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Abstract 

The hopping of a moving particle over an activation barrier with a Markovian fluctuating height is investigated by 
assuming that the process is characterized by two characteristic time scales: the minimum hopping time T,, corresponding to 
zero activation energy and the regression time scale rn of the fluctuations of the activation energy. The moments (r”(t)>, 
m > 0 of the fluctuating survival function l(t) at time t as well as the average probability of the passage time +(f), are 
evaluated by taking into account all contributions of the different fluctuation paths of the activation energy E(t’), t > t’ > 0. 
The survival statistics obeys a fractal scaling law only if the regression of the fluctuations is slower than the hopping 
process. In this case a statistical fractal behavior emerges for the time interval in > t > r,, for which (I”(t)) N tCH, 
e(t) N t-(’ ‘“), where 1 2 H > 0 is a positive fractal exponent. For larger times t > rn the survival statistics is exponential: 
I/&>, (I”(t)) m exp(-f/7&, t > in. The condition in > T,, defines a non-ideal statistical fractal for which self-similarity 
exists only in the time window TV > t > TV, . for larger times t > TV the tail of the probability density q?(t) is exponential and 
thus the moments of the passage time are finite. In the limit TV + 03 the ideal statistical fractal behavior of the static random 
activation energy model is recovered: the fluctuations of the activation energy barrier are frozen, the tails of the functions 
(I”(t)) and r/~(t) are self-similar up to infinity and the moments of the passage time are infinite. It is shown that the 
fluctuations of the energy barrier increase the efficiency of the hopping process. The results are extended to non-Markovian 
fluctuation dynamics for which o = l/~n is a random rate selected from a generalized Porter-Thomas distribution. In this 
case the passage over the barrier is even more efficient. The hopping occurs with certainty in a finite time interval of a given 
length tr,. At the end of the interval the moments (I’“(f)) of the survival function I(t) collapse to zero. 

A simple mechanism generating fractal time is the hopping of a particle over a distribution of activation 
barriers. This approach, known as the random activation energy model (FUEM), has been applied to many 
problems in condensed matter physics [l-3] and molecular biology [4,5]. Considering an exponential distribu- 
tion of activation energies 

r](E) = (VX exp( -WWA (1) 
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which corresponds to a canonical distribution “frozen” at temperature T,, the probability distribution of the 
passage time is a weighted distribution of Poisson processes, 

q(t) =_/~(E)Wexp(-Wl) dE, (2) 

where the hopping frequency W is given by the usual expression 

W = v exp( -E/R,T), (3) 

v is the maximum jump frequency and T d T, is the system temperature. From Eqs. (l)-(3) it follows that the 
probability density of the passage time +(t> has a long tail, 

$(t) =Hl+t) -(‘+H)y(l +H, vt) -HT(l +H)V(Vt)-(r+“), t >> l/v, (4) 

where the fractal exponent H is equal to 

H= T/T,,< 1, (5) 

y(x, a) = lo”y”_ l exp( - y) d y is the incomplete gamma function and T(n) = y(x, CQ) is the complete gamma 
function. 

The main assumption of the RAEM approach is that a fluctuation of the height of the energy barrier lasts 
forever, which justifies the validity of the static ensemble average in Eq. (2). Although reasonable for some 
problems of condensed matter physics, the validity of this assumption is questionable in molecular biology. In 
the case of protein-ligand interactions 143 and in ion channel kinetics [5] the distribution of energy barriers is due 
to conformational fluctuations which have a dynamic nature and thus the fluctuations of the activation energy 
are continuously generated and destroyed by thermal agitation. The purpose of this Letter is to generalize the 
RAEM approach by assuming that the fluctuations of the activation energy have a dynamic nature. 

