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A class of rate processes with dynamical disorder is investigated based on the two
following assumptions:~a! the system is composed of a random number of particles
~or quasiparticles! which decay according to a first-order kinetic law;~b! the rate
coefficient of the process is a random function of time with known stochastic
properties. The formalism of characteristic functionals is used for the direct com-
putation of the dynamical averages. The suggested approach is more general than
the other approaches used in the literature: it is not limited to a particular type of
stochastic process and can be applied to any type of random evolution of the rate
coefficient. We derive an infinity of exact fluctuation–dissipation relations which
establish connections among the moments of the survival function and the moments
of the number of surviving particles. The analysis of these fluctuation–dissipation
relations leads to the unexpected result that in the thermodynamic limit the fluc-
tuations of the number of particles have an intermittent behavior. The moments are
explicitly evaluated in two particular cases:~a! the random behavior of the rate
coefficient is given by a non-Markovian process which can be embedded in a
Markovian process by increasing the number of state variables and~b! the stochas-
tic behavior of the rate coefficient is described by a stationary Gaussian random
process which is generally non-Markovian. The method of curtailed characteristic
functionals is used to recover the conventional description of dynamical disorder in
terms of the Kubo–Zwanzig stochastic Liouville equations as a particular case of
our general approach. The fluctuation–dissipation relations can be used for the
study of fluctuations without making use of the whole mathematical formalism. To
illustrate the efficiency of our method for the analysis of fluctuations we discuss
three different physicochemical and biochemical problems. A first application is the
kinetic study of the decay of positrons or positronium atoms thermalized in dense
fluids: in this case the time dependence of the rate coefficient is described by a
stationary Gaussian random function with an exponentially decaying correlation
coefficient. A second application is an extension of Zwanzig’s model of ligand–
protein interactions described in terms of the passage through a fluctuating bottle
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neck; we complete the Zwanzig’s analysis by studying the concentration fluctua-
tions. The last example deals with jump rate processes described in terms of two
independent random frequencies; this model is of interest in the study of dielectric
or conformational relaxation in condensed matter and on the other hand gives an
alternative approach to the problem of protein–ligand interactions. We evaluate the
average survival function in several particular cases for which the jump dynamics is
described by two activated processes with random energy barriers. Depending on
the distributions of the energy barriers the average survival function is a simple
exponential, a stretched exponential, or a statistical fractal of the inverse power law
type. The possible applications of the method in the field of biological population
dynamics are also investigated. ©1996 American Institute of Physics.@S0022-
2488~96!02212-8#

I. INTRODUCTION

Rate processes with static or dynamic disorder are commonly encountered in nature.1 A
common approach to a first-order rate process with static disorder is based on the assumption that
the observed survival~relaxation! function at timet, ^ l (t)&static is an average of an exponential
decay law exp~2Wt) with respect to the possible values of the rate coefficientW

^ l ~ t !&static5E
0

`

exp~2Wt! f ~W!dW, ~1.1!

wheref (W)dW is the probability density of the rate coefficient. We note that the average survival
function is simply the Laplace transform of the probability densityf (W)dW of the rate coefficient
W. Such an approach has been used in the study of protein–ligand interactions in biochemistry;2,3

in this case different conformational states of the protein have different activation barriers to
rebinding, resulting in a statistical distribution of the rate coefficients. Similar approaches have
been used for describing the combination processes of active intermediates in radiochemistry,4 the
extinction of fluorescence due to the direct energy transfer from excited donors to acceptors,5–8 the
description of dielectric relaxation,8,9 for the random walk description of transport processes with
static or temporal disorder,10 and for the study of one-channel compound nuclear reactions,11 or of
linear viscoelasticity.12

The description of rate processes with dynamical disorder is more complicated. In this case
the relaxation rate is a random function of time and the average~1.1! is replaced by

^ l ~ t !&dynamic5K expS 2E
0

t

W~ t8!dt8D L
dynamic

, ~1.2!

where the average can be reduced to the evaluation of a path integral over all possible trajectories
W5W(t8), t>t8>0

^ l ~ t !&dynamic5E E expS 2E
0

t

W~ t8!dt8DP @W~ t8!#D@W~ t8!#, ~1.3!

where** stands for the operation of path integration,D[W(t8)] is a suitable integration measure

over the space of random ratesW(t8), and

804 Vlad, Ross, and Mackey: Fluctuation–dissipation relations

J. Math. Phys., Vol. 37, No. 2, February 1996

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.102.55.227 On: Mon, 17 Mar 2014 10:23:25



P @W~ t8!#D@W~ t8!#, with E E P @W~ t8!#D@W~ t8!#51 ~1.4!

is the probability density functional of the random rate coefficientW(t8). Equation ~3! is a
functional analog of the Laplace transform corresponding to the static disorder@Eq. ~1!#. The
evaluation of dynamical averages is much more difficult than the evaluation of static averages,
mainly because the functional integral~3! can be computed only in a few particular cases; the
major difficulty is due to the fact that for non-Gaussian processes we do not even have an
appropriate definition for the integration measureD[W(t8)].

The first system with dynamical disorder studied in the literature is a simplified model for the
line shape in magnetic resonance spectroscopy13,14 suggested by Anderson and Kubo. This initial
approach has been extended to other spectroscopical problems.14–21 Similar rate processes with
dynamical disorder have been used in connection with the study of earthquakes,22 non-Gaussian
diffusion,23 the Taylor problem from hydrodynamics,24 the description of transport processes in
networks with dynamic percolation,25 the Browniam motion description of very fast chemical
processes without activation barriers,26 the study of fluorescence depolarization27 and of protein
dynamics,28 and in connection with the analysis of collective orientational relaxation in dense
liquids.29 In these studies most authors avoid the direct evaluation of the dynamical average~3!
and use instead indirect methods such as the solving of certain stochastic Liouville equations.1,30,31

The approaches presented in the literature can be applied only to certain particular cases of
stochastic processes, for instance, in the case of a Markovian or Gaussian behavior. A general
treatment for the analysis of dynamical disorder for an arbitrary type of stochastic dependence is
missing. The purpose of this article is to fill this gap in the literature and to derive an efficient
method for evaluating the dynamical average for a rate process characterized by an arbitrary
stochastic behavior. The initial motivation of our approach is the investigation of fluctuations for
a model of ligand–protein interactions suggested by Zwanzig32 and further studied by Wang and
Wolynes.33 The main sources of inspiration for our method are the initial Kubo approach14 to the
problem of line shape and the characteristic functional approaches used by the authors for the
description of space and time-dependent colored noise,34 of stochastic gravitational fluctuations,35

and of fractal random processes.36 The main advantage of our approach is its versatility and
generality. It leads to an infinite number of fluctuation–dissipation relations which allow to study
the fluctuations without using the whole mathematical apparatus of the theory.

The structure of the article is as follows. In Sec. II we give a general formulation of the
problem. In Secs. III and IV a general approach for computing the dynamical averages is devel-
oped and the fluctuation–dissipation relations are derived. In Sec. V the moments of the survival
function and of the number of surviving particles are explicitly derived for Markovian and sta-
tionary Gaussian processes. Sections VI, VII, and VIII deal with the application of the theory to
three different problems from condensed matter physics and biochemistry. In Sec. IX the main
results of the article are summarized and the possibilities of application to the theory in exobiology
and biological population dynamics are pointed out. To make the body of the article easier the
details of the computations are not presented in the text; they are given in Appendices A to D.

II. FORMULATION OF THE PROBLEM

We consider a system made up of a random number of independent particles or quasiparticles
and assume that the rate of decomposition of a particle at a time betweent andt1dt,W(t)dt, is
a random function whose stochastic properties are characterized by the probability density func-
tional ~1.4! or by the corresponding characteristic functional
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G@K~ t8!#5K expS i E
0

t

K~ t8!W~ t8!dt8D L
dynamic

5E E expS i E
0

t

K~ t8!W~ t8!dt8DP @W~ t8!#D@W~ t8!#, ~2.1!

whereK(t8) is a suitable test function. The initial numberN of particles is a random variable
characterized by a probability

P~N,t50!, (
N

P~N,0!51 ~2.2!

or by the corresponding generating function

g~z,t50!5(
N

zNP~N,0!, uzu<1, ~2.3!

wherez is a complex variable with the absolute value at most equal to the unity.
The stochastic properties of the numbersN(t1),...,N(tm) of particles surviving at times

0<t1<•••<tm<t are characterized by anm-gate probability

Pm„N~ tm!,tm ;...;N~ t1!,t1…, ~2.4!

with the normalization condition

(
Nm

•••(
N1

Pm~Nm ,tm ;...;N1 ,t1!51 ~2.5!

and

tu5uDt, Dt5~ t2t0!/~m11!, u51,...,m. ~2.6!

In the limitm→ ` ~Dt → 0!, Pm becomes a probability functional which describes the stochastic
properties of a random trajectoryN(t8), 0<t8<t

B@N~ t8!; 0<t8<t#5 lim
m→`

~Dt→0!

Pm~Nm ,tm ;...;N1 ,t1!, ~2.7!

which obeys the normalization condition

(( B@N~ t8!; 0<t8<t#51, ~2.8!

where(( stands for a path sum which is a discrete analog of a path integral

(( •••5 lim
m→`

~Dt→0!

(
N~ t1!

••• (
N~ tm!

••• . ~2.9!

In terms of the probability functionalB[N(t8)] we can define the characteristic functional
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J@K ~ t8!#5K expS i E
0

t

K ~ t8!N~ t8!dt8D L
dynamic

5(( expS i E
0

t

K ~ t8!N~ t8!dt8DB@N~ t8!#.

~2.10!

The central momentŝN(t1)•••N(tm)& and the cumulantŝ^N(t1)•••N(tm)&& of the number of
surviving particles may be defined by the moment and cumulant expansions ofJ@K ~t8!#

J@K ~ t8!#511 (
m51

`
i m

m! E0
t

•••E
0

t

^N~ t18!•••N~ tm8 !&K ~ t18!•••K ~ tm8 !dt18•••dtm8

5expH (
m51

`
i m

m! E0
t

•••E
0

t

^^N~ t18!•••N~ tm8 !&&K ~ t18!•••K ~ tm8 !dt18•••dtm8 J ,
~2.11!

that is, the central moments and the cumulants can be computed by evaluating the functional
derivatives

^N~ t1!•••N~ tm!&5~2 i !m
dmJ@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

, ~2.12!

and

^^N~ t1!•••N~ tm!&&5~2 i !m
dm ln J@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

. ~2.13!

On the other hand the rate process can be characterized by the moments of a realization of the
survival function

l ~ t !5expS 2E
0

t

W~ t8!dt8D , ~2.14!

i.e., by the averages

^ l ~ t1!••• l ~ tm!&dynamic5E E l ~ t1!••• l ~ tm!P @W~ t8!#D@W~ t8!#. ~2.15!

The aim of this article is to answer the following questions:

~1! Given the stochastic properties of the random rate coefficient and of the initial number of
particles, which are the stochastic properties of the number of particles at any time?

~2! Which are the moments of the survival functionl (t)?
~3! Is there any relationship between the moments of the survival function and the moments of the

number of surviving particles?
~4! For which systems can the moments of the number of surviving particles and of the survival

function be computed explicitly and which is the relationship between these functions and the
experimentally accessible quantities?

