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[. INTRUDUCTION

Heat loss from a greenhouse is a function of a number of factors,
but is chiefly the result of the difference between the inside and
the outside temperatures. Three modes of heat travel (radiation,
convection and conduction) are affected to varying degrees by this
temperature difference and account for different proportions of

the overall heat loss (radiation-15%, convection-25%, conduction-
60%). Any attempt to reduce heat loss from greenhouses must address
all three modes.

The high conduction losses of greenhouses (both glass and plastic)
are the result of the poor thermal insulation of the envelope. The
first property of greenhouse insulation must be thermal resistance,
and secondly the ability to reduce radiation and convection losses;
the former is normally achieved by some degree of reflectivity,

and the latter by "air tightness". However, since during the day
solar energy is a key ingredient for plant growth, and since mater-
ials that combine thermal resistance and high light transmissivity
are not presently available, any nighttime thermal insulation must
be capable of being retracted during the day.

A number of retractable insulation systems are currently on the
market in North America. These are characterized by high quality
and high cost, and have been developed for flower producing green-
houses, the economics of which are significantly different from
crop greenhouses, the subject of this research project.

The principal costs involved in operating a Canadian crop green-
house are: a) capital cost, b) heating cost, and c) labour cost.
According to a 1975 Statistics Canada report, these costs on an
annual square foot basis were $3.34, $0.26 and $0.29 respectively.
Lf the growers investment were to be amortised at 10% yearly over
a 20 year period, he would spend $2.60/m¢ on heating, $2.90/m2



on labour costs, and $3.34 on carrying charges. It is clear that
heating represents a significant fraction of the operating costs,
and that any saving in heating can therefore be reinvested in up-
grading the greenhouse, or in mechanizing operations and reducing
labour costs.

A simple example illustrates the economics of retractable green-
house insulation. Assuming that an KSI 0.5 curtain reduces the heat
loss by about 50%, the savings expected would be about 51.30/m2.

In order for this insulation to be economically attractive it must
pay for itself in a relatively short time, and should not therefore
cost more than about $13.00/m2. This is considerably less than any
of the commercial systems currently on the market which cost from
$15 to $25 per square metre.

Preliminary calculations as regards cost effectiveness indicate

that an RSI 0.8 thermal curtain can achieve up to 30% energy savings,
which would permit an investment of about $10/m2, assuming a tive
year pay back period. Thus the following criteria have been adopted
for the development of a Tow cost retractable insulation system.

a. Installed cost to be less than $10/m2.

b. The final thermal resistance of the greenhouse and
curtain should be about RSI 0.8 (RS).

c. The Tow cost curtain system should be simple enough
to be assembled and installed by the grower himself.

d. The system should avoid condensation problems.

e. Storage of the open system should not unduly shade
plants below.

f. The system should be adaptable to various greenhouse
configurations and sizes.



2. SYSTEMS AND HARDWARE

The first stage of the project involved identifying existing
hardware and movement systems which could form the basis for a re-
tractable insulation system. Initial research had identified four
general categories of retractable systems:

a. Folding accordion

b. Roli-away planket

c. Stiding panels

d. Suspended curtain

Manufacturers were contacted with an aim of identifying approp-
riate hardware. Three types of firms were investigated: first,
manufacturers of hardware for sliding, roliing and foiding doors
and shutters, second, manufacturers of retractable insulation
systems for domestic use, and third, manufacturers of sun shades
and screens specifically designed for large greenhouses (see
Appendix V).

The general conclusions were as follows.

Overhead and folding door hardware is suitable for rugged and

heavy performance but difficult to adapt to light, precise tasks.
Furthermore, the problem of air tightness is virtually imposs-

ible to solve with these type of systems. Sliding doors and shutters
are more suitable to tight sealing but generally too expensive to
consider for this application. Of all the types of systems looked

at the most promising seemed to be lightweight blinds and curtains.

There are a number of recently developed domestic thermal shade
systems on the market (primarily in the United States). Though
these have somewhat different characteristics than would be found
in a greenhouse system (they are small, vertical and nigh cost),
it was felt to be worthwhile to see if they might be modified.
Of ten systems surveyed three (all of roller blind type) could
have application were it not for the too high cost.



The greatest potential for adaptation of existing hardware lies,
not surprisingly, within the greenhouse industry itself.A number
of systems presently exist that solve the problem of retractable
screens, either for sun shading or thermal insulation. The maj-
ority of these have been developed for flower producers and are
too expensive to be adapted to crop greenhouses, though they do
exhibit the general principles of thermal curtains.

Having identified screens or curtains as the most Tikely type of
retractable insulation, four generic types were available.

a. Track supported

b. Cable supported

¢. Cable suspended

d. Multi-cable

—— 1
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Track supported (Cable supported (Cable suspended Multi-cable

Track-supported systems (e.g.Simtrac, Stuppy) are commonly used
to support greenhouse shading systems. They are characterized by
high quality (nylon rollers, extruded aluminum tracks) and rel-
atively high cost ($12-$16/m¢ for tracks only). The installation
is relatively complicated as the tracks must be suspended from
the roof at intervals. These systems are not usually air tight.