We start by noticing that for static disorder the probability density v(E) (Eq. (1)) is the normalized solution 
of a Bloch-type equation, 

q( E) + k,T,%7)( E) = 0. (6) 

The simplest type of dynamical disorder conceivable is the one for which the fluctuations of the activation 
energy E are stationary and Markovian. Denoting by w the regression rate of the fluctuations the stationary 
Bloch equation (6) is replaced by a stochastic Liouville equation, 

a,v(E, t) = Lv( E, t), (7) 

where 

[L . . . = -o[... +q,a,...] (8) 

is a linear evolution operator. In the static limit o + 0 the characteristic time scale of the fluctuations 7s = l/w 
tends to infinity ~a + CC and the stochastic Liouville equation (7) reduces to the static Bloch equation (6). The 
solution of the stochastic Liouville equation (7) should fulfill the normalization condition / 77 dE = 1. By 
integrating Eq. (7) term by term with respect to E we can show that the solution $E, t) is normalized to unity 
provided that it satisfies the boundary condition 

q( E = 0, t) = l/k,T,,. (9) 

For stationary Markovian fluctuations the one-time probability density of the activation energy is equal to the 
stationary solution of Eq. (61, 

qr(E, t) = (knT,&’ exp( -E/knT,), independent of t, (10) 
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and the multi-time joint probability densities Q&E,, t,; . . . ;E,,,, t,) are completely determined by T,I~(E, t) and 
by the Green function v,(E,, C, 1 E,, t2) = ql(E1, tI - t, I E,, 0) of the Liouville equation (7) which depends 
only on the time difference t, - 1, and not on the individual times t, and t,. In particular for m = 2 we have 

~(4, t,; E,, f*)=h(tl-t*)7)1(E*)7),(E,, t,--t,lE,,O)+htt,-t,)rl,(E,)rll(E*, tz-t1 lE,J$ 

(11) 

where h(x) is the usual Heaviside step function. The Green function vr(E, t I E’, 0) can be found by solving 
Eq. (7) with the boundary condition (9) and the initial condition 

q(E, t=OIE’,O)=S(E-E’). (12) 

By intergrating Eq. (7) along the characteristics we obtain 

rlr(E, t/E’, 0) = (k,& exp( - E/k,T,,) h( wtk,T, - E) + 6( E - E’ - c&J,,) exp( - cot). 

(13) 

Now the correlation function of the activation energy ( AE(t)AE(t’)) can be easily computed by using Eqs. 
(lo), (11) and (13). We obtain 

(AE( t)AE(t’)) = j-/(E, - (E))(E, - (E))~I~(E,, t; E,, t’) dE, dE, 

= (k,T,) -2 exp(-colt-t’l). (14) 

As expected for a one-dimensional Markov process the fluctuation of the activation energy decays exponentially 
with time. 

For dynamic fluctuations of the activation energy the probability density of the passage time is given by a 
dynamic average, 

*(t) = 
( 
v exp[ -E( t)/k,T] exp - vlrexp[ -E( t/)/&J] dt’ 

( 1) 
. (15) 

0 

In Eq. (15) we should take into account all contributions of the different fluctuating paths E(t’), t > t’ > 0 and 
thus for evaluating the probability density t,b(t) we should evaluate a path integral over the random function 
E(t’). 

Since the fluctuation dynamics is Markovian we can avoid the use of path integrals by applying a technique 
suggested by van Kampen [6]. We introduce the instantaneous value Z(t) of the survival function at time t, that 
is, the instantaneous value of the probability that in a time interval of length t the particle has not passed over 
the barrier. For a given realization of the activation energy path E(i), t k t’ 2 0, the survival function l(t) is the 
solution of the differential equation 

a,Z( t) = - v exp[ -E( t)/k,T] l( t), I(0) = 1. (16) 

Since the energy fluctuations are Markovian and for a given fluctuation path the survival function is 
deterministic it follows that the pair (f(t), E(t)) is also Markovian and the corresponding one-time probability 
density P(E, I; t> obeys a compound stochastic Liouville equation, 

a,P(E, 1; t) = ${P(E, 1; t)Zv exp[ -E(t)/k,T]} + LP(E, I; t), (17) 

with the initial condition 

P(E,l; t=O)=(k,To)-lexp(-E/R,T,)S(Z-l). (18) 
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The requirement that the solution of Eq. (17) is normalized to unity j/P dE dl = 1 leads to a boundary 
condition for P(E, 1; t) similar to Eq. (9), 

/ 
‘P( E = 0, 1; t) dl= l/&J,. 

