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A class of rate processes with dynamical disorder is investigated based on the two
following assumptions(a) the system is composed of a random number of particles
(or quasiparticleswhich decay according to a first-order kinetic lail) the rate
coefficient of the process is a random function of time with known stochastic
properties. The formalism of characteristic functionals is used for the direct com-
putation of the dynamical averages. The suggested approach is more general than
the other approaches used in the literature: it is not limited to a particular type of
stochastic process and can be applied to any type of random evolution of the rate
coefficient. We derive an infinity of exact fluctuation—dissipation relations which
establish connections among the moments of the survival function and the moments
of the number of surviving particles. The analysis of these fluctuation—dissipation
relations leads to the unexpected result that in the thermodynamic limit the fluc-
tuations of the number of particles have an intermittent behavior. The moments are
explicitly evaluated in two particular case@) the random behavior of the rate
coefficient is given by a non-Markovian process which can be embedded in a
Markovian process by increasing the number of state variablegbaide stochas-

tic behavior of the rate coefficient is described by a stationary Gaussian random
process which is generally non-Markovian. The method of curtailed characteristic
functionals is used to recover the conventional description of dynamical disorder in
terms of the Kubo—Zwanzig stochastic Liouville equations as a particular case of
our general approach. The fluctuation—dissipation relations can be used for the
study of fluctuations without making use of the whole mathematical formalism. To
illustrate the efficiency of our method for the analysis of fluctuations we discuss
three different physicochemical and biochemical problems. A first application is the
kinetic study of the decay of positrons or positronium atoms thermalized in dense
fluids: in this case the time dependence of the rate coefficient is described by a
stationary Gaussian random function with an exponentially decaying correlation
coefficient. A second application is an extension of Zwanzig’s model of ligand—
protein interactions described in terms of the passage through a fluctuating bottle
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804 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

neck; we complete the Zwanzig’s analysis by studying the concentration fluctua-
tions. The last example deals with jump rate processes described in terms of two
independent random frequencies; this model is of interest in the study of dielectric
or conformational relaxation in condensed matter and on the other hand gives an
alternative approach to the problem of protein—ligand interactions. We evaluate the
average survival function in several particular cases for which the jump dynamics is
described by two activated processes with random energy barriers. Depending on
the distributions of the energy barriers the average survival function is a simple
exponential, a stretched exponential, or a statistical fractal of the inverse power law
type. The possible applications of the method in the field of biological population
dynamics are also investigated. ®96 American Institute of PhysidsS0022-
248896)02212-9

I. INTRODUCTION

Rate processes with static or dynamic disorder are commonly encountered innature.
common approach to a first-order rate process with static disorder is based on the assumption that
the observed survivakelaxation function at timet, (I(t))saic iS an average of an exponential
decay law exp—W?1) with respect to the possible values of the rate coefficint

(I(t)) static= f: exp(—WHf(W)dW, (1.7

wheref(W)dW is the probability density of the rate coefficient. We note that the average survival
function is simply the Laplace transform of the probability den${tyw)dW of the rate coefficient
W. Such an approach has been used in the study of protein—ligand interactions in biochemistry;
in this case different conformational states of the protein have different activation barriers to
rebinding, resulting in a statistical distribution of the rate coefficients. Similar approaches have
been used for describing the combination processes of active intermediates in radiocHeimestry,
extinction of fluorescence due to the direct energy transfer from excited donors to accepioes,
description of dielectric relaxatidh’ for the random walk description of transport processes with
static or temporal disordé?,and for the study of one-channel compound nuclear reactfonsof
linear viscoelasticity?

The description of rate processes with dynamical disorder is more complicated. In this case
the relaxation rate is a random function of time and the avetade is replaced by

(1.2

t
<|(t)>dynamic:<exﬁ< - jo W(t")dt’

1
> dynamic

where the average can be reduced to the evaluation of a path integral over all possible trajectories
W=W(t"), t=t'=0

t
<|(t)>dynamic:f f ex%—fo W(t')dt’)~’7)[W(t')]D[W(t’)], 1.3

whereﬁ stands for the operation of path integrati@{,W(t')] is a suitable integration measure
over the space of random ratét’), and

J. Math. Phys., Vol. 37, No. 2, February 1996



Vlad, Ross, and Mackey: Fluctuation—dissipation relations 805

Z[W(t')]D[W(t")], with JJ;?J[W(t’)]D[W(t’)]=1 (1.4)

is the probability density functional of the random rate coefficiéftt’). Equation(3) is a
functional analog of the Laplace transform corresponding to the static disfEde(1)]. The
evaluation of dynamical averages is much more difficult than the evaluation of static averages,
mainly because the functional integr@) can be computed only in a few particular cases; the
major difficulty is due to the fact that for non-Gaussian processes we do not even have an
appropriate definition for the integration measrpw(t')].

The first system with dynamical disorder studied in the literature is a simplified model for the
line shape in magnetic resonance spectrostofpuggested by Anderson and Kubo. This initial
approach has been extended to other spectroscopical proffiethSimilar rate processes with
dynamical disorder have been used in connection with the study of earthddalasGaussian
diffusion?® the Taylor problem from hydrodynamié$the description of transport processes in
networks with dynamic percolatidii,the Browniam motion description of very fast chemical
processes without activation barriéfsthe study of fluorescence depolarizaiband of protein
dynamics® and in connection with the analysis of collective orientational relaxation in dense
liquids2® In these studies most authors avoid the direct evaluation of the dynamical av@rage
and use instead indirect methods such as the solving of certain stochastic Liouville eqtidns.

The approaches presented in the literature can be applied only to certain particular cases of
stochastic processes, for instance, in the case of a Markovian or Gaussian behavior. A general
treatment for the analysis of dynamical disorder for an arbitrary type of stochastic dependence is
missing. The purpose of this article is to fill this gap in the literature and to derive an efficient
method for evaluating the dynamical average for a rate process characterized by an arbitrary
stochastic behavior. The initial motivation of our approach is the investigation of fluctuations for
a model of ligand—protein interactions suggested by Zwafzigd further studied by Wang and
Wolynes33 The main sources of inspiration for our method are the initial Kubo apptdacithe
problem of line shape and the characteristic functional approaches used by the authors for the
description of space and time-dependent colored nSiséstochastic gravitational fluctuatioris,
and of fractal random process&sThe main advantage of our approach is its versatility and
generality. It leads to an infinite number of fluctuation—dissipation relations which allow to study
the fluctuations without using the whole mathematical apparatus of the theory.

The structure of the article is as follows. In Sec. Il we give a general formulation of the
problem. In Secs. Il and IV a general approach for computing the dynamical averages is devel-
oped and the fluctuation—dissipation relations are derived. In Sec. V the moments of the survival
function and of the number of surviving particles are explicitly derived for Markovian and sta-
tionary Gaussian processes. Sections VI, VII, and VIII deal with the application of the theory to
three different problems from condensed matter physics and biochemistry. In Sec. IX the main
results of the article are summarized and the possibilities of application to the theory in exobiology
and biological population dynamics are pointed out. To make the body of the article easier the
details of the computations are not presented in the text; they are given in Appendices A to D.

IIl. FORMULATION OF THE PROBLEM

We consider a system made up of a random number of independent particles or quasiparticles
and assume that the rate of decomposition of a particle at a time betveeet + dt, W(t)dt, is
a random function whose stochastic properties are characterized by the probability density func-
tional (1.4) or by the corresponding characteristic functional
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806 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

t
<exr(iJ0 K(t’)W(t’)dt’)>

= f exp(ifot K(t’)W(t’)dt’)f/’[W(t’)]D[W(t’)], 2.2

G[K(t")]

dynamic

whereK(t') is a suitable test function. The initial numbir of particles is a random variable
characterized by a probability

P(N,t=0), >, P(N,0)=1 (2.2
N
or by the corresponding generating function
9(zt=0)=2, ZNP(N,0), |z]=1, (2.3
N

wherez is a complex variable with the absolute value at most equal to the unity.
The stochastic properties of the numbéist,),...,N(t,) of particles surviving at times
0=<t;=<---<t,,<t are characterized by an-gate probability

Pin(N(tm),tm;...iN(t1),t1), (2.4)

with the normalization condition

2 2 PNt iNg 1) =1 (2.5
Nm Nl
and
ty=UAt, At=(t—tg)/(m+1), u=1,...m. (2.6

In the limitm — o (At — 0), P,, becomes a probability functional which describes the stochastic
properties of a random trajectoN(t’), O<t’'<t

B[N(t"); O<t'st]= lim Pp(Np,tn;..-;Ng, 1), 2.7
m— o

(At—0)

which obeys the normalization condition

> > B[N(t'); O=t'<t]=1, (2.9

where=3 stands for a path sum which is a discrete analog of a path integral

S = dim > D> (2.9
m—o  N(t1) N(tm)
—_— (At—0)

In terms of the probability functiond8[N(t')] we can define the characteristic functional
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E[ﬁ{f‘(t’)]=<exp(iJot %'(t’)N(t’)dt’)> =>> ex;{ J Z(t)N(t)dt! )B[N(t 1.
dynamic
(2.10

The central momentéN(t;)---N(t,,)) and the cumulant§(N(t;)---N(t,,))) of the number of
surviving particles may be defined by the moment and cumulant expansi@is7sit’)]

Com ot t
L=+ 3 fo---fo (N(E))--N(U)). ()~ Tty dty - dit,

:explmzl ml J’ f«N(tl) r’n)>>%'(ti)“‘%'(tr'n)dti"'dt
(2.11

that is, the central moments and the cumulants can be computed by evaluating the functional
derivatives

(N(ty)---N(tm)=(—1)" "ELAW)] (2.12
! m 57/( D 07 ()| o '
and
o SMIn E[%‘(t’)] ‘

()=

On the other hand the rate process can be characterized by the moments of a realization of the
survival function

t
|(t)=ex;{—J’0 W(t')dt’), (2.19

i.e., by the averages

('(tl)"'l(tm)>dynamic:jf|(t1)“'|(tm)é%[W(t’)]D[W(t’)]- (2.19

The aim of this article is to answer the following questions:

(1) Given the stochastic properties of the random rate coefficient and of the initial number of
particles, which are the stochastic properties of the number of particles at any time?

