McGill University

Faculty of Science

Department of Mathematics and Statistics

Statistics Part A Comprehensive Exam Theory Paper

Date: Tuesday, May 13, 2014

Time: 13:00 – 17:00

Instructions

- Answer only **two** questions out of Section P. If you answer more than two questions, then only the **FIRST TWO questions will be marked**.
- Answer only **four** questions out of Section S. If you answer more than four questions, then only the **FIRST FOUR questions will be marked**.

Questions	Marks
P1	
P2	
P3	
S1	
S2	
S3	
S4	
S5	
S6	

This exam comprises the cover page and four pages of questions.

Section P Answer only two questions out of P1–P3

P1.

- (a) State Fubini's theorem.
- (b) Show that if *X* and *Y* are random variables with joint probability density function $f_{X,Y} : \mathbb{R}^2 \to [0, \infty)$, then the function *g* defined by

$$g(x) = \int_{\mathbb{R}} f(x, y) dy$$

is a probability density function for *X*. **Hint.** Recall the change of measure formula: if *X* has law μ then for any bounded measurable function $f : \mathbb{R} \to \mathbb{R}$, $E(f(X)) = \int f(x) d\mu$. (8 marks)

- (c) Show that if f and g are two densities for X then the set $\{x : f(x) \neq g(x)\}$ has Lebesgue measure zero. (7 marks)
- **P2.** In this question $(X_i, i \ge 1)$ is an arbitrary sequence of real random variables.
 - (a) What does it mean for X_i to converge in distribution to a random variable X as $i \to \infty$? (5 marks)
 - (b) Show that there exist positive constants a_1, a_2, \ldots such that $a_n X_n$ converges in distribution to 0. (5 marks)
 - (c) Let X_1, X_2, \ldots be identically distributed random variables with finite second moment. Show that for all $\epsilon > 0$, $n\mathbb{P}[|X_1| \ge \epsilon \sqrt{n}] \to 0$. (5 marks)
 - (d) Let X_1, X_2, \ldots be identically distributed random variables with finite second moment. Show that $n^{-1/2} \max_{1 \le k \le n} X_k$ converges in probability to 0. (5 marks)

P3.

- (a) Suppose that X is a random variable taking only positive integer values. Show that for all integers n, m ≥ 1, we have P[X ≥ n + m|X > n] = P[X ≥ m] if and only if there is p ∈ (0, 1) such that for all integers m ≥ 1 we have P[X = m] = p^{m-1}(1 p).
 (10 marks)
- (b) Suppose that X is a continuous random variable taking only non-negative values. Show that for all $s, t \ge 0$, we have $P[X \ge s + t | X \ge s] = P[X \ge t]$ if and only if there is c > 0 such that for all $t \ge 0$ we have $P[X \ge t] = e^{-ct}$. (10 marks)

(5 marks)

Section S Answer only four questions out of S1-S6

Consider a Dirichlet distributed random vector (X_1, X_2, X_3) with parameters **S1**. $\alpha_1, \alpha_2, \alpha_3 > 0$, that is, $X_3 = 1 - X_1 - X_2$ and the density of (X_1, X_2) is

$$f(x_1, x_2) = \frac{\Gamma(\alpha_1 + \alpha_2 + \alpha_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1} (1 - x_1 - x_2)^{\alpha_3 - 1}$$

for all $x_1, x_2 > 0$ such that $x_1 + x_2 < 1$.

- (3 marks) (a) What can you say about the density of (X_1, X_2, X_3) ?
- (b) Determine the marginal distributions of X_i , i = 1, ..., 3. (6 marks)
- (c) Compute the correlation between X_1 and $X_2 + X_3$. Justify every step you make.

(5 marks)

(d) Suppose that $Y_1 \sim \text{Beta}(\alpha_1, \alpha_2 + \alpha_3)$ and $Y_2 \sim \text{Beta}(\alpha_2, \alpha_3)$ are independent. Prove that

$$(X_1, X_2, X_3) \stackrel{d}{=} (Y_1, Y_2(1 - Y_1), (1 - Y_1)(1 - Y_2))$$

where $\stackrel{d}{=}$ denotes equality in distribution. *Hint: show first* that $(X_1, X_2) \stackrel{d}{=} (Y_1, Y_2(1 - Y_1)).$ (6 marks)

S2. Consider the inverse Gaussian distribution with parameters $\lambda > 0$ and $\mu > 0$. Its density is given by

$$f(x;\lambda,\mu) = \frac{\sqrt{\lambda}}{\sqrt{2\pi x^3}} \exp\left\{-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right\}, \quad x > 0.$$

(a) Show that the inverse Gaussian family of distributions is an exponential family. Identify the canonical parameters and determine the canonical parameter space.