0 
(19) 

The positive moments of the survival function l(t) are equal to 

(l”(t)) = 19/‘lmP( E, 1; t) dE dl= l”n,( E, t) dE, 
0 0 0 

where the functions A,( E, t) are marginal averages, 

( 20) 

A,( E, t) = /h’( E, 1; t) dl. 
0 

(21) 

By integrating Eqs. (17)-(19) over 1 we get a chain of partial differential equations for A,(E, t), 

a,A,(E, t) = -mA,(E, t) v exp( - E/k,T) + [L A,( E, t), (22) 

with the initial and boundary conditions 

A,,,( E, t = 0) = (k,T,)-’ exp( -E/k,T,,), (23) 

A,(E=O, t)=(k,T,)-‘. (24) 

Eqs. (22)-(24) can be solved by using the method of characteristics. By inserting the resulting expressions for 
A,(E, t) into Eq. (20) and integrating over E, after lengthy manipulations we obtain the following expressions 
for the moments of the survival function l(t), 

(l”(t)> =H 
( 

T [exp( at/H) - I]) -H-y( H, G [exp( W/H) - I]) I (25) 

By applying Eq. (25) for m = 1 and expressing the average survival function (l(t)) as a path average we obtain 

(l(t)> = exp( - v/rexp[ -E( t’)/k,T] dt’ 
( 0 

=H( F[exp(ot/H) - I])-“y( H, T[exp(ot/H) -I]). (26) 

By comparing Eqs. (15) and (26) we note that 

q(t)= -a,(l(t))=H(~[exp(wf/H)-l])-tH+*’y(H+I, z[exp(wt/H)-I]) 

Xv exp( at/H). (27) 

Expressions (25) and (27) for ( lm(t)) and cl/(t) may have a scaling behavior of statistical fractal type only if the 
passage over the barrier for zero activation energy is faster than the decay of the fluctuations of the activation 

energy, 

v> w, i.e. rfl > rh, (28) 
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where 7s = l/w is the characteristic time scale for the regression of the fluctuations and T,, = l/v is the 
minimum hopping time scale for zero activation energy. If condition (28) is fulfilled then the asymptotic 
behavior of (P(t)) and 9(t) for large time is given by 

<I”(t)> N r(H+ l)( vmt)-H, 

- T(H+ l)[ w/( ~Hrn)]~ exp( -wt), 

Tfl>>l>Th, t> 0, (294 

t> 78, t> 0, (2W 

l/J(t) -Hr(H+ l)V(vt)-(H+l), T”>f>Tb, tx-0, (304 

-HT(H+ l)v[ o/( vH)]~+’ exp( -wt), t> Tfl, t= 0. (30b) 

The physical interpretation of Eqs. (29), (30) is straightforward. In the time window 7s > t > T,, the decay of 
the activation energy fluctuations is practically nonexistent and the dynamic path averages in Eqs. (15) and (25) 
are practically equivalent to a static average of type (2) over a time-invariant distribution of activation energies. 
In this case the inverse power law scaling behavior is generated by the equilibration between the contribution of 
very large activation energies which are exponentially rare and the characteristic hopping time t, = l/W = 
Y-’ exp(E/k,T) which diverges exponentially to infinity as E + m. This is a typic feature for the static 
random activation energy model [l-5]. For larger times t > TV the fluctuations of the activation energy decay 
exponentially to zero (see Eq. (14)): in this time scale the process is dominated by the regression of the 
fluctuations of the energy barrier, resulting in the exponential decay laws (29bM30b). The conditions 7s > TV, 
ra = finite (Eq. (28)) define a non-ideal statistical fractal for which the self-similar behavior occurs only at the 
beginning of the tails of the functions ( Zm(t)> and G(t). In the limit 7s + CO this non-ideal fractal becomes an 
ideal fractal and we recover the static random activation energy model: the fluctuations of the barrier height 
become completely frozen for any time and the fractal scaling of the tails of (I”(t)) and G(t) holds up to 
infinity, 