(2) Which are the moments of the survival functib)?

(3) Is there any relationship between the moments of the survival function and the moments of the
number of surviving particles?

(4) For which systems can the moments of the number of surviving particles and of the survival
function be computed explicitly and which is the relationship between these functions and the
experimentally accessible quantities?

(5) In order to answer these questions we should express the characteristic furigfigfial )] of
the number of surviving particles in terms of the characteristic functi@j# (t’)] of the
random rate coefficient. The main idea of our approach is to evaluate the dynamical average
in Eg. (2.10 in two steps: first we consider a given realization of the random rate coefficient
W(t"), O<t’'<t and average over all possible numbers of surviving particles which are
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808 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

compatible with this realization; finally we average over all possible realizations of the ran-
dom rate coefficienW(t’).

lll. CHARACTERISTIC FUNCTIONAL APPROACH TO DYNAMICAL DISORDER

In this section we consider a realizatid¥(t’), O<t’<t of the rate coefficient and try to
evaluate the corresponding generating functional of the number of surviving particles. First we
notice that for a given realization of the rate coefficient the dynamical disorder does not exist; we
deal with an ordered random system with a time-dependent rate coefficient. The study of such
systems is not necessarily related to the problem of dynamical disorder; such a study is also of
interest on its own, for instance, in connection with the statistical description of the death process
in mathematical demograpffyor for the study of radiochemical reactich® We introduce the
ordered characteristic functional

Eorderedi%'(t’)lw(t’)]=<eXp( i fot %(t’)N(t’)dt’)> : 3.1
ordered

where the averagé--),qereqiS COMputed with respect to the number of surviving particles com-
patible with the realizatioW(t’) 0<t’<t. The characteristic function&[.7Z(t')] of the disor-
dered process is simply given by

EL%U,)]:<Eorderetﬁ-%‘(t,)|W(t,)]>disorder:ffEorderecﬁ%‘(tlﬂw(t,)]y[W(t,)]D[W(t’)]y
- (3.2

where the average - )gisorder IS COMputed with respect to all possible values of the random
function W(t'), O0<t'<t.

In Appendix A we show that the generating functior®,gereq [ 7 (t')|W(t')] can be ex-
pressed in terms of the realizatibft) of the survival function as

t ’
Eordere‘ﬁ%‘(t’)lw(t’)kg{Z=1+J I(t’)i%‘(t’)ex;{i Jt %'(6)d6}dt’, t=0;.
0 0
(3.3
In order to compute the characteristic functiol7(t')] for systems with dynamical dis-
order we express the generating functg{z,0) corresponding to the probabili(N,0) in terms
of the initial factorial moments of the number of particles
Fn(t=0)=(N(N=1)--+(N=m+1))aynamd 1=0) = > N(N=1)---(N=m+1)P(N,0);
(3.9
we have
Fm(0)=Ngo(Ng—1)---(No—m+1) (3.9
for an initial canonical ensemble and
Fmn(0)=((No»H™, (3.9

for an initial grand canonical ensemble.
From the definition2.3) of g(z,0) it follows that

J. Math. Phys., Vol. 37, No. 2, February 1996
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Fm(0)=dmg(2,0)/d2m|2:1 (37)

and thusg(z,0) can be expressed as a Taylor series

1
g(z,0)=1+mE:l — Fn(0)(z— )™, (3.9

By combining Eqgs(3.2), (3.3), and(3.8) the characteristic function&[.7(t")] for systems with
dynamical disorder can be expressed as

*()m t t m ,
EL7(t)]=1+ 2, % Fm(O)j f %‘(ti)--n%(tr’n)exp(iE Jt“ ,%(G)dé)
m=1 M 0 0 u=1Jo
X(H(ty)- - H(t))dty iy, (3.9
where(l(t;)---I(t,)) are dynamical averages given by E(&15. By combining Eqs(3.9) and
(3.10 and using the definitioif2.1) of the characteristic function&b[K(t')] of the rate coeffi-
cient we can expresd(t;)---I(t))) as

<I(ti)”'|(tr,‘n)>:J'J' eXP(-Z C W(6)d6):”/’[W(t’)]D[W(t’)]
u=1J0

=G

K(t’)=iu§1 h(t(,—t’)} (3.10

whereh(x) is the usual Heaviside step function. By inserting E&s10 into Eq. (3.9) we have
o coqm t t .
BLAI=1+ 3 Fa@) [ [ e
m=1 M 0 0

dt---dt,,. (3.1

K(t')=iu21 h(t,—t")

m
><exp< i> [ L%(%)ds/f)e
u=1J0

Equation(3.11) is the main result of this article. It expresses the stochastic properties of the
number of surviving particles in terms of the stochastic properties of the random rate coefficient
W(t"), O<t’'=<t.

Combining Egs(2.12 and(2.13 and Eq.(3.11) we can compute the first two cumulants of
the number of surviving particles. We assume that the initial distribution of the number of particles
is given by equilibrium statistical mechanics. We get

((N(1))) =No(I (1)), (3.12
((N(tDN(t2)))=No[(1(t5)) = (I(t) (1)) T+ (No) X((I (t) 1 (t2))) (3.13
for an initial canonical ensemble and
((N(1)))=No(I (1)), (3.19
((N(tN(t2)))=(No)(I(t3)) +(No) ({1 (t)I(t2)) (3.15

for an initial grand canonical ensemble. Here

J. Math. Phys., Vol. 37, No. 2, February 1996



810 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

((H(tD1(t2))) =(1(t)I(t2)) = (I (t1))(I(t2)) (3.16
is the second cumulant of the survival function for systems with dynamic disorder. We have
{(DI(t)))=0, tq,t, finite, (3.17

where the equality holds for systems without dynamical disorder. In both cases in the thermody-
namic limit the relative fluctuation has the same asymptotic behavior

((I(t)I(t2)))
(I(t))(I(t2))

Unlike in the case of ordered systems discussed in Appendix A for dynamical disorder the relative
fluctuation of the number of particles does not decrease to zero but rather tends towards a constant
value; in other words the fluctuations have an intermittent behavior.

The other moments and cumulants can be computed in a similar way, the complexity of
computations increasing with the order of the moments. The computations are much simpler if we
are interested in the analysis of fluctuations at a single time; in this case an infinity of fluctuation
dissipation relations for all moments exist which are independent of the type of statistical en-
semble which describes the initial state of the system. The derivation of these fluctuation—
dissipation relations is presented in the following section.

1/2
) const as Ny, (Ng) — . (3.18

denami((tbtz)"’

IV. FLUCTUATION—-DISSIPATION RELATIONS

We introduce the probabiliti?(N,t) of the numbeiN of surviving particles at tim¢ and the
corresponding generating function

g(zt)=2, NP(N,Y), |7]<1; (4.1)
P(N,t) can be expressed as an average of a functional Kronecker symbol over all possible

trajectoriesN(t"), O<t'=<t

, f
PIN.H=2 3 BIN(t) 18y - (4.2
where
5(funCt) = 6N(I)N(I’) y fOI’ t:t/ f

N(t")N(t)
4.3
=0, for t#1t

and &y is the usual numerical Kronecker symbol. By combining E@10 and (4.1) for
E[.%(t')] andg(z,t) and using Egs(4.2 and(4.3) we note that we have the relationship

g(z,t)=E[i.2Z(t")=8(t—t")In z]. (4.9

By combining Egs(3.2), (3.10, (3.11), and(4.4) we obtain

i |
g(z,t)=JJg(l+(z—l)|(t),0):%[W(t')]D[W(t’)]=1+m§=:1 W|:m(0)<|m(t))(z—l)m,
(4.5

where
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amwy= [ [ imw weey i 4.6

is themth central moment of the survival function at timeFrom Egs.(2.14 and(4.6) we note
that at one time all momentd™(t)) can be expressed in terms of the average vél(g), by
replacing the instantaneous value of the rate coeffidigftt ) by mW(t'), m=23,....

t
<|m(t)>=ff exp(—mfo W(t’)dt’)?/{W(t’)]D[W(t’)]z(l(t;W(t’)—>mV\l(t’))>.
4.7

On the other hand, by using E(B.10 we can express the one-time moments of the survival
function in terms of the characteristic functior@]K(t')] of the random rate coefficient

(M(t))=G[K(t")=im]. 4.9

Now we note that the factorial moments of the number of particles atttime
Fm(t):<N(N_ 1)+ (N-m+ 1)>dynamic(t): 2 N(N—=1)---(N—-m+1)P(N,t) (4.9

can be computed by differentiating the generating functjont)
Fm(t)=d™g(z,t)/dz"|,—;. (4.10
By differentiating Eq.(4.5) m times and making=1 we come to
Fr()=Fmn(0){(IM(t))=Fn(0){(I(t, W(t") — mWt"))), m=12,... (4.10)

Equations(4.11) are an infinity of fluctuation—dissipation relations which establish a connection
between the average dissipative behavior of the rate process, expressed by the average survival
function (I (t;W(t")—mWt"))) and all the factorial moments of the number of surviving par-
ticles, which express the fluctuation dynamics.

