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Generating functional approach to multichannel parallel 
relaxation with application to the problem of direct 
energy transfer in fractal systems with dynamic disorder 
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3655 Drummond Street, Montreal, Quebec H3G 1 Y6, Canada 

(Received 26 August 1994; accepted for publication 7 December 1994) 

A model for multichannel parallel relaxation is suggested based on the following 
assumptions: (a) an individual channel is characterized by a set of continuous state 
variables; the corresponding relaxation rate is a function of the state variables as 
well as of the time interval for which the channel is open; (b) the number of 
channels is a random variable described by a correlated point process defined in the 
space of state parameters of an individual channel. Analytical expressions for the 
generating functional of the overall relaxation rate and for the average survival 
function are derived in terms of the generating functional of the point process. The 
general formalism is applied to the problem of direct energy transfer from excited 
donors to acceptors in fractal systems with dynamic disorder. It is assumed that the 
number of acceptors obeys a Poissonian distribution law with a constant average 
density in a dfdimensional fractal structure embedded in a d,-dimensional Euclid- 
ean space (d,= 1,2,3) and that an individual relaxation rate is an inverse power 
function of the distance between the acceptor and the donor molecules. The dy- 
namic disorder is described in terms of three different functions: the rate w(t) of 
opening of a channel at time t, the attenuation function p(t) of the reactivity of an 
individual channel at time t, and the probability density #((I) of the time interval 
within which a channel is open. Several particular cases corresponding to different 
functions w(t), p(t), and $(t) are investigated. The static disorder corresponds to 
a survival function of the stretched exponential type exp[-(Rr)q with 1>/3>0. 
For very strong dynamic disorder there is no attenuation of reactivity, the opening 
time is infinite and the survival function is given by a compressed exponential 
exp[-const.t*+q, l>p>O. The other cases analyzed correspond to a slowly de- 
creasing attenuation function and to an exponential distribution of the opening 
time, respectively; for them the efficiency of relaxation is between the ones corre- 
sponding to the two extreme cases of static and very strong dynamic disorder. The 
general conclusion is that the passage from static to the dynamic disorder results in 
an increase of the efficiency of the relaxation process. 0 1995 American Institute 
of Physics. 

1. INTRODUCTION 

The study of exotic (i.e., nonexponential) relaxation is a problem of topical interest in non- 
equilibrium statistical physics; it is of importance in the study of a variety of problems from 
condensed matter physics,1-9 nuclear physics,” spectroscopy,“-17 rheology,18S’9 seismology,” 
physical chemistry,21 radiochemistry,22-24 molecular biophysics,25-28 cell and population 
dynamics,29-3’ etc. Among the different relaxation functions suggested in the literature the 
Kohlrausch-Williams-Watts modified exponential’-6~8~9~‘6~1730~31 plays a central role 
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(1) 

where (l(r)) is the average survival function characteristic to the relaxation process, t is the time, 
R is a characteristic frequency, and /? is a dimensionless positive parameter. Most cases considered 
in the literature’-9”6’31 correspond to l>p>O, a situation in which Eq. (1) is a stretched expo- 
nential. For /3> 1 Eq. (1) is a compressed exponential; although less common than the stretched 
exponential the compressed exponential has been used in spectroscopy17 and in population 
dynamics.30.3’ 

It is commonly assumed that the stretched exponential corresponds to a kind of universal 
behavior which is independent of the details of individual processes; this idea has stimulated the 
proposal of several “universal” mechanisms based either on parallel relaxation’-6 or on hierar- 
chically constrained dynamics.238 In contrast much less attention has been paid to the theoretical 
interpretation of the compressed exponential. 

The purpose of this article is to suggest a model which may generate both the stretched and 
compressed exponentials and to study its main properties. In our opinion the derivation of a 
universal model applicable to all situations in which the Kohlrausch-Williams-Watts law (1) 
occurs is rather illusory. This is the reason why our starting point is a particular problem, the 
extinction of fluorescence due to the direct energy transfer from a donor (an excited molecule) to 
an acceptor (either a molecule or a quasiparticle) in fractal disordered systems.2 The study of this 
type of problem started with the work of F6rster;32 his model has been continually improved in the 
last fifty years.2-6 We shall try to improve the Klafter-Shlesinger generalization2 of the Fijrster 
model for fractal disordered systems by incorporating the dynamic disorder into the model; the 
importance of dynamic disorder in the context of nonexponential relaxation has been recently 
emphasized by many researchers.26’27*33 We shall describe the dynamic disorder by combining the 
use of a random point process with the method of generating functionals. This technique has been 
recently introduced by the authors in other physical contexts, the study of fractal random 
processes,34 of random spiral motions,35 the analysis of stochastic gravitational fluctuations,36 and 
the description of space and time dependent colored noise.37 

Although the main motivation of our research is a concrete problem, in order to facilitate the 
application of the theory to other systems, we shall try first to give a general formulation of our 
approach and then to apply it to the problem of direct energy transfer. The plan of the article is as 
follows. In Sec. II we present the mathematical formalism of the theory. In Sec. III the theory is 
applied to the study of direct energy transfer in fractal systems with dynamic disorder. In Sec. IV 
a comparison between the systems with static and dynamic disorder is performed. Section V deals 
with the case when only the fastest process contributes to relaxation. In Sec. VI an alternative 
approach is suggested based on the use of a formal functional generalization of the theory of 
random point processes. Finally in Sec. VII some open questions and possible applications of our 
approach are analyzed. 

