Table of Contents

Course description ................................................................................................................. 2
  Introduction .......................................................................................................................... 2
  Accreditation ..................................................................................................................... 2
  Course material ................................................................................................................. 2
  Course location .................................................................................................................. 2
  Teaching Faculty ............................................................................................................... 2
  Target audience ............................................................................................................... 3

Course format ....................................................................................................................... 3
  Day 1: Practical Introductory Workshop ............................................................................. 3
  Day 2: Supervised Scans .................................................................................................... 3

Course registration .............................................................................................................. 6

Appendix: Objectives Overview .......................................................................................... 9
Course description

Introduction
The primary care clinician is faced with a wide variety of clinical scenarios for which bedside ultrasound can assist in diagnoses, therapeutics, management, procedures, and ultimately, improved patient outcomes. Our course aims to improve the bedside ultrasound skills of primary care providers through a modular, problem-based approach.

No prior experience in bedside ultrasound is required.

In keeping with the MUSE inverted teaching philosophy, texts and videos are reviewed in advance to maximize hands-on scanning during the workshop. Ultrasound skills are broadened and strengthened through a tailored, modular, problem-based approach.

Accreditation
This course provides 16 Mainpro-M1 CME credits from the College of Family Physicians of Canada (CFPC).

The course is also recognized as an entry level course by the Canadian Emergency Ultrasound Society (CEUS). This means that, after completing this course, participants can begin to acquire the 50 scans necessary to be granted Independent Practitioner status by CEUS (CEUS-IP). The next level course, MUSE 2.0, offers the opportunity to start acquiring the 50 scans.

Course material
The course textbook, objectives, evaluation forms, and pre- and post-course tests are all aligned to maximize skill acquisition. The course textbook is available in English and French (‘Bedside Ultrasound-Level 1’ or ‘Échographie Ciblée-Niveau 1) and will be distributed prior to the course to optimize the participant’s hands-on experience during the practical sessions. The textbook expresses topics simply and clearly, and can be read in a few hours. Companion online videos demonstrate scanning techniques introduced in the textbook.

Course location
The course is organized by the McGill UltraSound Evaluation (MUSE) Program at the Steinberg Centre for Simulation and Interactive Learning in Montreal, Canada. The Centre has 8-10 new state-of-the-art portable ultrasound machines on site at all times and several ultrasound simulators programmed to demonstrate pathology.

Teaching Faculty
We offer an excellent instructor to learner ratio (one instructor for two participants). The Teaching Faculty is based at McGill University, a recognized leader in bedside ultrasound instruction for undergraduate and postgraduate levels. The instructors bring cutting edge expertise and recognized teaching qualifications (IP-CEUS certification) to the participants. Their experience spans teaching and practicing ultrasound in rural/urban ER and ICU departments, medical wards, office-based clinics, and international hospitals.
Target audience
This course is tailored to the needs of the motivated, self-learning primary care clinician. It is suitable for both the rural-remote or urban primary care clinician.

Course format

Day 1: Practical Introductory Workshop
- Participants engage in a thorough hands-on introduction to bedside ultrasound in seven common clinical scenarios separated into 7 modules:
  - Module 1: Abdominal Pain (aorta)
  - Module 2: Abdominal Pain or AKI (kidney and bladder)
  - Module 3: Abdominal Pain (gallbladder)
  - Module 4: Abdominal/Pelvic Pain (first trimester pregnancy)
  - Module 5: Chest pain and dyspnea 1 (lung)
  - Module 6: Chest pain and dyspnea 2 (heart and lung)
  - Module 7: Swollen leg (femoral and popliteal veins)

Day 2: Supervised Scans
- Participants will be supervised while successfully scanning standardized models 20-30 times in three applications of their choosing

Participants are guaranteed to improve scanning in their chosen application.
# Day 1: Practical Introductory Workshop