For applying the fluctuation—dissipation relatiof#s11) we should be able to evaluate the
average survival functiofl (t;W(t')—mWt’))). If the cumulants of the random rate coefficient

O'q(tl v =tq) = <<W(t1) : 'W(tq)>>dynamic (4-12)

exist and are finite the characteristic functiof@]K(t')] can be expressed in the form of a
cumulant expansion

9t t
GIK(t)]=exy 3 o fomfoaq(tl,...,tq)K(tl)'—~K(tq)dt1~~dtq . (413

By combining Eq.(4.13 with the expression$4.8) for the one-time moments of the survival
function and with the fluctuation—dissipation relatiddsll) we come to

“(=mY rt t
Fm(t)/Fm(0)=<Im(t)>=exp{z (qr!n) fo---fo aq(tl,...,tq)dtl...dtq]. (4.14

gq=1

This is a general expression for the one-time moments of the number of surviving particles and of
the survival function; for applying it we should evaluate the integrals and the series in the expo-
nential.

J. Math. Phys., Vol. 37, No. 2, February 1996



812 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

In Appendix B we show how Eq94.11)—(4.14) can be used for computing the central
moments and the cumulants of the number of surviving particles.

V. EXACTLY SOLVABLE MODELS

In this section we consider two particular cases for which, at least in principle, the formal
expressiong4.8) or (4.11) for the moments of the survival function can be explicitly evaluated.

In the first case we assume that the random rate coeffiwignt) is a known function of a
generally non-Markovian random vectgy which can be embedded in a more complicated
Markovian random process characterized by a higher dimensional random vector

X=(Y1,Y2), (5.1

wherey, is the vector of the minimum number of additional random variables necessary for a
Markovian description. The random rate coefficigift’) can be expressed as

W(t")=W(x(t") = (y1(t"),y2(t"))=W(y,(t")). (5.2

The dynamical averages™(t)) can be computed by evaluating the characteristic functional
G[K(t")] with the help of the method of curtailed characteristic functionals suggested by Lax
and Van Kampefi® The computations are presented in Appendix C. The moments of the survival
function are equal to

<Im(t)>=f A(x,)dx, (5.3

wherem is a positive number, not necessarily an integer, andx,t) is the solution of the
evolution equation

A (X, 1) = LA (X, 1) = mW(X) A (X, 1), (5.9
with the initial condition
An(X,00=P(x,0) independent of m. (5.5

P(x;0) is the probability density of the state vectortatO andL is a linear Markovian evolution
operator. For a time-homogeneous Fokker—Planck process

L---=—§ Ox A0+ 1+ 2 % [Dogq ()1, (5.6)
a.9’
whereas for a pure jump Markovian process we have
]LP(x,t|x0,0)=f [Z7(X" — X)P(X,t|Xq,0)— Z(x — X")P(X,t|Xq,0)Jdx’. (5.7

Here Ay (x) and Dy (x) are probability drift and diffusion coefficients, respectively, and
7' (x" — x)dx is the jump rate from a stateto a state with a random vector betweeandx+dx.

To clarify the physical significance of the functiok,,(x,t) we introduce the logarithmic
decrement of the survival function

e(t)=—1InI(t). (5.9

Borrowing a commonly used name from nuclear physics, we call the funefignthe lethargy
variable. We denote by

J. Math. Phys., Vol. 37, No. 2, February 1996
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d(e,x;t)dedx, with ffd)(s,x;t)ds dx=1 (5.9

the probability that at timée the lethargy has a value betweeande +de and that the state vector
is betweenx and x+dx. In Appendix C we show that the functioh,,(x,t) can be expressed in
terms of the Laplace transform @f(e,x;t) with respect tce:

@(ﬁ,x;t)=f exp(— Be) g(&,x;t)de, (5.10
0
where g is the Laplace variable conjugated 4é0We have(see Appendix €

Am(x,t)=d(B=m,x;t), (5.11)

that is, the functiom\,(x,t) is the Laplace transform of the lethargy-state vector joint probability
density ¢(g,x;t) for B=m. From this physical interpretation of the functidn,(x,t) it follows that
the probability density

1
C(l,t)dl, with f C(l,t)ydl=1 (5.12
0
of the survival function at timé can be expressed as

C(I,t)=J J Sl —exp—e))p(e,x;t)dx ds=I*1J ;ﬁ(—ln I,x;t)dx=I*1J A= _in1(x,t)dx.
(5.13
A second case for which the moments of the survival function can be explicitly evaluated

corresponds to a time-homogeneous Gaussian behavior of the rate coeffi¢iéntor which the
cumulantsay(ty,... ty) are given by

o1=(W) independent of t, (5.19
o= o([ti—ta]) = (AW(t1) AW(t,)), (5.19
04=0, g>2. (5.16

Here(W) and(AW(t;)AW(t,)) are the average value and the absolute autocorrelation function

of the rate coefficient, respectively. Due to the stationary character of the process the average rate
(W) is independent of time and the autocorrelation funciaw(t;)AW(t,)) depends only on

the absolute value of the difference of the two timgsandt,. In this case Eq(4.14 becomes

Frn(D/Fm(0)=(I™(t)) = exp{ — m(W)t+m* AW3(0)) (1)}, (5.1
where
(AWA(1))=(AW?(0)) (5.18

is the stationary one-time dispersion of the rate coefficient

t

is a non-negative function of time and
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At = to]) = (AW(ty) AW(t,))[(AW?(0)) (5.20

is the relative correlation function of the rate coefficient.
The multitime moments and cumulants of the correlation function can be computed in a
similar way. By applying Eq(3.10 to the case of a stationary Gaussian process we obtain

(1(t)l(t))=G[W(t") = (h(ty—t") +h(t—t"))i]

t [t
=exp|’ —(W)(t; 1) + HAW(0)) JO fo Aty —tshIh(t,—ty)

+h(tz—ti)][h(tl—t§)+h(t2—t§)]dt1dtéJ, with t;,L,<t. (5.2))

After lengthy algebraic manipulations the double integral in G21) can be expressed in terms
of the functionj(t), resulting in

(I(t)1(t)) =exp{ = (W)(t1+ 1) + (AWA(0))[2/(t) +2-(t) - ([ta—taD T} (5.22

and

(It (t)))=exp — (W) (ty+1t2) +{AWA(0))[ /(ty) + (t2) I}
X{{exp{(AW2(0))[ (t1) +(t)) = (|t;—to) 1} — 1} (5.23

The first two cumulants of the number of surviving particles for initial canonical and grand
canonical ensembles can be computed by combining the general equatidhs(3.18 with Egs.
(5.17 and(5.22), (5.23. In the thermodynamic limit the relative fluctuation is given by

denami((tl ,tz) = {eXF){(AWZ(O»[/'(tl) ‘f‘/(tz) _,/"4(|t1_ t2| )]}_ 1}1/2- (5.29

VI. POSITRON LIFETIME DISTRIBUTIONS IN DENSE FLUIDS

As a first application of the approach developed here, we consider the problem of the distri-
bution of the lifetime of positrons or positronium atoms in dense fluids. A positron or a positro-
nium atom thermalized in a dense fluid can become locafiz&tis type of localization is due to
the interaction of the trapped particles with the environment, for instance, via the Fermi repulsion,
and it is different from the usual Anderson localization typical for disordered sysfemeentu-
ally the trapped particles decay due to the annihilation reaction with the neighboring electrons.
With respect to this annihilation-self-trapping phenomenon it is not clear whether the positron
actively creates a well in the fluid in which it localizes, or randomly visits favorable fluctuations.
Density functional theory calculatiofissupport the idea of a definite localized state for the
trapped particle and under these circumstances one normally expects to have a well definite decay
rate. This point of view is consistent with the ease with which experimentalists are able to assign
specific annihilation rates to each decay mode. In contrast, quantum Monte Carlo calctflations
show that substantial fluctuations occur in the neighborhood of a trapped particle resulting in a
broad distribution of decay rates. These Monte Carlo simulations seem to contradict the experi-
mental measurements which lead to single, definite decay rates.