Cable supported systems (e.g.Ickes-Braun) are considerably cheaper
than track supported since the wire or filament costs less than
$0.16/m, whereas aluminum track is more than $2.16/m. The main
advantage of cable supported systems is their simplicity and lack
of hardware. Cables can easily span most greenhouse widths. The
main disadvantage is the inappropriateness of the system when more
than one layer of curtain is used, since the cable interferes with



proper hanging.

Cable suspended systems (e.g.Rol1-Out) avoid the high cost of

tracks and are able to overcome the disadvantage of cable supported
systems by hanging the curtain below the cable. Although this in-
troduces additional hardware in the form of hangers, it avoids con-
tact between the cable and the multiple layers of curtain. Moreover,
the curtain tends to fold naturally in accordion-like folds.

The multi-cable system (no commercial manufacturers known) is a
variant on the cable supported type adapted to multi-layers. Each
curtain layer has its own supporting cable, thus eliminating the
bunching that occurs when more than one lyer is supported on a
single cable. The additional cost of multiple cables is offset
by the lack of hangers or curtain spacers.

A thermai insulation system based on the cable suspended type
has been designed and tested (see Chapter 3). The multi-cable
type has also been investigated and is described in more detail
in Appendix II,



3. TEST INSTALLATION

The main purpose of this project was "to desian and build an
optimal system in prototype form which will allow performance
studies to be carried out". The reason tor this stage of the
project is that very little empirical data exists as to the
performance of greenhouse insulation systems. Most of the

data on thermal performance has been developed for solid
buildings and cannot be adapted to the greenhouse environ-
ment. Although it would be relatively easy to determine the
thermal resistance of the insulation curtain, there is no

data avaitable as to the infiltration rates that should be
assumed for such a system, while at the same time most experts
agree that reduced infiltration will certainly be one of the
chief benefits of a retractable insulation system. [t was found
that manufacturers literature neglected to give overall thermal
performance of curtain systems, and highlighted, rather, the
theoretical R-value of the matrix itself.

Existing Greenhouse

The test installation was located in a greenhouse belonging to
McGill University and situated on McGregor Street on the downtown
campus. The greenhouse is part of a larger structure being located
at one extremity, and has three exposed walls and one interior wall
which was insulated for the duration of the experiment. The green-
house is a traditional single glass on steel frame (see Figs.l & 2)
spanning 6.32 m and 7.86 m iong. The original heating system was
hot water carried through overhead pipes. This system was disconnected
since not only would the pipes have been outside the curtain, but
the quantity of heat input would have been impossible to measure.
The floor of the greenhouse is earth.

The greenhouse is situated away from large buildings or trees, a
fact which, it was hoped, would contribute to stable nightime temperat-
ures (see rig.1).



Interior view showing steel structure, eaves vent
and overhead heating pipes.

emev -

Exterior view along McGregor Avenue.

Fig. 1
EXISTING GREENHOUSE - Interior and exterior
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Interior elevation looking south west

interior elevation looking north east

Fig.3
EXISTING GREENHOUSE - ELEVATIONS
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Thermal Screen Material

The main component of a screen or curtain system is the matrix

or screen material. There are currently a limited number of op-
tions on the market. Some researchers are working with screens

of transparent polyethylene (Centre de développement des cultures
abritées, ministére de 1'agriculture, Chateauguay, Ouébec). This
material has no resistance to radiative losses, and since the
Chateauguay installation is only one laver, it has little effect
on conductive losses either; in fact the main effect will be on
convective losses only. Prof.Aibright, of Cornell University, has
built thermal curtains using Foylon XA-2425, a porous 44 x 40 count
5 0z. polyester, aluminum foil hybrid. He established that a single
lTayer has about 50% the conductance of single strength glass. It is
manufactured by the Duracote Corporation. Our own physical ex»eriments
with Foylon have not been encouraging. Prolonged exposure to water
results in delamination of the foil, and extended abrasion has a
similar effect. Prof.Aldrich of Pennsylvania State University has
conducted tests with combinations of high thermal resistance
blankets (foamed plastics) and low thermal resistance blankets
(vinyl films). The results of his work have indirect bearing on
this project (expensive track systems were used) but he does in-
dicate that aluminized materials are significantly better.

Mylar coated materials have been known for some time and have

been used in greenhouse environments as reflective finishes on
north walls (e.g. the Brace south-facing greenhcuse). Previous
experience has not been encouraging as the mylar layer tends to
delaminate as a result of humidity. A recent development seems

to have overcome these problems. The Stauffer Chemical Company

has begun to produce a mylar coated PVC reinforced film (Ultra-
film) in which the mylar is protected by a polyethvlene layer.
This material, developed especially for greenhouse thermal curtains,
is characterized by high tear strength, resistance to humidity and
ultra-violet radiation, high reflectivity on one side as well as
Tow cost ($1.27/m2).



Fig.4
SAMPLE OF ULTRAFILM

I
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strips of 5 cm wide polypropylene tape ($0.038/m) are taped over
the filament tape. The total cost of the tapes, per hanger, is
$0.014. It is very important to note that the taping must be done
to the silver (polyethylene) side of the curtain and not to the
black (vinyl) side. Experiments showed that the tapes would delam-
inate from the vinyl over an extended period of time due to heat.
No such problems were observed when taping to the polyethylene.
Spacing of the hangers is 50 cm (see Fig.5).

