alternating empty rows with seated
rows to allow access to participants). The two different rating
groups were placed on alternate seats (seat 1 = emotion rating,
seat 2 = unexpectedness rating, seat 3 = emotion rating, . . .) in
order to reduce visibility of the subjective response interface
between members of the same group. After sitting down,
participants read written instructions and provided their in-
formed consent. Then a team of 10 assistants attached the
electrodes and visually tested sensor placement on the record-
ing computer’s live display of incoming signals. Afterward, the
experimenter gave a talk repeating every detail of the written
instructions (approximately 10 min long), allowing partici-
pants to ask questions about the procedure and instructions.
Subsequently, the six pieces of music were presented to par-
ticipants in the following manner. Before every piece, we
recorded 45 s of physiological baseline activity without any
stimulation (for live performed pieces without performer on
stage). Then the music was presented, and after each piece,
participants filled out the associated form. Finally, participants
filled in the final form, were detached from the sensor cables,
returned their iPods, and received their compensation. During

baseline recording and stimulus presentation, participants were
instructed not to move, so as to reduce movement artifacts in
physiological recordings.

Data analyses

Physiology

Preprocessing of all continuous signals recorded with a sam-
ple rate of 256 Hz was done in MATLAB (Mathworks,
Version 7.14.0.739). Due to technical malfunction, physiolog-
ical recordings from 2 participants could not be used. Visual
inspection of all other recordings revealed that there were no
other significant measurement errors. However, due to some
scattered sample loss in transmission to the recordingMac Pro
workstation (in the range of 12–72 dropped samples), all
signals were linearly interpolated at the original sample rate
first. This posed no problems to the analyses, since all phys-
iological signals recorded here are known to change on a
much longer timescale. Subsequently, BVP (low pass 2 Hz),
respiration activity (low pass 1 Hz), and skin conductance
(low pass 0.3 Hz) were filtered in order to remove extraneous
information, using a linear phase filter based on the convolu-
tion of a 4th-order Butterworth filter impulse response (also
convolved with itself in reverse time in order to avoid phase
shifting). Creating a measure for skin conductance response
(SCR), the phasic component of the skin conductance signal
(Boucsein, 2001), we performed linear detrending on the
corresponding recording, also in order to remove any negative
trends over time with breakpoints every 60 s (which are
caused by an accumulation of charge over time between the
skin and sensor; see Salimpor, Benovoy, Longo, Cooperstock,
& Zatorre, 2009). We extracted continuously interpolated HR
and respiration rate (RespR) in beats per minute from the BVP
and respiration signals by inversing the interbeat period
(detected by identifying adjacent minima). The MyoScan-
Pro EMG sensors automatically converted their signal to a
root mean square signal (after an internal analog rectification),
which was therefore not preprocessed any further (capturing
EMG activity at frequencies up to 500 Hz). By subtracting
from the filtered and extracted signals the mean baseline
activity in the silent 40 s preceding each stimulus presentation,
we finally removed any linear trends over the course of the
concert and individual differences in baseline physiological
activity (baseline normalization).

Continuous iPod ratings

Due to technical malfunctioning, data were missing for one
iPod emotional rating. Since only rating changes and their
corresponding time points were recorded as iPod data, we first
programmed a stepwise interpolation function to sample par-
ticipants’ ratings at a rate of 256 Hz. We subsequently checked

Cogn Affect Behav Neurosci

Author's personal copy



that all participants provided changing ratings for all pieces.
This analysis indicated that 1 participant failed to use the rating
device during piece 6, leading to the removal of the correspond-
ing data. We then removed any individual differences in scale
use by individual range normalization (dividing each partici-
pant’s rating by his or her individual range of ratings over the
entire concert and then subtracting each participant’s resulting
minimum rating value over the entire concert, creating a range
for each participant from 0 to 1).

Event-related statistical response analyses

In order to test for significant event-related changes in all
continuous responses, we employed a novel linear mixed-
effects modeling (LMM) approach (West, Welch, & Galecki,
2007), similar to a conventional linear regression analysis, that
allowed estimation of significant coefficients of predictors
controlling for random sources of variance and nonindependent
observations in the data set (autocorrelation). Furthermore, this
procedure also allowed for significance tests with high statisti-
cal power, since the event-related response data were not
averaged over conditions per participant. We included crossed
random effects for participants and two items (unexpected
events within music pieces), in a way suggested by Baayen,
Davidson, and Bates (2008). Equation 1 illustrates the general
model formulation by these authors (with random effects for
participants and one item):

yij ¼ Xijb þ Sisi þWjwj þ "ij; ð1Þ

where, yij denotes the responses of subject i to item j. Xij is the
experimental design matrix, consisting of an initial column of
ones (representing the intercept) and followed by columns
representing factor contrasts and covariates. This matrix is
multiplied by the population coefficients vector β. The terms