<table>
<thead>
<tr>
<th>Time</th>
<th>Module #</th>
<th>Common clinical scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30-8:00</td>
<td>Registration and pre-course test</td>
<td></td>
</tr>
<tr>
<td>8:00-9:00</td>
<td>1. Abdominal pain (Aorta)</td>
<td>Female, 70, abdominal pain, radiating to the back. AAA?</td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>2. Abdominal pain (Gallbladder)</td>
<td>Female, 40, post-prandial RUQ pain and a Murphy’s sign. Cholecystitis?</td>
</tr>
<tr>
<td>10:00-10:15</td>
<td>Refreshments</td>
<td></td>
</tr>
<tr>
<td>10:15-11:15</td>
<td>3. Pelvic pain, vaginal bleeding (Female pelvis)</td>
<td>Female, 30, pregnant, with pelvic pain and minimal vaginal bleeding at 7 weeks since LNMP. IUP? Abdominal/pelvic free fluid?</td>
</tr>
<tr>
<td>11:15-12:15</td>
<td>4. Abdominal pain or AKI (Kidney, bladder)</td>
<td>Female, 42, with flank pain and hematuria. Or male, 82, with increasing creatinine. Obstructive uropathy?</td>
</tr>
<tr>
<td>12:15-13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>5. Chest pain, dyspnea 1 (Lung, pleura)</td>
<td>Female, 62, with COPD, CHF, and dyspnea. Evaluating the dyspneic patient with ultrasound</td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>6. Chest pain, dyspnea 2 (Lung, pleura, heart, IVC)</td>
<td>Male, 80, has increasing dyspnea and chest pain. Integrating lung, pleura, heart, and IVC ultrasound</td>
</tr>
<tr>
<td>15:00-15:15</td>
<td>Refreshments</td>
<td></td>
</tr>
<tr>
<td>15:15-16:15</td>
<td>7. Swollen leg (Femoral and popliteal veins)</td>
<td>Male, 50, with lung cancer and a swollen leg. DVT?</td>
</tr>
<tr>
<td>16:15-17:15</td>
<td>Review</td>
<td></td>
</tr>
</tbody>
</table>
Day 2: Supervised scans

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Participants choose three applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-9:00</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>10:00-10:15</td>
<td>Refreshments</td>
<td></td>
</tr>
<tr>
<td>10:15-11:15</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>11:15-12:15</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>12:15-13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>13:00-14:00</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>15:00-15:15</td>
<td>Refreshments</td>
<td></td>
</tr>
<tr>
<td>15:15-16:15</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>16:15-17:15</td>
<td>Supervised scans</td>
<td></td>
</tr>
<tr>
<td>17:15-17:30</td>
<td>Wrap-up and post-course test</td>
<td></td>
</tr>
</tbody>
</table>
Course registration

Registration fee includes:
- Day 1: Practical Introductory Workshop
- Day 2: Supervised Scans (20-30 scans in each of three applications)
- CME credits (16 Mainpro-C credits from CFPC; 3 credits per hour from FRCP; 1 credit per hour from McGill University)
- A certificate of completion
- Course textbook ‘Bedside Ultrasound-Level 1’ or ‘Échographie Ciblée-Niveau 1’ (A-line Press) with companion online videos
- Useful links to online resources
- Tea and coffee refreshments, and a light lunch

Registration fees:

<table>
<thead>
<tr>
<th>Participant</th>
<th>Pre-course registration</th>
<th>On-site registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinician</td>
<td>$2200</td>
<td>$2400</td>
</tr>
<tr>
<td>Fellow / Resident</td>
<td>$1000</td>
<td>$1200</td>
</tr>
<tr>
<td>Student</td>
<td>$600</td>
<td>$800</td>
</tr>
</tbody>
</table>

Cancellations
- A refund (minus $150 administrative fee and cost of educational material sent to the participant) if written cancellation notice received 4 weeks prior to the session
- Only 50% of the fees will be refunded if written cancellation is made 2 weeks prior to the session
- No refund for cancellations made 1 week prior to the session
Registration form:

REGISTRATION FORM
Bedside Ultrasound Course (MUSE 1.0)

Date of course: ______________________
Name: ____________________________
Address: __________________________
City: ____________________________ Province: ______ Postal code: ________
Email: ____________________________
Fee: $________________________

Payment by cheque to: McGill University
Payment by credit card: Please complete Credit Card Authorization Form on the next page

Send registration form and cheque to:
Fergus Grieve
Steinberg Centre for Simulation and Interactive Learning
3575 Parc Avenue, Suite 5640
Montreal, Quebec H2X 3P9

