The Neuro’s Early Drug Discovery Unit (EDDU)

Thomas Durcan, PhD.

Director, The Neuro’s EDDU
Associate Professor, The Neuro
Induced Pluripotent Stem cells
From patients to human brain cells

2D neuronal and glial cells

3D brain organoids/neurospheres
Opening up the potential of iPSCs

• Making our iPSCs accessible to all

• Training users how working with them

• Working with academics and industry to unlock the potential of iPSCs for discovery and translation with OS at the core
Intersecting models

- 3D organoids
- Preclinical models
- Disease modelling in a dish
- Clinical trials
- Re-programming
- Donated or acquired somatic cells
- Induced pluripotent stem cells (iPSCs)
Different CNS diseases >>>>> Different CNS cell types

3D: Cerebral organoids
2D: Cortical neurons
2D: Astrocytes/Microglia
2D: Motor neurons
3D: Moto spheres
3D: Midbrain organoids
2D: Dopaminergic neurons

PD
ALS
ID/ASDs
Making our methods accessible

- Established a database of >20 open protocols

- Development of new video protocols (35+ videos) for open sharing and training.

 https://www.neuro-edduportal.com/

- Video translations across 4 languages with new videos and languages coming

 https://www.mcgill.ca/neuro/research/eddu/resources#videos
Progress since 2015

- 35+ Team members
- 300+ Users trained
- 80+ Academic collaborators
- 140+ iPSCs made
- 50+ Protocols and training videos
- 45+ Open Access peer reviewed publications
- 25+ industry partnerships
- > 90 Academic partnered projects
- 30k+ views/downloads of written methods/video protocols
- An in-house OS catalog of 160+ iPSCs
THANK YOU

QUESTIONS/COMMENTS

https://www.mcgill.ca/neuro/research/eddu