To solve this contradiction Miller, Reese, and WoftelIMRW) have recently suggested an
approximate stochastic model with dynamical disorder. They have shown that the difference
between the density functional and Monte Carlo calculations is due to a misinterpretation of the
results of simulations in terms of a model with static disorder. Both the Monte Carlo and the
density functional approaches are recovered as particular cases of the MRW dynamical stochastic

J. Math. Phys., Vol. 37, No. 2, February 1996



Vlad, Ross, and Mackey: Fluctuation—dissipation relations 815

model® In the MRW treatment the rate coefficient is a quantum mechanical opéﬁ&mhich
depends on the electron density in the neighborhood of the trapped patrticle. The time-dependent
instantaneous rate coefficievif(t) is a quantum mechanical average

W) = ( (1) W] g(1)). (6.1)

Due to the environmental fluctuations of the density the quantum mechanical aVé(gdges a
fluctuating quantity that can be written in the form

W(t) = (W) + AW(t), (6.2

where(W) is a time-independent statistical average rate coefficientAfit) is the fluctuating
part of W(t).
The average survival function is given by

(I(t))zexﬁ—(W)t)<ex;{—fOtAW(t’)dt’ > (6.3

To evaluate the dynamical average in H.3) Miller, Reese, and Worréft do not use the
characteristic functional method suggested in this article. Instead they use a nonsystematic ap-
proximation based on two series expansions. They expand the exponential under the average
brackets in a Taylor series and keep the first three terms, resulting in

(I)=exp(—(W)t)

1 t t ! ! ! !
145 fo L(AW(tl)AW(tz))dtl dtz]. (6.4)

The next step is to take the logarithm of the average survival function and to approximate the
logarithm containing the double integral by the first term from its Taylor expansion

1 (t(t
|n<|(t)>s—<w>t+§f J(AW(ti)AW(té))dti dt}. (6.5)
0JO

The simplest assumption for the time dependence of the correlation fudtidiit,) AW(t,)) is
an exponential decay

(AW(t1) AW(t2))=(AW?(0))exp( —[t;—tal/~ w), (6.6

where. \y is a characteristic relaxation time for the regression of fluctuations. Equ&6disand
(6.6) lead to

In(1(t)) = — (W)t +(W)222t, w{1— (- w/t)[1—exp(—t/- w)1}, (6.7
where
£=(W?(0))"(W). (6.9)

Miller, Reese, and Worréft have estimated the parameters entering(E4) for the orthopositro-
nium atom(o-P9 in xenon at 340 °K and for the bare positr@i’) at 300 °C. The result of this
estimation is that for 0-Ps the macroscopic relaxation time scale

t_macr0: 1KW) (6.9

is much larger than the regression time of fluctuations t,,c,c~w; in this case the fluctuations
are very fast and the average survival function is practically exponential
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In{1(t))= — (W), (6.10

which corresponds to a definite effective relaxation (4&. This behavior is a particular case of
a general feature of the systems with dynamic disorder and very fast fluctuafi@nshe bare
positronium, however, the macroscopic and fluctuation time scales are less well separated and the
average survival function is given by E@.7).

Now we investigate the MRW model from the point of view of our approach. First note that
within the framework of our theory the MRW approximative equati¢h$) and (6.7) are exact
for a Gaussian and Markovian procegsccording to Doob’s theorem the only possible expression
for the correlation function of a stationary Gaussian and Markovian process is the exponential
form given by Eq.(6.6). Inserting Eq.(6.6) into Eqg. (5.20 and using Eqs(5.19 and (5.17) for
m=1 we recover the MRW equatidl.7). If the stochastic process describing the behavior of the
random rate coefficietV(t") is close to a Gaussian process then the superior cumulants lead to
small corrections in the expression of the average survival funfsiea the general non-Gaussian
relationshipg4.14)].

Examining the MRW derivation of Eq6.7) it follows that this equation is valid only if

1 (t(t _ _ _
> fo L(AW(t;)AW(tg))dt; dt,=(W)22%t, Wi1— (> wit)[1—exp(—t/- W) ]}<1. (6.11)

Indeed, only if this restriction is fulfilled are the series expansions used in(Ed.and (6.5
justified. Our approach, however, shows that the restri¢ball) is not necessary. For a stationary
Gaussian and Markovian process the MRW equatii) is exact for any values of the integral
term in Eq. (6.11). Miller, Reese, and Worrell did not notice this relationship between their
approach and the stationary Gaussian and Markovian processes. We do not know whether the
actual random properties of the rate coefficient are accurately described by a stationary Gaussian
and Markovian process. Note, however, that the standard description of stationary fluctuations is
based on the use of such a proc®sEhe broad range of validity of Ed6.7) is surprising but it
is due to the fact that in the MRW derivation the errors due to the two series expansions in EQs.
(6.4 and (6.5 compensate each other.

The exponential or nonexponential structure of the average survival function is governed by
the relationship between the macroscopic and the micros¢tpatuation time scales. From the
MRW approach it follows that in the case of very rapid fluctuations the system behaves as if the
dynamical disorder were missing. Our approach, however, shows that this is not the case. Apply-
ing the expressionf5.24) for the relative fluctuation of the number of particles in the thermody-
namic limit we obtain

Paynamid t1:2) ~eXB{(~ w)X(AWZ(0))[2 min(ty,t5)/ - w—1—exp(— [ty —to|/ )
+exp—ty /- w) texp —t /- w)]1-1}Y2  as Ng,(Ng) — ©. (6.12

For larget,,t, Eq. (6.12 takes a simpler form

Paynamid t1,t2) ~exp{(> W) (AW?Z(0))min(ty,tp)},  ty,t, — o, (6.13

that is, the relative fluctuation increases exponentially to infinity. From &q%2 and(6.13 we
notice that the intermittent behavior of the fluctuations exists even if the fluctuations are very
rapid. This is a surprising result which cannot be obtained by applying the MRW approach. It
might be possible that the intermittent character of fluctuations of the number of particles can be
observed experimentally.

The existence of dynamical disorder decreases the efficiency of the annihilation process. This
is reflected in the fact that the decrease of the survival function given b{6Eq) is slower than
in the case when the fluctuations of the rate coefficient are missing. By using the method devel-
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oped here, we can show that this slowing down effect due to the dynamical disorder is also present
in the case of Gaussian, non-Markovian fluctuations of the rate coefficient for which the correla-
tion function(AW(t,)AW(t,)) is generally nonexponential. If the dynamical disorder is missing
we have(AW(t;)AW(t,))=0,,(t)=0 and Eqs(5.17) lead to

(1"™(t) ) ordered™ (Fm(t)/Fm(0))ordered= €XP( — M{W)t). (6.14

As /(t) is generally non-negative by comparing E¢E20 with Egs.(6.14) we obtain

<| m(t)>ordered: (Fm(t)“:m(o))ordered><I m(t)>dynamic= (Fm(t)/Fm(o))dynamiC! m= 1!2! (6 15

The slowing down generated by the dynamical disorder affects not only the moments of the
survival function but also the factorial moments of the number of particles.

VIl. PASSAGE THROUGH A FLUCTUATING GEOMETRICAL BOTTLENECK

The model for the binding of a ligand to a protein molecule suggested by Zwaiwigased
on the following assumptions:

(1) The rate determining process is the passage of a ligand molecule through a geometrical
bottleneck formed by the protein chain. The rate coeffici&his proportional to the area of the
bottleneck

W(r)=ar?, (7.

wherer is the radius of the bottleneck andis a positive coefficient with dimensidfime] 2
[length] 2.

(2) Due to the conformational fluctuations of the protein molecule the radifsthe bottle-
neck is a random variable which obeys a Langevin equation

dr/dt=—\r+F(t), (7.2

in which \ is the rate of regression of a fluctuation rinand F(t) is thermal(Gaussian white
noise. The stochastic propertieskft) are completely characterized by the cumulants

(F))=0, ((FOF()))=2N05(t—t") (7.3
and
((F(ty)...F(ty))=0, g>2, (7.4
where 6 is the second moment of the radius
0=(r?). (7.5

Using these two assumptions Zwanzig has computed the expression of the average survival
function {I(t)) of the ligand molecules. In this section we complete the Zwanzig's analysis by
evaluating the fluctuations of the number of ligand molecules. This is more than a simple aca-
demic exercise; indeed, even though the fluctuations are not easily experimentally accessible the
theoretical investigation of their behavior would lead to the clarification of the nature of the
process in the thermodynamic limit. We shall see in the following that, like in the case of positron
trapping in fluids, the Zwanzig’'s model leads to an intermittent behavior.

Equation (7.2) shows that the radius of a bottleneck is a Markovian random variable. It
follows that we can apply the Markovian approach developed in Sec. V. In this case the state
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vectorx is made up of one componext(r). Reducing the Langevin descripti@n.2)—(7.4) to
a Fokker—Planck description it turns out that the evolution opetaisrgiven by

]L---=)\&,(r---)+7\0ar22(---), (7.6

which is a particular case of E¢(.6). The factorial moments of the number of surviving particles
and the moments of survival functions can be derived by applying the fluctuation—dissipation
relation (4.11). The details of computations are presented in Appendix D. By combining our
formalism with the data available in the literatté’ we obtain

Fn(D/Fm(0)=(1"M(t))="m(1), (7.7
where

- N+ 2amé . 5 s
S m(t)= WSIM{()\ +4améOn) 1]

—-1/2
+coshi (N2 +4amon) V] exp(At/2). (7.9

For m=1 Egs.(7.7) and (7.8 reduce to the Zwanzig's expression for the average survival func-
tion. The expression&.7) and(7.8) for m>1 for the fluctuations of the survival function and of
the number of ligand molecules are new.
The average rate coefficient is equal to
(W)y=(ar?)=a®. (7.9

In terms of(W) and\ the macroscopic time scat_enacro and the fluctuation time scafé}m can
be expressed as

t_macro: 1/<W> =(af)” 11 g%luct: N, (7.10

The limit behavior of Eqs(7.7) and(7.8) can be analyzed in terms of the ragiof the two time
scales

Y= % et/ tmacra= @O/ (7.12
Fory — o the fluctuations are slow, the disorder is static, and E43) and(7.8) become
Frn(O)/Fn(0)=(I™(t))~(1+2madt)}2, m=1,2,..., y — o. (7.12
In the opposite case of rapid fluctuatiops— 0 and the moments decrease exponentially in time
Fn(D/Fn(0)={"(t))~exp(—madt), m=12,..., y— 0. (7.13
The one-time central moments and the cumulants of the number of ligand molecules can be
computed by using the relationships presented in Appendix B. To save space we give here only the
expression of the one-time relative fluctuation
p(t)=(ANZD))YVH(N(D) =[ (L+ pX(0)7 ()] (#1(1))>= 1+ (1= F5()/71(D)(N(0))]¥
~[(1+p%(0).72(O)/(1())2 =112 (N(0)) — o=. 714
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Note that in the thermodynamic lim{N(0)) — <« the fluctuations are intermittent. To estimate the
intensity of the intermittent behavior we analyze the asymptotic expressions for the factorial
momentsk(t) and for the one-time relative fluctuatigiit). For large time bothr ,(t) andp(t)

are exponentials

2(1+4my)* . "
Fn()/Fm(0)=(™(t))~ T (1+amy) ™ exp{ — s\ t[(1+4my)~“—1]},

t>0, (7.19
p(t)~(1+p(0))VR(y)exd s\ tQ(y)], t=0, (7.16
where
1+8y) 1+ (1+4y)Y
R(y)= (1+8y) "1+ (1+4y)"? .17

C(1+4y) M1+ (1+8y) VA2
Q(y)=2(1+4y)Y>—(1+8y)¥?>-~1>0, for y>0. (7.18

As time increases the factorial momerfsg,(t) of the number of ligand molecules decrease
exponentially to zero and the relative fluctuatiaft) increases exponentially to infinity.