Pulley System

The curtain is opened and closed by means of a pulley system
based on conventional practice (Simtrac, Stuppy) and using four
marine pulleys ($3.20 each) and nylon rope ($1.00/m). These com-
ponents are relatively expensive but the location of the pulley
system at 4m intervals results in a typical cost of less than

$1 per square metre of greenhouse (see Fig.5).

Puller Pipe

A horizontal puller pipe is suspended below the cables and
pulled by the pulley system. Initial work was done using a
2.5¢m dia. PVC pipe, chosen for its light weight and relat-
jively low cost ($2.86/m). Over an extended period this pipe
proved to be too flexible and had to be replaced by a similar
size steel pipe ($3.10/m).

Ground Joint

The initial design for the joint between the vertical curtain

and the ground was a simple free fold, much like a window curtain.
This proved to be inadequate since, in a greénhouse installation,
the cold air between the curtain and the wall of the house pushes
in and creates a pronounced, and awkward, billowing effect. The
final detail uses a single course of concrete blocks as a Tow par-
apet and in fact a good, tight joint (see Fig.6).



14

Cable and turnbuckle

Hanger and tapes

| bty
&z e
single
return
pulley

Pulley syétem

Fig.5
SYSTEM DETAILS - CABLE, HANGER & PULLEY SYSTEM




The blocks are placed on the interior of the heated space
provide a low parapet against which the curtain is nushed
the cold external air mass.

Fig.6
SYSTEM DETAILS - GROUND JUINT
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Leading Joint

The puller pipe is pulled by the pulley system into an air tight
joint that consists of two rectangular strips of foam rubber (%0.33/m)
and spring clips ($0.79) that hold the pipe in place and are loc-
ated at intervals of 2m. Since the pulley rope goes through the

pipe and between the rubber strips, the pipe is quided directly

into the joint (see Fig.7).

Vertical Joints

~ The vertical joints offer a particular problem in closure. A simple
overlap is not sufficient; an automatic system is too complex and
almost certainly too expensive. A compromise solution was arrived
at by using a "Velcro" strip which is sealed manually. Though rel-
atively expensive ($3.50/m) this material provides an excellent

sealed joint. Moreover, the number of vertical joints is small.
The strip is glued (to the vinyl side of the curtain) with

Velcro adhesive No.45.

Multi-Tlayered Curtains

The suspension of multi-layered curtains presents a particular
problem. Prof.Albright has developed an ingenious solution using
the plastic label fasteners that are commonly attached to price
labels. This device is a small plastic cord with a "T" at each
end which is attached to the material with a special hand-tool
($23.00). The fasteners ("Swiftachment", manufactured by the
Dennison Manufacturing Company) come in a variety of lengths,
2.5 cm ($0.0054), 7.5 cm ($0.0045) and 12.5 cm($0.0054). Up to
five layers of curtain were used in the experiments, using diff-
erent combinations of fasteners (see Fig.8). The fasteners were
spaced on a grid approximately 65cm x 25cm (see Fig.g ). The

attachment of the required number of curtain layers is done on

the ground before the curtain is hurg. Thanks to the special hand-
tool the attachment process is extremely rapid, less than one
second per fastener.A strip of filament tape was installed on the
Tine of the fasteners before punching, to prevent tearing.



Back edge detail of curtain showing cable and turnbuckle

~ foam rubber seal

triple layer curtain

foam rubber seal

Leading edge detail

Fig.7
SYSTEM DETAILS- BACK EDGE AND LEADING EDGE DETAIL
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Attaching "Swiftachment" label fasteners with hand-tool

T

2 layers 3 layers

—_—r

= ==

4 layers 5 layers

Location of fasteners

Fig.8
SYSTEM DETAILS - MULTI-LAYERED CURTAINS
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Typical situation at hangers and cable- internal location

Typical situation at hangers and cable- edge location

Fig.9
SYSTEM DETAILS - MULTI-LAYERED CURTAINS
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Vertical Curtains

The vertical curtains represent a relatively lesser problem than
the horizontal. In most large multi-span greenhouses they also
represent less than 10% of the thermal curtain area, hence it was
felt that here a single layer would be sufficient (it is other-
wise extremely difficult to guarantee air layers between vertical
multi-layered curtains). Condensation on a vertical curtain would
simply run down to the ground and would therefore not represent

a hazard for the plants.

The movement system for the vertical curtains is vertical, with

a fixed joint at the top, somewhat like a venetian blind, and using
a similar pulley system as the horizontal curtains. This ensures

a good joint, and since only 2m of curtain is stored shading is
relatively minor.

The vertical curtain which is parallel to the cables is an integral
part of the horizontal and opens and closes in conjunction with
it (see Fig.9).