<f”(t)> -T(H+ l)(vmt)+, I>> 0, 7fl+ w, (31) 

l/J(t) -HT(H+ l)v(vt)-(H+l), t>o, 7fl+ m. (32) 

The moments of the passage time are given by 

(t”) =kmt”‘$(t) dt. m> 1. (33) 

For an ideal fractal all these moments are infinite. For a non-ideal fractal, however, the moments of the passage 
time, although possibly large, should be finite because of the exponential decay of the end of the tail of the 
function 4(t). These moments can be explicitly evaluated for large but finite values of the fluctuation time scale 
7s Z+ 0. By inserting Eq. (27) into Eq. (33) and keeping only the dominant contributions in in = l/o as o + 0 
we obtain 

(t”) -HT(l +H)V-H(H/o)m-Hfm(H), 7fl= l/w * 0, m>H, (34) 

where 

f,(H) =imym exp(-Hy)[l-exp(-y)]-‘ntl’dy=T(m+l)~~O r,((~+q~~q~)(H+q)-‘m+l’. 

(35) 

It is easy to check that for m > H both the integral and the series in Eq. (35) are convergent. 
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Since the passage time t is a non-negative variable the characteristic function of the probability density q!dt) 
can be defined by means of a Laplace transformation, 

q(s) = imexp( -St)$( t) dt, (36) 

where s is the Laplace variable conjugate to the passage time. The characteristic function q(s) can be evaluated 

in the limit of large values of the fluctuation time scale 7s = l/o. We insert expression (27) into Eq. (36), use 

the integral representation of the incomplete gamma function, expand the integrand of the resulting equation in a 
double series, keep the dominant terms in the limit rfl > 0 and sum the resulting series. The result of these 

operations is 

By expanding the exponent in Eq. (37) in a Taylor series in s we can evaluate the cumulants of the passage 

time in the limit TV x=- 0, 

((t”)) -HT(l +H)V-H(H/o)m-Hf&f), 7”/6J Z+ 0, m>H. (38) 

We arrive at the surprising conclusion that for rfl Z= 0 the cumulants of the passage time are approximately 

equal to the corresponding moments. The explanation of this result is simple: both Eqs. (34) and (38) give only 
the dominant contribution in me = l/w as w -+ 0 which both for the cumulants and the moments scale as 
w-(~-~) - (rfl)m-H. Although the cumulants and the moments are generally different, the other contributions 
depend on lower powers of me and thus in the limit in + 00 the differences between the moments and the 

cumulants are negligible. 
An important consequence of the asymptotic expressions (38) for the cumulants is that for me x=- 0 the 

fluctuations of the passage time are intermittent. For proving the existence of intermittency we compute the 
relative fluctuation of order m (m > 2) 

&?I( w) = 
w”>)“” 

((t>> -[HT(l+H)]-“-““’ 

7” = l/w > 0, m 2 2. (3% 

The relative fluctuation of order m increases with the increase of rr-, as (rfl) H(1 - ‘lm). As expected in the static 

limit rn -+ m all relative fluctuations p,,$ w), m > 2 diverge to infinity. 

Our analysis shows that the dynamic fluctuations of the barrier height increase the efficiency of the passage 
process. Due to the decay of activation energy fluctuations for a dynamical system the contribution of very large 
activation energies which cause very small passage rates is smaller in comparison with the static case rfl + m. 
The increase of efficiency can be analyzed by evaluating the large time behavior of the effective passage rate, 

We&) = C)/@(t)). 