Sisi and Wjwj help to make the model’s predictions more
accurate for the subjects and items (pieces of music and nested
events) used in the experiment. The Si matrix (the random
effects structure for subject) is a full copy of the Xij matrix. It
is multiplied with a vector specifying the adjustments required
for subject i. The Wj matrix represents the random effect for
item j and is again a copy of the design matrix Xij. The vector
wj contains adjustments made to the population intercept for
each item j. The last term is a vector of residual errors εij,
including one error for each combination of subject and item.
As suggested by Baayen et al., all analyses were conducted
using the software R (2.13) using the lmer function from the
lme4 package (Bates, Maechler, & Bolker, 2011). Estimation
of parameters was based on restricted maximum likelihood,
and likelihood ratio tests were used to test the significance of
random effects. Significance of fixed predictors was tested
using the pamer.fnc function (Tremblay, 2011), which outputs
upper- and lower-bound p-values based on ANOVAs with
upper and lower numbers of degrees of freedom (due to the
addition of random effects to the linear model; Baayen
et al., 2008). However, due to the large sample size
investigated in this study, p-values obtained with both
degrees of freedom were never computationally differ-
ent, and only one will be reported.

Results

Evaluation of method

Since the method of conducting a live concert experiment with
psychophysiological recordings is new and may lack some
control over the experimental setting, we asked participants to
evaluate the experiment along several dimensions concerning
their experience of the experimental setting (Table 2).

Table 2 Participants’ evaluation of live concert experiment separated by continuous rating task group (n = 50)

Question Group F p

Emotion rating:
Mean (SD)

Unexpectedness rating:
Mean (SD)

1. How much did you interact with others during the pieces? 1.28 (0.67) 1.32 (0.69) 0.04 .84

2. How much did you interact with others between the pieces? 1.48 (0.77) 1.5 (0.89) 0.01 .93

3. Did you feel comfortable in the listening situation? 3.52 (1.12) 3.48 (1.08) 0.02 .90

4. Were your emotional responses influenced by the other people in the room
during music listening?

1.6 (0.96) 1.38 (0.64) 0.92 .34

5. Did the other music listeners distract you from music listening? 1.4 (0.76) 1.25 (0.53) 0.63 .43

6. Did the iPod rating affect your listening negatively? 2.33 (1.01) 2.21 (1.25) 0.15 .70

7. How intuitive was the iPod rating? 3.44 (0.96) 3.17 (1.17) 0.8 .37

8. Indicate the degree to which the sensors interfered with your listening to the piece. 2.36 (1.04) 2.52 (1.45) 0.2 .66

Note. Q1–Q8: one-factorial (emotion vs. unexpectedness rating group) ANOVAs. Rating scales were labeled as follows: for Q1–Q2, 0 = very little,
5 = very strongly; for Q3–Q7, 0 = very little, 5 = a lot; and for Q8, 0 = “No interference,”, 6 = “A great deal of interference.”
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Participants rated their own degree of interaction with each
other and distraction by others to be very low. This rating was
also validated through inspection of the video recordings of
participants. No one had to be excluded for not following the
instructions. They also indicated, on average, that they felt quite
comfortable in the listening situation and that they had not been
influenced by the presence of other people in the concert.
Finally, they reported that continuous iPod ratings probably
did not influence their experience negatively (group mean
was slightly lower than the middle of the rating scale), and
the rating device was rather intuitive (group mean was higher
than the middle of the rating scale). Interference of sensors with
listening was also rated to be low, on average. There were no
significant differences on any of those rating scales between the
two groups with different continuous rating tasks (emotion vs.
unexpectedness rating). In summary, both groups understood
their rating tasks reasonably well and indicated that their
reported results were not influenced much by the experimental
aspect of the musical setting.

The following section, testing the proposed hypotheses, is
structured in the following stages. First, we identify musical
events corresponding to outstanding peaks of IC and subjec-
tive expectation across the entire concert. Then we test wheth-
er IC at these peak events predicts changes in unexpectedness
ratings. Next, we test whether those segments identified as IC
and subjective unexpectedness peaks also predict changes in
psychophysiological response measures of emotion.

Identifying unexpected and expected moments

In order to identify very unexpected or very expected events in
the music, the single note events presented to participants
were grouped into short segments to ensure that the epochs
selected for our subsequent analyses would be long enough to
elicit a response in participants. Therefore, a trained music
theorist carried out a motivic analysis on all six music pieces,
identifying coherent melodic units segmented at a level of
about one to two measures per unit. She identified 193 seg-
ments that were, on average, 3.7 s (SD = 2.5 s) long. These
segmentations were compared with the independent analyses
of a second music theorist and showed a high similarity. We
then calculated, for each segment, the mean IC of all notes
within that segment and the mean of the unexpectedness
ratings. In order to identify very unexpected moments in
corresponding individual ratings, we first differentiated them
(using the diff function in MATLAB) and then averaged
across the entire group of raters (indicating segments with
high increases or high decreases in corresponding ratings).
Figure 1 illustrates the results of this segmentation for the third
piece presented (Density 21.5 by Edgar Varese). The first row
presents the IC of each note, and the second row contains the
corresponding averaged IC per segment. Rows 3 and 4 present
participants’ unexpectedness ratings (third row, group mean;

fourth row, mean of rating change per segment). High rating
values correspond to the experience of unexpected events,
whereas low values correspond to expected events.