Operation

Operation of the curtain proved successful; the suspended curtain
folds accordion-like on one side and does not require much space.
Problems were experienced with the five layer curtain which was
simply too heavy for the cables, which experienced severe deflection.
The bulk of the five layer curtain likewise created problems with
proper storage. This was not the case with the four layer curtain
which was more manageable, though still heavy. The three layer
curtain offered no problems.
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Edge of curtain Back edge of curtain

Fig.10

SYSTEM IN PLACE
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SYSTEM IN PLACE - PLAN
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Cross section through existing greenhouse with curtain installed

Longitudinal section_through greenhouse with curtain installed

Fig.12
SYSTEM IN PLACE - SECTIONS
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Exterior view above curtain

Interior view (with monitoring equipment in place)

Fig.13
SYSTEM IN PLACE
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4. MONITORING THERMAL PERFORMANCE

One of the main goals of this project was to establish the overall
thermal performance of the prototype thermal curtain. This implies
computing conductive, convective and radiative losses. There is
data available on the conductivity of various materials, and, in
any case this is easily established through empirical observations.
It is much more difficult to establish the convective losses. These
are a direct function of the type of joints and jointing material -
for which operating data are unobtainable. As a result it was nec-
essary to adopt an empirical approach based on nightime monitoring
of thermal performance of the curtain. This procedure took place
from February until March, 1980 , with additional tests in May.

Monitoring Methodology

The following methodology formed the basis of the monitoring :
a. Monitor heat input (Q)
b. Monitor temperature on both sides of the
curtain to establish AT.
c. Monitor rate of heat flow (r) through the curtain.
d. Establish the conduction losses (g)
g=rxAxaT x t

g = conduction losses, Watts
r = rate of heat flow, Watts/mé-OC
A = area of curtain, ml
4T = temperature difference, OC
t = time, hours
e. Establish convection and radiation Joss (1)
[=Q-q
I = convection and infiltration loss, Watts
Q = heat input, Watts

According to this approach both radiation and convection losses
are combined and considered, for the purpose of this analysis, to
be convective(or infiltration)losses.
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Heat Input

The existing hot water heating system was disconnected and replaced
with two 5 kWh electric fan-coil heaters. These heaters were connect-
ed to a Watt-hour meter which monitored the total amount of heat
entering the greenhouse.

Temperatures

Temperatures were recorded by ten thermocouples (type TC), shrouded
against radiation and convection, and linked to an Omega Model 199
DSS Digital Thermocouple Pyrometer that was equipped with a rotary
switch for manual reading. Two thermocouples (4 & 5) were located

at 2.7m, above the curtain in the "cold" greenhouse, and three

more (1,2 & 3) at 1.2m high between the curtain and the green-

house wall. One thermocouple (6) monitored the exterior temperature, at
3.0m height. Three thermocouples (7,8 & 9) monitored temperature

at 1.2m within the "heated" greenhouse, and one (10) was imbedded in
the ground. Thus temperature differences were calculated a) across
the horizontal curtain, b) across the vertical curtains, and c)
across the floor (see Fig.14).

Rate of Heat Flow

The rate of heat flow through the thermal curtain was measured using
heat flux plates (Hy-Cal Engineering, Model B16WPJ). The heat flux
plate is wafer thin and generates its own millivolt output signal
which is proportional to the amount of heat flowing through the

guage at that time. The heat flux plate was connected to a datalogger.
One plate was permanently attached to the underside of the ceiling
curtain and on-going measurements were recorded during the tests.

The second heat flux plate was used to develop average figures for
the vertical curtains and for the ground.

Humidity

One of the main problems associated with thermal curtains in green-
houses is condensation on the underside of the curtain, which sub-
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Legend
Thermocouple (x10)

Heat flux plate (x2)
Electric space heater (x2)
Humidifier

o o o T @

Control panel

Thermocouple locations
al, a2, a3 Between curtain and greenhouse, on sides (Height 1.20)

ad, a5 Above curtain (Height 2.70)
ab Exterior (Height 3.00)

a7, a8, a9 Interior (Height 1.20)

alo Interior (Underground to 0.6)
Fig.14

TEST INSTALLATION - MONITORING EQUIPMENT LOCATION
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Control panel showing watt meter on left, pyrometer at
centre and data logger on right.

A heat flux plate (approx 2cm x 2cm) about to be attached
to the thermal curtain with a piece of masking tape.

Fig.15
MONITORING EQUIPMENT




Thermocouple shroud, fabricated from PVC pipe painted

white. The thermocouple is mounted within a second smaller
pipe within the horizontal pipe.

A thermocouplie stand (1.2m) within the greenhouse. The
concrete block parapet wall is visible at the bottom of
the picture.

Fig.16
THERMOCOUPLES

29



30

sequently can cause damage to the plants. In order to observe this
phenomenon, a humidity level of about 60% was maintained within
the heated space using a domestic humidifier. This kind of device
is not intended to simulate the humidity conditions of a green-
house but did provide sufficient humidity for purposes of the test.

Testing Procedure

The typical test took from 1 to 3 hours and was conducted well

after dusk, usually beginning between 8.00 and 9.00 pm. Temperatures
were recorded manually from all the thermocouples every 10 minutes.
The two heat flux plates were likewise recorded every 10 minutes,
though automatically. The heaters were adjusted manually to main-
tain a stable temperature within the greenhouse of 18-220C. The
watt meter was read once at the beginning and once at the end of

the test.

The thermal curtains were closed during the day and no attempt was
made to record the cycling of temperature that would take place
in a greenhouse when thermal curtains are opened and closed.

The data from the tests is included in its entirety in Appendix III.