~5! In order to answer these questions we should express the characteristic functionalJ@K ~t8!# of
the number of surviving particles in terms of the characteristic functionalG[K(t8)] of the
random rate coefficient. The main idea of our approach is to evaluate the dynamical average
in Eq. ~2.10! in two steps: first we consider a given realization of the random rate coefficient
W(t8), 0<t8<t and average over all possible numbers of surviving particles which are
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compatible with this realization; finally we average over all possible realizations of the ran-
dom rate coefficientW(t8).

III. CHARACTERISTIC FUNCTIONAL APPROACH TO DYNAMICAL DISORDER

In this section we consider a realizationW(t8), 0<t8<t of the rate coefficient and try to
evaluate the corresponding generating functional of the number of surviving particles. First we
notice that for a given realization of the rate coefficient the dynamical disorder does not exist; we
deal with an ordered random system with a time-dependent rate coefficient. The study of such
systems is not necessarily related to the problem of dynamical disorder; such a study is also of
interest on its own, for instance, in connection with the statistical description of the death process
in mathematical demography37 or for the study of radiochemical reactions.4,38 We introduce the
ordered characteristic functional

Jordered@K ~ t8!uW~ t8!#5K expS i E
0

t

K ~ t8!N~ t8!dt8D L
ordered

, ~3.1!

where the averagê•••&orderedis computed with respect to the number of surviving particles com-
patible with the realizationW(t8) 0<t8<t. The characteristic functionalJ@K ~t8!# of the disor-
dered process is simply given by

J@K ~ t8!#5^Jordered@K ~ t8!uW~ t8!#&disorder5E E Jordered@K ~ t8!uW~ t8!#P @W~ t8!#D@W~ t8!#,

~3.2!

where the averagê•••&disorder is computed with respect to all possible values of the random
functionW(t8), 0<t8<t.

In Appendix A we show that the generating functionalJordered @K (t8)uW(t8)# can be ex-
pressed in terms of the realizationl (t) of the survival function as

Jordered@K ~ t8!uW~ t8!#5gH z511E
0

t

l ~ t8!iK ~ t8!expF i E
0

t8
K ~W!dWGdt8, t50J .

~3.3!

In order to compute the characteristic functionalJ@K ~t8!# for systems with dynamical dis-
order we express the generating functiong(z,0) corresponding to the probabilityP(N,0) in terms
of the initial factorial moments of the number of particles

Fm~ t50!5^N~N21!•••~N2m11!&dynamic~ t50!5(
N

N~N21!•••~N2m11!P~N,0!;

~3.4!

we have

Fm~0!5N0~N021!•••~N02m11! ~3.5!

for an initial canonical ensemble and

Fm~0!5~^N0&!m, ~3.6!

for an initial grand canonical ensemble.
From the definition~2.3! of g(z,0) it follows that
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Fm~0!5dmg~z,0!/dzmuz51 ~3.7!

and thusg(z,0) can be expressed as a Taylor series

g~z,0!511 (
m51

`
1

m!
Fm~0!~z21!m. ~3.8!

By combining Eqs.~3.2!, ~3.3!, and~3.8! the characteristic functionalJ@K ~t8!# for systems with
dynamical disorder can be expressed as

J@K ~ t8!#511 (
m51

`
~ i !m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !expS i(
u51

m E
0

tu8 K ~W!dW D
3^ l ~ t18!••• l ~ tm8 !&dt18•••dtm8 , ~3.9!

where^ l (t18)••• l (tm8 )& are dynamical averages given by Eqs.~2.15!. By combining Eqs.~3.9! and
~3.10! and using the definition~2.1! of the characteristic functionalG[K(t8)] of the rate coeffi-
cient we can expresŝl (t18)••• l (tm8 )& as

^ l ~ t18!••• l ~ tm8 !&5E E expS 2 (
u51

m E
0

tu8 W~W!dW DP @W~ t8!#D@W~ t8!#

5GFK~ t8!5 i(
u51

m

h~ tu82t8!G , ~3.10!

whereh(x) is the usual Heaviside step function. By inserting Eqs.~3.10! into Eq. ~3.9! we have

J@K ~ t8!#511 (
m51

`
i m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !

3expS i(
u51

m E
0

tu8 K ~C !dC DGFK~ t8!5 i(
u51

m

h~ tu82t8!Gdt18•••dtm8 . ~3.11!

Equation ~3.11! is the main result of this article. It expresses the stochastic properties of the
number of surviving particles in terms of the stochastic properties of the random rate coefficient
W(t8), 0<t8<t.

Combining Eqs.~2.12! and ~2.13! and Eq.~3.11! we can compute the first two cumulants of
the number of surviving particles. We assume that the initial distribution of the number of particles
is given by equilibrium statistical mechanics. We get

^^N~ t !&&5N0^ l ~ t !&, ~3.12!

^^N~ t1!N~ t2!&&5N0@^ l ~ t2* !&2^ l ~ t1!l ~ t2!&#1~N0!
2^^ l ~ t1!l ~ t2!&& ~3.13!

for an initial canonical ensemble and

^^N~ t !&&5N0^ l ~ t !&, ~3.14!

^^N~ t1!N~ t2!&&5^N0&^ l ~ t2* !&1^N0&
2^^ l ~ t1!l ~ t2!&& ~3.15!

for an initial grand canonical ensemble. Here
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^^ l ~ t1!l ~ t2!&&5^ l ~ t1!l ~ t2!&2^ l ~ t1!&^ l ~ t2!& ~3.16!

is the second cumulant of the survival function for systems with dynamic disorder. We have

^^ l ~ t1!l ~ t2!&&>0, t1 ,t2 finite, ~3.17!

where the equality holds for systems without dynamical disorder. In both cases in the thermody-
namic limit the relative fluctuation has the same asymptotic behavior

rdynamic~ t1 ,t2!;S ^^ l ~ t1!l ~ t2!&&

^ l ~ t1!&^ l ~ t2!&
D 1/2 const as N0 , ^N0& → `. ~3.18!

Unlike in the case of ordered systems discussed in Appendix A for dynamical disorder the relative
fluctuation of the number of particles does not decrease to zero but rather tends towards a constant
value; in other words the fluctuations have an intermittent behavior.

The other moments and cumulants can be computed in a similar way, the complexity of
computations increasing with the order of the moments. The computations are much simpler if we
are interested in the analysis of fluctuations at a single time; in this case an infinity of fluctuation
dissipation relations for all moments exist which are independent of the type of statistical en-
semble which describes the initial state of the system. The derivation of these fluctuation–
dissipation relations is presented in the following section.

IV. FLUCTUATION–DISSIPATION RELATIONS

We introduce the probabilityP(N,t) of the numberN of surviving particles at timet and the
corresponding generating function

g~z,t !5( zNP~N,t !, uzu<1; ~4.1!

P(N,t) can be expressed as an average of a functional Kronecker symbol over all possible
trajectoriesN(t8), 0<t8<t

P~N,t !5(( B@N~ t8!#dN~ t8!N~ t !
~ funct! , ~4.2!

where

dN~ t8!N~ t !
~ funct!

5dN~ t !N~ t8! , for t5t8,

~4.3!
50, for t Þ t8

and dNN8 is the usual numerical Kronecker symbol. By combining Eqs.~2.10! and ~4.1! for
J@K ~t8!# andg(z,t) and using Eqs.~4.2! and ~4.3! we note that we have the relationship

g~z,t !5J@ iK ~ t8!5d~ t2t8!ln z#. ~4.4!

By combining Eqs.~3.2!, ~3.10!, ~3.11!, and~4.4! we obtain

g~z,t !5E E g„11~z21!l ~ t !,0…P @W~ t8!#D@W~ t8!#511 (
m51

`
1

m!
Fm~0!^ l m~ t !&~z21!m,

~4.5!

where
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^ l m~ t !&5E E l m~ t !P @W~ t8!#D@W~ t8!# ~4.6!

is themth central moment of the survival function at timet. From Eqs.~2.14! and~4.6! we note
that at one time all momentŝl m(t)& can be expressed in terms of the average value^ l (t)&, by
replacing the instantaneous value of the rate coefficientW(t8) by mW(t8), m52,3,... .

^ l m~ t !&5E E expS 2mE
0

t

W~ t8!dt8DP @W~ t8!#D@W~ t8!#5^ l „t;W~ t8!→mW~ t8!…&.

~4.7!

On the other hand, by using Eq.~3.10! we can express the one-time moments of the survival
function in terms of the characteristic functionalG[K(t8)] of the random rate coefficient

^ l m~ t !&5G@K~ t8!5 im#. ~4.8!

Now we note that the factorial moments of the number of particles at timet

Fm~ t !5^N~N21!•••~N2m11!&dynamic~ t !5( N~N21!•••~N2m11!P~N,t ! ~4.9!

can be computed by differentiating the generating functiong(z,t)

Fm~ t !5dmg~z,t !/dzmuz51 . ~4.10!

By differentiating Eq.~4.5! m times and makingz51 we come to

Fm~ t !5Fm~0!^ l m~ t !&5Fm~0!^ l „t,W~ t8! → mW~ t8!…&, m51,2,... ~4.11!

Equations~4.11! are an infinity of fluctuation–dissipation relations which establish a connection
between the average dissipative behavior of the rate process, expressed by the average survival
function ^l „t;W(t8)→mW(t8)…& and all the factorial moments of the number of surviving par-
ticles, which express the fluctuation dynamics.

For applying the fluctuation–dissipation relations~4.11! we should be able to evaluate the
average survival function̂l „t;W(t8)→mW(t8)…&. If the cumulants of the random rate coefficient

sq~ t1 ,...,tq!5^^W~ t1!•••W~ tq!&&dynamic ~4.12!

exist and are finite the characteristic functionalG[K(t8)] can be expressed in the form of a
cumulant expansion

G@K~ t8!#5expH (
q51

`
i q

q! E0
t

•••E
0

t

sq~ t1 ,...,tq!K~ t1!•••K~ tq!dt1•••dtqJ . ~4.13!

By combining Eq.~4.13! with the expressions~4.8! for the one-time moments of the survival
function and with the fluctuation–dissipation relations~4.11! we come to

Fm~ t !/Fm~0!5^ l m~ t !&5expH (
q51

`
~2m!q

q! E
0

t

•••E
0

t

sq~ t1 ,...,tq!dt1 ...dtqJ . ~4.14!

This is a general expression for the one-time moments of the number of surviving particles and of
the survival function; for applying it we should evaluate the integrals and the series in the expo-
nential.
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In Appendix B we show how Eqs.~4.11!–~4.14! can be used for computing the central
moments and the cumulants of the number of surviving particles.

V. EXACTLY SOLVABLE MODELS

In this section we consider two particular cases for which, at least in principle, the formal
expressions~4.8! or ~4.11! for the moments of the survival function can be explicitly evaluated.

In the first case we assume that the random rate coefficientW(t8) is a known function of a
generally non-Markovian random vectory1 which can be embedded in a more complicated
Markovian random process characterized by a higher dimensional random vector

x5~y1 ,y2!, ~5.1!

wherey2 is the vector of the minimum number of additional random variables necessary for a
Markovian description. The random rate coefficientW(t8) can be expressed as

W~ t8!5W~x~ t8!5„y1~ t8!,y2~ t8!…5W„y1~ t8!…. ~5.2!

