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CHAPTER 1
Introduction

Fluid motion, including waves and turbulence, in the atmosphere and oceans can

to a good approximation be thought of as a superposition of balanced and unbalanced

flows. Balanced flows are slowly varying (time scales of 10 hours and longer) whereas

unbalanced flows evolve more quickly. The term balance refers to an approximation

to the horizontal momentum equation in which (fast) time derivative terms are ig-

nored. The simplest and most widely used example is the quasi-geostrophic (QG)

approximation, in which the leading order momentum balance has the horizontal

pressure gradient and Coriolis forces summing to zero.

The theories of geostriphic turbulence ([3] ,[8],[7]) suggest that energy enters at

large scales in the baroclinic mode and undergoes a direct cascade to the deformation

radius-like scale where both baroclinic and barotropic modes are excited. Energy

then transfer from baroclinic to bartrophic mode and undergoes an inverse cascade

in the barotropic mode until it is removed through large scale dissipation, such as

bottom friction. The β effect may also alter this isotropic view of the barotropic

inverse cascade at large scales. This scenario, referred is called ”dual cascade”, is

summarized in Figure 1–1. How this classical picture can be modified by the other

factors like thermobaricity and vertical structure of jets in β-plane turbulence, we

will be looking at this in next two Chapters.

Thermobaricity arise from nonlinear equation of state breaks conservation of po-

tential vorticity (PV) even without viscous and dissipation effect. Balance dynamics

is strongly connected to potential vorticity. Due to nonconserveness of enstrophy,
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Figure 1–1: Schematic of the ”dual cascade” view of energy transfers in baroclinic
turbulence [8]. Energy enters at large scale in the baroclinic mode. There is a direct
cascade of energy in the baroclinic mode. Transfer to the barotropic mode occurs
near the deformation radius through baroclinic instability. Energy then undergoes
an inverse cascade in the barotropic mode until it is removed through large scale
dissipation, such as bottom friction.

energy may allow to move to down scales. This is important since in QG turbulence,

energy dissipation is dominated by bottom friction at large scale. In Chapter 2, a

modified version of QG (MQG) is proposed to analyze how thermobaricity interrupts

those classical picture.

Dynamics of zonal jets in many previous studies has been evaluated from baro-

ropic flow. The introduction of β also modifies, Figure 1–1, the isotropic view of the

barotropic inverse cascade at large scales but this scales are not well defined. Re-

cently, vertical structure of jets is observed. Now, question arises, does this vertical

structures of jets effect the scales? Surface quasigeostrophic (SQG) dynamics and β

plane turbulence with vertical structure will be discussed in Chapter 3.
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CHAPTER 2
Modeling Thermobaric Effect on Quasigeostropihic Dynamics in the

Ocean

2.1 Introduction

The equation of state of sea water is an empirical relationship between density

ρ, pressure p temperature θ and salinity s. It is high nonlinear, but mainly two

features are important: cabbeling and thermobaricity. Although, cabbeling plays an

important role in the ocean, only the thermobaric effect would be discussed in this

chapter.

The word Thermobaricity was first introduced by McDugall [11]. Thermo

means temperature and baric means pressure and it relates to compressibility of

sea water depending on pressure, temperature and salinity, however, dependency of

salinity is weak. Because of thermobaric effect, a nonconservation arises in the Ertel’s

potential vorticity even without viscous and dissipation effect. This is an interest

of balance dynamics, since balance dynamics is strongly link to potential vorticity.

Here, we have considered this in quasigeostrophic (QG) context and are proposing

a modified version of QG (MQG) that takes into account thermobaric effects. The

MQG equations include an advection-diffusion equation for ”spice”; that is, for the

temperature-salinity composition of the water. Details will be discussed in Section

2.3.

Lateral variability of spice affects the base state buoyancy frequencyN2(x, y, z, t),

which can no longer be thought of as a function of z alone. Because of this, the three

dimensional elliptic inversion cannot be separated into two dimensional inversions
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for each vertical mode. A three dimensional multigrid method is used to solve the

elliptic equation.

Straub [2] suggested by his scale analysis that the thermobaricity can lead to

O(1) changes in the vorticty distribution at the high wave number end of the spec-

trum and also can effect large scale flow. He also suggests that it may be unimportant

in the upper ocean but may not be true in the deep ocean.