The variable in the tests was the number of layers of thermal cur-
tain. Three tests (4,29 & 30) were run with curtains open. Two tests
(1 & 2) with a single layer, reflective side up, and four (3,5,6 & 7)
with reflective side down. Six tests (8-13) were run on two layers,
ten (14-17,27,28,31-34) on three layers, five tests (18-22) on four
layers, and four tests (23-28) on five layers.

A summary of the test results appears on the following page.

As a result of this table it was possible to calculate a)the
thermal resistances of multi-layer curtains, b) the proprtion
of heat flowing through wall, floor and ceiling, and c) the
proportion of heat lost by conduction and by convection.
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* Refer to Appendix III, Monitoring Data, for location of heat flux plates.
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Summary of Experimental Results

The table on page 31 presents a summary of the experimental results
of the 34 tests.

The data is organized according to a) losses through horizontal
curtain, b) losses through east, west and south (glazed in greenhouse)
walls, c) losses through north (unglazed in greenhouse)wall and
d) losses to ground. The losses (conduction) to ground and through
the walls are computed by establishing a thermal resistance and
temperature difference experimentally, and computing the heat loss
with the formula:

RxaT xA=q

R = thermal resistance, Watts/m2-0C

&T = temperature difference, OC
A = surface area, m?
g = heat loss(conduction), Watts

The losses(conductive) through the horizontal curtain were measured
directly using the heat flux plate. The first heat flux plate column
lists the direct readings in millivolts, the second column lists the
actual heat loss in Watts, following the formula:
fxcx3.155=g

f = heat flux plate output signal, millivolts

¢ = calibration factor

q = heat loss(conduction), Watts
The final column lists an average 'q' for conductive heat loss through
the curtain.

The convective (including radiative) losses are computed according
to the formula:

- [(qCEiTiﬂg x )+ (a3775 X B+ (Ggrqung X tﬁ =1

Q = heat input, Watts

g = heat loss(conductive), Watts
t = time, hours

I = convection loss, Watts
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Thermal Resistance

From the results established experimentally it is possible to
compute the thermal resistance (RSI) of various multi-Tayered
curtains using the formula:

R = q
A xaT
R = thermal resistance, Watts/m2-O¢C
g = conductive heat loss, Watts
A = surface area, mé

AT = temperature difference, OC
The average thermal resistance of the curtain was calculated with
the following results:

One layer (reflective up) 0.268 Watts/m2-0¢
One layer (reflective down) 0.259
Two layers 0.557
Three layers 0.760
Four layers 0.829
Five layers 0.905

In the 2,3,4 and 5 layer configurations, the topmost layer was always
installed reflective side up, and the rest reflective side down.

Convection Loss. Rate

From the total convective losses (I) established experimentally it

is likewise possible to compute the convective loss per metre

of joint. In order to do this two assumptions were made. First,
radiation losses were ignored and included into the convective

Tosses. Second, lacking any experimental evidence as to the

different efficiency of the joints, it was assumed that all

joints performed equally. This is certainly not true, and future

work will have to be done to determine the differences in performance.

The convection loss rates were calculated for each experiment and

e

appear as 'i' in the last column, the following formula was used:
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i= I
35.2 xaT x t
convection loss rate, Watts/m-0C

i

I = convection loss, Watts
AT = temperature difference, OC
t = time, hours

The total length of joints in the test installation was 35.2m. This
includes the floor joint, the four vertical joints, the puller pipe
joint, but not the fixed back edge joint or the integral joint bet-
ween the walss and ceiling. As a result of these calculations the
average convection rate was found to be 2.13 Watts/m-0C,
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5. ECONOMICS OF THERMAL CURTAINS

The test installation, although not done at a full commercial
scale, has permitted the development of data as to both the
thermal performance of the curtain, and its cost. However,

in order to evaluate the economic performance it is necess-
ary to look at a much larger greenhouse where the ratio bet-
ween edge conditions and surface area is more representative.
This exercise involves a) calculating the heat loss of a large
multi-span greenhouse, b) designing a thermal curtain for the
greenhouse, c)calculating the heat loss of the greenhouse with
thermal curtain, d) using the cost of the curtain and the value
of the energy savings evaluate the economic performance using
life cycle costs.

The Greenhouse

The greenhouse consists of three bays (10.5m wide), 61m long.
The construction is good quality, single layer glass (RSI 0.2025)
and reasonably air tight (1 air change/hour). The total area
of the greenhouse is 1921.5 m2. The heat loss rate is as follows:

Area ,ml RSI,Watts/mé-OC Watts/0C
Roof 2013.0 0.2025 9940
Walls 618.0 0.2025 3051
Floor 1921.5 1.5781 1217
Infiltration 5947 m3 1987
Total 16,195 Watts/OC

The Thermal Curtain

The thermal curtain is a three later cable suspended type, with
single layer curtains on the walls. The thermal resistance of

the three layer curtain is 0.760, and of the single curtain is
0.268. The infiltration rate is 2.13 Watts/m-0C of curtain joint;

there are 423.5 m of joints. The cables are at the 3m height.
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The heat loss rate is as follows:

Area,m RSI,W/m2-0C | Watts/OC
Roof 1921.5 0.7609 | 2525
Walls 555.0 0.2687 2065
Floor 1921.5 1.5781 1217
Infiltration  423.5m x 2.13 W/m 902
Total 6,709 Watts/OC

Annual Heating Costs

The following assumptions are made in computing the annual

heating costs: fuel cost is 2.5 ¢/kWh, the nightime heating period
is 16 hours, the nightime degree days (or degree nights) are

4114 (Montreal region). Using these figures the annual nightime
heating cost of the greenhouse is $26,642, while the annual nightime
heating cost of the greenhouse with the thermal curtain is

$11,025. The annual saving is $15,617.