From Eqgs.(7.195 we see that the effective exponential rate consfégi(m) for the decay of
fluctuations is a parabolic function of the moment ingexEquationg7.15 may be rewritten in
the form

Fm(t)~exd —Weg(m)t], t — o, (7.19
with
Wer(m) = sA[(1+4my)2—1]~(mar 9)Y2  y>1; (7.20
for m=1 Eq.(7.20 reduces to a relation derived by Zwar#ig
Wei(1)~(aN0)Y2  y>1. (7.22)

As the relaxation rata of the radius fluctuations is inversely proportional to the viscosiof the
solvent?* Eq. (7.21) leads to

Weg(1)~ 7~ 12 (7.22

a relationship which is approximately consistent with the experimental data which can be fitted by
the lawf®

Wer(1)~7 K, with 0.8>K>0.4. (7.23

A possible explanation of the existence of an exponent different frerauld be the fact that
the fluctuations of the radiusof the bottleneck are actually non-Gaussian. The Gaussian behavior
of a geometrical parameter of a polymeric chain is generally related to the description of the
conformational fluctuations by a noncorrelated random wakkor real polymers, however, the
excluded volume effect necessarily leads to non-Gaussian befidviogeneralization of the
Zwanzig's model which provides a theoretical derivation of the experimenta(1a2® is based
on the assumption that the non-Gaussian fluctuations can be described by using the fractional
diffusion equatior?! Details concerning this model will be given elsewhere. We mention that
Wang and Wolyne® suggest a different explanation for the experimental (&23. They assume

J. Math. Phys., Vol. 37, No. 2, February 1996



820 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

that the fluctuations of the radiusare Gaussian but that the corresponding correlation function
(Ar(ty)Ar(ty)) is a nonexponential function of the time intertal-t,.

VIIl. JUMP RATE PROCESSES AND RELAXATION

The third application of our approach is an exactly solvable model with dynamical disorder
which can be used both in biochemistry and condensed matter physics. We assume that the
random time evolution of the rate coefficieM(t’) can be described in terms of a jump process.

For each jump a new value ¥¥ is randomly selected from a given probability dendi(yV)dW.
The jump frequency is also a random functiQiit’) which obeys a similar dynamics. For each
jump a new frequency) is picked up from another probability densigi))d). For this kind of
model the random functiolV(t") is generally non-Markovian. However the s€,W) has a
Markovian behavior characterized by the jump rate

71O W — Q,W)dQ dW At=0'EQ)F(W)dQ dW At, (8.1)

whereAt — 0 is the length of the time interval in which a jump occurs. This type of model is a
particular case of the Markovian processes studied in Sec. V. The state xéstgiven by

x=(Q,W) (8.2)

and the evolution operatdr can be computed by inserting E@.2) into Eq. (5.7). Using the
expression for L the evolution equations (5.4), (5.5, and (5.10 for
A(Q,W,1)=¢(B=m,Q,W;t) become

at&w,ﬂ,wn):amf(vv)f f Q' B(B,Q WAL AW — (Q+ W) B(B,0,W;),

(8.3
with the initial condition
B(B,Q,W;t=0)=P(Q,W,t=0)=£(Q) F(W). 8.4
Equation(182 can be solved by introducing the auxiliary function
o(8.0- | | 0ds.0wnd0 aw. 5

We express the integral in E.3) in terms ofb(3,t) and integrate the resulting equation by
assuming the functiob(3,t) is known. This gives

B(B,Q,W;t)= £(Q)F(W)

exp(— (Q+ BW)t) + ft b(,B,t—t’)exp(—(Q+,8W)t’)dt’}.
0

(8.6
Inserting Eq.(8.6) into Eq. (8.5) we obtain a linear integral equation fb(3,t)
b(ﬁ,t)=<Iﬁ(t)>stam;/f(t)+fot (1P(t")) stariab(t")b(B,t—t")dt’, 8.7
where
(1B(1)) static= Jomlﬁf(W)dW= f: exp(— BWH) f(W)dW (8.9
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is the one-time fractional static moment of orgepof the survival functiorl (t) and
z,b(t)zf Q exp(—Qt)€(Q)dQ (8.9
0

is the static average of the probability density of the waiting time between two jumps. Combining
Egs. (5.3, (4.11), and(8.6) we can express the dynamic moments of the survival function and of
the number of surviving particles in terms of the functiofg,t)

t
Fm(t)/Fm(o):<|m(t)>:<|m(t)>static'7?(t)+ fob(mit_t,)&”(t,)(Im(t,»staticdt,r (8-10)

where

_7/(t)=f¢/(t’)dt'=f: exp(— Q1) £(0)dO (8.1

is the probability that in a time interval of lengthno jump processes occur. Equati@?) is a
linear convolution equation ib(3,t) which can be solved by using the Laplace transformation.
We denote the Laplace transform of the real time varialidg an overbar

B(ﬁ,s)zf: exp(—sHb(B,t)dt, etc., (8.12

wheres is the Laplace variable conjugated to the titn&Ve apply the Laplace transform to Eqs.
(5.13 and(8.6)—(8.8), eliminate the function(3,s) from the resulting equations, and come back
to the real time variablé. After lengthy calculations we get the following expressions for the
probability densityC(l,t) of the survival functiorl at timet and for the dynamic averagés'(t))

andF (1)

C(l,t):(ZWi|)7lf dlB EX[XB In |)(/{gl

EQ)F(W)dQ dW (s+BW)E(Q)F(W)dQ dW
[ ff Q+pW+s JJ Q+BW+s '

(8.13
Fm(D)/Fm(0)=(1™(1))
ot Q) F(W)dQ dW (s+mW) Q) F(W)dQ dW
=7 ( J Q+mW+s JJ Q+mW+s '
(8.19

where the complex integral ovgris computed along a vertical line from the left hand side of the
complex plane from—i~ to +i and % ! denotes the inverse Laplace transformation with
respect to thes variable conjugated to the real time.

The probability densityP(x,t)=P(Q,W,t) of the ratex() andW at timet can be evaluated
in a similar way. We have

P(Q,W,t)zf H(Z,Q,W;1)dZ=$(B=0,0,W;t). (8.19
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Combining Eq.(8.15 with the Laplace transform of E@8.6) we obtain
P(Q,W,1)=£(Q)F(W) 2~ (s+0) 11— y(s) 1], (8.16

where

- = = Q
w(s)zfo exp( —st) g(t)dt= fo g fdo (8.17

is the Laplace transform of the average probability density of the waiting time between two jumps.
The above equations allow us to express the dynamic ave¢Ht@3) andF (t) in terms of
static averages over the rat8sandW. Equations(8.14) may be rewritten as

Fm(t)/Fm(0)=(1"(1))=(I"(1))staiic® () @ x (1), (8.18

where (1"™(t) ) gaiic IS given by Eq.(8.18, ® denotes the temporal convolution product, and the
function x(t) is given by

M(O= 71— o)1, (8.19
with
en($)= | expt=SOUOAT0) st (820

According to Eq.(8.18 the intermediate time behavior of the dynamical averag@ét)) and

Fn(t) can be quite complicated; the large time behavior, however, is dominated by the most
rapidly decreasing functions on the right hand side of Bdl8. The asymptotic behavior of the
static averagesl(t))ic and ¢(t) can be investigated by using the methods developed in the
literature dealing with systems with static disor®n the other hand the behavior gft) can

be investigated by making an analogy with Lotka’s theory of stable populatioAgquation

(8.19 shows that the functio(t) depends on the roots of the transcendental equation

en(9)= | exr=S0UOIMO) e t=1. (8.2

Equation(8.21) has exactly the same form as the well-known Lotka equation for the intrinsic rate
of growth from population dynamic¥:>? By using this analogy it follows that Eq8.21) has a
single real roos=s, which is nonpositive. We havé®>?