II. GENERATING FUNCTIONAL APPROACH TO DYNAMIC DISORDER 

We assume that a random number N of channels is involved in relaxation. Each individual 
channel is characterized by a set of continuous random state variables and by the random time 
interval for which the channel is open. The stochastic behavior of the number and states of the 
channels is described by a random point process.38 For a given realization of the process the 
survival function /(t) is related to the relaxation rate W(t) by the differential equation 

dK(t)ldt=- W(t)/(t), with d(O)= 1 (2) 

or, after integration 
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E(t) =exp[ - IdW (i~)dl’]. 
In these equations due to the dynamical disorder the relaxation rate W(r) is a random function of 
time. We suppose that each individual channel is characterized by a set of state variables 

r=(r, ,r*,...); (4) 

the contribution w, of a given channel to the relaxation rate is a function of the state vector r, of 
the channel as well as of the time interval At, that elapsed from the moment at which the channel 
was opened 

(5) 

the total relaxation is the sum of the contributions of all channels 

N 

W(t)= C w(r,,t-t,)h(d,-fft,), 
a=1 

(6) 

where t is the current time, t, is the time at which the cuth channel was opened, h(x) is the 
Heaviside function, and /a is the life time of the open state. 

The stochastic properties of the total number N of channels and of the values of the corre- 
sponding state vectors (rl J,),..., (rN ,tN) can be described by using the formalism of random point 
processes.38 We introduce the Janossy densities38 

Q,;QNtr, ,f, ;...; rN,tN)drl dt,**-dr,., dt,; (7) 

Q,tr,,r, ;...; rN,tN)drl dt,... drN dt, is the probability that there are N channels involved in the 
relaxation process and that the first channel has a state vector between r, and r,+dr, and it is 
opened at a time between t, and t, +dt,**- and that the Nth channel has a state vector between rN 
and rN+ dr, and it is opened at a time between tN and tN+ dt, . 

We follow the usual convention according to which there are no restrictions concerning the 
values of the vectors (r,,rJ and thus a l/N! Gibbs factor should be introduced in the normaliza- 
tion condition for the Janossy densities38 

Qo+N+, & 1 /- -/ 1 QN(r,,t,;...;r,;tN)dr, dt,*-*dr, dt,=l. 

In terms of the Janossy densities we introduce the joint (product) densities38 

l?o= 1, 
(9) 

%Vtrl ,fl ;.-+; r,,,,tN)dr, dt,**-dr, dt, 

=[jo ; j- j- -j- 1 QN+s(r,,r,;...;r,+s,tN+S)drN+, dtN+,“-drN+s d,,,,) 

Xdr, dt, “-drN dt,. 
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g,(r,t) is the average density of channels in the (r,t) space and the other product densities describe 
the fluctuations of the number and state of channels. The Janossy densities can be expressed in 
terms of the product densities as38 

Q,v(r, rt, ;..a, *rN,tN)dr, dt,-..dr, dt, 

=[ j. q f j- **j” j ~N+S(r,,t,;...;rN+S,tN+S)drN+, dt,v+,“*drN+S dh+S) 
Xdr, dt, *“dr, dtN. (10) 

The main advantage of the joint densities is that they allow to evaluate the moments of the number 
of channels in a simple way. In particular, given a region C in the (r,t) space, the factorial 
moments of the number of channels are given by38 

.17,=(N(N-1)..+(N-m+l))=l 1 ee.1 1 qJrl,tl;...;r,,tm)drl dt,*-mdr,,, dt,. 

H s 
(11) 

v,v are product densities rather than probability densities and thus they do not obey a normaliza- 
tion condition similar to Eq. (8). 