Subsequently, we identified peak segments in both the
averaged IC and unexpectedness rating time series by com-
puting percentages of corresponding distributions across the
entire concert. We excluded segments that were too close to
the beginning or the end of pieces to extract event-related
response time windows (see below), leaving 183 segments
in the data set. Since participants already showed consensual
responses in continuous ratings in the first two practice pieces,
we also decided to include those two in these analyses.
Figure 2 presents the distributions of all segments for mean
IC and mean unexpectedness ratings for all six pieces.
Segments with corresponding values higher than the 90th
percentile of their distributionwere classified as high-IC peaks
(n = 18)/very unexpected moments (n = 19). Segments with
values lower than the 10th percentile of their distribution were
classified as low-IC troughs (n = 19)/very expected moments
(n = 18). The dashed lines in Fig. 2 illustrate the corresponding
percentile thresholds. Table 3 presents a cross-tabulation of
the resulting two segment variables, coding each segment as a
peak, a trough, or not used for both IC and unexpectedness
ratings. Several segments were identified as peaks or troughs
in both the IC and the unexpectedness ratings. Pearson’s chi-
squared test identified that at this level of analysis, there was a
significant association between IC event type and unexpect-
edness rating event type, χ2(4) = 27.2, p < .001. Table 4
presents a cross-tabulation of the resulting segment variables
and piece. Peak and trough segments identified by unexpect-
edness ratings were evenly distributed across the six pieces of
music. However, peak and trough segments identified by IC
were not as equally distributed: Half of the high-IC segments
came from the third piece (Density 21.5).

Figure 1 also includes labels identifying peak IC and sub-
jective expectation segments. For example, segment (a) was
identified only as a high-IC peak, whereas segments (d) and
(e) were identified as peaks on both analyses (see also corre-
sponding score excerpts). Segments (b) and (c) were identified
in the continuous unexpectedness ratings as very expected,
presumably because they included repetitions of one of the
main motives (sharing a similar rhythmic and pitch structure
on the first three notes). This example piece contained no
segments that were identified as a low-IC trough.

Testing for IC event-related changes in unexpectedness
ratings

Subsequently, we tested whether the onset of the previously
identified high-IC peaks or low-IC troughs led to a change
in continuous unexpectedness ratings, employing the
previously described LMM approach using only a sub-
set of response data including the identified peak and
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trough segments. Therefore, we extracted all partici-
pants’ individual mean unexpectedness rating for seven
1-s windows starting 1 s before the onset of the IC
peak segments tested. This window size was chosen
because previous research had shown that buttonpress
response times to unexpected notes are about 2–3 s
(Pearce, Ruiz, et al., 2010), so a 6-s-long postevent
time window was assumed to be long enough to capture

participants’ event-related continuous rating changes.
The estimated model followed Equation 2:

response ¼ b0 þ b1 � time� b2 � event typeþ b3

� time� event typeþ random effects: ð2Þ
Predictors were time, with values from 1 to 7, representing

1 s before the onset of the segments tested to 6 s after that

Fig. 2 Histograms of mean
information content (IC) or
average change in
unexpectedness ratings per
segment over the entire concert
(n = 183). H = high-IC or
unexpectedness rating peak
segments (higher than 90 % of
the frequency distribution), L =
low-IC or expectedness rating
trough segments (lower than
10 % of the frequency
distribution). Segments
between L and H were not
included in further analyses

Fig. 1 Plot of information content (IC) and average unexpectedness
ratings forDensity 21.5 by Edgar Varèse. Vertical lines represent segment
boundaries. First row, IC per note; second row, mean IC per segment;
third row, group mean of unexpectedness ratings (n = 25); fourth row,