Thermal Curtain Costs

The detailed costs of the thermal curtain are as follows:

a. Drive mechanism $ 500.00
b. Concrete blocks 255.75
c. Puller pipes 567.30
d. Pulley systems 537.60
e. Cables 164.61
f. Turnbuckles 113.46
g. Lumber 109.80
h. Hangers 79.84
i. Nylon rope 1260.00
J. Velcro tape 84.00
k. Ultrafilm material 7580.00
1. Foam rubber 120.78
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m. Pipe clips 73.47
n. Contact cement 20.95
0. Elastic cord 45.00
p. Fasteners 236.25
q. Tapes 473.70
r. Labour cost ($1.50/m?) 2882.25
TOTAL COST $ 15,104,76
TOTAL UNIT COST $ 7.86/m2

Payback Period

The simple payback period can be computed by dividing the Capital
Investment by the Present Day Annual Savings.

Simple Payback = 15,105. = 0.96 years
15,617,
Thr true payback period, which takes into account escalation rate
(10%) and discount rate (12%) is slightly more than one year.

This meets a very important criteria for the commercial green-
house grower who requires an extremely short payback period for
his investment. Most growers are rather small businesses with the
minimal investment in physical plant (a wood and plastic green-
house may cost as little as $35/m2) and little capital to invest.
A thermal curtain, no matter how efficient, will not find wide-
spread application if the pay back period is too long.

Life Cycle Costing

It is useful to calculate the 1ife cycle costs in order to be

able to compare annual energy savings and capital outlay. Furthermore,
there are cyclical renewal costs to be taken into account. It has

been assumed that the 1ife of the hardware of the thermal curtain
system (motor, pulleys, cables) can be expected to be 15 years. It

is expected that the curtain material (including hangers, fasteners
and tapes) will require replacement during that time, and renewal



of these components has been assumed to happen every five years,

j. Velcro tape $ 84,
k. Ultrafilm material 7580
h. Hangers 79.
p. Fasteners 236.
q. Tapes 473.
r. Labour cost ($0.75/m2) 1440,
TOTAL RENEWAL COST $ 9894,

The life cycle cost analysis assumes a 15 year period of study,

00

.00

84
25
70
75
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a 12% discount rate, a 10% escalation rate for energy costs, and a

8% escalation rate for renewal costs. The Total Present Value of
nightime operation of the greenhouse with and without a thermal
curtain has been computed and the result shows the definite ad-

vantage of the thermal curtain (see pps.40-41).

TPV (without thermal curtains) $ 347,038.
TPV (with thermal curtains) $ 173,845,
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Option: without thermal curtain

Discount Rate: 125, Period of Study: 15 yrs; Base Year: 19 80 (Year 0)
Enter inflation rates below for each cost category

PV Presen‘t
Cost Category Facton Value
1. Capital Costs Unit Est. Cost
(Escalation %) Qty Rate 19 $ SPF
A - S ]
B I D R
Cc _ ) I
D R _ _ 3 -
E
Total Present Value - Capital Costs: $
2. Operations & Maintenance Unit | Est. Annual
(Escalation _ §) Qty Rate | Cost 19§ Years| CSPF
A A D
B - o
C — — —
D B
E
Total Present Value - Operations & Maintenance: $
3. Energy Escal. . Unit | Est. Annual
Rate Consumption Rate | Cost 19305 Years| CSPF
A Electricity % ! N B .
B Gas 10 S| 1,065 kWh | 2.5¢ | 26,642. 15 13,026 347,038, .
C Oil % L o
D E
Total Present Value - Energy: $347,038,
4. Cyclical Renewal Unit Est. Cost '
(Escalation %) Qty Rate 19 s Year SPF
A
B
C
D —_
E
Total Present Value - Cyclical Renewal: $
5. Salvage/Residuals Est. Cost Year SPF
(Escalation %) 19§ or SPV
A
B p—
Total Present Value - Salvage: $

TOTAL PRESENT VALUE - Option # _ (1+2+344-5)

$347,038.
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Option: With Thermal

Curtain

Discount Rate: 12 %;
Enter inflation rates

Period of Study: 15 yrs; Base Year: 19g) (Year 0)
below for each cost category

o

TOTAL PRESENT VALUE - Option # _ (1+2+3+4-5)

PV Presen‘t
Cost Category Facton Value
1. Capital Costs Unit Est. Cost
(Escalation %) Qty Rate 1980 $ SPF ’

_ A Curtain - - 15,105. - 15,105, _
B B D ~ ]
. c R ] I

— D_._”_A_ e P - — -

E

Total Present Value - Capital Costs: $ 15,105,
2. Operations & Maintenance Unit Est. Annual

(Escalation %} Qty Rate | Cost 19 $ Years| CSPF

A N e

,8 [PURR .