Thermobaricity is important for the studies of convection in deep oceans [6] such

as Weddell Sea. Also, this effect is important at fronts between water masses in the

world’s oceans.

A numerical technique for MQG to handle this, as well as results are presented

in Section 2.4.

2.2 Equation of State and Thermobaricity

The equation of state specifies the density ρ is a function of pressure p, potential

temperature θ, and salinity s

ρ = f(p, θ, s) (2.1)

The orientation of the isopycnal in a θ − S diagram changes with pressure with a

slope m,

m =
γ∂s

ϕ∂θ
(2.2)

where ϕ = −1
ρ
∂f
∂θ
, γ = 1

ρ
∂f
∂s

are the thermal (ϕ)and haline (γ) expansion coefficients

respectively. The change of the slope from one pressure level to another level

∂m

∂p
= 2mb (2.3)

4



where

b =
1

2

(
1

γ

∂γ

∂p
−

1

ϕ

∂ϕ

∂p

)

(2.4)

It is known that ∂f
∂p

= 1
c2
, therefore, the change of slope is related to the de-

pendence of sound velocity c. The physical meaning of changing in slope is, having

same density of two fluid particles at a pressure level will differ at another level. This

pressure dependency in equation of state is called thermobaricity.

The potential density σ is

σ = g(pref , θ, s) (2.5)

in a reference pressure pref . As σ does not vary with p, therefore, ∂m
∂p

= 0 as b = 0,

implies that σ referenced to one pressure can be written as a function of σ referenced

to another. In general, there is no reason to expect b = 0.

2.3 Modified Quasigeostrophic (MQG) Approximation

As we are considering pressure dependency, then the buoyancy frequency is

N2 =
g

ρ0

dρ̄(z)

dz
−
g2

c2
(2.6)

Here, ρ̄(z) is the base state stratification. We can separate c as a function of z

and (x, y, z), [c ≈ c0(z) + c1(x, y, z)] and the base state buoyancy frequency can be

written as [2]

N2(x, y, z, t) = N2
0 (z) +N2

1 (x, y, z, t) = (1 + α)N2
0 (2.7)

where

N2
0 =

g

ρ0

dρ̄

dz
−
g2

c20
, N2

1 =
2g2

c20

c1
c0
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The ratio (α) of N2
1 and N2

0 is a nondimentional parameter that measures the impor-

tance of thermobaricity. This parameter α is usually considered small, but can be

large compared to the Rossby number (Ro), particularly near water mass boundaries

in the abyssal ocean [2].

The governing equations for MQG are: the vorticity, the buoyancy and the spice

equations are respectably

D

Dt
∇2ψ = f0

∂w

∂z
+ F (2.8)

D

Dt
b+ w

[
N2

0 (z) +N2
1 (x, y, z, t)

]
= 0, (2.9)

D

Dt
N2

1 = Fs, (2.10)

where F and Fs are forcing term for vorticity and spice respectively and D
Dt

is 2-D

total derivative. After doing a little algebra, we can rewrite the standard form of

QG potential vorticity, Q0, for MQG;

D

Dt
Q0 = −f0

∂

∂z
(wα) + F (2.11)

where Q0 = ∇2ψ + f0
N2

0

∂b
∂z
. Thermobaricity introduces a additional forcing term

f0 (wα)z. Using chain rule, we get (wα)z = wαz + wzα and can be scaled

wαz ∼
w0α0

h
, αwz ∼

w0α0

H

where α0 and w0 are typical values of α and w, and h is the vertical scale of spice.

Therefore, wαz is the dominant term and spice forcing would be scale like αz. So,

the net effect of this forcing [2];

∆Q0

Q0
∼
α0H

h
(2.12)
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where ∆Q0 is the net change in potential vorticity . Thus, we can expect O(1) change

in Q0 when h becomes small compared to vertical scale of the flow H . As spice has

small scale vertical structure and PV is forcing by spice, so, same structure should

be observed in PV field.

The ω equation for w is

∇2
(
N2w

)
+ f 2wzz = N2∇2w + w∇2N2 + 2∇ · (wN2) + f 2wzz = f(x, y, z) (2.13)

Once horizontal length scale l of the spice moves forward to smaller than length

scale L by advection, then the term, w∇2N2, will large and effective. That suggest

that spice may add more small horizontal scale phenomena.