mean of change in groupmean of unexpectedness rating per segment. H =
high IC or unexpectedness rating peak segments, L = low IC or unex-
pectedness rating trough segments. (a), (b), (c), and (d) present musical
score excerpts for the selected example peak/trough segments
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segment onset, and event type, a dummy variable coding high-
IC events (with 1) or low-IC events (with 0). The models
furthermore included an intercept, an interaction term for both
main effects, and several random effects, modeling the random
correlation in the data set (random intercepts and slopes for
each participant). Figure 3 presents group averaged unexpect-
edness ratings as a function of time, separated by the two
predictor variables (n = 6,475). As can be seen, in addition to
a main effect of event type (in general, ratings for high-IC
segments were higher than ratings for low-IC segments), the
onset of the high-IC event led to an increase in unexpectedness
ratings, as compared with the low-IC event peaks. LMM fixed-
effects coefficients were estimated as b0 = .40 (intercept), b1 =
−.0013 (time), b2 = .0096 (event type), and b3 = .0093 (time ×
event type interaction). The significance of predictors was
subsequently tested with F-tests, indicating that b1 and b3 were
significantly different from zero [b1, F(1, [6328–6471]) = 8.70,
p = .003; b2, F(1, [6328–6471]) = 2.07, p = .15; b3, F(1, [6328–
6471]) = 19.87, p < .001, where the numbers in square brackets
represent the range of degrees of freedom due to the addition of
random effects to the model]. Significant random effects were
included as random intercepts for each participant, peak seg-
ment, and piece, as well as random slopes for all fixed effects
within participants (based on chi-squared likelihood-ratio tests).
Since we were interested only in event-related changes in these
analyses, we will not interpret any main effect of event type,

because these might be due to the context of the peak segments
investigated, and not to responses caused by their onset. In
summary, therefore, as was expected, the onset of any IC peak
was modeled as leading to a slight decrease in unexpectedness
ratings (as reflected in the negative b1 coefficient and possibly
the onset of low-IC troughs), and for high-IC peaks (>90th
percentile), there was a significant increase (due to the signif-
icant interaction term b3 between time and event type).

Testing emotional effects of high-IC peak versus low-IC
trough segments

Following this LMM specification, we subsequently ran sev-
eral similar analyses, testing for significant change in affective
psychophysiological response measures after the onset of
those previously identified IC peak moments. Response vari-
ables were all continuously recorded measures of emotion:
arousal ratings, valence ratings, SCR, HR, RespR, and EMG
from the corrugator and zygomaticus muscles. Predictors were
again time (seven levels from 1 s before to 6 s after onset) and
event type (a dummy variable: high-IC peak = 1, low-IC
trough = 0). The models furthermore included an intercept,
an interaction term for both main effects, and several random
effects, modeling the random correlation in the data set (ran-
dom intercepts for participants, peak segments, and pieces,
plus random slopes for all predictors within participants).

Table 3 Cross-tabulation of
frequency of segments in unex-
pectedness rating event type
separated by information content
event type

Mean information content Total

Low trough
(<10th percentile)

High peak
(>90th percentile)

Not used

Very expected (<10th percentile) 3 2 13 18

Very unexpected (>90th percentile) 0 8 11 19

Not used 16 8 122 146

Total 19 18 146 183

Table 4 Cross-tabulation of frequency of segments separated by IC or unexpectedness rating event types and music pieces

Piece (presen-tation no.) Frequency of segments: Analyses based on IC Frequency of segments: Analyses based on unexpectedness ratings

Low trough
(<10th percentile)

High peak
(>90th percentile)

Not used Very expected
(<10th percentile)

Very unexpected
(>90th percentile)

Not used

1. 0 2 14 3 2 11

2. 2 2 8 1 1 10

3. 0 9 29 5 5 28

4. 4 3 35 5 7 30

5. 5 0 41 1 1 44

6. 8 2 19 3 3 23

Total 19 18 146 18 19 146

Note. Total n = 183.
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As can be seen in Fig. 4 (upper row), there was an event-
related change in subjective feelings after the onset of those
IC peak moments. Arousal ratings significantly increased
and valence ratings significantly decreased for high-IC peak
segments, as compared with low-IC trough segments (indi-
cated by corresponding significant interaction terms be-
tween time and event type in the LLM results; Table 5,
upper row). Although there were event-related changes in
recordings of expressive facial movements (Fig. 4, lower
row), LLM estimates show that for both EMG measures
(corrugator and zygomaticus activity), no predictors were
estimated as significant (Table 5, lower row).

Measures of autonomous nervous system (ANS) activity
did show event-related changes corresponding to the onset
of high- and low-IC segments (Fig. 5). In contrast to low-IC
events, high-IC events were accompanied by increases in
SCR and a decrease in HR. For SCR, there was only a
significant interaction term (Table 6, upper row). For HR,
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Fig. 3 Plot of mean unexpectedness ratings as a function of time, sepa-
rated by event type (high information content (IC) segments, n = 18, vs.
low IC segments, n = 19). Segment onset is between seconds 1 and 2
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both event types showed a significant event-related decrease
(Table 6). However, if only seconds 1 to 4 were evaluated, a

significant negative interaction coefficient was found, indicat-
ing a difference in responding to high-IC, as compared with

Table 5 Linear mixed effects modeling (LMM) coefficient estimates for event-related change in subjective feeling and facial EMG predicted by IC
event type (high- vs. low-IC segments), time (seconds 1–7), and their interaction