Email questions to: medsimcentre@mcgill.ca   Tel: 514-398-8229
Steinberg Centre for Simulation and Interactive Learning  
3575 Parc Avenue Suite 5640  
Montreal, QC H2X 3P9

CREDIT CARD  
AUTHORIZATION FORM

Date  

Customer Information  

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Event Name/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Contact Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Postal/Zip</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit Card Information  

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Visa</th>
<th>Master Card</th>
<th>AMEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardholder Name</td>
<td>Cardholder Telephone (if different from above)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Billing address (if different from above)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Postal/Zip code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Card number</th>
<th>Expiry date</th>
<th>Amount to be charged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardholder signature

By signing this form, you authorize the Arnold and Blémat Steinberg Medical Simulation Centre to charge above-referenced credit card for the amount specified.

For security reasons, please do not send your credit card information electronically (email, instant message, scanned document, etc.)  
Fax: (514) 398-5497  
Mail or drop-off:  
Steinberg Centre for Simulation and Interactive Learning  
c/o Fergus Grieve  
3575 Parc Avenue, Suite 5640  
Montreal, Quebec H2X 3P9
Appendix: Objectives Overview

The objectives are organized into seven modules that encompass bedside applications for common clinical scenarios:

Each module is described in the following pages in terms of:

- clinical scenario
- objectives
- pathologies

Module 1: Abdominal Pain (aorta)
Module 2: Abdominal Pain or AKI (kidney and bladder)
Module 3: Abdominal Pain (gallbladder)
Module 4: Abdominal/Pelvic Pain (first trimester pregnancy)
Module 5: Chest pain and dyspnea 1 (lung)
Module 6: Chest pain and dyspnea 2 (heart and lung)
Module 7: Swollen leg (femoral and popliteal veins)
Module 1: Abdominal Pain (aorta)

Clinical scenario: Male, 70, abdominal pain radiating to back. Rule out AAA.

Objective #1. Probe choice

- Choose an appropriate probe for imaging the abdominal aorta

Objective #2. Patient position and scanning technique

- Assume appropriate patient and sonographer position for imaging the abdominal aorta

Objective #3. Abdominal aorta in the transverse plane

- Obtain an ultrasound image of the abdomen in the transverse plane
- Identify the abdominal aorta, vertebral body, IVC, and liver in the transverse plane
- Image the abdominal aorta in the transverse plane every centimeter from the epigastrium until the bifurcation of the aorta into the iliac arteries
- Measure the diameter of the abdominal aorta in the transverse plane

Objective #4. Abdominal aorta in the sagittal plane

- Identify the abdominal aorta in the sagittal plane
- Measure the diameter of the abdominal aorta in the sagittal plane

Pathology (AAA)

- Discuss definition and sonographic appearance of AAA.
Module 2: Abdominal Pain or AKI (kidney and bladder)

Clinical scenario: Male, 42, with flank pain, likely renal colic. (Or with increased creatinine)

Objective #1. Probe choice
- Choose an appropriate probe for imaging the kidney

Objective #2. Patient position and scanning technique
- Assure appropriate patient and sonographer position for imaging the kidney

Objective #3. Kidney and Bladder
- Identify the surface and sonographic landmarks of the kidney
- Sweep both kidneys in coronal and transverse planes
- Identify the renal cortex, medullary pyramids, and renal sinus in both planes
- Identify the bladder in sagittal and transverse planes

Pathology
- Understand the appearance of hydronephrosis and discuss the degrees of hydronephrosis (mild, moderate, severe)
- Calculate post-void residual urine volume
Module 3: Abdominal Pain (gallbladder)

Clinical scenario: Female, 40, postpartum, obese with postprandial RUQ pain.

Objective #1. Probe choice
- Choose an appropriate probe for imaging the gallbladder

Objective #2. Patient position and scanning technique
- Assume appropriate patient and sonographer position for imaging the gallbladder

Objective #3. Patient position and scanning technique
- Identify the gallbladder using 3 approaches: (Subcostal sweep; X-minus 7; lateral)
- Practice troubleshooting techniques to find GB (deep breath, LLD position, landmarks)
- Sweep GB in short and long axis

Pathology: Cholecystitis
- Learn the ultrasonographic features of cholecystitis
Module 4: Abdominal and Pelvic Pain (first trimester pregnancy)

Clinical scenario: Female, 32, BHCG +, 7 weeks post LNMP, pelvic pain & vaginal bleeding.