C

D _ -

E

Total Present Value - Operations & Maintenance: $
3. Energy Escal. . Unit | Est. Annual

Rate Consumption Rate | Cost 1980 $ Years| CSPF

A Electricity F) : B ,

B Cas 10 % | 441 kWh 2.5 ¢ | 11,025. 15 13.026 | 143,611,

C 0il %

D %

Total Present Value - Energy: $ 143,611.
4, Cyclical Renewal Unit | Est. Cost ’

(Escalation g %) Qty Rate 19 5 Year SPF

A +5 9,895, 1985 10.834 | 8,252.
) g + 10 9,895. 1990 |0.695. | 6,877..

5

E

Total Present Value - Cyclical Rencwal: $ 15,129.
5. Salvage/Residuals Est. Cost Year SPF

(Escalation _ %) 19 S or SPV

A

B

Total Present Value - Salvage: $

$ 173,845,
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6. CONCLUSIONS

a. Costs

One of the main criteria has been to develop a thermal curtain
system which is low cost. The analysis of economic performance
described in Section 5 indicates that this can be achieved. The
thermal curtain pays for itself in approximately one year in
energy savings, and life cycle costing has established that it

is beneficial over a fifteen year cycle, even assuming a relativ-
ely short life (5 years) for the curtain material itself. This
type of curtain will be particularly attractive to the small pro-
ducer who cannot invest large amounts in capital equipment, and
who requires a short pay back on his investment. One would assume
that better capitalized (larger) growers could afford a more ex-
pensive retractable insulation system with a longer pay back
period, than the $7/m2 cost of the low cost system.

b. Thermal Resistance

The experimental data described in Section 4 gives the thermal
resistances of one to five layer thermal curtains. Empirical
observations show that four and five layer curtains are both

too heavy and too bulky for practical operation. It is most

Tikely that four and five layer curtains could be used, but

only with more expensive track systems, which would not deflect
with the greater load. Although theoretically the thermal res-
istance of multi-layered curtains should increase in direct
proportion to the number of layers, experimental data does not

bear this out. Fig.18 shows a flattening of the curve after three
layers. This may be due to reduced thermal efficiency as the cables
deflect and more cold bridges are created by touching layers, though
this is not certain.

One of the unknowns in thermal curtains is infiltration or con-
vection loss. Since there are no standards for the performance of
thermal curtains it is difficult to say if the 12% infiltration
loss of the curtain (in the multi-span example, see Section 5) is
good or bad. Interestingly it is the same proportion of overall
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heat loss as in the uninsulated greenhouse.

¢. Fabrication

The operation of the multi-layered thermal curtains proved to
be acceptable, with the already mentioned limitation on four
and five Tayered installations. Up to three layers the curtain
opened and closed smoothly and stored neatly in a relatively
small volume.

The installation of thermal curtains takes place in two steps:
the off-site fabrication of the curtain, and the on-site in-
stallation of supporting cables and hanging of the curtain.

The second step does not present any major problems. A number
of requirements must be satisfied by the greenhouse in order

to install any retractable insulation system: the heating
elements must not be located outside the insulated area, there
must not be too many vertical obstructions (structural posts,
controls, etc.), and the shape of the greenhouse should be more
or less regular. Certain greenhouses, particularly older models,
may require extensive modification before a thermal curtain
could be installed.

The off-site fabrication of the cable supported curtain is rel-
atively Taborious. First of all, all mylar type materials (includ-
ing Ultrafilm) come in narrow rolls, usually 1.8m wide. This
implies extensive taping to produce the large surfaces required.
So far this step is unavoidable, though it might be accelerated
by using glues (2% VCMH resin dissolved in 98% cyclohexynol).

The cable supported system also requires two additional steps:
fixing the hangers to the topmost layer, and attaching the layers
together with Swiftachment fasteners. Both of these steps are

time consuming.

[t was with a view to simplifying fabrication that a multi-cable
system was investigated (see Appendix II) following the completion
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of thermal monitoring of the cable supported systems. The multi-
cable system simplified fabrication dramatically, though cost in-
creased about 20%. It was not possible to evaluate the thermal
performance of the multi-cable option, but if it proves to be
comparable to the cable supported type systems it may turn

out to be an interesting solution.

d. Operation

One of the guestions frequently asked about thermal curtains
concerns problems associated with condensation. Serious con-
densation was observed to occur on the underside of a single
layer curtain. When the installation was increased to two or

more layers no condensation problems occured. No condensation

was observed in the sealed air spaces. The single layered vertical
curtains have extensive condensation, but this does not present
any problems as it runs down the curtain surface to the ground.