Fixed-effects coefficients F Fixed-effects coefficients F

Subjective feeling

Arousal ratings Valence ratings

b0 (intercept) .49 – .61 –

b1 (time1) −.001** 8.57 .002 0.13

b2 (event type
2) .01 1.49 .01 0.05

b3 (time × event type3) .01*** 16.27 −.005* 4.88

Facial EMG

Corrugator activity Zygomaticus activity

b0 (intercept) 5.10 – 2.36 –

b1 (time1) .02 1.44 .01 0.01

b2 (event type
2) −.19 0.6 −.06 0.57

b3 (time × event type3) .001 0 −.02 0.39

Note. 1 Seconds 1–7. 2 Dummy variable: 1 = high-IC peak, 0 = low-IC trough. 3 Interaction term. Results of F-test (subjective feeling, df1 = 1, df2 =
6,003–6,142; EMG, df1 = 1, df2 = 12,193–12,428): *p < .05,**p < .01,***p < .001. The following random effects were included: (1) random
intercepts for participants, pieces, and segments, (2) random slopes for time, event type, and time × event type (all within participants).
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low-IC, events (Table 6, lower row). The initial decrease
associated with high-IC peaks was stronger. Although RespR
appeared to increase after both event types (Fig. 5), the corre-
sponding predictors were not significant in LMM (Table 6).

Testing emotional effects of unexpected peak versus expected
trough segments

We subsequently ran several LMM analyses, testing for sig-
nificant change in emotional response measures after the onset
of the previously identified peak moments in listeners’ con-
tinuous unexpectedness ratings. The response variables were
again all continuously recorded psychophysiological mea-
sures presumed to be related to affective response. Predictors
were again time, event type, and their interaction. Event type
was a dummy variable coding very unexpected events (1) and
very expected events (0). The models furthermore included
intercepts and the same random effects used above, modeling
the random correlation in the data set.

As can be seen in Fig. 6 (upper row), there was an event-
related increase in arousal ratings after the onset of those
unexpected peak segments and a decrease in arousal after
very expected events. This observation was also supported
by a corresponding significant negative effect of time and a
significant positive interaction term between time and un-
expected events (Table 7, upper row). No event-related
changes in valence and EMG activity were significant here
(Table 7, lower row).

Similar to peak events identified with IC analyses, markers
of ANS activity also showed a significant event-related
change corresponding to the onset of very unexpected and
very expected peak moments. For both types of segments, an
increase of skin conductance is indicated in Fig. 7 (upper
row). In the LMM, a main effect of time was significant, but

not the interaction with event type (Table 8, upper row). HR
also decreased after the onset of very unexpected segments
(Fig. 7, upper row), and the corresponding interaction between
time and event type was significant (Table 8, upper row).
Finally, for RespR, a significant decrease was observed for
expected events (indicted by a significant negative main effect
of time), whereas for unexpected events, RespR increased
(Fig. 5, lower row). This difference between unexpected and
expected events was illustrated by a significant positive inter-
action term between time and event type (Table 8, lower row).

Discussion

The experiment tested three main hypotheses. First, it was
proposed that information-theoretic analyses could predict
whether participants perceived particular segments of the mu-
sic presented as expected or unexpected. Second, it was pre-
dicted that, as compared with low-IC segments, high-IC peak
segments would be associated with event-related changes in
measurement of the three emotion components subjective
feeling, peripheral arousal, and expressive behavior. Third, it
was hypothesized that similar activations would be associated
with segments that were identified as subjectively very unex-
pected, as compared with those identified as very expected.
All three hypotheses were partially corroborated.

Focusing on segments with extreme IC values, IC was
associated with ratings of subjective expectation on two levels
of analysis. First, a cross-tabulation of segments corresponding
with peaks in IC and unexpectedness rating showed a signif-
icant association between them. Second, continuous unexpect-
edness ratings significantly increased after the onset of high-IC
peaks and decreased after the onset of low-IC troughs.
Therefore, these findings confirm the validity of the cognitive

Table 6 Linear mixed effects modeling (LMM) coefficient estimates for event-related change in ANS and respiration rate measures predicted by
IC event type (high- vs. low-IC trough segments), time (second 1–7), and their interaction