In terms of QN and v,v we can define two different types of generating functionals: for the 
Jannosy densities 

A[Z(r,t)]= 5 
N=l 

& f 1 --*I 1 z(r, ,tl)*-~z(rN,tN)QN(rl,tl ;...;rNrtN)drl dt,.-.dr, dtN 

+Qo (12) 

and for the product densities 

E[Z(r,t)]= 1+ 2 N=l j& 1 j- -“I 1 Ztrl~fl)~~~Z(rN~~N) 

x 17N(rl,tl;...;rN,tN)dr1 dt,***dr, dt,, (13) 

respectively, where Z(r,t) is a suitable test function. It is easy to check that these two generating 
functionals are related to each other through the relationship38 

h[Z(r,t)]=E[Z(r,t)- I]. (14) 

Now we introduce the probability density 

$t&)dd 1: @ ir)dd= 1 (15) 

of the life time of the open state of a channel characterized by the state vector r. 
The relaxation dynamics is determined by the stochastic properties of the overall relaxation 

rate W(t) which can be formally described in terms of a probability density functional 
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31:W(t),t~~laY(t)l, &w(t)lDrw(t)l= 1, 06) 

where T is a cutoff value of the current time, D stands for the operation of functional integration, 
and D[ W(t)] is an integration measure defined over the space of functions W(t). The 
main difficulty related to the use of the probability density functional (16) is due to the fact that we 
do not have a suitable definition for the integration measure D[ W(t)]. This difficulty can be 
circumvented by making use of the generating functional 

G[K(t);Tl=D erp( -~o~K(t)W(t)dt)~[W(t)]DIW(t)], (17) 

where K(t) is a suitable test function. We shall see later that the generating functional G[K(t); T] 
does not depend on the integration measure D [ W(t)] . The probability density functional .fl W(t)] 
D [ W( t)] is an average of a Dirac-delta functional symbol 

N 

8 W(t)- 2 w(r,,t-tJh(f,-t+f,) D[W(t)] 1 W  
a=1 

corresponding to the superposition of the contributions of the individual channels given by Eq. (6), 
over the number N of channels, over the state vectors rl ,...rN , over the times t I , . . . , tN and over 
the life times / t ,...,/N of the open states of the channels 

4[W(t)]D[W(t)]=N~o & 1 j- “.I 11 *j- QN(rlTtl;.--;rN7fN) 

x @ (b!irl)“‘@ ,(/N lrN)6 
[ 
w(t)- 5 w tra,t-ta)h(fa-t+fa) 

a=1 1 

XD[W(t)]dr, dt,**.dr, dt,d/,.**d/,, (19) 

where the average is evaluated in terms of the Janossy densities QN and of the probability density 
$(&) of the life time of the open state of a given channel. By inserting Eq. (19) into Eq. (17) and 
making use of the expressions (12)-( 14) for the generating functionals of the point process we get 
a closed expression for the generating functional of the overall relaxation rate 

As expected the expression (20) for the generating functional G[K(t) ] is independent of the 
integration measure D [ W(t)] . 

From Eqs. (3) and (20) we notice that the average survival function 

V(t))=0 exp( -Ji W(t’)dt’ i?[W(t)]D[W(t)] ) (21) 
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can be expressed in terms of the generating functional G[ K( t)] . From Eqs. (17), (20), and (21) we 
obtain 

(/‘(t))=G[K(t)= 1, T=t] 

=a[ Z(r,t’)= /rd/$(/]r)[ exp( - /ty”““) w(r,P-r’)dr”) - l]]. (22) 

Equation (22) is the main result of this article; it allows us to evaluate the average survival 
function (Y’(t)) in terms of the stochastic properties of the individual channels involved in the 
relaxation process. 

III. DIRECT ENERGY TRANSFER IN FRACTAL SYSTEMS WITH DYNAMIC DISORDER 

Following Klafter and Shlesinge? we consider an initially prepared excited donor at the origin 
of a coordinate system surrounded by a random number of acceptors placed at different distances 
from the donor. Each acceptor corresponds to a relaxation channel; the corresponding state vector 
r is given by the position of the acceptor with respect to the origin. Klafter and Shlesinge? assume 
that the relaxation rate corresponding to a given acceptor is inversely proportional to a positive 
power of the distance r-=/r1 from the acceptor to the donor 

w(r)-sfi]r]-a, (23) 

where . L’L is a proportionality constant with dimension [time]-’ [length]” and u is a dimensionless 
positive coefficient depending on the nature of the interaction (a=6 for dipole-dipole interactions, 
a=8 for dipole-quadrupole interactions, etc.). In this article we assume that due to dynamic 
disorder the right hand side (rhs) of Eq. (23) should be multiplied by a positive attenuation factor 
cp (cp>O) which is a function of the time interval At for which the channel is open. We have 

(24) 

Another assumption made in this article is related to the probability density &jr) of the life time 
of the open state of a channel. As all acceptors have the same behavior irrespective of their 
position $(dr) should be independent of r 

v+(h) = W l independent of r. (25) 

We consider that the acceptors do not interact with each other and thus the different reaction 
channels are independent; such a situation can be described by an independent random point 
process in space-time continuum for which all Janossy densities QN are determined by the first 
product density v,(r,t). We have37938 

Qdr, ,tl;...; 

(26) 

171(rl,tl)...171(rN,tN). 