Objective #1. Probe choice
• Choose an appropriate probe for imaging the pelvis

Objective #2. Patient position and scanning technique
• Assume appropriate patient and sonographer position for imaging the pelvis

Objective #3. Uterus
• Identify surface (symphysis pubis) & sonographic (bladder) landmarks to find the uterus
• Sweep the entire uterus in sagittal and transverse plane
• Identify the endometrial stripe

Pathology
• Discuss pseudo-gestational sac
• Discuss the criteria for IUP: gestational sac + yolk sac
• Demonstrate where FF may lie if the ectopic pregnancy is ruptured (Pouch of Douglas, Morrison’s, spleno-renal interface)
Module 5: Dyspnea (lung and pleura)

Clinical scenario: Female, 62, with COPD and previous episodes of CHF presents with dyspnea.

Objective #1. Probe choice
- Choose an appropriate probe for imaging the lungs

Objective #2. Patient position and scanning technique
- Assume appropriate patient and sonographer position for imaging the lungs

Objective #3. Anterior chest view
- Identify the soft tissues of the chest wall, the ribs, and rib shadows on an anterior chest view using a linear probe. Understand how shadow artifacts below ribs are generated
- Lung sliding
  - Identify the pleura on an anterior chest view using a linear probe
  - Recognize and define lung sliding on an anterior chest view
- A-lines
  - Be able to identify an A-line on an anterior chest view
- B-lines
  - B-lines can sometimes be seen in normal models, particularly over the posterolateral chest. Find a B-line, and define its characteristics

Objective #4. Posterolateral chest view
- Identify the diaphragm over the posterolateral chest using either a phased array or curvilinear probe
- Note that the diaphragm is curvilinear, concave-caudally, hyperechoic (white on the ultrasound screen), and descends (moves caudally) during inspiration, and ascends (moves cephalad) during expiration
- Identify and understand what forms the “curtain sign” as the model breathes in

Pathology
- Discuss the usefulness of lung sliding in the context of pneumothorax (PTX)
- Describe the appearance of pleural effusions and know where they accumulate
- Discuss the use of “lung profiles” in diagnosing patients with dyspnea
- Discuss the appearance of paradoxical breathing with lung ultrasound
Module 6: Chest pain and dyspnea

Clinical scenario: Male, 80, has increasing dyspnea and chest pain

Building on Module 5, “dyspnea” we will introduce the integration of the lung, heart, and IVC assessment

Objective #1. Probe choice
- Choose an appropriate probe for imaging the heart

Objective #2. Patient position and scanning technique
- Assume appropriate patient and sonographer position for imaging the heart and IVC

Objective #3. Heart and IVC
- Generate both a subxiphoid and a parasternal long view of the heart
- Identify the RV, LV, RA, LA mitral and tricuspid valves (RA not seen on PSL)
- Discuss estimating gross LV function
- Discuss the RV/LV ratio and its significance
- Identifying IVC in transverse and sagittal plane. Measure IVC size and respiratory variability

Pathology
- Discuss integrating an assessment of global LV function, RV:LV ratio, IVC size and variability, lung profiles, and pleura in patients with chest pain and dyspnea

Note:

Additional material for Module 6: please view parasternal long axis view of the heart at: http://uscm.med.sc.edu/mods/11A1/player.html
Module 7: Swollen leg

Clinical scenario: Male, 50, with lung cancer and a swollen leg

Objective #1. Probe choice
- Choose an appropriate probe for imaging the veins of the lower limb

Objective #2. Patient position and scanning technique
- Assure appropriate patient and sonographer position for imaging the veins of the lower limb.

Objective #3. Imaging the common femoral vein (CFV) in transverse plane moving caudally
- Compress the CFV every centimeter between the junction of the greater saphenous vein and the CFV, and the confluence of the deep femoral and femoral veins as they form the CFV

Objective #4. Imaging the popliteal vein in transverse plane
- Identify the popliteal vein in the transverse plane as high up the popliteal fossa as possible
- Compress the popliteal vein every centimeter between the most cephalad point in the popliteal fossa until the vein enters the calf

Pathology
- Learn the ultrasonographic appearance of a deep venous thrombosis