Fixed-effects coefficients F Fixed-effects coefficients F

Skin conductance Heart rate (time = 1–7)

b0 (intercept) .002 – .875 –

b1 (time1) −.001 0.09 −.052*** 11.35

b2 (event type
2) −.024 0.57 −.547* 4.14

b3 (time × event type3) .009*** 9.38 −.038 0.94

Respiration rate Heart rate (time = 1–4)

b0 (intercept) −.197 – .533 –

b1 (time1) −.051 0 .135 0.03

b2 (event type
2) .485 2.62 −.189** 6.21

b3 (time×event type3) .086 1.72 −.264** 8.42

Note. 1 Second 1–7. 2 Dummy variable: 1 = high-IC peak, 0 = low-IC trough. 3 Interaction term. Results of F-test (time = 1–7, df1 = 1, df2 =
12,193–12,428; time = 1–4, df1 = 1, df2 = 6,865–7,100): *p < .05,**p < .01,***p < .001. The following random effects were included: (1) random
intercepts for participants, pieces, and segments, (2) random slopes for time, event type, and time×event type (all within participants).
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model used to predict listeners’ expectations, replicating pre-
vious studies (Omigie et al., 2012; Pearce, Ruiz, et al., 2010;
Pearce & Wiggins, 2006) and confirming assumptions about
the role of statistical learning in creating expectations.

The second hypothesis was partially supported, in that
high-IC, as opposed to low-IC, segments were associated
with changes in two components of emotion. First, arousal
increased and valence decreased for high-IC segments.
Second, high-IC segments were also associated with
changes in peripheral arousal as indicated by increases in
SCR and decreases in HR. No event-related changes were
found in RespR or EMG measures of expressive activity in
the corrugator and zygomaticus muscles. Considering the
event-related psychophysiological responses together, their
response patterns may be understood in terms of the “de-
fense response cascade” described by Lang, Bradley, and
Cuthbert (1997). This reaction pattern is usually induced

when highly arousing aversive stimuli are encountered. A
general increase in arousal (also indicated by an increase in
skin conductance) is accompanied by an initial fast decrease
in HR that represents a freezing response, functioning to
allocate attention. This orienting period is then followed by
an increase in HR that indicates increased sympathetic dom-
inance preparing for adaptive fight or flight behavior (circa-
strike period). Thus, the observed emotional effects of un-
expected melodic events may be interpreted as being medi-
ated by this affective response mechanism.

The third hypothesis, concerning the induction of emotional
reactions by very unexpected segments, was also partially
corroborated. Here, due to the use of continuous unexpected-
ness rating changes as an identifier of peaks, we were able to
compare effects of very unexpected to very expected moments.
Unexpected events induced a psychophysiological reaction
pattern that was very similar to those of high-IC peaks, with
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Fig. 6 Plot of subjective
feeling ratings and facial EMG
measurements as a function of
time, separated by event type
(very unexpected segments, n =
19, vs. very expected segments,
n = 18). Segment onset is
between seconds 1 and 2
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Table 7 Linear mixed effects modeling (LMM) coefficient estimates for event-related change in subjective feeling and facial EMG predicted by
event type (unexpected vs. expected segment), time (second 1–7), and their interaction

Fixed-effects coefficients F Fixed-effects coefficients F

Subjective feeling

Arousal ratings Valence ratings

b0 (intercept) .55 – .59

b1 (time1) −.0001*** 7.05 .003 0.21

b2 (event type
2) −.07 2.87 .03 0.32

b3 (time × event type3) .01*** 12.37 −.004 3.38

Facial EMG

Corrugator activity Zygomaticus activity

b0 (intercept) 5.11 – 2.33 –

b1 (time1) .01 0.38 .002 0.02

b2 (event type
2) −.14 2.37 −.04 0.27

b3 (time × event type3) −.002 0.02 −.003 0.02

Note. 1 Second 1–7. 2 Dummy variable: 1 = very unexpected, 0 = very expected. 3 Interaction term. Results of F-Test (subjective feeling,
df1 = 1, df2 = 5,996–6,135; EMG, df1 = 1, df2 = 12,193–12,428): *p < .05. **p < .01. ***p < .001. The following random effects
were included: (1) random intercepts for participants, pieces, and segments; (2) random slopes for time, event type, and time × event
type (all within participants).
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increased arousal and SCR and decreased HR. However, dif-
ferent from high-IC peaks, there was no associated effect on
valence ratings, and RespR also significantly increased after the
onset of unexpected peakmoments. Furthermore, even for very
expected segments, SCR significantly increased after the event
onset. For both event types, very unexpected and very expected
measures of EMG showed no event-related responses. Thus, all
analyses in this study failed to show any IC- or expectation-
related responses in EMG recordings. However, other research
has elicited affective event-related facial EMG responses to
computer gaming (Ravaja, Turpeinen, Saari, Puttonen, &
Keltikangas-Järvinen, 2008) and to pictures or sounds
(Bradley, Moulder, & Lang, 2005). But to our knowledge, for
music, only tonic effects on EMG measurements have been
shown to date by testing activation measures of entire stimulus
sequences (Lundquvist et al., 2008).