Equation (26) is crucial for the further development of the theory. It shows that for independent 
processes only the average density of acceptors qt(r,t) in the space-time continuum determines 
the relaxation law. Here we conside? an average homogeneous distribution of acceptors in a 
dfdimensional fractal structure embedded in a d,-dimensional Euclidean space and suppose that 
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the acceptors are enclosed in a d,-dimensional hypersphere with a very large radius r. -+ 03 
surrounding the origin. We follow a commonly used heuristic approach and assume that the fractal 
hypervolume of a hypersphere with radius r is37*39-40 

V*(r)=[r( 1 +df/2)]-‘#f’*r’f. (27) 

The average space-time density of acceptors v,(r,t) is given by 

(28) 

where 

p = dN/( dr)tiacti const (29) 

is the average space fractal density of acceptors and 

,.&+ - d,W 
tdr) fracti=d,r( I+ df/2) I?( 1 +d,/2)dfrdfeds dr (30) 

is a fractal analog39*40 of the Euclidean differential element of volume dr, and w(t) is the rate of 
generation of acceptors. 

By combining Eqs. (12)-(14) and (26)-(30) we get the following expression for the gener- 
ating functional E[Z(r,t)] of the random point process: 

S[Z(r,t)]=exp 
,,.(df-d,W 

d,T( 1 +df/2) pdJ(l +d,i2)/oTdt 4f)iasro Z(r,t)rdfeds dr}. (31) 

From Eqs. (20) and (31) we can compute the generating functional of the overall relaxation rate 

.,+df-d&2 

d,I’( 1 + df/2) pdiT(1+d~~2)~omd~~(~)~oTdt~~(t~)~ rdf-ds 

x[ 1 -exp( -.,&rmu/r~T*‘i”‘~(t-t’)K(t)dt)]dr}. 

Now we express the space integrals in Eq. (32) in polar coordinates in d,-dimensional Euclidean 
space and integrate over the angular variables. We obtain 

G[K(t);T]=exp - 
i 

adfp r( 1+ df/2) 
df/rd@(d ~oTo(t’)dtr 160,4-’ 

x[ I-exp( -.&‘rwu/i~T.““‘q(t-t’)g(l)dr]]. 

In Eel. (33) the integral over r can be evaluated in the limit r. -+ 00 by means of the substitution 

y =AF” f l~T’li”‘cp(t-t’)K(t)dt. 

The result of the integration over y is 

(34) 

G[K(t);T]=exp -a [ ~~;d/+(~/oTdt’w(t’)[ ~~_i”‘T’n”‘a(t-t’)K(r)dt]~], (35) 
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where 

‘= (36) 

is a characteristic frequency and 

,B= dflu (37) 

is a dimensionless fractal exponent. As for the problem of direct energy transfer we have dfC3 
and from a?=6 it follows that l>p>O. 

By using Eq. (35) the expression (22) of the average survival function becomes 

(38) 

Now we apply the general relaxation equation (38) to several particular cases. The model with 
static disorder of Klafter and Shlesinge? is recovered as a particular case of our approach if all 
acceptors are generated before or at t=O 

w(t) = @ t), (39) 

there is no attenuation 

cp(t-t’)= 1, (40) 

and all acceptors have an infinite life time 

r&-)=S(G--do), 60 + w. (41) 

In this case Eq. (38) leads to the well-known stretched exponential relaxation law (1) where the 
parameters n and p are given by Eqs. (36) and (37), respectively. 

The other extreme corresponds to the case of very strong dynamic disorder for which the 
acceptors are generated with a constant rate 

o(t) = w const, (42) 

there is no attenuation [Eq. (40)] and all acceptors have an infinite life time [Eq. (4 l)]. In this case 
we get a compressed exponential 

($(t))=exp[-fiPwt’+P]. (43) 

Between these two extremes we can consider other cases of interest. A third case corresponds 
to a constant generation rate [Eq. (42)], an infinite life time [Eq. (41)], and to a slowly decreasing 
attenuation function 

cp(t-t’)=A(t-t’)H-l, l>H>O, (44 

where A is a positive constant with dimension [time]lmH and H is a positive fractal exponent 
smaller than unity. In this case the average survival function is also given by a compressed 
exponential of the type (43) 

ut’+HP =exp[-const.t’+p’] 
I 

(45) 
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but the corresponding exponent 

p’=Hp<p (45’) 

is smaller than the exponent p characteristic for very strong dynamic disorder. 
A fourth case corresponds to a constant generation rate [Eq. (42)], no attenuation [Eq. (40)], 

and to an exponential distribution of the life time 

Iclt/,=(fj-’ exp(-A(/)), (46) 

where (/3 is the average life time of an acceptor. The average survival function is 

(~tt))=exp{-~nP,(/)‘+P[tttl(/))--)y(P+ l,tl(c>>+(tl(~)8+1 exp(-t/(t))]}, (47) 

where 

y(u,t)= 
I 

ore-rta-1 dt (48) 

is the incomplete gamma function. As t + 00 the survival function (47) tends to an exponential 

(/(t))=exp{-(R(d)Por( 1 +P)t}, as t + m, (49) 

where T(a)= ~(a,“) is the complete gamma function. 