The dynamical averages^ l m(t)& can be computed by evaluating the characteristic functional
G[K(t8)] with the help of the method of curtailed characteristic functionals suggested by Lax39

and Van Kampen.40 The computations are presented in Appendix C. The moments of the survival
function are equal to

^ l m~ t !&5E Lm~x,t !dx, ~5.3!

wherem is a positive number, not necessarily an integer, andLm~x,t! is the solution of the
evolution equation

] tLm~x,t !5LLm~x,t !2mW~x!Lm~x,t !, ~5.4!

with the initial condition

Lm~x,0!5P~x,0! independent of m. ~5.5!

P~x;0! is the probability density of the state vector att50 andL is a linear Markovian evolution
operator. For a time-homogeneous Fokker–Planck process

L•••52(
q

]xq@Aq~x!•••#1 (
q,q8

]xqxq8
2 @Dqq8~x!•••#, ~5.6!

whereas for a pure jump Markovian process we have

LP~x,tux0 ,0!5E @W ~x8 → x!P~x8,tux0 ,0!2W ~x → x8!P~x,tux0 ,0!#dx8. ~5.7!

Here Aq~x! and Dqq8~x! are probability drift and diffusion coefficients, respectively, and
W ~x8→ x!dx is the jump rate from a statex to a state with a random vector betweenx andx1dx.

To clarify the physical significance of the functionLm~x,t! we introduce the logarithmic
decrement of the survival function

«~ t !52 ln l ~ t !. ~5.8!

Borrowing a commonly used name from nuclear physics, we call the function«(t) the lethargy
variable. We denote by
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f~«,x;t !d«dx, with E E f~«,x;t !d« dx51 ~5.9!

the probability that at timet the lethargy has a value between« and«1d« and that the state vector
is betweenx andx1dx. In Appendix C we show that the functionLm~x,t! can be expressed in
terms of the Laplace transform off~«,x;t! with respect to«:

f̃~b,x;t !5E
0

`

exp~2b«!f~«,x;t !d«, ~5.10!

whereb is the Laplace variable conjugated to«. We have~see Appendix C!

Lm~x,t !5f̃~b5m,x;t !, ~5.11!

that is, the functionLm~x,t! is the Laplace transform of the lethargy-state vector joint probability
densityf~«,x;t! for b5m. From this physical interpretation of the functionLm~x,t! it follows that
the probability density

C~ l ,t !dl, with E
0

1

C~ l ,t !dl51 ~5.12!

of the survival function at timet can be expressed as

C~ l ,t !5E E d„l2exp~2«!…f~«,x;t !dx d«5 l21E f̃~2 ln l ,x;t !dx5 l21E Lm52 ln l~x,t !dx.

~5.13!

A second case for which the moments of the survival function can be explicitly evaluated
corresponds to a time-homogeneous Gaussian behavior of the rate coefficientW(t8) for which the
cumulantssq(t1 ,...,tq) are given by

s15^W& independent of t, ~5.14!

s25s~ ut12t2u!5^DW~ t1!DW~ t2!&, ~5.15!

sq50, q.2. ~5.16!

Here ^W& and ^DW(t1)DW(t2)& are the average value and the absolute autocorrelation function
of the rate coefficient, respectively. Due to the stationary character of the process the average rate
^W& is independent of time and the autocorrelation function^DW(t1)DW(t2)& depends only on
the absolute value of the difference of the two times,t1 and t2. In this case Eq.~4.14! becomes

Fm~ t !/Fm~0!5^ l m~ t !&5exp$2m^W&t1m2^DW2~0!& j ~ t !%, ~5.17!

where

^DW2~ t !&5^DW2~0!& ~5.18!

is the stationary one-time dispersion of the rate coefficient

j ~ t !5E
0

t

~ t2c!E~ uc u!dc >0, ~5.19!

is a non-negative function of time and
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E~ ut12t2u!5^DW~ t1!DW~ t2!&/^DW
2~0!& ~5.20!

is the relative correlation function of the rate coefficient.
The multitime moments and cumulants of the correlation function can be computed in a

similar way. By applying Eq.~3.10! to the case of a stationary Gaussian process we obtain

^ l ~ t1!l ~ t2!&5G@W~ t8!5„h~ t12t8!1h~ t22t8!…i #

5expH 2^W&~ t11t2!1 1
2^DW

2~0!&E
0

tE
0

t

E~ ut182t28u!@h~ t12t18!

1h~ t22t18!#@h~ t12t28!1h~ t22t28!#dt18 dt28J , with t1 ,t2<t. ~5.21!

After lengthy algebraic manipulations the double integral in Eq.~5.21! can be expressed in terms
of the functionj (t), resulting in

^ l ~ t1!l ~ t2!&5exp$2^W&~ t11t2!1^DW2~0!&@2j ~ t1!12j ~ t2!2j ~ ut12t2u!#% ~5.22!

and

^^ l ~ t1!l ~ t2!&&5exp$2^W&~ t11t2!1^DW2~0!&@ j ~ t1!1j ~ t2!#%

3$$exp$^DW2~0!&@ j ~ t1!1j ~ t2!2j ~ ut12t2u!#%21%. ~5.23!

The first two cumulants of the number of surviving particles for initial canonical and grand
canonical ensembles can be computed by combining the general equations~3.12!–~3.18! with Eqs.
~5.17! and ~5.22!, ~5.23!. In the thermodynamic limit the relative fluctuation is given by

rdynamic~ t1 ,t2!5$exp$^DW2~0!&@ j ~ t1!1j ~ t2!2j ~ ut12t2u!#%21%1/2. ~5.24!

VI. POSITRON LIFETIME DISTRIBUTIONS IN DENSE FLUIDS

As a first application of the approach developed here, we consider the problem of the distri-
bution of the lifetime of positrons or positronium atoms in dense fluids. A positron or a positro-
nium atom thermalized in a dense fluid can become localized.41 This type of localization is due to
the interaction of the trapped particles with the environment, for instance, via the Fermi repulsion,
and it is different from the usual Anderson localization typical for disordered systems.42 Eventu-
ally the trapped particles decay due to the annihilation reaction with the neighboring electrons.
With respect to this annihilation-self-trapping phenomenon it is not clear whether the positron
actively creates a well in the fluid in which it localizes, or randomly visits favorable fluctuations.
Density functional theory calculations43 support the idea of a definite localized state for the
trapped particle and under these circumstances one normally expects to have a well definite decay
rate. This point of view is consistent with the ease with which experimentalists are able to assign
specific annihilation rates to each decay mode. In contrast, quantum Monte Carlo calculations44

show that substantial fluctuations occur in the neighborhood of a trapped particle resulting in a
broad distribution of decay rates. These Monte Carlo simulations seem to contradict the experi-
mental measurements which lead to single, definite decay rates.

To solve this contradiction Miller, Reese, and Worrell45 ~MRW! have recently suggested an
approximate stochastic model with dynamical disorder. They have shown that the difference
between the density functional and Monte Carlo calculations is due to a misinterpretation of the
results of simulations in terms of a model with static disorder. Both the Monte Carlo and the
density functional approaches are recovered as particular cases of the MRW dynamical stochastic
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model.45 In the MRW treatment the rate coefficient is a quantum mechanical operatorŴ which
depends on the electron density in the neighborhood of the trapped particle. The time-dependent
instantaneous rate coefficientW(t) is a quantum mechanical average

W~ t !5^c~ t !uŴuc~ t !&. ~6.1!

Due to the environmental fluctuations of the density the quantum mechanical averageW(t) is a
fluctuating quantity that can be written in the form

W~ t !5^W&1DW~ t !, ~6.2!

where^W& is a time-independent statistical average rate coefficient andDW(t) is the fluctuating
part ofW(t).

The average survival function is given by

^ l ~ t !&5exp~2^W&t !K expS 2E
0

t

DW~ t8!dt8D L . ~6.3!

To evaluate the dynamical average in Eq.~6.3! Miller, Reese, and Worrell45 do not use the
characteristic functional method suggested in this article. Instead they use a nonsystematic ap-
proximation based on two series expansions. They expand the exponential under the average
brackets in a Taylor series and keep the first three terms, resulting in

^ l ~ t !&>exp~2^W&t !H 11
1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt28J . ~6.4!

The next step is to take the logarithm of the average survival function and to approximate the
logarithm containing the double integral by the first term from its Taylor expansion

ln^ l ~ t !&>2^W&t1
1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt28 . ~6.5!

The simplest assumption for the time dependence of the correlation function^DW(t1)DW(t2)& is
an exponential decay

^DW~ t1!DW~ t2!&5^DW2~0!&exp~2ut12t2u/ c̄ W!, ~6.6!

wherec̄ W is a characteristic relaxation time for the regression of fluctuations. Equations~6.5! and
~6.6! lead to

ln^ l ~ t !&52^W&t1^W&2z2t c̄ W$12~ c̄ W /t !@12exp~2t/ c̄ W!#%, ~6.7!

where

z5^W2~0!&1/2/^W&. ~6.8!

Miller, Reese, and Worrell45 have estimated the parameters entering Eq.~6.7! for the orthopositro-
nium atom~o-Ps! in xenon at 340 °K and for the bare positron~e1! at 300 °C. The result of this
estimation is that for o-Ps the macroscopic relaxation time scale

t̄macro51/̂ W& ~6.9!

is much larger than the regression time of fluctuationsc̄ W : t̄macro@c̄ W ; in this case the fluctuations
are very fast and the average survival function is practically exponential
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ln^ l ~ t !&>2^W&t, ~6.10!

which corresponds to a definite effective relaxation rate^W&. This behavior is a particular case of
a general feature of the systems with dynamic disorder and very fast fluctuations.1 For the bare
positronium, however, the macroscopic and fluctuation time scales are less well separated and the
average survival function is given by Eq.~6.7!.

Now we investigate the MRW model from the point of view of our approach. First note that
within the framework of our theory the MRW approximative equations~6.5! and ~6.7! are exact
for a Gaussian and Markovian process. According to Doob’s theorem the only possible expression
for the correlation function of a stationary Gaussian and Markovian process is the exponential
form given by Eq.~6.6!. Inserting Eq.~6.6! into Eq. ~5.20! and using Eqs.~5.19! and ~5.17! for
m51 we recover the MRW equation~6.7!. If the stochastic process describing the behavior of the
random rate coefficientW(t8) is close to a Gaussian process then the superior cumulants lead to
small corrections in the expression of the average survival function@see the general non-Gaussian
relationships~4.14!#.

Examining the MRW derivation of Eq.~6.7! it follows that this equation is valid only if

1

2 E
0

tE
0

t

^DW~ t18!DW~ t28!&dt18 dt285^W&2z2t c̄ W$12~ c̄ W /t !@12exp~2t/ c̄ W!#%!1. ~6.11!