In summary, these results corroborate parts of the theory
proposed by Huron (2006). Statistical properties of melodic
events and moments of strong expectation or surprise created
prediction responses that were correlated with several emo-
tional response components. By identifying expectation-
related events in two ways (with the help of statistical analyses
and subjective unexpectedness ratings), we were able to show
that, independently of this identification mode, similar psycho-
physiological responses were observed for segments that were
subjectively unexpected and segments that were unpredictable
according to the computational model of auditory expectation
(Pearce, 2005). Thus, modeled expectations based on short-
and long-term memory generate responses similar to those that
are also consciously represented in participants’ experiences.

These findings extend those of Steinbeis et al. (2006),
Koelsch, Kilches, et al. (2008), and Koelsch, Fritz, and
Schlaug (2008) to melodic stimuli heard in an ecologically
valid concert settingwith quantitativemeasures of expectedness

supplied by a cognitive model (Pearce, 2005). Violations and
confirmations of musically induced expectations were associ-
ated with affective psychophysiological activations in several
response components. Like Steinbeis et al., we found general
increases of physiological arousal for very unexpected mo-
ments, and at the same time, Koelsch, Fritz, et al. (2008)
interpretation of their fMRI data, in which unexpected mo-
ments induce unpleasant feelings, was corroborated, because
high-IC segments induced a decrease in valence ratings.
(However, the effects of unexpected events, identified by sub-
jective unexpectedness ratings, on valence or pleasantness were
less clear, and no event-related EMG activations were found for
IC or unexpectedness peaks.) The negatively valenced effects
of high-IC events may also depend on the stimuli used and the
population investigated. Half of the high-IC events identified
here were in the pieceDensity 21.5, and thus the valence effects
associated with them were more strongly associated with this
piece than with the others. Different participants listening to
different stimuli might interpret expectancy violations differ-
ently. AsHuron (2006) notes, violations of expectations that are
originally negatively valenced may be evaluated positively by
subsequent appraisal responses potentially based on individual
evaluation criteria, thus leading to contrastive valence.

To summarize, the findings of this study extend previous
research on physiological responses to musical expectations
in four ways.

First, in contrast with previous research focusing on
harmonic expectations in Western tonal music, we focused
on expectations in melody, which is arguably a more uni-
versal aspect of musical structure.

Second, we quantified predictability in our stimuli using
a computational model of auditory expectation making
probabilistic predictions based on statistical learning of mu-
sic structure (Pearce, 2005). Our analysis of the effects of

Table 8 Linear mixed effects modeling (LMM) coefficient estimates for event related change in ANS and respiration rate measures predicted by
event type (unexpected vs. expected segments), time (second 1–7), and their interaction

Fixed-effects coefficients F Fixed-effects coefficients F

Skin conductance Heart rate

b0 (intercept) −.01 – −.03 –

b1 (time1) .01*** 11.61 .05 0.64

b2 (event type
2) −.03* 5.59 .40 0.41

b3 (time × event type3) −.003 0.38 −.13** 10.57

Respiration rate

b0 (intercept) .15 –

b1 (time1) −.03* 5.33

b2 (event type
2) −.61 0.91

b3 (time × event type3) .18* 5.27

Note. 1 Second 1–7. 2 Dummy variable: 1 = very unexpected, 0 = very expected. 3 Interaction term. Results of F-test (df1 = 1, df2 = 12,193–12,428):
*p < .05. **p < .01. ***p < .001. The following random effects were included: (1) random intercepts for participants, pieces, and segments; (2)
random slopes for time, event type, and time × event type (all within participants).
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expectation on psychophysiological measures of emotional
response using this model were compared with an analysis
using subjective measures of expectation. There was signif-
icant overlap between these two approaches because some
events corresponded to expectation peaks in both analyses,
and there was also a significant increase in unexpectedness
ratings after the onset of high-IC events. However, the
measures also allowed us to study expectation in two dif-
ferent ways. We were able to test, first, for the effects of the
implicit statistical structure of the music presented and,
second, for those expectation-related musical structures that
were not captured by the computational modeling approach.

Third, our approach allowed us to test for emotional effects
of very expected moments. Huron’s (2006) theory of emotion
and expectation describes two outcomes of the prediction
response: one negative, penalizing incorrect predictions, and
one positive, rewarding correct predictions. Here, for the first
time, we tested whether emotional responses were induced
when participants were able to make correct predictions. The
results indicated divergent changes in physiological and sub-
jective components of arousal (increase in SCR, decrease in
RespR, and decrease in subjective arousal).