IV. STATIC VERSUS DYNAMIC DISORDER 

For a system with dynamic disorder the relaxation rate W(t) is a random function of time and 
the average survival function (d(t)) is given by the path integral (21). In contrast for a system 
with static disorder the relaxation rate W  is a random number rather than a random function and 
the static average of the survival function F(t) is simply a superposition of exponential relaxation 
laws j’P( W) exp( - Wt) dW which expresses the contributions of the different relaxation rates 
selected from a given probability density P( W)dW. 

In order to make a comparison between static and dynamic disorder we compute the one-time 
probability density 

P( W;t)dW; with 
I 

=l’( W;t)dW= 1 (50) 
0 

of the overall transfer rate at time t. From Eq. (17) we note that the Laplace transform of P( W, t) 

exp( -KW)P( W;t)dW (51) 

is given by 

;I%P(W;t)=G[K(t’)=KS(t-t’)]. 

By inserting Eq. (35) into Eq. (52) we get 

ZP(W;t)=exp[-(b(t)K)P], 

with 

(52) 

(53) 
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b(t)=fi[ =j-; I,’ 1 l/P 
d+(f) dt’w(t’)[q(t-t’)h(/+t’-t)-jP . (54) 

From Eq. (53) it follows that the one-time probability density of the overall relaxation rate can be 
expressed in terms of the Levy type probability densities for positive variables’,41 

Y’P(x)=.%-l exp(-KP), with 
s 

m ’J!lj(x)dX= 1, 
0 

(55) 

where T’ is the inverse Laplace transformation. From Eqs. (53) and (55) we get 

P(W,t)dW=‘l’,(WIb(t))dW/b(t). (56) 

The functions *p(x) have been extensively studied in the literature.1*41 For large values of 
x,qP(x) can be expanded in the following asymptotic series:4* 

9,(x)=l i 1(-l) 
7-r kc0 k! 

k+l~-(l+kp)r(l +kp)sin(nkj?), x%0 

and thus for W  + a P( W;t) is given by 

P(W,t)-T-l sin(rrp)(b(t))Pr(l+j?)W-(l+P) 

~df'2pd~S;d4&d-b dt’ w(t’)[cp(t-t’)h(t+t’-t)]df’o 
= 

u. cdf%(i +df/2)W’+df’” ) w+m. (5% 

As 1 >p>O from Eq. (58) it follows that all positive integer moments of the overall relaxation rate 
(wct,>,(w’c~>>~*- 3 are infinite, a behavior which is typical for a statistical fractal probability 
density. 

Now we can proceed to make a comparison between the static and dynamic disorder. For 
systems with static disorder the average survival function is simply given by4’ 

($(t)),uti,tiC= lo”P(W;t)exp(- Wt)dW. (59) 

For systems with dynamic disorder Eq. (59) is obviously incorrect; in this case the average value 
of the survival functions is given by Eqs. (21), (22) and (38). For evaluating the dynamic average 
(21) the information contained in the one-time probability density of the overall relaxation rate 
P( W;t) is not enough; we need to know the probability density functional fl W(t)]D[ W(t)] or 
the generating functional G[K(t)]. However, Eq. (59) can be considered as an approximation of 
the exact ensemble averages (21), (22) and (38). For establishing the validity range of such an 
approximation we insert the expression (55) for P( W; t) into Eq. (59) and evaluate the integral 
over W. We get 

As expected, the static and dynamic averages (60) and (38) are generally different. We notice 
however that they are identical if the restrictions (39)-(41) are fulfilled, a situation which corre- 
sponds to the Klafter-Shlesinger generalization’ of the Fijrster model; in this case we have 
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V. RELAXATION DYNAMICS OF THE FASTEST CHANNEL 

A common approximation for the problem of direct energy transfer is based on the assumption 
that only the fastest channel contributes to relaxation dynamics;2*6 in other words one assumes that 
the transfer is restricted only to the nearest neighbor acceptor. For investigating the relaxation 
dynamics of the fastest channel we should evaluate the generating functional of the transfer rate; 
paradoxically for a single channel this is a more complicated problem than in the case of multi- 
channel dynamics considered before. For simplicity we restrict ourselves to the evaluation of the 
one-time probability density 

.!T(W;t)dW, with 
I 

mflW;t)dW= 1. 
0 

(62) 

This probability density can be expressed in terms of the probability density 

l’(r,t’)dr dt’, with (63) 

of the distance r from the excited donor to the nearest acceptor and of the time t’ at which the 
acceptor was generated. For given values of the distance r, of the initial time t’, and of the life 
time /the value of the relaxation rate is given by 