No delamination of the tapes was observed during the tests,
whether due to heat or to mechanical stress. A more extensive
materials test would have to be carried out to ascertain the
life of taped joints (though 5 years is all that would be requ-
ired), particularly as the matrix (Ultrafilm) is a new material.
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APPENDIX 1
CABLE SUPPORTED QPTION

An analysis of the thermal curtain was made by designing the

system for a specific greenhouse, in this case a wood & plastic
greenhouse on the outskirts of Montreal measuring 61m tong and
10.5m wide. Only a horizontal curtain was considered. The following
costs were established:

Cables, hangers, turnbuckles tapes $ 253.94
Curtain material (3 layers) & fasteners 2378.87
Pulley system & motor drive 1204.20
Puller pipes & lead joint 332.31
Labour ($1.40/m) 896.70
TOTAL COST $ 5066.02
TOTAL UNIT COST $ 7.92/m2

This particular installation does not permit the curtain to travel
to the eaves but only to the diagonal struts. A fixed baffle shields
the gap.

e

Cross section through greenhouse
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Detail of

g |

lapping joint between two sections of multi-layer curtain

Fig.19

LAP JOINT
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Fig.20
Detail 1

Detail of fixed joint showing motor drive mounted above.
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Puller pipe approaching joint showing hangers

Puller pipe in closed position showing pulley rope attachment

Fig.2]
Detaijl 2

Detail of puller pipe leading edge joint
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APPENDIX II
MULTI-CABLE OPTION

It was decided to investigate the multi-cable option with a
view to comparing cost and operation to the cable supported
system. This work took place in June-July so it was not
possible to evaluate the thermal performance.

The design of this system dispenses with hangers, instead each
Tayer of curtain is supported by a separate set of cables which
are spaced 0.6m apart. The rest of the details of this system are
similar to the cable supported option. The cost of the system for
the 61m x 10.5m greenhouse are as follows:

Cables, hangers, turnbuckles, tapes § 556.49

Curtain material (3 layers) 2305.00
Pulley system & motor drive 1398.80
Puller pipes & lead joints 1066.25
Labour (§1.25/m?) 800.63
TOTAL COST $ 6127.17
TOTAL UNIT COST $ 9.57/m?

The multi-cable option is 20% more expensive than the cable
supported option (puller pipes, joints and wires account for
this). The advantages are in simpler installation since hangers
and layer fasteners are eliminated.

AN

TR
™
/N

Cross section through greenhouse



Curtain in closed position.

Bottom layer in open position. Note the orderly pattern
of folds and relatively small volume of the stored
curtain.

Fig.2?
MULTI-CABLE CURTAIN
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Fig.23
Detail 1

Detail of fixed joint showing motor drive mounted above
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Fig.24
Detail 2

Detajl of puller pipe leading edge joint
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APPENDIX 11
MONITORING DATA
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ADDENDUM V
MANUFACTURERS

GREENHOUSE MANUFACTURERS/SUPPLIERS

Ickes-Braun

Glasshouses of Canada, Ltd.
90 Bartlett Road

P.0. Box 2000

Beamsville, Ont. LOR 1RO

Irrigation St. Thomas, Inc.
1044 rue Principle

St. Thomas de Joliette
Quebec JOK 3LO

Lord and Burnham Co. Ltd.
4422 Graham Drive
Pierrefonds, Quebec H9H 2C2

National Greenhouse Co.
P.0. Box 100/Pana.
111 62557. U.S.A.

Solagro Ltée
52, Victor Léger
Valleyfield, Qué. J6T 3J1

Stuppy Inc.

120 East 12th Ave.
North Kansas City
MO 64116 U.S.A.

Vary Greenhouses Inc.
Canadian Greenhouses

Box 5000

Beamsville, Ont. LOR 1BO

Vegetable Factory Greenhouses
100 Court Street

Cofiagne, L.I.

N.Y. 11726 U.S.A.

s



b

GREENHOUSE INSULATION MATERIAL AND SUPPORT SYSTEM SUPPLIERS

Duracote Corporation

350 North Diamond Street
Ravenna, OChioc 44266
U.S.A.

Greenshield Systems

Division of Automatic Devices Co.

2121 South Twelfth Street
Allentown, PA 18103
U.S.A.

Ro11-0ut Insulation Systems, Inc.

P.0. Box 31
East Aurora, New York 14052
U.S.A.

Simtrac Inc.

8243 N. Christiana Ave.
Skokie, I11. 60076
U.S.A.

Stauffer Chemical Co.
Plastics Division
One Metroplaza
Edison, N.J. 08817
U.S.A.

Stuppy Inc.

120 East 12th Ave.

North Kansas City, MO 64116
U.S.A.

Wadsworth Control Systems

A Division of the Roper Corporation

55471 Marshall Street
Arvada, Colorado 80002
U.S.A.

75
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DOMESTIC THERMAL SCREEN MFGS/SUPPLIERS

Appropriate Technology Corporation
P.0. Box 975

Brattleboro

Vt. 05301 U.S.A.

Centre for Community Technology
University of Wisconsin Extension Service
1121 University Ave.

Madison, Wis. 53715 U.S.A.

Drape Masters

266 Prospect Ave.
Hartford

CT. 06106 U.S.A.

Homesworth Corporation
34 Cumberland St.
Brunswick

ME. 04011 U.S.A.

Insulating Shade Company, Inc.
P.0. Box 282
Branford, CT 06405 U.S.A.

Insul Shutters
110 N. Seventh Street
Silt, Col. 81652 U.S.A.

Solar Energy Components Inc.
212 Welsh-pool Road
Lionville, PA 19353 U.S.A.

Sun Flake

625 Goddard Ave.

P.0. Box 676

Ignacio, Colo. 81137 U.S.A.

Thermal Technology Corporation
P.0. Box 130
Snowman, Colorade 81654 U.S.A.
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