Indeed, only if this restriction is fulfilled are the series expansions used in Eqs.~6.4! and ~6.5!
justified. Our approach, however, shows that the restriction~6.11! is not necessary. For a stationary
Gaussian and Markovian process the MRW equation~6.7! is exact for any values of the integral
term in Eq. ~6.11!. Miller, Reese, and Worrell did not notice this relationship between their
approach and the stationary Gaussian and Markovian processes. We do not know whether the
actual random properties of the rate coefficient are accurately described by a stationary Gaussian
and Markovian process. Note, however, that the standard description of stationary fluctuations is
based on the use of such a process.46 The broad range of validity of Eq.~6.7! is surprising but it
is due to the fact that in the MRW derivation the errors due to the two series expansions in Eqs.
~6.4! and ~6.5! compensate each other.

The exponential or nonexponential structure of the average survival function is governed by
the relationship between the macroscopic and the microscopic~fluctuation! time scales. From the
MRW approach it follows that in the case of very rapid fluctuations the system behaves as if the
dynamical disorder were missing. Our approach, however, shows that this is not the case. Apply-
ing the expression~5.24! for the relative fluctuation of the number of particles in the thermody-
namic limit we obtain

rdynamic~ t1 ,t2!;exp$~ c̄ W!2^DW2~0!&@2 min~ t1 ,t2!/ c̄ W212exp~2ut12t2u/ c̄ W!

1exp~2t1 / c̄ W!1exp~2t2 / c̄ W!#21%1/2, as N0 ,^N0& → `. ~6.12!

For larget1 ,t2 Eq. ~6.12! takes a simpler form

rdynamic~ t1 ,t2!;exp$~ c̄ W!^DW2~0!&min~ t1 ,t2!%, t1 ,t2 → `, ~6.13!

that is, the relative fluctuation increases exponentially to infinity. From Eqs.~6.12! and~6.13! we
notice that the intermittent behavior of the fluctuations exists even if the fluctuations are very
rapid. This is a surprising result which cannot be obtained by applying the MRW approach. It
might be possible that the intermittent character of fluctuations of the number of particles can be
observed experimentally.

The existence of dynamical disorder decreases the efficiency of the annihilation process. This
is reflected in the fact that the decrease of the survival function given by Eq.~6.11! is slower than
in the case when the fluctuations of the rate coefficient are missing. By using the method devel-
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oped here, we can show that this slowing down effect due to the dynamical disorder is also present
in the case of Gaussian, non-Markovian fluctuations of the rate coefficient for which the correla-
tion function^DW(t1)DW(t2)& is generally nonexponential. If the dynamical disorder is missing
we have^DW(t1)DW(t2)&50, j (t)50 and Eqs.~5.17! lead to

^ l m~ t !&ordered5„Fm~ t !/Fm~0!…ordered5exp~2m^W&t !. ~6.14!

As j (t) is generally non-negative by comparing Eqs.~120! with Eqs.~6.14! we obtain

^ l m~ t !&ordered5„Fm~ t !/Fm~0!…ordered>^ l m~ t !&dynamic5„Fm~ t !/Fm~0!…dynamic, m51,2,...
~6.15!

The slowing down generated by the dynamical disorder affects not only the moments of the
survival function but also the factorial moments of the number of particles.

VII. PASSAGE THROUGH A FLUCTUATING GEOMETRICAL BOTTLENECK

The model for the binding of a ligand to a protein molecule suggested by Zwanzig32 is based
on the following assumptions:

~1! The rate determining process is the passage of a ligand molecule through a geometrical
bottleneck formed by the protein chain. The rate coefficientW is proportional to the area of the
bottleneck

W~r !5ar 2, ~7.1!

where r is the radius of the bottleneck anda is a positive coefficient with dimension@time#21

@length#22.
~2! Due to the conformational fluctuations of the protein molecule the radiusr of the bottle-

neck is a random variable which obeys a Langevin equation

dr/dt52lr1F~ t !, ~7.2!

in which l is the rate of regression of a fluctuation inr andF(t) is thermal~Gaussian white!
noise. The stochastic properties ofF(t) are completely characterized by the cumulants

^^F~ t !&&50, ^^F~ t !F~ t8!&&52lud~ t2t8! ~7.3!

and

^^F~ t1!...F~ tq!&&50, q.2, ~7.4!

whereu is the second moment of the radiusr

u5^r 2&. ~7.5!

Using these two assumptions Zwanzig has computed the expression of the average survival
function ^ l (t)& of the ligand molecules. In this section we complete the Zwanzig’s analysis by
evaluating the fluctuations of the number of ligand molecules. This is more than a simple aca-
demic exercise; indeed, even though the fluctuations are not easily experimentally accessible the
theoretical investigation of their behavior would lead to the clarification of the nature of the
process in the thermodynamic limit. We shall see in the following that, like in the case of positron
trapping in fluids, the Zwanzig’s model leads to an intermittent behavior.

Equation ~7.2! shows that the radius of a bottleneck is a Markovian random variable. It
follows that we can apply the Markovian approach developed in Sec. V. In this case the state
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vectorx is made up of one componentx5(r ). Reducing the Langevin description~7.2!–~7.4! to
a Fokker–Planck description it turns out that the evolution operatorL is given by

L•••5l] r~r ••• !1lu] r2
2

~••• !, ~7.6!

which is a particular case of Eq.~5.6!. The factorial moments of the number of surviving particles
and the moments of survival functions can be derived by applying the fluctuation–dissipation
relation ~4.11!. The details of computations are presented in Appendix D. By combining our
formalism with the data available in the literature32,47we obtain

Fm~ t !/Fm~0!5^ l m~ t !&5S m~ t !, ~7.7!

where

S m~ t !5H l12amu

~l214amul!1/2
sinh@~l214amul!1/2t#

1cosh@~l214amul!1/2t#J 21/2

exp~lt/2!. ~7.8!

Form51 Eqs.~7.7! and ~7.8! reduce to the Zwanzig’s expression for the average survival func-
tion. The expressions~7.7! and~7.8! for m.1 for the fluctuations of the survival function and of
the number of ligand molecules are new.

The average rate coefficient is equal to

^W&5^ar 2&5au. ~7.9!

In terms of^W& andl the macroscopic time scalet̄macroand the fluctuation time scaleC̄ fluct can
be expressed as

t̄macro51/̂ W&5~au!21, C̄ fluct51/l. ~7.10!

The limit behavior of Eqs.~7.7! and~7.8! can be analyzed in terms of the ratioy of the two time
scales

y5C̄ fluct / t̄macro5au/l. ~7.11!

For y→ ` the fluctuations are slow, the disorder is static, and Eqs.~7.7! and ~7.8! become

Fm~ t !/Fm~0!5^ l m~ t !&;~112maut !1/2, m51,2,..., y → `. ~7.12!

In the opposite case of rapid fluctuationsy→ 0 and the moments decrease exponentially in time

Fm~ t !/Fm~0!5^ l m~ t !&;exp~2maut !, m51,2,..., y → 0. ~7.13!

The one-time central moments and the cumulants of the number of ligand molecules can be
computed by using the relationships presented in Appendix B. To save space we give here only the
expression of the one-time relative fluctuation

r~ t !5^DN2~ t !&1/2/^N~ t !&5@„11r2~0!…S 2~ t !/„S 1~ t !…
2211„12S 2~ t !/S 1~ t !…/^N~0!&#1/2

;@„11r2~0!…S 2~ t !/„S 1~ t !…
221#1/2, ^N~0!& → `.

~7.14!
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Note that in the thermodynamic limit^N~0!&→ ` the fluctuations are intermittent. To estimate the
intensity of the intermittent behavior we analyze the asymptotic expressions for the factorial
momentsFm(t) and for the one-time relative fluctuationr(t). For large time bothFm(t) andr(t)
are exponentials

Fm~ t !/Fm~0!5^ l m~ t !&;
2~114my!1/4

11~114my!1/2
exp$2 1

2lt@~114my!1/221#%,

t@0, ~7.15!

r~ t !;„11r2~0!…1/2R~y!exp@ 1
4ltQ~y!#, t@0, ~7.16!

where

R~y!5
~118y!1/8@11~114y!1/2#

~114y!1/4@11~118y!1/2#1/2&
, ~7.17!

Q~y!52~114y!1/22~118y!1/221.0, for y.0. ~7.18!

As time increases the factorial momentsFm(t) of the number of ligand molecules decrease
exponentially to zero and the relative fluctuationr(t) increases exponentially to infinity.

From Eqs.~7.15! we see that the effective exponential rate constantWeff(m) for the decay of
fluctuations is a parabolic function of the moment indexm. Equations~7.15! may be rewritten in
the form

Fm~ t !;exp@2Weff~m!t#, t → `, ~7.19!

with

Weff~m!5 1
2l@~114my!1/221#;~malu!1/2, y@1; ~7.20!

for m51 Eq. ~7.20! reduces to a relation derived by Zwanzig32

Weff~1!;~alu!1/2, y@1. ~7.21!

As the relaxation ratel of the radius fluctuations is inversely proportional to the viscosityh of the
solvent32,48 Eq. ~7.21! leads to

Weff~1!;h21/2 ~7.22!

a relationship which is approximately consistent with the experimental data which can be fitted by
the law49

Weff~1!;h2K, with 0.8.K.0.4. ~7.23!

A possible explanation of the existence of an exponent different from1
2 would be the fact that

the fluctuations of the radiusr of the bottleneck are actually non-Gaussian. The Gaussian behavior
of a geometrical parameter of a polymeric chain is generally related to the description of the
conformational fluctuations by a noncorrelated random walk.50 For real polymers, however, the
excluded volume effect necessarily leads to non-Gaussian behavior.50 A generalization of the
Zwanzig’s model which provides a theoretical derivation of the experimental law~7.23! is based
on the assumption that the non-Gaussian fluctuations can be described by using the fractional
diffusion equation.51 Details concerning this model will be given elsewhere. We mention that
Wang and Wolynes33 suggest a different explanation for the experimental law~7.23!. They assume
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that the fluctuations of the radiusr are Gaussian but that the corresponding correlation function
^Dr (t1)Dr (t2)& is a nonexponential function of the time intervalt12t2 .

VIII. JUMP RATE PROCESSES AND RELAXATION

The third application of our approach is an exactly solvable model with dynamical disorder
which can be used both in biochemistry and condensed matter physics. We assume that the
random time evolution of the rate coefficientW(t8) can be described in terms of a jump process.
For each jump a new value ofW is randomly selected from a given probability densityf (W)dW.
The jump frequency is also a random functionV~t8! which obeys a similar dynamics. For each
jump a new frequencyV is picked up from another probability densityj~V!dV. For this kind of
model the random functionW(t8) is generally non-Markovian. However the set~V,W! has a
Markovian behavior characterized by the jump rate

W ~V8,W8 → V,W!dV dW Dt5V8j~V! f ~W!dV dW Dt, ~8.1!

whereDt → 0 is the length of the time interval in which a jump occurs. This type of model is a
particular case of the Markovian processes studied in Sec. V. The state vectorx is given by

x5~V,W! ~8.2!

and the evolution operatorL can be computed by inserting Eq.~8.1! into Eq. ~5.7!. Using the
expression for L the evolution equations ~5.4!, ~5.5!, and ~5.10! for
Lm(V,W,t)5f̃(b5m,V,W;t) become

] tf̃~b,V,W;t !5j~V! f ~W!E E V8f̃~b,V8,W8!dV8 dW82~V1bW!f̃~b,V,W;t !,

~8.3!

with the initial condition

f̃~b,V,W;t50!5P~V,W,t50!5j~V! f ~W!. ~8.4!