2.3.1 Energy and Potential Enstrophy

Multiplying the equation (2.11) by Q0 and integrate over volume, we get the

potential enstrophy equation

∂

∂t
Z0 = Q0J(ψ,Q0)

︸ ︷︷ ︸

NLens

+ f0

∫

Q0
∂

∂z
(wα) dV

︸ ︷︷ ︸

Sens

+

∫

Q0FdV
︸ ︷︷ ︸

Fens

, (2.14)

and multiplying the equation (2.11) by ψ and integrate over volume, the energy

equation is obtained

∂

∂t
E0 = ψJ(ψ,Q0)

︸ ︷︷ ︸

NLen

+ f0

∫

ψ
∂

∂z
(wα) dV

︸ ︷︷ ︸

Sen

+

∫

ψFdV
︸ ︷︷ ︸

Fen

(2.15)

where E0 =
∫ (

ψ2
x + ψ2

y +
f0
N2

0

b2
)

dV is total energy and Z0 =
∫
Q2

0 dV is enstrophy.

Both energy and potential enstrophy are not conserved in MQG. Therefore, when

the vertical length scale h of spice is small, αz becomes important in both cases in

PV field.
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2.4 Numerical Simulations

2.4.1 Numerical Procedure

The barotropic ψ̄ of ψ has been calculated from the vorticity equation (2.8) by

imposing the following condition;

∇2ψ̄t + J (ψ,∇2ψ)
z
= 0 (2.16)

where the ( ¯ ) represent the vertically averaged nonlinear part. And, the baroclinic

part of ψ has been calculated from the buoyancy equation (2.9).

Vertical velocity of w have been calculated by solving a three dimensional elliptic

equation (ω−equation)

∇2
(
N2w

)
+ f 2

0

∂2w

∂z2
= ∇2 (J(ψ, b)) +

∂

∂z

(
J(ψ,∇2ψ)

)
+ f

∂F

∂z
(2.17)

As the lateral variability of spice affects the base state buoyancy frequency N2,

and we can not separate 3D elliptic inversion into 2d inversions for each vertical mode.

So, we need a reliable numerical technique to solve full this 3D elliptic problem. To

solve both 2D and 3D elliptic operators, multigrid numerical technique has been

performed.

2.4.2 Parameter and Conditions

The horizontal domain sizes are L ∼ 4Ld; where Ld =
NH
f

is Rossby reformation

radius. The Coriolis parameter is f = 10−4s−1, the base state buoyancy frequency

is N0 = 50 × f s−1, and vertical domain size is H ≈ 1.5km. The vertical resolution

must satisfy δz ∼
fδx
N0

to maintain stability in a numerical simulation of geostrophic

flows [9]. A periodic boundary condition is used for horizontal direction. For the

time integration, a second order leapfrog time-stepping scheme is used and a widely

used Robert− Asselin time filter is considered 0.1.
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Run Nx×Ny ×Nz Fs

1 128× 128× 32 0
2 128× 128× 32 1Fs

3 128× 128× 32 2Fs

4 128× 128× 32 3Fs

5 128× 128× 32 4Fs

6 128× 128× 32 5Fs

Table 2–1: Computational conditions for simulations

The computational grid 124 in each horizontal direction and 32 in vertical di-

rection are used. The forcing is injected at the wavenumber κ ≈ 2 horizontally and

the first barcoclinic mode is used for vertical (z) direction and where as for spice

Fs = A cos(πz) sin(2πx) sin(2πy) are considered, where κ =
√
k2x + k2y and A is the

amplitude of spice forcing. We have six (6) simulations, Run − 1 is standard QG

simulation so Fs = 0, and from Run − 2 to Run − 5 are MQG simulation where A

is increased by a addition factor of 1.

2.4.3 Spice

Forcing for spice has been increase a factor of one in our simulations fromRun−2

to Run − 6. Figure 2–1(a) describes the root mean square of spice with time and

normalized by N2
0 and a linear contribution of forcing is observed. Therefore, the

simulations form 2 to 6 represent that α =
N2

1

N2

0

is about 0.04, 0.08, 0.12, 0.16, and

0.20 respectively and particularly, Fs is approximately 4% of total N2
0 .

2.4.4 PV Field

We put the forcing at large scale, so, initially spice work as a passive tracer.