(64) 

It follows that the probability density T( W; t) can be expressed as an average of a delta function 
corresponding to Eq. (64) 

R W it) = ~~do&Cl j- 1; dt~(r,t’)S(W-..&Tr-“q(t-t’)h(/-t+t’))dr. (65) 

The donor is surrounded by a hypersphere of radius r in which no acceptors exist; the 
corresponding fractal hypervolume V*(r) is given by Eq. (27). In the space-time continuum we 
define a space-time hypervolume (Ref. 37) v*(r,t’) which is empty, that is, for which no accep- 
tors exist. v*( r,t ‘) is simply equal to 

v*(r,t’)=V*(r)t’. (66) 

The probability density/‘(r, t’) can be expressed as 

N*(r) 
,.(r,t’)dr dt’=E(v*(r,t’))pw(t’) 7 dr dt’, (67) 

where ?T((v*) is the probability that the space-time hypervolume v*(r,t’) is empty. 8’(‘(v*) obeys 
the balance equation 

(68) 

which, for Av* --t 0, leads to a differential equation in %(v*). By integrating this equation with the 
initial condition Z(O) = 1 we get 

@7(v*)=exp -pV*(r)/i’ o(t”)dt” . 
I 

(69) 
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By combining Eqs. (27), (66), (67), and (69) we get the following equation for the probability 
density/‘(r,t’): 

j.(r,t’)dr dt’=exp -p rzcc2) 1: o(t”)dr”] $cci; pw(t’)dr dt’. (70) 

By inserting Eq. (70) into Eq. (65) and integrating over r we can get rid of the delta function, 
resulting in 

.flW;t)= u,16-;;;;~+d,,2j W-‘l+dfiY’j-; d@(dl; dt’o(t’)[cp(t-t’)h(d-t 

+ t’)ldf I” exp 
&f ‘2p .A% 

- 
I’( 1 + df/2) 

w cp(t-t’)h(/-t+t’) ) df’uf; o(t”)dtj . 

(71) 

The asymptotic behavior of the probability density Y( W; t) as W  + QJ can be easily evaluated 
from Eq. (71). As W  -+ ~0 the exponential tends to unity and Eq. (71) becomes 

<qww;t)- 
,rrdf’2pdf.J-; dh,Q)J-; dt’o(t’)[cp(t-t’)h(r+t’-t)]df’D 

u.icdf’ur(i+df/2)W’+df’u 
) W-+w. (72) 

By comparing Eqs. (58) and (72) we note that as W  -+ 00 the behavior of the probability densities 
P( W;r) and .Yi( W; t) are exactly the same. The physical explanation of this result is simple: the 
very large rates are generated by acceptors which are very close to the donor. For the closest 
acceptor the corresponding rate is the largest and its contribution to the total relaxation rate 
outweighs the contributions of remote acceptors. For not very large values of W, however, all 
acceptors contribute to relaxation and the probability density YT( W; t) of the transfer rate of the 
fastest channel is a poor approximation for the probability density P( W;t) of the total relaxation 
rate. This explanation for the same type of asymptotic behavior is similar to the one given to the 
Holstmark theorem from spectroscopy43 and astrophysics;44 a similar interpretation was suggested 
by the authors in the case of time and space dependent colored noise.37 

The probability density .Tr( W; t) does not describe the correlations among the fluctuations of 
the relaxation rate W(t) at different times and thus it cannot be used for the evaluation of the 
average survival function in the case of dynamic disorder. For static disorder, i.e., if the conditions 
(39)-(41) are fulfilled, we have 

(~tt)>:&i,= Jam  exp( - Wt)n W; t)d W, (73) 

where the superscript n.n. stands for the nearest neighbor approximation. The probability density 
.T( W;t) can be computed from Eqs. (39)-(41) and (71) 

f lW)= 

+rdf12pw-(‘+dfId &f ‘2p ,& df’C 

cr. APf'T( I +df/2) exp - r( 1 +df/2) (-1 I w independent of t. 

(74) 

The integral over W  in Eq. (73) cannot be computed exactly; we evaluate it by means of the 
method of steepest descent 

(75) 
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where 
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d + u Wf+Wdf ,rrdf lzps /&df /u cidf 

fir=(+-) ( r(l+di/2)) (76) 

and 

cr=dfl(df+a)=/31( 1 +p)<p. (77) 

Equation (75) is again a stretched exponential but with a smaller exponent a<p because of the 
truncating influence of more distant acceptors. In particular for dJ= 1 Eqs. (75)-(77) reduce to the 
relationships derived by Klafter and Shlesingerz for one-dimensional relaxation. 