Equation~182! can be solved by introducing the auxiliary function

b~b,t !5E E Vf̃~b,V,W;t !dV dW. ~8.5!

We express the integral in Eq.~8.3! in terms ofb(b,t) and integrate the resulting equation by
assuming the functionb(b,t) is known. This gives

f̃~b,V,W;t !5j~V! f ~W!Fexp„2~V1bW!t…1E
0

t

b~b,t2t8!exp„2~V1bW!t8…dt8G .
~8.6!

Inserting Eq.~8.6! into Eq. ~8.5! we obtain a linear integral equation forb(b,t)

b~b,t !5^ l b~ t !&staticc~ t !1E
0

t

^ l b~ t8!&staticc~ t8!b~b,t2t8!dt8, ~8.7!

where

^ l b~ t !&static5E
0

`

l b f ~W!dW5E
0

`

exp~2bWt! f ~W!dW ~8.8!
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is the one-time fractional static moment of orderb of the survival functionl (t) and

c~ t !5E
0

`

V exp~2Vt !j~V!dV ~8.9!

is the static average of the probability density of the waiting time between two jumps. Combining
Eqs.~5.3!, ~4.11!, and~8.6! we can express the dynamic moments of the survival function and of
the number of surviving particles in terms of the functionb(b,t)

Fm~ t !/Fm~0!5^ l m~ t !&5^ l m~ t !&staticS ~ t !1E
0

t

b~m,t2t8!S ~ t8!^ l m~ t8!&static dt8, ~8.10!

where

S ~ t !5E
t

`

c~ t8!dt85E
0

`

exp~2Vt !j~V!dV ~8.11!

is the probability that in a time interval of lengtht no jump processes occur. Equation~8.7! is a
linear convolution equation inb(b,t) which can be solved by using the Laplace transformation.
We denote the Laplace transform of the real time variablet by an overbar

b̄~b,s!5E
0

`

exp~2st!b~b,t !dt, etc., ~8.12!

wheres is the Laplace variable conjugated to the timet. We apply the Laplace transform to Eqs.
~5.13! and~8.6!–~8.8!, eliminate the functionb̄(b,s) from the resulting equations, and come back
to the real time variablet. After lengthy calculations we get the following expressions for the
probability densityC( l ,t) of the survival functionl at timet and for the dynamic averages^ l m(t)&
andFm(t)

C~ l ,t !5~2p i l !21E db exp~b ln l !L21

3H F E E j~V! f ~W!dV dW

V1bW1s G YF E E ~s1bW!j~V! f ~W!dV dW

V1bW1s G J ,
~8.13!

Fm~ t !/Fm~0!5^ l m~ t !&

5L21H F E E j~V! f ~W!dV dW

V1mW1s G YF E E ~s1mW!j~V! f ~W!dV dW

V1mW1s G J ,
~8.14!

where the complex integral overb is computed along a vertical line from the left hand side of the
complex plane from2i` to 1i` andL21 denotes the inverse Laplace transformation with
respect to thes variable conjugated to the real time.

The probability densityP(x,t)5P(V,W,t) of the ratesV andW at time t can be evaluated
in a similar way. We have

P~V,W,t !5E f~E ,V,W;t !dE5f̃~b50,V,W;t !. ~8.15!
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Combining Eq.~8.15! with the Laplace transform of Eq.~8.6! we obtain

P~V,W,t !5j~V! f ~W!L21@~s1V!21
„12c̄~s!…21#, ~8.16!

where

c̄~s!5E
0

`

exp~2st!c~ t !dt5E
0

` V

s1V
j~V!dV ~8.17!

is the Laplace transform of the average probability density of the waiting time between two jumps.
The above equations allow us to express the dynamic averages^ l m(t)& andFm(t) in terms of

static averages over the ratesV andW. Equations~8.14! may be rewritten as

Fm~ t !/Fm~0!5^ l m~ t !&5^ l m~ t !&statiĉ c~ t ! ^ x~ t !, ~8.18!

where ^ l m(t)&static is given by Eq.~8.18!, ^ denotes the temporal convolution product, and the
functionx(t) is given by

x~ t !5L21@„12wm~s!…21#, ~8.19!

with

wm~s!5E
0

`

exp~2st!c~ t !^ l m~ t !&static dt. ~8.20!

According to Eq.~8.18! the intermediate time behavior of the dynamical averages^ l m(t)& and
Fm(t) can be quite complicated; the large time behavior, however, is dominated by the most
rapidly decreasing functions on the right hand side of Eq.~8.18!. The asymptotic behavior of the
static averageŝl m(t)&static andc(t) can be investigated by using the methods developed in the
literature dealing with systems with static disorder.10 On the other hand the behavior ofx(t) can
be investigated by making an analogy with Lotka’s theory of stable populations.37,52 Equation
~8.19! shows that the functionx(t) depends on the roots of the transcendental equation

wm~s!5E
0

`

exp~2st!c~ t !^ l m~ t !&static dt51. ~8.21!

Equation~8.21! has exactly the same form as the well-known Lotka equation for the intrinsic rate
of growth from population dynamics.37,52 By using this analogy it follows that Eq.~8.21! has a
single real roots5s0 which is nonpositive. We have37,52

s0,0 if wm~0!,1 and s050 if wm~0!51. ~8.22!

Equation ~30! can also have at most a countable number of complex rootss6q5uq6 ivq ,
q51,2,... with real partsuq smaller or at most equal to the real roots0 ~Refs. 37 and 52!

uq<s0 , q51,2,... ~8.23!

If the complex roots are simple thenx(t) can be expressed as

x~ t !5~ I 0!
21 exp~2us0ut !12(

q51

`

exp~2uuqut !$@ I q
1 cos~vqt !2I q

2 sin~vqt !#/@~ I q
1!21~ I q

2!2#%,

~8.24!

where
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I 05E E Vj~V! f ~W!

~V1mW!2
dV dW ~8.25!

and

I q
65E E Vj~V! f ~W!

@~V1mW2uq!
21vq

2#2
H ~V1mW2ul !

22v l
2

2~V1mW2ul !v l
J dV dW. ~8.26!

The expansion~8.24! is physically consistent only if the integrals~8.25! and ~8.26! exist and are
finite.

The constantwm~0! can be expressed as

wm~0!5E E V

V1mW
j~V! f ~W!dV dW5 K V

V1mWL
static

. ~8.27!

In most cases the average^V/~V1mW!&static is smaller than unity and thuss0,0 and

x~ t !;~ I 0!
21 exp~2us0ut ! as t → `. ~8.28!

In this case the dynamical averages^ l m(t)& andFm(t) decrease to zero exponentially or faster. In
some exceptional cases it may happen that^V/~V1mW!&static51. In this situation there are two
possibilities: if 12wm(s) is analytic nears50

12wm~s!;s as s→ 0 and x~ t !;const as t→ `. ~8.29!

If Eq. ~8.29! holds then the dynamical averages^ l m(t)& andFm(t) are completely determined by
the static averageŝl m(t)&static. The second possibility is that 12wm(s) is nonanalytic nears50 so

12wm~s!;sa, 1.a.0 as s→ 0. ~8.30!

In this case the integrals~8.25! and~8.26! are infinite, the expansion~8.24! breaks down and the
asymptotic behavior ofx(t) as t → ` is given by

x~ t !;ta21/G~a! as t → `. ~8.31!

The asymptotic fractal time behavior ofx(t) may lead to an exotic~i.e., nonexponential! large
time behavior for̂ l m(t)& andFm(t).

As expected for very rare jumps the dynamical moments^ l m(t)& andFm(t)/Fm~0! are the
same as the static averages

^ l m~ t !&5^ l m~ t !&static. ~8.32!

In this case we havej~V!5d~V! and Eq.~8.14! reduces to Eq.~8.8!. In the other extreme of very
frequent jumps we havej~V!5d~V2V8!, V8→ ` and Eq.~8.14! becomes

Fm~ t !/Fm~0!5expS 2tE Wf~W!dWD5exp~2^W&t ! as t → `. ~8.33!

Equation~8.33! is similar with Eqs.~6.9! and ~7.13! derived in Secs. VI and VII.
It is easy to check that for the jump process considered here the fluctuations of the number of

surviving particles are also intermittent. A straightforward calculation shows that the expression
~7.14! for the one-time relative fluctuation remains valid provided that the functionsS 1,2(t) are
replaced by the functionŝl m(t)&, m51,2 given by Eq.~8.14!.
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A more detailed analysis requires knowledge of the probability densitiesj~V! and f (W). We
consider here only a few particular situations which may generate exotic relaxation. We assume
the validity of the random activation energy model~RAEM53,54!, i.e., that both the jump and the
rate processes are activated phenomena corresponding to a random distribution of energy barriers.
We have

V~E!5m exp~2E/kT!, W~E!5n exp~2E/kT!, ~8.34!

where the activation energyE may take any value between zero and infinity, the pre-exponential
factorsm andn are the maximum values of the ratesV andW, respectively,k is the Boltzmann’s
constant, andT is the absolute temperature of the system. The activation energies corresponding to
V andW are random variables selected from two different probability densities

hV,W~E!dE, with E hV,W~E!dE51. ~8.35!

Combining Eqs.~8.34! and ~8.35! it follows that the probability densitiesj~V! and f (w) of the
ratesV andW can be expressed as

j~V!5E hV~E!d@V2m exp~2E/kT!#dE, ~8.36!

f ~W!5E hW~E!d@W2n exp~2E/kT!#dE. ~8.37!

Depending on the choice of the probability densitieshV,W(E)dE we distinguish the following
cases:

~1! We assume that the jump dynamics is Markovian, i.e., that the height of the energy barrier
corresponding to the jump process is constant

hV~E!5d~E2EV! ~8.38!

and that the height of the energy barrier corresponding to the rate process is exponentially dis-
tributed

hW~E!5~kTW!21 exp~2E/kTW!, TW>T. ~8.39!

The probability law~8.39! corresponds to a canonical distribution of energies ‘‘frozen’’ at the
temperatureT0. This type of distribution was introduced almost sixty years ago in surface
chemistry;55 it has also been used in the study of transport processes in disordered systems.10,53,54

In this case the dynamical moments^ l m(t)& andFm(t) and the relative fluctuationp(t) are given
by

Fm~ t !/Fm~0!5^ l m~ t !&
G~11H !~mnt !2H exp~2V0t !

12H~V0 /mn!HB@H,12H,mn/~V01mn!#
, t → `, ~8.40!

r~ t !;„11r2~0!…1/2
12H~V0 /n!HB@H,12H,n/~V01n!#

$G~12H !@12H~V0 /2n!HB@H,12H,2n/~V012n!##%1/2
~nt/2!H/2

3exp~ 1
2V0t !, as t → `, ~8.41!

where
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G~p!5E
0

`

tp21 exp~2t !dt, B~p,q,x!5E
0

x

tp21~12t !q21 dt ~8.42!

are the complete gamma and the incomplete beta Eulerian integrals, respectively,

H5T/TW<1, ~8.43!

and

V05m exp~2EV /kT!. ~8.44!