(7 marks)

- (b) Suppose that X is an inverse Gaussian random variable. Compute the correlation between X and 1/X. (7 marks)
- (c) Show that the correlation of any two random variables Y and Z with finite second moments satisfies $|\operatorname{corr}(Y, Z)| \leq 1$. Can the bound $|\operatorname{corr}(Y, Z)| = 1$ be attained for any pair (Y, Z) of random variables with given marginal distributions? Justify your answer. (6 marks)

S3. Suppose that $\alpha, \beta > 0$ and $(X_1, P_1), \ldots, (X_k, P_k)$ are independent random vectors such that

$$X_i | P_i \sim \text{Binomial}(n_i, P_i), \quad i = 1, \dots, k,$$

 $P_i \sim \text{Beta}(\alpha, \beta).$

Denote the total number of successes by $Y = \sum_{i=1}^{k} X_i$.

- (a) Compute the expectation and variance of *Y*. (6 marks)
- (b) Determine the distribution of Y when $n_1 = \cdots = n_k = 1$. (7 marks)
- (c) Suppose that *W* and *Z* are random variables with finite expectations. Determine a function *h* such that W h(Z) is orthogonal to g(Z), viz.

$$\mathbf{E}\Big[\big\{W - h(Z)\big\}g(Z)\Big] = 0,$$

for any measurable function g such that $E\{g(Z)\}$ is finite. Show your work and justify every step you make. (7 marks)

S4. Find a nontrivial set of sufficient statistics in each of the following cases:

- (a) Random variables $X_{jk}(j = 1, \dots, m; k = 1, \dots r)$ have the form $X_{jk} = \mu + \eta_j + \varepsilon_{jk}$, where the η_j 's and the ε_{jk} 's are independently normally distributed with zero means and variances respectively σ_b^2 and σ_w^2 . The unknown parameters are thus $(\mu, \sigma_b^2, \sigma_w^2)$. (10 marks)
- (b) Independent binary random variables Y_1, \dots, Y_n are such that the probability of the value one depends on an explanatory variable x, which takes corresponding values x_1, \dots, x_n , through the model

$$\log\left[\frac{P(Y_j=1)}{P(Y_j=0)}\right] = \gamma + \beta x,$$

where γ and β are scalar-valued constants.

(10 marks)

S5. If we wish to study the distribution of *X*, the number of albino children (or children with a rare anomaly) in families with proneness to produce such children, a convenient sampling method is first to discover an albino child and through it obtain the albino count X^w of the family to which it belongs. If the probability of detecting an albino is β , then the probability that a family with *k* albinos is recorded is $w(k) = 1 - (1 - \beta)^k$, assuming the usual independence of Bernoulli trials. In such a case

$$p_{X^w}(k) = P(X^w = k) = \frac{w(k)P(X = k)}{\mathbb{E}[w(X)]}, \quad k = 0, 1, 2, \cdots$$

(a) Suppose *X* has the *Pascal Distribution*, that is

$$P(X = k) = \frac{\alpha^k}{(1 + \alpha)^{k+1}}, \quad k = 0, 1, 2, \cdots$$

Find $\mathbb{E}(X)$ and show that

$$\lim_{\beta \to 0} \frac{w(k)}{\mathbb{E}[w(X)]} = \frac{k}{\mathbb{E}(X)}$$

State clearly the assumptions you need to establish this result. (7 marks)

- (b) Suppose β is small enough, such that the result of Part (b) is applicable. Is this probability distribution a member of Exponential family? Let X_1^w, \dots, X_n^w be a sample of size from p_{X^w} . Find a complete sufficient statistic for α . (7 marks)
- (c) Using the asymptotic distribution of α find a 95% confidence interval for α .

(6 marks)

S6. Let $X_i \stackrel{iid}{\sim} N(\theta, 1)$, $i = 1, 2, \cdots, n$. Consider the sequence

$$\delta_n = \begin{cases} \overline{X}_n, & \text{if } |\overline{X}_n| \ge 1/n^{1/4}, \\ a\overline{X}_n, & \text{if } |\overline{X}_n| \leqslant 1/n^{1/4}. \end{cases}$$

Show that $\sqrt{n}(\delta_n - \theta) \xrightarrow{\mathcal{L}} N(0, \nu(\theta))$, where $\nu(\theta) = 1$ if $\theta \neq 0$ and $\nu(\theta) = a^2$ if $\theta = 0$. Is $\nu(\theta)$ greater than or equal to the information bound? (**Hint:** condition on $|\overline{X}_n|$).

(20 marks)