$o<0 if ¢@pu(0)<1l and sp=0 if ¢,(0)=1. (8.22

Equation (30) can also have at most a countable number of complex regfs=uq*ivy,
gq=1,2,... with real partsi, smaller or at most equal to the real ragt(Refs. 37 and 5

UgsSo, Q9=12,... (8.23

If the complex roots are simple they{t) can be expressed as

x()=(lg)™* eXIO(—|So|t)+2qZ1 exp(— |uglt){[1q codvgt) =14 sin(ve)I/L(1g)%+(14)%T,
(8.29

where
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Q&) F(W)
JJ Q+mwz 4@ dW (8.25
and
+_ QEQ)F(W) (Q+mW—u|)2—U|2]
_ff [(Q+mW—ug)?+vi]? | 2(Q2+mW-u)) d@ dw. (8.26

The expansiori8.24) is physically consistent only if the integral8.25 and(8.26) exist and are
finite.
The constantp,,(0) can be expressed as

Q
0)—f f Q+ng(Q)f(W)dQ dw= aTmw (8.27

static

In most cases the avera¢®@/(Q+mW))g.ic is smaller than unity and thus<0 and

x()~(o) * exp—[solt) as t — . (8.28

In this case the dynamical averagé®(t)) andF,(t) decrease to zero exponentially or faster. In
some exceptional cases it may happen tBH{Q+mMW))..i=1. In this situation there are two
possibilities: if 1-¢,(S) is analytic neas=0

1-¢n(s)~s as s— 0 andy(t)~const as t— . (8.29

If Eg. (8.29 holds then the dynamical averaggS(t)) andF(t) are completely determined by
the static averaggs™(t))siic- The second possibility is that-dp,,(s) is nonanalytic neas=0 so

1-—pn(s)~s? 1>a>0 as s — 0. (8.30

In this case the integral®8.25 and(8.26) are infinite, the expansiof8.24 breaks down and the
asymptotic behavior of(t) ast — o« is given by

x(H)~t2"YI'(a) as t — . (8.31)

The asymptotic fractal time behavior gft) may lead to an exoti¢i.e., nonexponentiallarge
time behavior forI™(t)) and F(t).

As expected for very rare jumps the dynamical momeht§t)) and F,(t)/F.(0) are the
same as the static averages

<|m(t)>:<|m(t)>static- (8-32

In this case we hav&(Q))= &) and Eq.(8.14) reduces to Eq8.8). In the other extreme of very
frequent jumps we havgQ)=80—-Q'), ' — » and Eq.(8.14 becomes

Fm(t)/Fm(O)zexp<—tf WHW)dW|=exp(—(W)t) as t — oo. (8.33

Equation(8.33 is similar with Eqs.(6.9) and(7.13 derived in Secs. VI and VII.

It is easy to check that for the jump process considered here the fluctuations of the number of
surviving particles are also intermittent. A straightforward calculation shows that the expression
(7.14) for the one-time relative fluctuation remains valid provided that the functiopgt) are
replaced by the functiond™(t)), m=1,2 given by Eq(8.14).
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A more detailed analysis requires knowledge of the probability dengiti@sand f (W). We
consider here only a few particular situations which may generate exotic relaxation. We assume
the validity of the random activation energy modBIAEM®>®%, i.e., that both the jump and the
rate processes are activated phenomena corresponding to a random distribution of energy barriers.
We have

Q(E)=pu exp(—E/KT), W(E)=v exp —E/KT), (8.39

where the activation enerdy may take any value between zero and infinity, the pre-exponential
factorsu and v are the maximum values of the rat@sandW, respectivelyk is the Boltzmann’s
constant, and is the absolute temperature of the system. The activation energies corresponding to
) andW are random variables selected from two different probability densities

now(E)dE,  with fm),W(E)dE=1. (8.39

Combining Eqs(8.34 and(8.39 it follows that the probability densitie&()) and f(w) of the
rates() andW can be expressed as

g(m:f no(E)S[Q— u expg( —E/KT)]dE, (8.36

f(W)= f nw(E)SIW— v exp(—E/KT)]dE. (8.37)

Depending on the choice of the probability densitigs,(E)dE we distinguish the following
cases:

(1) We assume that the jump dynamics is Markovian, i.e., that the height of the energy barrier
corresponding to the jump process is constant

n0(E)=6(E—-Eq) (8.39

and that the height of the energy barrier corresponding to the rate process is exponentially dis-
tributed

pw(E)=(kTy) ! exp(—E/kTy), Tw=T. (8.39

The probability law(8.39 corresponds to a canonical distribution of energies “frozen” at the
temperatureT,. This type of distribution was introduced almost sixty years ago in surface
chemistry®® it has also been used in the study of transport processes in disordered systetis.

In this case the dynamical moment§'(t)) andF,(t) and the relative fluctuatign(t) are given

by

T(1+H)(mpt) " exp(—Qot)
1-H(Qo/mv)"B[H,1—H,mv/(Qo+mv)]’

Fm(D/Fn(0)=(I"(1))

t—>

, (8.40

1—H(Qo/v)"B[H,1—H,v/(Q+v)] i
{T(1—H)[1-H(Qe/2v)"B[H,1—H,2u/(Qo+ 2v) ] ]} 2 (+1/2)

p(H)~(1+p?(0))*?

Xexp(3Qot), as t — o, (8.41

where

J. Math. Phys., Vol. 37, No. 2, February 1996



Vlad, Ross, and Mackey: Fluctuation—dissipation relations 825

F(p)=f:tp‘1 exp(—t)dt, B(p,q,x)=J:tp‘l(l—t)q‘1 dt (8.42

are the complete gamma and the incomplete beta Eulerian integrals, respectively,
H=T/Ty=<1, (8.43
and
Qo=p exp(—Eq /kT). (8.49

(2) The distribution of the height of jump barriers is given by a positive GompertZlatth
a characteristic enerdy,

n0(E)=(Eq) ! exd E/Eq— exp(E/Eq) —1] (8.45

and the probability density of the rate coeffici&Mitis given by the exponential 1a¢8.39. In this
case the large time behavior of the dynamical moméift&)) andF(t) is given by a stretched
exponential

Fn(t)/Frm(0)=(1"(t))~T (1+H)(mv) "M ut!™" exd — o(ut)"], (8.46
where
o=[1+KT/Ex]/(KT/Eg)® (8.47)
and
a=KT/(Eg+KkT)<1. (8.48

The one-time relative fluctuation diverges to infinity tas- « according to a positive stretched
exponential

2 1/2
p(t)= 1+p (0))) (V/Z)leti(liH)lzeXF[%O'(/Lt)aL as t — o (8.49

ul'(1+H

(3) Both activation barriers are exponentially distributegy(E) is given by Eq.(218 and
no(E) is given by a similar canonical distribution “frozen” at temperatdrg

70(E)=(kTo) ™ exp( —E/kTg), T<Tq. (8.50
We have
Fr(D/F(0) = (IM(1))~T(7+ 1)T (H+ 1)/ mp)H(ut) ~H+7),
v>p, t>ul (8.5))
pO= F(1j.;;)zr((01)+H) 1/2(”/Zf’“)'“z(ﬁ«t)“‘”WZ,
v a (8.5
where
T=TITy=1. (8.53
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Thus the large time decrease of the dynamical momepts) and(1™(t)) is given by a statistical
fractal law with an exponen#+H and the relative fluctuation increases to infinity according to
a statistical fractal law with an exponeft7z+H).

The probability density?(Q,W,t) of the rates) andW can be evaluated from E¢8.16. If
the average time between two jumps

(0= jooc ty(tydt= J: QD) =(Q ) static (8.59

exists and is finite, then
P(Q,W,t)~§(Q)f(W)/[Q(Q‘1)StatiJ as t — oo, (8.55

If {t) is infinite then the stat€)=0 acts as a trap and in the linit— « the random jumps cease.
We have

P(Q,W,)—8(Q)F(W) as t — . (8.56

For example, if the distribution of jump activation energies is given by the exponentidBla@
then{t)=o and forQ # 0 the probability density?({),W,t) decreases to zero according to an
inverse power law

f(W) si T _
P(Q,W,t)~Q(T_?;77:;(ﬂ+]/;))t(l"/), Q#0, t— o, (8.57

We have checked the validity of the asymptotic la(@s46 and (8.51) by assuming that
vlu~10-1G and H,7#~0.5—0.9. For this range of parameters the stretched exponége®
and the inverse power la(8.51) describe the behavior of the tail of the average survival function
for 0.15—0.10=(I(t))=0 and 0.12-0.08P(I(t))=0, respectively.

Although the above analysis provides a mathematical description of dynamical disorder in
terms of pure jump processes it does not clarify its physical significance. By rephrasing the pure
jump model in a physical language, we distinguish three different features:

(1) There are two different types of dynamical processes: a first process, described in terms of
the jump frequency), is responsible for the occurrence of dynamical disorder, whereas the second
is the rate process itself characterized by the random rate coeffitient

(2) Although no direct relations concerning the relative values of the frequeficeexl\W are
assumed, their statistical behavior is correlated due to their mechanism of change. For each new
step two new values of the frequenci@s and W are randomly selected from two different
probability laws. For this assumption to be fulfilled it is necessary that the interaction process
corresponding to a step is very strong, resulting in a loss of memory concerning the previous states
of the system. Such an assumption, known in the literature as the “strong collision hypothesis,”
has been commonly used in spectroscpy’ chemical kineticS® and condensed matter
physics%0,21,23,57

(3) The third assumption is the one concerning the random distribution of theQaaes W
which describe activated phenomena with a random distribution of energy barriers. This assump-
tion has been used in biochemistychemical kinetic$, the structural or dielectric relaxation in
glassy materials® transport phenomena in disordered systéhwtc. For this assumption to be
satisfied it is necessary that a state of local equilibrium exists, i.e., that besides the jump and rate
processes taken explicitly into account there is another type of process which ensures the ther-
malization of the system. Besides, it is necessary that the particles involved in the rate process can
exist in a large variety of different states, to which correspond different activation barriers.
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For illustration we consider two possible applications of the theory. The first example is the
problem of protein—ligand interactions which has already been mentioned earlier. In this context
the jump model is a generalization of the model with static disorder suggested by Frauenfelder
et al>® We assume that the passage from a conformation to another is not an instantaneous
process but rather it is characterized by a distribution of time séajgs= 1/}, corresponding to
different jump frequencie§),, u=1,2,... For this problem the strong collision assumption means
that the interaction between the ligand and the protein is sufficiently strong that it leads to a
conformational change of the protein which is relatively independent of the state of the protein
molecule before the interaction. Although the constraints imposed by the model seem to be rather
strong, they are less restrictive than the ones corresponding to the models with static disorder
presented in the literatufe’

A second possible application of the theory is the study of interactions between the collective
orientational relaxation in dense fluids and the kinetics of chemical proc€ssethis case the
collective orientational relaxation is responsible for the occurrence of dynamical disorder and it
plays a role which is similar to the role played by the process of conformational relaxation in
protein dynamics. The chemical reaction plays the role of the rate process.