~2! The distribution of the height of jump barriers is given by a positive Gompertz law10 with
a characteristic energyE0

hV~E!5~E0!
21 exp@E/E02exp~E/E0!21# ~8.45!

and the probability density of the rate coefficientW is given by the exponential law~8.39!. In this
case the large time behavior of the dynamical moments^ l m(t)& andFm(t) is given by a stretched
exponential

Fm~ t !/Fm~0!5^ l m~ t !&;G~11H !~mn!2Hmt12H exp@2s~mt !a#, ~8.46!

where

s5@11kT/E0#/~kT/E0!
a ~8.47!

and

a5kT/~E01kT!<1. ~8.48!

The one-time relative fluctuation diverges to infinity ast → ` according to a positive stretched
exponential

r~ t !5S 11r2~0!

mG~11H ! D
1/2

~n/2!H/2t2~12H !/2 exp@ 1
2s~mt !a#, as t → ` ~8.49!

~3! Both activation barriers are exponentially distributed;hW(E) is given by Eq.~218! and
hV(E) is given by a similar canonical distribution ‘‘frozen’’ at temperatureTV

hV~E!5~kTV!21 exp~2E/kTV!, T<TV . ~8.50!

We have

Fm~ t !/Fm~0!5^ l m~ t !&;G~H11!G~H11!~m/mn!H~mt !2~H1H!,

n@m, t@m21, ~8.51!

r~ t !5S 11r2~0!

G~11H!G~11H ! D
1/2

~n/2m!H/2~mt !~H1H!/2,

n@m, t@m21, ~8.52!

where

H5T/TV<1. ~8.53!
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Thus the large time decrease of the dynamical momentsFm(t) and^ l m(t)& is given by a statistical
fractal law with an exponentH1H and the relative fluctuation increases to infinity according to
a statistical fractal law with an exponent12~H1H!.

The probability densityP(V,W,t) of the ratesV andW can be evaluated from Eq.~8.16!. If
the average time between two jumps

^t&5E
0

`

tc~ t !dt5E
0

`

V21j~V!dV5^V21&static, ~8.54!

exists and is finite, then

P~V,W,t !;j~V! f ~W!/@V^V21&static# as t → `. ~8.55!

If ^t& is infinite then the stateV50 acts as a trap and in the limitt → ` the random jumps cease.
We have

P~V,W,t !→d~V! f ~W! as t → `. ~8.56!

For example, if the distribution of jump activation energies is given by the exponential law~8.50!
then ^t&5` and forV Þ 0 the probability densityP(V,W,t) decreases to zero according to an
inverse power law

P~V,W,t !;
f ~W!

V22H

sin~pH!

pG~H!
t2~12H!, V Þ 0, t → `. ~8.57!

We have checked the validity of the asymptotic laws~8.46! and ~8.51! by assuming that
n/m;10–102 andH,H;0.5–0.9. For this range of parameters the stretched exponential~8.46!
and the inverse power law~8.51! describe the behavior of the tail of the average survival function
for 0.15–20.10>^ l (t)&>0 and 0.12–0.08>P( l (t)&>0, respectively.

Although the above analysis provides a mathematical description of dynamical disorder in
terms of pure jump processes it does not clarify its physical significance. By rephrasing the pure
jump model in a physical language, we distinguish three different features:

~1! There are two different types of dynamical processes: a first process, described in terms of
the jump frequencyV, is responsible for the occurrence of dynamical disorder, whereas the second
is the rate process itself characterized by the random rate coefficientW.

~2! Although no direct relations concerning the relative values of the frequenciesV andW are
assumed, their statistical behavior is correlated due to their mechanism of change. For each new
step two new values of the frequenciesV andW are randomly selected from two different
probability laws. For this assumption to be fulfilled it is necessary that the interaction process
corresponding to a step is very strong, resulting in a loss of memory concerning the previous states
of the system. Such an assumption, known in the literature as the ‘‘strong collision hypothesis,’’
has been commonly used in spectroscopy,14–17 chemical kinetics,56 and condensed matter
physics.10,21,23,57

~3! The third assumption is the one concerning the random distribution of the ratesV andW
which describe activated phenomena with a random distribution of energy barriers. This assump-
tion has been used in biochemistry,2,3 chemical kinetics,4 the structural or dielectric relaxation in
glassy materials,53 transport phenomena in disordered systems,54 etc. For this assumption to be
satisfied it is necessary that a state of local equilibrium exists, i.e., that besides the jump and rate
processes taken explicitly into account there is another type of process which ensures the ther-
malization of the system. Besides, it is necessary that the particles involved in the rate process can
exist in a large variety of different states, to which correspond different activation barriers.
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For illustration we consider two possible applications of the theory. The first example is the
problem of protein–ligand interactions which has already been mentioned earlier. In this context
the jump model is a generalization of the model with static disorder suggested by Frauenfelder
et al.2,3 We assume that the passage from a conformation to another is not an instantaneous
process but rather it is characterized by a distribution of time scalesC fluct51/Vu corresponding to
different jump frequenciesVu , u51,2,... For this problem the strong collision assumption means
that the interaction between the ligand and the protein is sufficiently strong that it leads to a
conformational change of the protein which is relatively independent of the state of the protein
molecule before the interaction. Although the constraints imposed by the model seem to be rather
strong, they are less restrictive than the ones corresponding to the models with static disorder
presented in the literature.2,3

A second possible application of the theory is the study of interactions between the collective
orientational relaxation in dense fluids and the kinetics of chemical processes.29 In this case the
collective orientational relaxation is responsible for the occurrence of dynamical disorder and it
plays a role which is similar to the role played by the process of conformational relaxation in
protein dynamics. The chemical reaction plays the role of the rate process.

IX. COOPERATIVITY VERSUS STATISTICAL INDEPENDENCE FOR RANDOM
RELAXATION RATES

A referee of this article has pointed out that our approach is based on the implicit assumption
that all particles making up the system are controlled by the same realization of the random rate
W(t8). In this section we investigate the general implications of this assumption and suggest an
alternative approach of random relaxation processes for which the above-mentioned assumption
does not hold anymore.

The assumption that the relaxation behavior of all particles is controlled by the same realiza-
tion of the random rateW(t8) corresponds to a very strong cooperative behavior. As the above-
mentioned referee has pointed out this cooperative behavior of all particles is the physical cause
which generates the intermittent behavior of the process characterized by the general fluctuation–
dissipation relations~4.11!. We emphasize that this cooperative behavior is related only to the
dynamical disorder and has nothing to do with the particles themselves which in the framework of
our approach are otherwise supposed to be independent.

Although the cooperativity of a dynamical-disordered process is not an unreasonable assump-
tion there is no guarantee that it is universally valid. In two of the three applications considered in
this article, the positron lifetime distributions and the passage through a fluctuating geometrical
bottleneck, one expects to have only a partial cooperative behavior, limited to the particles trapped
in a given region of the fluid or to the number of particles passing through the same bottleneck.
However, the theory developed in the preceding sections remains valid, provided that the number
N0 of particles is not the total number of particles from the system, but rather the number of the
particles from a given cluster corresponding to a given region of the fluid or to a given bottleneck,
respectively. Generally speaking, for such a system with partial cooperativity, in addition to the
two averages considered in this article, over the sample fluctuations and over the dynamical
disorder, we should consider an additional averaging, over the all possible numbers and sizes of
the clusters. Concerning the jump process model investigated in Sec. VIII the cooperative or
noncooperative behavior of dynamical disorder should be examined for each possible applications
of the model.

We emphasize that the cooperative or noncooperative behavior of dynamical disorder does not
influence the expressions for the average survival functions derived in this article; only the be-
havior of the fluctuations is influenced by the type of dynamical disorder considered. For illustra-
tion in this section we investigate the other extreme of complete statistical independence for which
the fluctuations of the relaxation rates attached to the different particles are completely indepen-
dent. In this case the average in definition~2.10! of the characteristic functionalJ@K ~t8!# of the
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number of particles should be computed by taking into account all possible realizations of differ-
ent random relaxation functionsW(t18),...,W(tN8 ) which are assumed to be independent of each
other. Equation~3.2! should be replaced by

J@K ~ t8!#5K expS i E
0

t

K ~ t8!^N~ t8!&disorderdt8D L , ~9.1!

where

^N~ t8!&disorder5N0K expS 2E
0

t8
W~ t9!dt9D L

disorder

~9.2!

is a dynamical average of the type~3.10!. The characteristic functionalJ@K ~t8!# can be expressed
by an expansion of the type~3.9!

J@K ~ t8!#5gH z511E
0

t

^ l ~ t8!&dynamiciK ~ t8!expF i E
0

t8
K ~C !dC Gdt8, t50J

511 (
m51

`
~ i !m

m!
Fm~0!E

0

t

•••E
0

t

K ~ t18!•••K ~ tm8 !

3expS i(
u51

m E
0

tu8K ~C !dC D ^ l ~ t18!&•••^ l ~ tm8 !&dt18•••dtm8 . ~9.3!

By following the same steps as in Secs. II–IV from Eq.~9.3! we can show that for indepen-
dent fluctuations of the random ratesW(t18),...,W(t8) the two-time cumulants of the second order
of the number of particles and the factorial cumulantsFm(t) are given by

^^N~ t1!N~ t2!&&5N0@^ l ~ t2* !&2^ l ~ t1!&^ l ~ t2!&# ~9.4!

and

Fm~ t !5Fm~0!^ l ~ t !&m. ~9.5!

We notice that, in contrast with the case of cooperative dynamical disorder, for independent
fluctuating rates the cumulants of the second order of the number of particles depend on the first
power of the total numberN0 of particles and not on the second powerN0

2. As a result in the
thermodynamic limitN0→ ` the relative fluctuation of the number of particles decreases to zero
as ~N0!

21/2 asN0→ `, a situation which corresponds to a nonintermittent behavior.
The choice between these two limit approaches corresponding to correlated and noncorrelated

fluctuations of the relaxation rates, respectively, should be done depending on the characteristics
of the particular system studied. It may happen that for certain systems none of the two approaches
developed in in this article may be used and thus the development of an averaging procedure
corresponding to a partially correlated behavior may be necessary.

X. DISCUSSION

Dynamical disorder occurs when there is a partial overlapping between the time scales of two
correlated random processes. In this article we have addressed two problems concerning systems
with dynamical disorder, to which little attention has been paid in the literature:

~1! The elaboration of an efficient method for the direct evaluation of the dynamical averages
and
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~2! The study of fluctuations of the number of surviving particles for independent rate pro-
cesses with dynamical disorder.

Our method of direct averaging is based on the use of characteristic functionals; within its
framework the direct evaluation of means is less unpleasant and less formidable than has been
claimed in the literature.1 We have derived a general class of fluctuation–dissipation relations
which can be used to evaluate all moments of the number of surviving particles in terms of the
average survival function. For applying these fluctuation–dissipation relations it is not necessary
to use the whole mathematical apparatus of the theory. Our approach can be used to evaluate not
only the fluctuations of the number of particles but also the moments of the survival functions as
well as other properties of the systems. It is more general than the indirect methods of averaging
used in the literature, in particular it is not confined to a certain class of stochastic processes. For
Markovian processes the method of stochastic Liouville equations1,30,31is recovered as a particular
case of our approach.