Finally, our experiment was conducted in a concert set-
ting using live performance of actual compositions. To the
best of our knowledge, this study is among the first to
explicitly test for music-induced emotions with psychophys-
iological measures in a live concert situation. In doing so, it
is unique in two ways. For the first time, the emotional
effects of music have been investigated in an experimental
field setting, employing measures of several emotion com-
ponents in parallel: Subjective feelings, expressive behavior,
and peripheral arousal were continuously monitored
throughout the concert. Additionally, the study employed
performances of actual compositions from the repertoire of
Western art music spanning several styles and historical
periods. This allows us to generalize results from laboratory
environments often using artificial stimuli that are pale re-
flections of real performed music. Conducting research in
natural listening contexts may be important, since previous
research has shown that emotional responses to music are
sensitive to the presence of other people (Egermann et al.,
2011; Liljeström et al., 2012). As far as we know, there is
only one previous exploratory study taking psychophysio-
logical measures from a very limited number of participants
(3) to investigate emotional effects of Leitmotifs from a
Wagner opera performed in Bayreuth, Germany (Vaitl,
Vehrs, & Sternnagel, 1993).

Limitations and future research suggestions

The naturalistic and ecologically valid methodological ap-
proach employed in this investigation also entailed several
potential weaknesses that should be considered. First, in

conducting a study within a concert context, we lacked
some control over the participants’ actual behavior.
Although instructed not to do so, participants might have
been distracted or otherwise influenced by interaction with
peers during the study. We took measures against this pos-
sibility by asking them to rate their own degree of focus and
monitored them visually throughout the concert; no partic-
ipants had to be excluded on the basis of these criteria.
Another potential weakness is that because we used actual
complex compositions, the selected segments varying in
degrees of expectation and IC might actually differ in other
respects related to expressive performance (including per-
former’s gestures). However, we tried to eliminate these
differences by sampling participants’ responses over several
segments of each expectation/IC condition.

Future research might explore complementary ways of
ensuring that the emotional responses are related specifical-
ly to expectations based on the musical structure, and not
any other underlying covarying performance feature. This
could be done through more controlled laboratory research
where the music is recomposed to systematically vary the
degree of expectedness of the music using IC as a quantita-
tive indicator of expectations. One could also remove any
features associated with the music performance (tempo,
dynamics, or timbre) and test whether findings comparing
the different event types are replicable. Computational
modeling could also be improved, since only a limited
number of viewpoints representing the music were
employed in this study. In future research, it would be
interesting to investigate the effects of derived features such
as scale-degree or timing information on the quantitative
modeling of expectation-related emotional responses.

In this study, analyses were based on a segmentation
provided by two music theorists. In future research,
segmentation might be also based on the IC itself, since
phrase boundaries have been shown to be perceived
before notes with very high IC (Pearce, Müllensiefen,
& Wiggins, 2010). Furthermore, average IC across a
segment might not be representative for all notes within
one segment. Individual unexpected notes might also be
effective in inducing emotional responses, as was con-
firmed by preliminary analysis of this data set (not
presented here).

We also tested for different lengths of response windows
from segment onset and decided that 6 s after segment onset
provided optimal results, since segments were, on average,
3.7 s (SD = 2.5 s) long and previous research indicated that
subjective and physiological response measures have time
lags between 2 and 3 s (Pearce, Ruiz, et al., 2010; Ravaja et
al., 2008). However, if no significant effects were reported
for 7-s-long response windows, we also tested with 4-s-long
windows. If the results did change, they were reported (e.g.,
HR analyses).
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Finally, future analyses could also test for individual
differences in participants’ emotional responses to viola-
tions of expectations, which were beyond the scope of this
study due to space limitations. Emotional reactions to music
have been shown to have a high interindividual variance
(Grewe, Nagel, Altenmüller, & Kopiez, 2009–2010) that
may be explained by interindividual differences in music-
related syntactical knowledge creating different expecta-
tions in different listeners.

Conclusions

On the basis of statistical modeling and on subjective mea-
sures of expectation, this study showed that violations of
structural expectations in live music performance induced
emotional reactions in listeners, with associated activations
in two different response components: subjective feelings
and peripheral arousal. This study extends previous re-
search to a greater range of psychophyisological re-
sponses to melodic expectations induced in a live
concert experiment. There was also limited support for
two additional findings. Unexpected musical moments
induced unpleasant feelings (only in IC-based analyses),
and highly expected segments also produced physiolog-
ical responses (changes in SCR and RespR).

These results contribute evidence to discussions
concerning the ability of music to induce fully component-
synchronized emotions by itself (Cochrane, 2010). Here,
musical structures and their performances induced varying
degrees of predictability that, in turn, had effects on several
levels of emotion measurement, supporting the emotivist
position described above. Finally, we note that we under-
stand expectation as being only one of many mechanisms
that might be involved in creating emotional responses to
music (Juslin & Västfjäll, 2008). Therefore, we have fo-
cused on analyzing events in the music that were relevant to
this mechanism, corroborating the often-predicted link be-
tween expectation and emotion in music (Meyer, 1956,
1957). Our results advance research on music-induced emo-
tion by taking it beyond exploratory studies, like those cited
in our introduction, to the next scientific level of formulating
and testing theoretical mechanistic models that generate
falsifiable hypotheses.
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