Precipitation Modulation by the St. Lawrence River Valley in Association with Transitioning Tropical Cyclones

Shawn M. Milrad
Atmospheric Science Program
Department of Geography
University of Kansas
Lawrence, Kansas

Eyad H. Atallah and John R. Gyakum
Department of Atmospheric and Oceanic Sciences
McGill University
Montreal, Quebec
Outline

- Motivation
- Orographic impacts of the St. Lawrence River Valley (SLRV)
- Case selection, data and methods used
- Frontogenesis and precipitation
- Synoptic-dynamic analysis
- Future work
Katrina (2005)

29 August 2005
Montreal, Quebec (CYUL): 74 mm, 55% of August 2005 precipitation on 31 August

31 August 2005

Sources: UCAR Satellite Archive, Environment Canada
Ike (2008)

Source: Canadian Hurricane Centre
SLRV Orography

- Montreal (CYUL): Located at the confluence of 3 valleys
- SLRV, Ottawa River Valley, Lake Champlain Valley

From Razy et al. (2012)
Wind Channeling

- Wind rose of hourly surface winds at CYUL (1979-2002)

From Razy et al. (2012)
Wind Channeling

• Pressure-driven channeling in the SLRV
 • Anticyclone to the northeast, cyclone to the south/southwest
 • Synoptic-scale sea-level pressure (SLP) gradient
 • Surface wind blows from high to low pressure along the axis of the valley → NE surface winds
 • SE geostrophic winds

SLP/1000–500 hPa Thickness

Geostrophic winds at CYUL

Composite of 55 long-lived (6+ hours) NE surface wind events at CYUL

From Razy et al. (2012)
Wind Channeling and Frontogenesis

NE surface winds + SE geostrophic winds → ageostrophic frontogenesis in the SLRV → enhanced precipitation?

30 m frontogenesis (shaded), SLP (contours) for a composite of 20 cool-season cyclones that tracked through the SLRV

From Milrad et al. (2012)
Impacts of Wind Channeling

Composite soundings: Cool-season

From Razy et al. (2012)
Impacts of Wind Channeling

1 February 2012: 14 consecutive hours of freezing rain or freezing drizzle at CYUL

Source: RAP/UCAR, Plymouth State University
Research Questions and Objectives

 - Ageostrophic frontogenesis due to the orography of the St. Lawrence River Valley (SLRV)
 - Enhanced precipitation

- **Warm season: Fewer cyclones to induce a synoptic-scale SLP gradient in the SLRV**
 - Are Extratropical Transition (ET) events the exception?

- **Pressure-driven channeling during ET events**
 - precipitation distribution modulation?
 - Ageostrophic frontogenesis
 - Physical pathway
A comparison of SLRV-convergence induced precipitation rates, as a function of season (air mass)

Normalized precipitation amounts, according to seasonal air masses
Data

- **Case selection**
 - National Hurricane Center (NHC) Best Track data

- **Synoptic-dynamic analysis**
 - NCEP North American Regional Reanalysis (NARR) (Mesinger et al. 2006): 32 km horizontal resolution, 3-hourly

- **Precipitation**
 - Environment Canada Canadian Precipitation Analysis (CaPA) (Mahfouf et al. 2007): 15 km horizontal resolution, 6-hourly
 - NARR precipitation problems in Canada
Data: NARR Terrain

From Razy et al. (2012)
Data: NARR Precipitation in Canada

Record November 1996 rainfall event at CYUL: NARR 6-hr accumulated precipitation (shaded), SLP (contours), and observed precipitation amounts at CYUL (text)
Case Selection

- **Study period:** 1979–2010
 - NARR availability

- **Storm must have tracked with 500 km of SLRV at any point**
 - NHC Best Track data

- **Results:** 39 cases
Case Selection

1979–2010: 39 cases

Source: NHC Best Track Data/NOAA Coastal Services Center
Primary diagnostic: NARR surface ageostrophic frontogenesis