Later, the flow develop and moves forward to both small horizontal and vertical

scale. In the ω equation (2.13), once horizontal length scale l of the spice field

becomes is smaller than length scale L of eddies, spice is no longer passive tracer and,

become large and effective and w filed effects buoyancy field so as PV field. Similarly

9



(a)

(b)

(c)

Figure 2–1: Figure 2–1(a) shows the root mean square of spice with respect to time
and normalized by N2

0 . Figure 2–1(b) and 2–1(c) describe energy and enstrophy input
rate with time respectivelly. Red represents rate from F and others corresponds to
Fs in different spice forcing.
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from equation (2.14), when vertical length scale h of spice field is small, then spice

becomes important even if α0 is small. So, in both cases, spice becomes effective at

small scale. We are expecting that thermobaricity forcing can have an O(1) affect

on the potential vorticity field at the high wave number end of the spectrum. Let

see what we do get from numerical simulation?

Figure 2–1(b) shows the transfer rate of energy from F and different spice Fs

and Figure 2–1(c) describes the transfer rate of enstrophy from F and different spice

Fs. In both figure, we can see that approximately upto 300 days, spice work as

passive tracer i.e. there is no spice effect, and later on it plays a significant role

in the simulations and continue upto 800 days, finally once anomaly is completely

mixed thermobaricity becomes irrelevant. Another interesting point, although we

have increased our spice forcing Fs by a factor of 1, but the effectiveness of spice is

not linear. From simulations Run − 2 to Run − 6, we see that the contribution of

spice in energy input rate goes at maximum from 10% to 110% compare to F , where

as, a maximum from 40% to 400% for enstrophy rate.

Figure 2–2 represents the snapshot of potetial vorticity field of xz section at

one-quarter and three-quarter in y direction for QG and MQG with different spice

forcing. Small scale vertical and horizontal structures are observed in PV field after

adding spice. Figure 2–2(c) and 2–2(d) are very much close to QG PV, Figure 2–2(a)

and 2–2(b), field due to weak spice forcing. Adding more spice to QG turbulence

can lead to an enhancement of both horizontal and vertical small scale structure in

potential vorticity field (Figure 2–2(e) -2–2(h)).

Because of the vertical structure of spice forcing Fs is weakest at surface and

bottom but strongest at the middle, it is normal to observe more structure at the

middle.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2–2: Left and right are presenting xz section of PV field at one and three
quarter in y-direction respectively. QG: 2–2(a) and 2–2(b) and MQG: 2–2(c), 2–2(d);
2–2(e), 2–2(f) and 2–2(g), 2–2(h) when α = 0.04, 0.16 and 0.2 respectively.
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2.4.5 Energy and Enstrophy

The theory for QG turbulence is enstrophy is conserve which implies energy

goes to upscale. With spice, both enstrophy and energy is not conserved, questions

is what would be the consequence?

Figure 2–4(a) describes the flux of nonlinear term NLen term in the equation

(2.15). We see that energy is taken from large scales and brought it at the small

scales and finally dumped. The amount of the flux at down scale are also related

to spice forcing. Thus, spice forcing allows energy to cascade forward to dissipative

scales. This is important since in QG dynamics energy dissipation is dominated by

bottom friction at large scale.

Figure 2–4(b)shows the flux of spice forcing Sen term in the equation (2.15). For

weak forcing, it is shown that spice effect is not significant, but the different results

found when more spice forcing are added. It seems that spice forces Q0 both at small

and large scales.

Energy spectrum of QG and MQG at different vertical levels are shown in Figure

2–3. Figure 2–3(a), 2–3(b), 2–3(c) and 2–3(b) describe energy spectrum at z = 2H
8
,

z = 3H
8
, z = 5H

8
and 6H

8
respectively. When spice forcing is large, such as 4Fs and

5Fs, Figure 2–3(b) and 2–3(c) show that slope of the spectrum in MGQ is shallower

than that of QG slope. As spice forces Q0 at wide range of scale, therefore, it is

expected energy to cascade upward which causes the observed shallowness of the

spectrum.

2.5 Conclusion and Future Work

Due to thermobaric effect, a non-conserveness is arisen in the potential vorticity.

The effect of thermobaricity on a balance dynamics, like QG, have been studied by

proposing a modified version of QG (MQG) model. The model is solved numerically.