A surprising result of our treatment is that for systems with dynamical disorder the fluctua-
tions of the number of particles have an intermittent behavior. In the thermodynamic limit the
relative fluctuation does not decrease to zero, but rather tends to a constant value. In all particular
cases investigated the relative fluctuation diverges to infinity for large time. This type of behavior
is very different from the equilibrium behavior of systems made up of independent particles for
which the relative fluctuation decreases to zero in the thermodynamic limit as the reciprocal value
of the square root of the number of particles.58 An important consequence of the intermittent
behavior is that for systems with dynamical disorder the fluctuations should play an important role
even in the macroscopic limit, and should lead to observable macroscopic effects. These effects
would be the stochastic analog of the macroscopic quantum effects.

Although this article is long, it does not exhaust the possibilities of the application of our
method. A first generalization would be the development of a field theory in which the spatial
distribution of the particles is taken into account. The development of this type of theory is of
importance in connection with the measurement of large fluctuations corresponding to the inter-
mittent behavior by means of light scattering.59 A second generalization would be to the study of
the interaction between an annihilation process and a generation process of the particles~or
quasiparticles!. In this case nonequilibrium steady states may occur for which the generation and
annihilation processes compensate each other. For these processes the fluctuation–dissipation
relations may serve as a basis for the derivation of a generalized thermodynamic description of
nonequilibrium steady states by using the method suggested by Ross, Hunt, and Hunt.60

Another possible application is related to the analysis of new experimental techniques for the
study of radical kinetics by applying external variable magnetic fields, for instance, the study of
geminate recombination of radical pairs by means of the stimulated polarization of nuclei~SPN61!.

The possibilities of application of the theory are not limited to the study of physical or
chemical phenomena. The method can also be used in population dynamics for the analysis of the
influence of environmental fluctuations on the growth of a population62 or in exobiology for the
evaluation of the probability of the existence of extraterrestrial life.63
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APPENDIX A: TIME-DEPENDENT, ORDERED SYSTEMS

For computing the generating functionalJordered@K (t8)uW(t8)# we come back to the discrete
representation~2.6! of the time variable and notice that for a given realization of the rate coeffi-
cientW(t8), 0<t8<t them-gate probabilityPm(Nm ,tm ;...;N1 ,t1) is a superposition of binomial
distributions

Pm~Nm ,tm ;...;N1 ,t1!5(
N0

P~N0 ,0!
N0!

~N02N1!!N1!
~12p1!

N1~p1!
N02N1•••

Nm21!

~Nm212Nm!!Nm!

3~12pm!Nm~pm!Nm212Nm, m@1, ~A1!

where

pu5W~uDt !Dt, u51,...,m ~A2!

is the probability of disappearance of a particle in a small time interval limited by the timesuDt
and (u11)Dt. Equation~A1! has been derived by taking into account that the disappearance of a
particle is a statistical process independent of the evolution of other particles and by making a
balance of the surviving particles from time interval to time interval. The generating function of
them-gate probabilityPm(Nm ,tm ;...;N1 ,t1)

Jm~zm ,tm ;...;z1 ,t1!5(
Nm

•••(
N1

)
u51

m

~zu!
NuPm~Nm ,tm ;...;N1 ,t1!,

with uzuu<1, u51,...,m ~A3!

can be computed by a repeated application of the binomial summation formula. By combining
Eqs.~2.3!, ~A1!, and~A3! after some elementary algebraic manipulations we come to

Jm~zm ,tm ;...;z1 ,t1!5g„wm~z1 ,...,zm!,0…, ~A4!

where

wm~z1 ,...,zm!5p11z1~12p1!p21z1z2~12p1!~12p2!p31•••1z1•••zm21

3~12p1!•••~12pm21!pm1z1•••zm~12p1!•••~12pm! ~A5!

andg(z,0) is the generating function of the initial distribution of particles@Eq. ~2.3!#.
Now we compare the definitions of the ordered characteristic functional

Jordered@K (t8)uW(t8)# and of them-gate generating functionJm(zm ,tm ,...,z1 ,t1); the compari-
son shows that in the limitDt → 0 we have

Jordered@K ~ t8!uW~ t8!#5 lim
Dt→0

~m→`!

Jm~zu5exp„iK ~uDt !Dt…, u51,...,...,m!. ~A6!

By combining Eqs.~A2! and ~A4!–~A6! we obtain the following expression for the ordered
characteristic functional:

Jordered@K ~ t8!uW~ t8!#5gH z5E
0

t

F ~ t8!expS i E
0

t8
K~C !dC D dt81 l ~ t !expS i E

0

t

K~C !dC D ,0J ,
~A7!

where
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F ~ t !52@] l ~ t !/]t#5W~ t !expS 2E
0

t

W~ t8!dt8D . ~A8!

Performing a partial integration in Eq.~A7! we come to Eq.~3.3!.
The central momentŝN(t1)•••N(tm)&ordered and the cumulantŝ^N(t1)•••N(tm)&&ordered of

the number of surviving particles for a given realization of the random rate coefficient are given by

^N~ t1!•••N~ tm!&ordered5~2 i !m
dmJordered@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

~A9!

and

^^N~ t1!•••N~ tm!&&ordered5~2 i !m
dm ln Jordered@K ~ t8!#

dK ~ t1!•••dK ~ tm!
U
K ~ t8!50

. ~A10!

For an initial canonical ensemble we get the following expressions for the first two moments
of the number of particles:

^^N~ t !&&ordered5^N~ t !&ordered5N0l ~ t ! ~A11!

and

^^N~ t1!N~ t2!&&ordered5^N~ t1!N~ t2!&ordered2^N~ t1!&ordered̂N~ t2!&ordered5N0@ l ~ t2* !2 l ~ t1!l ~ t2!#,
~A118!

where

tm*5max~ t1 ,...,tm!. ~A12!

The relative fluctuation of the number of particles is equal to

rordered~ t1 ,t2!5S ^^N~ t1!N~ t2!&&ordered
^^N~ t1!&&ordered̂ ^N~ t2!&&ordered

D 1/25~N0!
21/2S l ~ t2* !

l ~ t1!l ~ t2!
21D 1/2.

~A13!

In the thermodynamic limit̂N0&→ ` the relative fluctuation of the number of particles decreases
to zero as~N0!

21/2, that is, in the thermodynamic limit the fluctuations are insignificant, i.e., they
have a nonintermittent behavior.58

For an initial grand canonical ensemble the generating functiong(z,0) depends exponentially
onz21, all terms in the functional Taylor expansion of lnJordered@K (t8)uW(t8)# can be computed
exactly, which allows the evaluation of all cumulants. After some calculus we come to

^^N~ t1!•••N~ tm!&&ordered5m212ml ~ tm* !^N0&. ~A14!

The relative fluctuation of the number of particles is given by an equation similar to Eq.~A13!

rordered~ t1 ,t2!5~^N0&!21/2S l ~ t2* !

l ~ t1!l ~ t2!
D 1/2. ~A15!

For an initial grand canonical ensemble in the thermodynamic limit^N0&→ ` the fluctuations are
also nonintermittent.
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APPENDIX B: MOMENTS AND CUMULANTS

The central moments of the number of particles,^Nm(t)&, can be expressed in terms of the
factorial moments by using the Stirling numbers of the second and first kindS”m

(q) and Sm
(q),

respectively,34

S”m
~q!5 (

k50

q
~21!q2kkm

k! ~q2k!!
, ~B1!

Sm
~q!5 (

k50

m2q

~21!k
~m211k!!

~m2q1k!! ~q21!!
•

~2m2q!!

~m2q2k!! ~m1k!!
S”m2q1k

~k! . ~B2!

We have

^Nm~ t !&5 (
q50

m

S”m
~q!Fq~0!^ l q~ t !&5 (

q50

m

(
v50

q

S”m
~q!Sq

~v !^Nv~0!&^ l q~ t !&. ~B3!

The one-time cumulantŝ̂ Nm(t)&&dynamic5Cm(t) can be computed in terms of the factorial
moments by comparing the logarithm of Eq.~4.5! with an expansion of lng(z,t) similar to the
expansion used in Eq.~2.11! for the characteristic functionalJ@K ~t8!#. We obtain

Cm~ t !5 (
m1 ,m2 ,...

m! ~21!Smv~Smv21!!)
v

~^Nv~ t !&/@~v! !mvmv! # !mv, ~B4!

where(vmv5m is a partition of the integerm into smaller integersm1 ,m2 ,..., and^Nv(t)& are
given by Eq.~B3!.

APPENDIX C: CURTAILED CHARACTERISTIC FUNCTIONALS

Following Lax39 and Van Kampen40 the characteristic functionalG[K(t8)] of the rate coef-
ficientW(t8) can be expressed as an integral of a curtailed generating functionalG @K(t8);x# over
all possible values of the random vectorx

G@K~ t8!#5E G @K~ t8!,x#dx, ~C1!

whereG @K(t8),x# is the solution of the evolution equation

] tG @K~ t8!,x#5LG @K~ t8!,x#1 iK ~ t !W~x!G @K~ t8!,x#, ~C2!

with the initial condition

G ~ t50!5P~x,0!. ~C3!

To compute the one-time moments of the survival function,^ l m(t)&, we need to evaluate
G @K(t8),x# for a constant test functionK(t8)5 im @see Eq.~4.8!#. Combining Eqs.~4.8! and
~C1!–~C3! yields Eqs.~5.3!–~5.5!.

From Eqs.~2.14! and ~5.8! it follows that the lethargy variable«(t) obeys a differential
equation with random parameters

d«~ t !/dt5W„x~ t !…, with «~0!50, ~C4!

where the random evolution ofx(t) is determined by the evolution operatorL. From Eq.~C3! it
follows that the probability densityf~«,x;t! obeys the stochastic Liouville equation
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] tf~«,x;t !1W~x!]«f~«,x;t !5Lf~«,x;t !, ~C5!

with the initial condition

f~«,x;t50!5d~«!P~x,0!. ~C6!

Through Laplace transformation Eqs.~C5!–~C6! become

] tf̃~b,x;t !5Lf̃~b,x;t !2bW~x!f̃~b,x;t !, ~C7!

f̃~b,x;t50!5P~x,0!. ~C8!

By comparing Eqs.~5.4! and ~5.5! with Eqs.~C7! and ~C8! we obtain Eq.~5.11!.

APPENDIX D: FLUCTUATING GEOMETRICAL BOTTLENECKS

We introduce the joint probability density of the numberN of ligand molecules and of the
radiusr of the bottleneck

B~N,r ;t !dr, with ( E B~N,r ;t !dr51. ~D1!

B(N,r ;t) is the solution of a stochastic Liouville equation

] tB~N,r ;t !5ar 2@~N11!B~N11;r ;t !2NB~N,r ;t !#1l] r@rB~N,r ;t !#1lu] r2
2

@B~N,r ;t !#,
~D2!

with the initial and boundary conditions

B~N,r ;t50!5P~N,0!~pu!21/2 exp~2r 2/4u!, ~D3!

] rB~N,r50;t !50. ~D4!

The boundary condition~D4! expresses the fact the radiusr of the bottleneck cannot be negative,
whereas the initial condition~D3! corresponds to an initial equilibrium truncated Gaussian distri-
bution which obeys the conditionr>0.