- Ageostrophic wind = 30 m wind – SLP geostrophic wind
- \(t = 0 \) h: time (3-hour) of maximum ageostrophic frontogenesis in the SLRV (or time of closest approach)
- Threshold value of ageostrophic frontogenesis
 - \(100 \times 10^{-2} \) K (100 km\(^{-1}\) (3 hr\(^{-1}\))
Case Partitioning

• **Results: 3 groups**

 • **Group A: 27 cases**
 - Ageostrophic frontogenesis at $t = 0$ h \geq threshold value and is oriented parallel to the long axis of the SLRV
 - Cyclone center identifiable

 • **Group B: 8 cases**
 - Ageostrophic frontogenesis at $t = 0$ h $< $ threshold value OR was due to synoptic-scale systems far removed from the cyclone

 • **Group C: 4 cases**
 - Ageostrophic frontogenesis at $t = 0$ h \geq threshold value
 - Cyclone center NOT identifiable
Case Partitioning

NARR surface ageostrophic frontogenesis (shaded), SLP (contoured) at t = 0 h

Group A: \(\geq \) threshold
- Frances (2004)
- Barry (2007)

Group B: \(<\) threshold
- Floyd (1999)
- Gordon (2000)

Group C:
- Dennis (1999)

\[t = -6 \text{ h} \]

\[Plymouth State Weather Center \]

Surface Winds (knt) Analysis for 06Z 9 SEP 04

Motivation SLRV Cases Fronto/precip Synoptic-Dynamic Analysis Future Work

\[t = +6 \text{ h} \]

Plymouth State Weather Center

Surface Winds (knt) Analysis for 18Z 9 SEP 04
Group B Example: Floyd (1999)

Motivation

SLRV

Cases

Fronto/precip

Synoptic-Dynamic Analysis

Future Work

t = -6 h

Plymouth State Weather Center

Surface Winds (knt) Analysis for 03Z 17 SEP 99
Group B Example: Floyd (1999)

\[t = 0 \text{ h} \]

Plymouth State Weather Center

Surface Winds (knt) Analysis for 09Z 17 SEP 99
Group B Example: Floyd (1999)

\[t = +6 \, \text{h} \]

Plymouth State Weather Center

Surface Winds (knt)

Analysis for 15Z 17 SEP 99
The pressure gradient

NARR SLP gradient in the SLRV (hPa/100 km) for Groups A and B at t = 0 h

SLP gradient = [SLP (U) – SLP (L)]/100 km

Frontogenesis and Precipitation

• Hypothesis: Synoptic-scale SLP gradient \rightarrow pressure-driven wind channeling \rightarrow ageostrophic frontogenesis \rightarrow enhanced precipitation

• Strategy
 • Individual case analysis
 • Focus: 10 Group A cases from 2004–2009
 • Composite analysis
The Ageostrophic Frontogenesis: Composites

NARR surface ageostrophic frontogenesis (shaded)

Group A composite (n = 27)

Group B composite (n = 8)
The Precipitation: Individual Cases

Left-hand panels: NARR SLP and ageostrophic frontogenesis (t = 0 h)
Right-hand panels: CaPA 6-hr precipitation (t = 0 h to t = +6 h)

10 Group A cases (2004–2009)
The Precipitation: Composites

10 Group A cases (2004–2009)
CaPA 6-hr accumulated precipitation composite (mm, shaded)
NARR lowest closed SLP contour (hPa, contours)
The Precipitation: Composite Analysis

CaPA 6-hr accumulated precipitation composite (mm, shaded)
NARR lowest closed SLP contour (hPa, contours)
Final Step

- Identify a physical pathway to enhanced precipitation in the SLRV

Hypothesis
- Near-surface ageostrophic frontogenesis + low stability \rightarrow enhanced ascent/precipitation

Strategy
- Quasi-geostrophic theory
- Cross-sections
- Soundings
Synoptic-dynamic Analysis