13



Different spice forcing are applied in different simulation. Our results suggest that

the adding spice to QG turbulence can lead to an enhancement of both horizontal

and vertical small scale structure in potential vorticity field. It is also observed that

due to spice energy moves to dissipation scales.

High vertical resolution simulations may help to get more accurate picture of

thermobaric effec, but we are constrained our computer memory. We future goal will

be to convert our serial code to parallel.
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(a) (b)

(c) (d)

Figure 2–3: Energy spectrum of QG and MQG in different vertical level. Figure
2–3(a), 2–3(b), 2–3(c) and 2–3(d) describe at z = 2H/8, 3H/8, 5H/8, and 6H/8
respectively. H = 1500 m

15



(a)

(b)

(c)

Figure 2–4: Energy flux: 2–4(a), 2–4(b) and 2–4(c) are the flux of NLen, Sen and Fen

respectively from the equation (2.15) . Colors are presenting different spice forcing.
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CHAPTER 3
Jets and β-plane Turbulence

3.1 Introduction

Two-dimensional (2D) or barotropic flow has been evaluated in many previous

studies to form zonal jets ([1], [5]). Recently, three dimensional structures of the

jets have been found by analyzing Agro data collected between 2004 and 2006 [10]

but the effects of this structures are still not well understood. Figure 3–1(a) and 3–

1(b) represent the horizontal and vertical cross section of time average zonal velocity

respectively.

Rhines [1] first theorized the eddy timescale increases as the spatial scale grows

in the inverse cascade, therefore, a transition will occur at the spatial scale where

the eddy timescale matches that of Rossby waves with the same spatial scale. The

transition scale, commonly referred to as the Rhine′s scale, is Lβ ∼
√

U/β, where

U is the square root of the eddy kinetic energy. Barotropic upscale energy cascade

is halted by β at wavenumber κβ . Vallis and Maltrud [5] refined the idea and insted

of one dimentional isotropic spectra, he presented a 2 dimensional dumbbell-shaped

spectra centred along wavenummber κx. As jets are not barotropic, so the vertical

structure also may play a role to change the shape of the dumbbell which is still

unknown. We are proposing Surface Quasigeostrophic (SQG) model for β -plane

turbulence to get better understanding the role of vertical structure in jets.

A brief review of β plane turbulence is presented in Sction 3.2. Section 3.3

describes SQG models and a comparison between SQG and bartopic jets will be

shown in section 3.4.
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(a) (b)

Figure 3–1: Evidence of quasi-zonal jets in the Argo data for 2004 through 2006:
3–1(a) the map of zonal velocity at 1000 m shows many zonally elongated areas of
eastward and westward velocity. Areas shaded gray are deeper than 2000 m, where
no data is available. 3–1(b) A vertical cross section at 20W of the same data shows
that the alterations of positive and negative velocity are vertically coherent and reach
to depths of more than 2000 m. Collected from [10]

3.2 β-plane turbulence

Variations in the Coriolis parameter with latitude caused by planetary curvature

affects geophysical flows by introducing an anisotropy that results in the spontaneous

generation of zonal jets.

3.2.1 Scaling of β-plan turbulence

The scale where the β-effect become important, kβ, has been a source of con-

troversy and confusion for the past 20 years. Rhine [1] first introduced from the

vorticity equation
∂

∂t
ζ

︸︷︷︸
U
LT

+u · ∇ζ
︸ ︷︷ ︸

U2

L2

+ βv
︸︷︷︸

βU

= 0, (3.1)

at large scales the β-term dominates, and smaller scale the advective term dominates,

so there is a cross-over scale, Lβ , called Rhines scale is given

Lβ =

√

U

β
; kβ =

√

β

U
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Here, Lβ is a natural length scale arising from β and a velocity scale U , where

Rhines [1] takes U to be the total r.m.s of velocity, including both zonal and eddy

components of the flow. Rhines further suggests that β halts the barotropic inverse

cascade at wavenumber kβ = L−1
β . Followed by the Rhines, Vallis and Maltrud [5]

suggested that two-dimensional spectra can be exhibit a dumbbell-shaped region

centered along the x-axis insted of an isotropic spectrum.

3.2.2 Vallis and Maltrud

It is expected that turbulence would excite Rossby waves when the wave fre-

quency ω and inverse of eddy turnover time τ−1 are matched.