VI. AN ALTERNATIVE APPROACH 

In this section we suggest a different approach for describing the multichannel relaxation in 
terms of the theory of random point processes. We start out with the simplest case of static 
disorder. We classify the channels with respect to their contributions w1 ,w2,... to the total relax- 
ation rate. For a set of N channels with individual rates w 1 , . . . , wN the total relaxation rate W  is 
equal to 

w=w’+***+wN. 0’8) 

By making an analogy with the formalism developed in Sec. II we describe the stochastic prop- 
erties of the number N of channels and of the individual rates wl ,.. .,wN in terms of a random 
point process in the w space defined by a set of Janossy densities 

Qo7QdwN)dwN, with w,v=(w~,...,w~), 

which obey the normalization condition 

(79) 

Qo+ i &  j- Q,vtw,v)dw,v= 1. 
N=l . 

In terms of the Janossy densities Qhr we define the product densities 

Qn+stw,v ,w,)dws, 

with 

cc (-1)s 
Qdw,v)dwiv=dwiv~ 7 v,v+s(wN,ws)dws 

s=o . 
(82) 

and the generating functionals 

Nz(w)l=Qo+ c. ’ j- Q~(w~)Z(w,)...Z(w,)dw~~, 
pJ=’ N! 

(83) 

(80) 

(81) 
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B[Z(w)]=l+ c. & j I7N(WN)Z(W,)...Z(WN)dWN, 
N=l ’ 

1847 

(84) 

with 

R[Z(w)]=E[Z(w)- 11. 035) 

The probability density of the total relaxation rate P(W) can be expressed as an average of a 
delta function corresponding to the superposition law (78) 

P(W)dW=dWC $1 QN(wN)S(W-CW,)~WN. (86) 

By applying in Eq. (86) the Laplace transform with respect to the total relaxation rate W  we can 
make a connection with the generating functional g[Z(w)] 

Z=P( W) = co exp(-KW)P(W)dW=z[Z(W)=exp(-KW)-11. (87) 

As for static disorder the average survival function can be expressed in terms of the Laplace 
transform of P(W); we have [see also Eq. (59)] 

(G(t)),,,i,=BP(W)I,=,=E[Z( W)=eXp(-tW)- 11. 038) 

In particular if all channels are independent the point process is Poissonian,37*38 and all Janossy 
densities can be expressed in terms of the first product density v,(w) 

Qo=ev( - 1 0,(w)dw) 9 

a*(Kv)=exP( - 1 %(W)dW) 771(‘+‘1)**‘171(‘+‘~) 

and the generating functional E [Z(w)] is given by an exponential 

z[Z(w)]=exp 
il 

mtwPtw)~w . 1 
By combining Eqs. (87) and (90) we obtain 

(C(~)).,ti,=exp[-~~~,(w)[l-enp(-wi)ldw . 
I 

(89) 

(90) 

Equation (91) was first derived by Huber4 by means of a succession of approximations without a 
straightforward significance. Our analysis shows that Eq. (91) is exact for a Poissonian distribution 
of independent channels. 

In Bqs. (89)-(91) the first product density v,(w) is the average density of channels with an 
individual relaxation rate between w and w + dw . The integral of vr( w) over w is the average total 
number of channels 

W )= ~~rl,(w)dw. 
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In order to establish a relationship between the present approach and the model of static 
disorder suggested by Klafter and Shlesinge? we compare Eqs. (1) and (91). This comparison 
leads to the consistency condition 

(nt)p= Iom  ?;ll(w)[ 1 -exp( - wt)]dw. (93) 

Equation (93) may be viewed as an integral equation for the average density of channels v,(w); 
it can be solved by differentiating with respect to t 

pfpp-L Co I wq(w)exp(-wt)dt. 
0 

The rhs of Eq. (94) is in fact the Laplace transform of the product w v1 (w). By performing an 
inverse Laplace transformation we get an inverse power law for the average density of states 

71(w)= ““,;y;;;“‘. (95) 

Due to the nonanalytic singularity of the average density of states (95) for w=O the average 
number of channels is infinite 

(N)=w. (96) 

For dynamic disorder the contribution w(t) of an individual channel to the total relaxation rate 
is a random function of time. If there are N channels with the individual rates w t (t), . . . , wN( t) the 
total relaxation rate W(t) is also a random function equal to 

w(t)=w,(t)+***+WN(t). (97) 

In order to generalize the formalism introduced in this section to systems with dynamic disorder 
we should extend the notion of random point process to the space of functions w(t). Such a 
development can be carried out only in a formal way because we do not have a suitable definition 
of an integration measure D [ W( t)] over the space of functions W(t) . 

Formally the stochastic properties of the number N of channels and of the corresponding 
individual rates can be described in terms of a set of functional Janossy densities 

Qo.Q,[Wltt) ~...,WNtt)lD[W~tt)l”‘D[WNtt)l, (98) 

with the normalization condition 

Qo+~~~ $ jj--~QNb,td ,...,WN(t)]D[Wl(t)]‘**D[W,.,(t)]= 1. 