IX. COOPERATIVITY VERSUS STATISTICAL INDEPENDENCE FOR RANDOM
RELAXATION RATES

A referee of this article has pointed out that our approach is based on the implicit assumption
that all particles making up the system are controlled by the same realization of the random rate
W(t"). In this section we investigate the general implications of this assumption and suggest an
alternative approach of random relaxation processes for which the above-mentioned assumption
does not hold anymore.

The assumption that the relaxation behavior of all particles is controlled by the same realiza-
tion of the random rat&V(t’) corresponds to a very strong cooperative behavior. As the above-
mentioned referee has pointed out this cooperative behavior of all particles is the physical cause
which generates the intermittent behavior of the process characterized by the general fluctuation—
dissipation relationg4.11). We emphasize that this cooperative behavior is related only to the
dynamical disorder and has nothing to do with the particles themselves which in the framework of
our approach are otherwise supposed to be independent.

Although the cooperativity of a dynamical-disordered process is not an unreasonable assump-
tion there is no guarantee that it is universally valid. In two of the three applications considered in
this article, the positron lifetime distributions and the passage through a fluctuating geometrical
bottleneck, one expects to have only a partial cooperative behavior, limited to the particles trapped
in a given region of the fluid or to the number of particles passing through the same bottleneck.
However, the theory developed in the preceding sections remains valid, provided that the number
N, of particles is not the total number of particles from the system, but rather the number of the
particles from a given cluster corresponding to a given region of the fluid or to a given bottleneck,
respectively. Generally speaking, for such a system with partial cooperativity, in addition to the
two averages considered in this article, over the sample fluctuations and over the dynamical
disorder, we should consider an additional averaging, over the all possible numbers and sizes of
the clusters. Concerning the jump process model investigated in Sec. VIl the cooperative or
noncooperative behavior of dynamical disorder should be examined for each possible applications
of the model.

We emphasize that the cooperative or noncooperative behavior of dynamical disorder does not
influence the expressions for the average survival functions derived in this article; only the be-
havior of the fluctuations is influenced by the type of dynamical disorder considered. For illustra-
tion in this section we investigate the other extreme of complete statistical independence for which
the fluctuations of the relaxation rates attached to the different particles are completely indepen-
dent. In this case the average in definiti@a10 of the characteristic function&[.7%(t’)] of the
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number of particles should be computed by taking into account all possible realizations of differ-
ent random relaxation functiona/(t;),...,W(ty) which are assumed to be independent of each
other. Equation(3.2) should be replaced by

t
E[Z(t)]= < eXD( i L%'(t’)(N(t’)>disorderdt’) > ) (CHY

where

<N(t’)>disorder: N0< EX[{ - f:w(t”)dtﬂ) > (9.2

disorder

is a dynamical average of the ty@10. The characteristic function&[.7Z(t')] can be expressed
by an expansion of the typ@.9)

E[.%'(t’)]zg[z=1+fot(l(t’))dynamig.%'(t’)exp{if;’.%f(%)df dt’, t=0]

co(Hm t t
143 ko [ [

m=1

><exp<i21 t‘,*.%‘(%,’)d%f () (I(t)))dt] - -dt) . 9.3
u= 0

By following the same steps as in Secs. II-1V from E®.3) we can show that for indepen-
dent fluctuations of the random raté&t;),...,W(t') the two-time cumulants of the second order
of the number of particles and the factorial cumuldatgt) are given by

((N(t)N(2)))=No[(I(t3)) = (I(t))I(12))] (9.9

and

Fm(D)=Fn(0)(I(1))™. (9.9

We notice that, in contrast with the case of cooperative dynamical disorder, for independent
fluctuating rates the cumulants of the second order of the number of particles depend on the first
power of the total numbeN, of particles and not on the second pow¢§. As a result in the
thermodynamic limitNy — o the relative fluctuation of the number of particles decreases to zero
as(Ng) Y2 asNy — o, a situation which corresponds to a nonintermittent behavior.

The choice between these two limit approaches corresponding to correlated and noncorrelated
fluctuations of the relaxation rates, respectively, should be done depending on the characteristics
of the particular system studied. It may happen that for certain systems none of the two approaches
developed in in this article may be used and thus the development of an averaging procedure
corresponding to a partially correlated behavior may be necessary.

X. DISCUSSION

Dynamical disorder occurs when there is a partial overlapping between the time scales of two
correlated random processes. In this article we have addressed two problems concerning systems
with dynamical disorder, to which little attention has been paid in the literature:

(1) The elaboration of an efficient method for the direct evaluation of the dynamical averages
and
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(2) The study of fluctuations of the number of surviving particles for independent rate pro-
cesses with dynamical disorder.

Our method of direct averaging is based on the use of characteristic functionals; within its
framework the direct evaluation of means is less unpleasant and less formidable than has been
claimed in the literaturé.We have derived a general class of fluctuation—dissipation relations
which can be used to evaluate all moments of the number of surviving particles in terms of the
average survival function. For applying these fluctuation—dissipation relations it is not necessary
to use the whole mathematical apparatus of the theory. Our approach can be used to evaluate not
only the fluctuations of the number of particles but also the moments of the survival functions as
well as other properties of the systems. It is more general than the indirect methods of averaging
used in the literature, in particular it is not confined to a certain class of stochastic processes. For
Markovian processes the method of stochastic Liouville equétiSridis recovered as a particular
case of our approach.

A surprising result of our treatment is that for systems with dynamical disorder the fluctua-
tions of the number of particles have an intermittent behavior. In the thermodynamic limit the
relative fluctuation does not decrease to zero, but rather tends to a constant value. In all particular
cases investigated the relative fluctuation diverges to infinity for large time. This type of behavior
is very different from the equilibrium behavior of systems made up of independent particles for
which the relative fluctuation decreases to zero in the thermodynamic limit as the reciprocal value
of the square root of the number of partict8sAn important consequence of the intermittent
behavior is that for systems with dynamical disorder the fluctuations should play an important role
even in the macroscopic limit, and should lead to observable macroscopic effects. These effects
would be the stochastic analog of the macroscopic quantum effects.

Although this article is long, it does not exhaust the possibilities of the application of our
method. A first generalization would be the development of a field theory in which the spatial
distribution of the particles is taken into account. The development of this type of theory is of
importance in connection with the measurement of large fluctuations corresponding to the inter-
mittent behavior by means of light scatteritYgA second generalization would be to the study of
the interaction between an annihilation process and a generation process of the paticles
quasiparticles In this case nonequilibrium steady states may occur for which the generation and
annihilation processes compensate each other. For these processes the fluctuation—dissipation
relations may serve as a basis for the derivation of a generalized thermodynamic description of
nonequilibrium steady states by using the method suggested by Ross, Hunt, arfd Hunt.

Another possible application is related to the analysis of new experimental techniques for the
study of radical kinetics by applying external variable magnetic fields, for instance, the study of
geminate recombination of radical pairs by means of the stimulated polarization of (BRNT).

The possibilities of application of the theory are not limited to the study of physical or
chemical phenomena. The method can also be used in population dynamics for the analysis of the
influence of environmental fluctuations on the growth of a popul®tionin exobiology for the
evaluation of the probability of the existence of extraterrestrialfife.

ACKNOWLEDGMENTS

The authors thank Drs. J. Wang and P. Wolynes for providing copies of their publications and
to an anonymous referee for pointing out the connection between the intermittency of fluctuations
and the cooperative behavior of dynamical disorder. This research has been supported in part by
NATO, the Air Force Office of Scientific Research, and the Natural Sciences and Engineering
Research Council of Canada, by the Alexander von Humboldt Foundation, and by the Department
of Energy, Basic Energy Sciences Engineering Program.