ω ∼ τ−1; τ =
[
κ3E(k)

] 1

2 (3.2)

Vallis and Maltrud [5] calculated kβ from the energy cascade rate ǫ and β. There

expression

βkx

κ2
=

[
κ3ǫ2/3κ−5/3

] 1

2 = κ2/3ǫ1/3 (3.3)

Using polar coordinate system, we can separate x and y component of wavenumber

k. So, kxβ = r cos(θ) and kyβ = r sin(θ) and κ =
√

(kxβ)
2 + (kyβ)

2 = r, where

θ = tan−1
(
kx

ky

)
. We get

r =

(
β3

ǫ

)1/5

cos3/5 (3.4)

and therefore

kxβ =

(
β3

ǫ

)1/5

cos8/5(θ); kxβ =

(
β3

ǫ

)1/5

cos3/5(θ) sin(θ) (3.5)
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3.2.3 Holloway and Hendershott

Holloway and Hendershott [4] offer a third possibility for kβ, where now the

balance is between β and the r.m.s of barotropic vorticity

βkx

κ2
= ζ̄ (3.6)

and their dumbbell

kxβ =

(
β

ζ̄

)

cos2(θ); kxβ =

(
β

ζ̄

)

cos(θ) sin(θ) (3.7)

3.2.4 Rhaines expression

The Rhines expression for dumbbell would be;

βkx

κ2
=

[
κ2κE(k)

] 1

2 = κU (3.8)

and

kxβ =

(
β

U

)1/2

cos3/2(θ); kxβ =

(
β

U

)1/2

cos1/2(θ) sin(θ) (3.9)

These three length scales are all distinct, and further ambiguity arises as to

whether the velocity U and vorticity ζ scales should be comprised of eddy compo-

nents, zonal components or both.

Although, the both zonal and meridional component of κβ look different, but

there are no qualitative change among their dumbbell, so we will compare our scale

with Rhines scale only.
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3.3 SQG and diagnostics

SQG model has buoyancy evolution at the surface with zero potential vorticity

(PV) interior. The SQG equations with β

D

Dt
ψs
z = 0; at z = H ; ψb

z = 0, at z = 0 (3.10)

Q = 0; 0 ≤ z ≤ H (3.11)

where Q = ∇2ψ + f2

N2

∂
∂z
ψz + βy and s and b represent upper and bottom surface

respectively. We can split Q,

Q = Q̄ +Q′ (3.12)

where Q̄ = ∇2Ψ + f2

N2

∂
∂z
Ψz + βy = 0, implies that Ψzy = Uz = −βN2z

f2 , and Q′ =

∇2ψ′ + f2

N2

∂
∂z
ψ′

z = 0 and we can rewrite the equations (omitting prime) in the form

D

Dt
ψs
z + Us ∂

∂x
(ψs

z)−
βN2H

f 2

∂ψs

∂x
= 0; at z = H (3.13)

Q = 0; 0 ≤ z ≤ H (3.14)

ψb
z = 0; at z = 0 (3.15)

The analytic solution for ψ and ψz from Q

ψ̂ =
H

µ

cosh
(
µ
H
z
)

sinh(µ)
ψ̂s
z (3.16)

ψ̂z =
sinh

(
µ
H
z
)

sinh(µ)
ψ̂s
z (3.17)

where µ = NHκ
f

. The relationship between ψ̂ and ψ̂z at surface,

ψ̂ =
H

µ

ψ̂s
z

tanh(µ)
(3.18)
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At large scale, µ ≪ 1 and tanh(µ) → µ, then the temperature is related to the

streamfunction like ψ̂s
z = H−1µ2ψ̂s, while at small scale, µ ≫ 1 and tanh(µ) →

1, the inversion is approximately ψ̂s
z = H−1µψ̂s. Thus the relation between the

streamfunction and the advected temperature transitions from a 2D-like inversion at

large scales, to an SQG-like inversion at small scales, with the transition occurring

at the wavenumber µ ∼ 1 (i.e., at the deformation wavenumber).