Introducing the marginal generating function

g* ~z,r ,t !5( zNB~N,r ;t !, uzu<1. ~D5!

Equations~D2!–~D4! become

] tg* ~z,r ,t !5ar 2~12z!]zg* ~z,r ,t !1l] r@rg* ~z,r ,t !#1lu] r2
2

@g* ~z,r ,t !#, ~D6!

g* ~z,r ,t50!5g~z,0!~pu!21/2 exp~2r 2/4u!, ~D7!

] rg* ~z,r50,t !50.

We express the factorial momentsFm(t) in terms of the marginal generating function
g* (z,r ,t). We obtain

Fm~ t !5( N~N21!•••~N2m11!E B~N,r ;t !dr5E Fm* ~r ,t !dr, ~D8!
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where the functionsFm* (r ,t) are given by

Fm* ~r ,t !5]mg* ~z,r ,t !/]zmuz51 . ~D9!

From Eqs.~D5!–~D7! and ~D9! we get a set of partial differential equations inFm* (r ,t)

] tFm* ~r ,t !52amr2Fm* ~r ,t !1l] r@rFm* ~r ,t !#1lu] r2
2

@Fm* ~r ,t !#, ~D10!

with the initial and boundary conditions

Fm* ~r ,0!5Fm~0!~pu!21/2 exp~2r 2/4u!, ~D11!

] rFm* ~r50,t !50. ~D12!

Equation~D10! have the same formal structure as a differential equation used by Zwanzig32 for
the evaluation of the average survival function. An eigenfunction solution of the same type of
equation has been given by Weiss47 in a different physical context. Equation~D10! can be solved
by searching for Gaussian solutions of the type

Fm* ~r ,t !5Am~ t !exp@2r 2bm~ t !#, m51,2,..., ~D13!

which obviously are compatible with the initial and boundary conditions~D11! and~D12!. Insert-
ing Eqs. ~D13! into Eqs. ~D10!–~D12! we obtain a chain of ordinary differential equations in
Am(t) andbm(t). Solving these differential equations and inserting the solutions into Eqs.~D13!
we can compute the functionsFm* (r ,t). The calculations are lengthy but standard. Substituting the
expressions forFm* (r ,t) into Eqs.~D8! and using the fluctuation–dissipation relations~4.11! we
come to Eqs.~7.7! and ~7.8!.

1R. Zwanzig, Acc. Chem. Res.23, 148 ~1990!.
2R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalas, Biochemistry14, 5355~1975!; A. Ansari,
J. Berendzen, S. F. Browne, H. Frauenfelder, T. B. Sanke, E. Shyamsunder, and R. D. Young, Proc. Natl. Acad. Sci. US.
82, 5000~1985! and references therein; H. Frauenfelder and R. D. Young, Comments Mol. Cell. Biophys.3, 347~1986!;
A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Hong, I. E. T. Iben, J. B. Jonson, P. Ormos,
T. B. Sauke, R. Scholl, P. J. Steinbach, J. Vittitov, and R. D. Young, Biophys. Chem.26, 337 ~1987!.

3Yu. A. Berlin, N. I. Chekunaev, and V. I. Goldanskii, Chem. Phys. Lett.197, 81 ~1992!; A. Plonka,ibid. 151, 466~1988!;
A. Plonka J. Kroh, and Yu. A. Berlin,ibid. 153, 433~1988!; A. Plonka Yu. A. Berlin, and N. I. Chekunaev,ibid. 158, 380
~1989!.

4A. Plonka,Time-Dependent Reactivity of Species in Condensed Media, Lecture Notes in Chemistry Vol. 40~Springer,
Berlin, 1986!.

5T. Förster, Z. Naturforsch A4, 321 ~1949!.
6A. Blumen, Nouvo Cimento B63, 50 ~1981!; A. Blumen, J. Klafter, and G. Zumofen, inOptical Spectroscopy of
Glasses, edited by I. Zschokke~Riedel, Amsterdam, 1986!, pp. 199–265 and references therein; A. K. Roy and A.
Blumen, Physica D38, 21 ~1989!.

7D. L. Huber, Phys. Rev. B31, 6070~1985!.
8J. Klafter and M. F. Shlesinger, Proc. Natl. Acad. Sci. US.83, 848 ~1986!.
9E. W. Montroll and J. T. Bendler, J. Stat. Phys.34, 129 ~1984! and references therein.
10M. F. Shlesinger, Ann. Rev. Phys. Chem.39, 269 ~1988! and references therein; J. W. Haus and K. W. Kehr, Phys. Rep.
150, 263~1987!; J. P. Bouchaud and A. Georges,ibid. 195, 127~1990! and references therein; M. O. Vlad, Phys. Scr.49,
389 ~1994!.

11F. M. Dittes, H. L. Harney, and A. Mu¨ller, Phys. Rev. A45, 701 ~1992!.
12H. Schiessel and A. Blumen, J. Phys. A26, 5057~1993!; F. Nonnenmacher, inRheological Modeling: Thermodynamical
and Statistical Approaches, Lecture Notes in Physics Vol. 381, edited by J. Casas-Vasquez and D. Jou~Springer, Berlin,
1991!, pp. 309–320.

13P. W. Anderson, J. Phys. Soc. Jpn.9, 316 ~1954!.
14R Kubo, in Fluctuation, Relaxation, and Resonance in Magnetic Systems, edited by D. Ter Haar~Olivier and Boyd,
Edinburgh, 1962!, pp. 23–68.

15R. Kubo, Adv. Chem. Phys.15, 101 ~1969!.
16R. Lenk,Brownian Motion and Spin Relaxation~Elsevier, Amsterdam, 1977!.
17R. Czech and K. W. Kehr, Phys. Rev. B34, 261 ~1986!; R. Mazo and C. Van den Broeck,ibid. A 34, 2364~1986!.

834 Vlad, Ross, and Mackey: Fluctuation–dissipation relations

J. Math. Phys., Vol. 37, No. 2, February 1996

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.102.55.227 On: Mon, 17 Mar 2014 10:23:25



18A. G. Kofman, R. Zaibel, A. M. Levine, and Y. Prior, Phys. Rev. A41, 6434, 6454~1990!.
19W. G. Rotschild, M. Perrot, and F. Guillame, J. Chem. Phys.87, 7293~1987!.
20M. O. Vlad, Int. J. Mod. Phys. B7, 2539~1993!.
21S. Dattagupta,Relaxation Phenomena in Condensed Matter Physics~Academic, Orlando, 1987! and references therein.
22J. Koyama and H. Hara, Phys. Rev. A46, 1844~1992!.
23K. S. Singwi and A. Sjo¨lander, Phys. Rev.119, 863 ~1960!; M. O. Vlad, Physica A208, 167 ~1994!.
24C. Van den Broeck,Drunks, Drift, and Dispersion~Vrije Universiteit Brussels, Brussels, 1988! and references therein.
25S. D. Duger, M. A. Ratner, and A. Nitzan, Phys. Rev. B31, 3939~1985!; A. K. Harrison and R. Zwanzig,ibid. A 32,
1072 ~1985!.

26D. F. Calef and J. M. Deutch, Ann. Rev. Phys. Chem.34, 493 ~1983!; J. Keizer, Chem. Rev.87, 167 ~1987!; B. Bagchi
and G. R. Fleming, J. Phys. Chem.94, 9 ~1990!.

27A. Szabo, J. Chem. Phys.81, 150 ~1984!; A. V. Barzykin, Chem. Phys. Lett.189, 321 ~1992!.
28N. Agmon and J. J. Hopfield, J. Chem. Phys.78, 6947~1983!; N. Agmon, Phys. Rev. E47, 2415~1993!.
29B. Bagchi and A. Chandra, Adv. Chem. Phys.80, 1 ~1991! and references therein.
30R. Kubo, J. Math. Phys.4, 174 ~1963!.
31N. G. Van Kampen, Phys. Rep. C24, 171 ~1976!; R. F. Fox,ibid. 48, 179 ~1978!.
32R. Zwanzig, J. Chem. Phys.97, 3587~1992!.
33J. Wang and P. G. Wolynes, Chem. Phys. Lett.212, 427 ~1993!; 180, 141 ~1994!.
34M. O. Vlad, M. C. Mackey, and J. Ross, Phys. Rev. E50, 798 ~1994!.
35M. O. Vlad, Astrophys. Space. Sci.218, 159 ~1994!.
36M. O. Vlad, J. Math. Phys.35, 796 ~1994!; J. Phys. A27, 1791~1994!.
37D. P. Smith and N. Keyfitz,Mathematical Demography~Springer, Berlin, 1977! and references therein.
38A. Plonka, J. Kroh, W. Lefik, and W. Bogus, J. Phys. Chem.83, 1807~1979!; W. H. Hamill and K. Funabashi, Phys. Rev.
B 16, 5523~1977!; W. H. Hamill, Chem. Phys. Lett.77, 467 ~1981!.

39M. Lax, Rev. Mod. Phys.38, 359, 541~1966!.
40N. G. Van Kampen, Phys. Lett. A76, 104 ~1980!.
41J. Hernandez, Rev. Mod. Phys.63, 675 ~1991! and references therein.
42P. W. Anderson, Phys. Rev.109, 1492~1958!; K. Ishi, Progr. Theor. Phys. Suppl.53, 77 ~1973! and references therein.
43J. K. Percus, inPositron Annihilation Studies of Fluids, edited by S. C. Sharma~World Scientific, Singapore, 1988!, p.
96; B. N. Miller and T. L. Reese, Phys. Rev. A39, 4735~1989!; T. Reese and B. N. Miller,ibid. A 42, 6068~1990!.

44Y. Fan and B. N. Miller, J. Chem. Phys.93, 4322~1990!; B. N. Miller and Y. Fan, Phys. Rev. A42, 2228~1990!; T. Reese
and B. N. Miller, ibid. E 47, 2581~1993!; G. A. Worrell and B. N. Miller,ibid. A 46, 3380~1992!.

45B. N. Miller, T. L. Reese, and G. Worrell, Phys. Rev. E47, 4083~1993!.
46R. F. Fox, Phys. Rep.48, 179 ~1978! and references therein.
47G. H. Weiss, J. Chem. Phys.80, 2880~1984!.
48N. Agmon and S. Rabinovich, Ber. Bunsenges. Physik. Chem.95, 278 ~1991!.
49A. Ansari, C. M. Jones, E. R. Henry, J. Hofrichter, and W. Eaton, Science256, 1796~1992!.
50M. Doi and S. F. Edwards,The Theory of Polymer Dynamics~Clarendon, Oxford, 1986! and references therein; K. F.
Freed,Renormalization Group Theory of Macromolecules~Wiley, New York, 1987!.

51W. R. Schneider, inDynamics and Stochastic Processes, edited by R. Lima, L. Streit, and M. Vilela Mendes, Lecture
Notes in Physics, Vol. 355~Springer, Berlin, 1990!, pp. 276–286; W. Wyss, J. Math. Phys.27, 2782 ~1986!; W. R.
Schneider and W. Wyss,ibid. 30, 134 ~1989!; M. Giona and H. E. Roman, J. Phys. A25, 2093, 2107~1992!.
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