For a system with dynamic disorder in the limit t + 00 the effective rate W,,, tends towards the regression rate 

w, 

w,,, N 6.r as t> Tfl, rfl>oOr rfl finite, (40) 

whereas for a system with static disorder it decreases hyperbolically to zero, 

w,,, -H/t, t1>0, rfl -+ m. (41) 
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One usually expects that if the regression rate o is also random the passage over the barrier is even more 
efficient. The simplest possible generalization of our model is to assume that the regression rate is a random 

variable selected from a given probability law, 

g(w) do, / 
g( 0) do= 1. (42) 

In this case, although the pair of random variables (1, E) has a non-Markovian behavior a Markovian 

description is still possible by considering the rate o as an additional random variable. The detailed analysis of 
this model will be presented elsewhere. Here we give only the final expression for the moments of the survival 

function, 

m dw g(w) exp(w’F) - ’ ) dW. 

For instance if the probability density g(o) is given by a generalized Porter Thomas law [7] with a fractal 
exponent (Y and an average value ( o), 

g(o) dw= [T(cr)]-‘(a/(~))~~“-~ exp(-two/(w)) do, l>a>O, (44) 

we arrive at 

where 

t<t,, (45a) 
=o tat,, (43 

t, = aH/( w). (46) 

Due to the random behavior of the decay rate w the passage occurs with certainty after a time interval of length 
t, and for t = t, all moments of the survival function collapse to zero. 

We conclude this Letter by comparing our approach with other recent treatments of the passage over a 

fluctuating energy barrier presented in the literature [8-111. Until now the study of fluctuating energy barriers 
has focused mainly on certain types of resonance phenomena such as stochastic resonance or resonant 
activation. The starting point of these approaches is a one- or two-dimensional Fokker-Planck equation which 
describes the passage over the barrier. The Fokker-Planck equation is integrated by assuming that the barrier 
height has known stochastic properties. These approaches are of course more appropriate from the statistical 
mechanical point of view; they are generalizations of the classical Kramers theory of activated processes [12]. In 

contrast in our approach we take the Arrhenius equation (3) for granted and assume that the corresponding 
activation energy is a random function of time with known stochastic properties described by Eqs. (7) and (101, 
(11). Although from the theoretical point of view the validity of such an assumption is questionable, it has been 
shown in the literature of RAEM [l-5] that for static disorder it is consistent with experimental data for a large 
class of natural phenomena. 

Our main purpose has been to investigate the possible occurrence of fractal time statistics for a fluctuating 
energy barrier with dynamic disorder. The fractal time statistics is due to the occurrence of a broad spectrum of 
very large barrier heights which are exponentially rare; in the models of fluctuating energy barriers considered 
in the literature [8-111 one assumes the existence of a limited number of possible values of the activation 
energy, the passage from one value to another being described for instance by a random telegraph Markov 
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process 1111. It is therefore not surprising that the results reported here concerning the non-ideal fractal time 
statistics are absent from the literature. 

Concerning the validity range of our approach we would expect it to be reasonably valid for systems in 

which the fluctuations of the energy barrier are due to the interaction of a large number of degrees of freedom, 
such as the protein-ligand interactions or ion channel kinetics [4,5] for which the main source of randomness is 

the conformational fluctuations. 
Of course the question of establishing the validity range of the Arrhenius equation (3) for fluctuating barriers 

with dynamic disorder is still open. A more satisfactory theoretical approach should start from a multidimen- 

sional Fokker-Planck equation with a fluctuating energy barrier described by the stochastic Liouville equation 
(7) and then eliminate the irrelevant degrees of freedom by deriving a reduced evolution equation depending on 
a limited number of collective coordinates. This is a very difficult undertaking and the possibilities of carrying it 

out are uncertain. 
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