J. Math. Phys., Vol. 37, No. 2, February 1996



830 Vlad, Ross, and Mackey: Fluctuation—dissipation relations

APPENDIX A: TIME-DEPENDENT, ORDERED SYSTEMS

For computing the generating functior), gered- 7 (t') |W(t')] we come back to the discrete
representatiori2.6) of the time variable and notice that for a given realization of the rate coeffi-
cientW(t"), 0<t’<t them-gate probabilityP ,(N,,t;;..-;N;,t;) is a superposition of binomial
distributions

Pm(Nm,tm;...;Nl,t1)=Nzo P(No.0) m(l—pl)m(pﬂ“f“l“ (Nmi\l—ml:l:)!Nm!
X (1= pm)"m(pp)Nm-1"Nm, - m>1, (A1)

where
pu=W(UAt)At, u=1,..m (A2)

is the probability of disappearance of a particle in a small time interval limited by the tihes

and U+ 1)At. Equation(Al) has been derived by taking into account that the disappearance of a
particle is a statistical process independent of the evolution of other particles and by making a
balance of the surviving particles from time interval to time interval. The generating function of
the m-gate probabilityP ,,(N, ,tmi..-:N¢,t;)

m
Em(zmvtm;---;zlvtl)zz Z H (Zu)N“Pm(Nmytm;---;letl)v
Nm N; 0=1
with |z,|<1, u=1,..m (A3)

can be computed by a repeated application of the binomial summation formula. By combining
Egs.(2.3), (Al), and(A3) after some elementary algebraic manipulations we come to

Em(zm :tm eee ;Zl itl) = g(QDm(Z]_ yree ,Zm),O), (A4)

where

em(Z1,-Zm) = P17+ Z2(1=P1) P2+ 2125(1—p) (1 —p)pst--+2Z1° " Zm 1
X(1=pgy)(1=Pm-1)Pmt 21 Zm(1=p1) - (1= pPm) (A5)

andg(z,0) is the generating function of the initial distribution of partic|&s. (2.3)].

Now we compare the definitions of the ordered characteristic functional
Eordered- 7 (1")[W(t")] and of them-gate generating functioB ,(zy .t ....21,t;); the compari-
son shows that in the limiAt — O we have

B e W)= lim B (z,=exp(. Z(UADAL), u=1,.......m).  (A6)
At—0
(m—c0)

By combining Egs.(A2) and (A4)—(A6) we obtain the following expression for the ordered
characteristic functional:

t t t
Eordere(g%'(t')|wa')]=g(z= foﬁ(t')exp(ijo K(2)d7 dt’+|(t)exp(ifo K(Z)dZ’) ,o],
(A7)

where
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F)= —[a|(t)/at]=W(t)exp( - ftW(t’)dt’). (A8)
0

Performing a partial integration in E¢A7) we come to Eq(3.3).
The central moment$éN(t;)---N(t,,) Yorgereg@nd the cumulant$({N(t;)---N(t) ) ordered OF
the number of surviving particles for a given realization of the random rate coefficient are given by

<N(t )--~N(t )) —(—i)m mEordere&-%‘(t,)H (A9)
1 m//ordered— 5’—%“1)'"5%‘(tm)“%~(tr):0

and

. M In Eor ered- 7 (1)
<<N(t1)' o N(tm)>>ordered: (—i )m a%fl(tl)‘d' A ;%((tm) ]‘

(A10)

H(1)=0

For an initial canonical ensemble we get the following expressions for the first two moments
of the number of particles:

<<N(t)>>ordered:<N(t)>ordered: Nol (1) (A11)

and

<<N(t1)N(t2)>>ordered:<N(t1)N(t2)>ordered—<N(tl)>ordere&N(t2)>ordered:NO[I(tg)_I(tl)l(tz)]a

(A11")
where
tr=maxty,...tm). (A12)
The relative fluctuation of the number of particles is equal to
<<N(t1)N(t2)>>ordered v —12 I(t,ZC) vz
Porderedt1,12) = =(No) #_ .
<<N(tl)»orderec«N(t2)>>ordere (tl) (tz)
(A13)

In the thermodynamic limi{N,) — < the relative fluctuation of the number of particles decreases
to zero asNy) 2 that is, in the thermodynamic limit the fluctuations are insignificant, i.e., they
have a nonintermittent behavidt.

For an initial grand canonical ensemble the generating fungi{a@®) depends exponentially
onz—1, all terms in the functional Taylor expansion of#y,yered-7# (') |W(t")] can be computed
exactly, which allows the evaluation of all cumulants. After some calculus we come to

<<N(t1)' o N(tm)>>ordered: m2t =™ (t:q)<NO>- (A14)

The relative fluctuation of the number of particles is given by an equation similar t6A#8)

I(t*) 1/2
Pordere&tlat2)=(<N0>)1/2( m) . (A15)

For an initial grand canonical ensemble in the thermodynamic [Nt — <o the fluctuations are
also nonintermittent.
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APPENDIX B: MOMENTS AND CUMULANTS

The central moments of the number of particl@d]"(t)), can be expressed in terms of the
factorial moments by using the Stirling numbers of the second and first &ifidand S{?,
respectively*

9 K, m
(-1
Q):
kzo Ki(q—k)! (B1)
m=q
(m=1+K)! (2m-q)!
= - . k)
Srr? _kZO ( 1)k (m—g+k)!(g—1)! (m—g—k)!(m+k)! Sm*q+k' (B2)
We have
m q

The one-time cumulant§N™(t)))gynamic=Cm(t) can be computed in terms of the factorial
moments by comparing the logarithm of Eg.5 with an expansion of lig(z,t) similar to the
expansion used in Eq2.11) for the characteristic function&[.72(t")]. We obtain

Crlt)=_ ; m!(=1)*Mo(Sm,— ! TT (N“(O))[(w!)Mem, 1 )™, (B4)

whereZvm,=m is a partition of the integem into smaller integersn,,m,,..., and(N"(t)) are
given by Eq.(B3).

APPENDIX C: CURTAILED CHARACTERISTIC FUNCTIONALS

Following Lax*® and Van Kampel the characteristic functionab[K(t')] of the rate coef-
ficient W(t") can be expressed as an integral of a curtailed generating functigKdt’);x] over
all possible values of the random vector

G[K(t’)]=f SIK(t"),x]dx, (Cy
where 4{K(t"),x] is the solution of the evolution equation
K, X]=LAK(),x]+iK(t)W(X) STK(t"),x], (C2
with the initial condition
Z(t=0)=P(x,0). (C3

To compute the one-time moments of the survival functidif)(t)), we need to evaluate
“IK(t"),x] for a constant test functiok(t')=im [see Eq.(4.8)]. Combining Egs.(4.8) and
(C1)—(C3) yields Eqgs.(5.9—(5.5).

From Eqgs.(2.14 and (5.8 it follows that the lethargy variable(t) obeys a differential
equation with random parameters

de(t)/dt=W(x(t)), with &(0)=0, (CH

where the random evolution oft) is determined by the evolution operator From Eq.(C3) it
follows that the probability density(e,x;t) obeys the stochastic Liouville equation
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drd(e,x;1) TW(X)d. d(e,x;1) = Lp(e,x:1), (CH
with the initial condition
d(e,x;1=0)=6(e)P(x,0). (Co)
Through Laplace transformation Eq€5)—(C6) become

ad(B.X;1)=Le(B,x;t) — BW(X) (B, X;t), (C7)

d(B,x;t=0)=P(x,0). (C8
By comparing Eqgs(5.4) and(5.5) with Egs.(C7) and(C8) we obtain Eq.(5.1J).

APPENDIX D: FLUCTUATING GEOMETRICAL BOTTLENECKS

We introduce the joint probability density of the numberof ligand molecules and of the
radiusr of the bottleneck

AN,r;tdr, with >, fﬁ(N,r;t)dr:L (D1)

Z(N,r;t) is the solution of a stochastic Liouville equation

BN, r:t)=ar’[(N+1) Z(N+ 1;r;t)—Nﬁ(N,r;t)]+)u?r[rﬁ(N,r;t)]+}\0(952[.,ﬁ(N,r;t)],

(D2)

with the initial and boundary conditions
B(N,r;t=0)=P(N,0)(78) Y2 exp —r?/40), (D3)
4. B(N,r=0;t)=0. (D4)

The boundary conditiofD4) expresses the fact the radiusf the bottleneck cannot be negative,
whereas the initial conditiofD3) corresponds to an initial equilibrium truncated Gaussian distri-
bution which obeys the condition=0.

Introducing the marginal generating function

g*(zr =2 AN, [z]=1. (D5)

Equations(D2)—(D4) become
Hg* (2.1,1)=ar?(1=2)a,g* (2.1, 1)+ Na,[rg* (2,1 )]+ N 03[ g* (z.1,1)], (D6)
g*(z,r,t=0)=g(z,0)(m6) " "* exp( —r%/40), (D7)

3,9*(z,r=01)=0.

We express the factorial momenks, (t) in terms of the marginal generating function
g*(z,r,t). We obtain

F()=> N(N—l)---(N—m+l)f.%’(N,r;t)drzf F*(r,t)dr, (D8)
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where the function&}(r,t) are given by
Fr(r,t)=0"g*(z,r,t)/9z™ ;1. (D9)
From Egs.(D5)—(D7) and (D9) we get a set of partial differential equationsRj(r,t)
GFE(rt)=—amr?FX(r,t) + N [FFA(r, )]+ X055 Fa(r, )], (D10)
with the initial and boundary conditions
Fr(r,0)=Fy(0)(76) Y2 exp( —r?/40), (D11)
d,Fr(r=0t)=0. (D12

Equation(D10) have the same formal structure as a differential equation used by Zwafaig

the evaluation of the average survival function. An eigenfunction solution of the same type of
equation has been given by Wéism a different physical context. Equatig®10) can be solved

by searching for Gaussian solutions of the type

FX(r,)=An(texd —r2b,(t)], m=1.2,..., (D13)

which obviously are compatible with the initial and boundary conditi@®l) and(D12). Insert-

ing Egs. (D13 into Egs.(D10)—(D12) we obtain a chain of ordinary differential equations in
A (1) andb,(t). Solving these differential equations and inserting the solutions into (BE4S)

we can compute the functiosy(r,t). The calculations are lengthy but standard. Substituting the
expressions foF % (r,t) into Egs.(D8) and using the fluctuation—dissipation relatiqasll) we
come to Egs(7.7) and(7.8).
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