3.3.1 Dumbbell Shape Spectra for SQG

The dispersion relationship form SQG model is (U = 0)

ωSQG = −
βkxNH

κf tanh(µ)
= −

βkx

κ2
µ

tanh(µ)
= ω2D

µ

tanh(µ)
(3.19)

In SQG, total energy is sum of kinetic and potential energy, to compare with 2D

dumbbell, we need to calculate kinetic energy from total energy, sayE2D = α(k)E(k)SQG,

then

τ =
√

α(κ)
[
κ3E(k)SQG

] 1

2 (3.20)

where α(κ) = 1
1+tanh2(µ)

. The shape of the dumbbell

−
βkx
κ2

µ

tanh(µ)
=

√

α(κ) κU (3.21)

At the large scale, tanh(µ) ∼ µ, and α ∼ 1, therefore, we can recover two-

dimensional dumbbell and for small scale, tanh(µ) ∼ 1, and α ∼ 0.5, a different

shape would be found. Barotropic and SQG dumbbell are compared in Figure 3–2.

Clearly, in the real ocean stratification qualitative change between barotropic and

SQG dumbbells is observed.
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(a) (b)

(c) (d)

Figure 3–2: Barotropic (pink) and SQG (blue) dumbbell are compared. First row:
N(z) = constant. 2nd Row: N(z) 6=constant.

3.4 Numerical Simulations

Numerical simulations of barotropic and SQG jets with N(z) is constant and

non-constant are presented. Buoyancy frequency N = 25 × f , Coriolis parameter

f = 1×10−4, and H = 4 km is depth are considered. The Rossby deformation radius

is evaluated as kd = L−1
d = 15× κ, where κ = 2π

L
is wavenumber and L is horizontal

domain size. We put the initial energy E0 at wave κinput = 2κd

The horizontal resolution of the simulation is kmax = 256 or nx × ny = 512 ×

512 resolution in grid space. For time integration, we have used finite difference

technique, second order accuracy Leap-frog scheme, and Robert-Asselin filter 0.01

is used. When N is constant, to invert ψ field numerically, we transform from ψz

real space to Fourier space ψ̂z, then the analytic solution of ψ̂ is used and then get

back to real space. All the transformation is done with the help of Fast Fourier
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Transformation (FFT). When N(z) is not constant, Shooting method is applied to

get vertical structure of ψ̂ and ψ̂z wave-number (kx, ky) wise.

3.4.1 Dumbbell

Why is the shape of the dumbbell important? We are solving initial value

problem and so initially we put our energy at isotropic region where β effect is

negligible, then energy migrates across the (kx, ky) plane. As the energy approaches

the waveturbulence crossover β becomes effective and it starts to pile up at the

boundary and penetrates the wave-dominated region only very slowly. In crossover

boundary wave dominated region blocks energy to migrate farther inside, however,

energy migrates towards the ky axis is not blocked. The interesting question is here,

how far it can go, because it measures the width of the jets i.e. length scale.

Dumbbell of barotropic and SQG jets are presented in Figure 3–3. Changes

between barotropic (Figure 3–3(a) and 3–3(b)) and SQG (Figure 3–3(c) and 3–

3(d)) dumbbell are observed but not significant. However, a qualitative difference is

observed when real ocean stratification is considered in Figure 3–3(e) and 3–3(f). It

is also shown that the energy pushes toward smaller ky compare to barotropic flow.

Therefore, we will observe wider jets compare to barotropic jets.

3.4.2 Zonal Velocity

Figure 3–4(a), 3–4(b) and 3–4(c) describe the zonal velocity of barotropic, SQG

constant and non constant stratification respectively. Vertical structure of zonal ve-

locity is presented in Figure 3–4(d). It shows clearly the wider jets in SQG dynamics

that was expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 3–3: Dumbbell shape of kinetic energy. Barotropic dumbbell : Figure 3–3(a)
and 3–3(b). SQG dumbbell : Figure 3–3(c), 3–3(d) and SQG dumbbell with real
ocen stratification : Figure 3–3(e), 3–3(f).
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(a) (b)

(c) (d)

Figure 3–4: Zonal velocity of jets. 2D jets: Figure 3–4(a), SQG: Figure 3–4(b) SQG
when N = constant and SQG: Figure 3–4(c) when N 6= constant. 3–4(d) represents
vertical structure of jet (N = constant).
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3.5 Conclusion and Future Work

Jets in the ocean are not a barotropic flow and it has three dimensional structure.

A surface quasigeostropic model in β plane is proposed. We have found that the

vertical structure change the length scale of jets.

SQG dynamics does not create Q in interior, and extension of this work will be

regular QG model including surface buoyancy.
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