- Relating frontogenesis to ascent
 - Gyakum and Barker (1988)
 - Ageostrophic frontogenesis can contribute substantially to ascent
 - Quasi-geostrophic “forcing” for ascent
 - Preferential along SLRV?
 - Potential (convective) instability
 - \(\frac{d\theta_e}{dz} < 0 \)
Quasi-geostrophic perspective

10 Group A cases (2004–2009) at $t = 0$ h:
NARR 1000-500 hPa Q-vector divergence (shaded, cool colors QG ascent),
SLP (hPa, solid), 1000–500 hPa thickness (dam, dashed)
Cross-sections (Composite)

NARR surface ageostrophic frontogenesis (shaded) at $t = 0\ h$

Group A composite ($n = 27$)
Group B composite ($n = 8$)
Cross-sections (Composite)

Group A (n = 27) NARR composite cross-sections at t = 0 h
Equivalent potential temperature (K, red contours),
Frontogenesis (10^{-2} K [100 km]^{-1} [3 hr]^{-1}, shaded)

Ageostrophic frontogenesis (shaded) | Geostrophic frontogenesis (shaded)
Cross-sections (Individual Cases)

Left-hand panels: NARR SLP and ageostrophic frontogenesis \((t = 0 \text{ h})\)
Right-hand panels: CaPA 6-hour precipitation \((t = 0 \text{ h} \text{ to } t = +6 \text{ h})\)

10 Group A cases (2004-2009)

- Frances 2004
- Arlene 2005
- Cindy 2005
- Katrina 2005
- Rita 2005
- Beryl 2006
- Ernesto 2006
- Barry 2007
- Ike 2008
- Kyle 2008
Cross-sections (Individual Cases)

Representative Group A individual cases at $t = 0$ h: Frances (2004), Arlene (2005)

Equivalent potential temperature (K, red contours),
Frontogenesis (10^{-2} K [100 km]$^{-1}$ [3 hr]$^{-1}$, shaded)

Ageostrophic frontogenesis (shaded)
Geostrophic frontogenesis (shaded)
Ageostrophic frontogenesis (shaded)
Geostrophic frontogenesis (shaded)
Group A cases from 2004-2009 (n = 10): NARR composite sounding at t = 0 h
Temperature (K, red), Dewpoint Temperature (K, blue)
Sounding (Individual Cases)

Group A cases from 2004-2009 (n = 10): NARR soundings at t = 0 h
Temperature (K, red), Dewpoint Temperature (K, blue)
Dynamical Conclusions

- Q-vector convergence not preferential to SLRV (area of heaviest precipitation)
 - Some cases: Q-vector divergence

- Ageostrophic frontogenesis >> geostrophic frontogenesis in the SLRV
 - Usually contained in the lowest 75-100 mb

- Potential (convective) instability
 - Low static stability
 - “More value for your dollar”
• Cyclone approaches SLRV
 • Induces synoptic-scale SLP gradient
• Near-surface ageostrophic frontogenesis
 • No preferential QG forcing for ascent
• Potential (convective instability)
 • Near-surface frontogenesis

Result: Enhanced precipitation
Future Research Directions

- Warm-season precipitation in the SLRV
 - Only modulated during ET events?

- Impacts of orography:
 - Lake Champlain Valley
 - Hudson Valley
 - Beyond the Northeast

[Map of a region with labels such as Ottawa River Valley, St. Lawrence River Valley, and Lake Champlain Valley]
Future Research Directions

- Warm-season precipitation in the SLRV
- Only modulated during ET events?

Montreal (CYUL) warm-season heavy (top 10%) precipitation events

- NARR 10 m winds
- NARR 925 hPa geostrophic wind

From Dookhie (2011)
Future Research Directions

- **Warm-season precipitation in the SLRV**
 - Only modulated during ET events?

Montreal (CYUL) warm-season heavy (top 10%) precipitation events

From Dookhie (2011)
Future Research Directions

- **Research Questions: Wind channeling**
 - Other ‘types’ of channeling?
 - Pressure-driven channeling and stability

- **Research Questions: Modeling**
 - Gap flow?
 - Precipitation distributions without the SLRV?
References