Within the framework of this functional formalism the product densities also become functionals 
of the individual rates 
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xD[wN+I(t)I..‘D[wN+S(t)l, 

with 

(99) 

f&[‘+‘,(t),..., wNtt)l~[wl(t>l”‘D[w,(t)l 

m  (-1)s =D[w,tt)l...D[wNtt)l~ 7 ~..‘~QN+s[W~tt)~...,wN+s(r)l 
s=o * 

xDC~~+ltt)l...D[W~+~tt)l. 

The corresponding generating functionals become in fact functionals of functionals 

(100) 

NZ[w(t)ll=Qo+ 5 & ~‘.‘~QN[wl(t)....,wH(r)l 
N=l ’ 

xDCwl(t)l...DCwlv(t)Iz[w,(t)l...z[wlv(t>l, (101) 

~,wz[wtr)ll= 1 + i, 
N=l 

$ &-‘D vN[W l(t),...,WN(t)] 

xD[w~tt)l...D[wNtt)lZ[w,tt)l’.‘Z[wNtr)l, (102) 

A[Z[w(t)]]=~[Z[w(t)]- 11. (103) 

In these equations Z[w(t)] is a test functional of the random individual rate w(t). 
By using Eqs. (98)-(103) the relationship (88) for the average survival function can be easily 

extended for dynamic averages. We get 

vtdh+unic= a Z[W(t)]=exp 
1 

( - 1; wttw) - 11. ow 

Equation (104) may be derived in the same way as Eq. (88) by introducing a probability density 
functional of the total rate W(t) and using a functional analog of the Laplace transformation. 

The case of independent channels corresponds to a functional Poisson process for which 

Q,=exp - 
l 

D v,[w(t)lD[w(t)l 2 
1 

(105) 

and 
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ECz[w(t)ll=exp(~ ~~C~(~)l~[~(t)lD[~(t)l). (106) 

By combining Eqs. (104)-(106) we come to a dynamic analog of the Huber equation (91) 

(&))dynamic= exp( -0 v,[wO]( 1 -exp( - 1: w(t’W ’))D[dt)l]. (107) 

In these equations q[w(t)] is the average functional density of channels and the functional 
integral over w(t) is the total number of channels 

W )=fl l;l~[w(t)lNw(t)l. (108) 

By comparing Eq. (107) with Eq. (38) derived in Sec. III we get a consistency condition 
similar to Eq. (93) 

“plom & @ (&q; dt’ &.)[ /yp,tr’) q(t”-t’)dt”]B 

=o vdIwCt)l( 1 -ev( - 1: wttrW))Nw(r)l, (109) 

which can also be viewed as an integral equation for the average functional density of channels 
q[w(t)]. However, unlike Eq. (93) Eq. (109) is only a formal equation which cannot be solved 
for v,[ w(t)] because we do not have a suitable definition for the integration measure D[ w( t)] . 

VII. DISCUSSION 

For analyzing the changes due to the passage from static to the dynamic disorder we compare 
the tails of the average relaxation laws (l), (43), (45), and (47)-(49) and the corresponding 
effective hazard rates 

p(t) = - d ln(b( t))ldt. (110) 

By combining Eqs. (l), (43), (45) (47)-(49), and (110) we get the following expressions for the 
hazard rates: 

(a) static disorder; (t‘(t)) is given by Eq. (1) with l>,&O 

p(t)=pRW-‘, 

(b) dynamic disorder; (L’(t)) is given by Eqs. (47)-(49) 

Ptt>=~P4#w+ 1,tm?,, 

(111) 

-fV~(+T(p+l), as t --t 00, 

(c) dynamic disorder; (F(t)) is given by Eq. (45) 

p(t) = (QAIH)~,tpH, 
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(d) dynamic disorder; (t(t)) is given by Eq. (43) 

#u(t)=(fi+ l).R&& (114) 

In the succession of relaxation processes (a) --t (b) + (c) -+ (d) the lengths of the tails of the 
average survival functions decrease, which shows an increase of the efficiency of the relaxation. 
This increase of efficiency is also displayed by the behavior of the effective hazard rates. For static 
disorder the hazard rate decreases from ,~u(O)=m to ,u(~)=O. In contrast, for systems with dynamic 
disorder the hazard rates (112)-(114) increase starting from &O)=O; in case (b) it tends towards 
an asymptotic constant value and in cases (c) and (d) they tend to infinity as t --t m. The physical 
explanation of the increased efficiency for dynamic disorder is related to the fluctuation dynamics. 
The dynamic disorder is characterized by fluctuating relaxation rates which enter the expression of 
the survival function in a multiplicative way. As a result the average behavior of the system is 
influenced directly by the fluctuation dynamics: the stronger the fluctuations the faster the relax- 
ation. We can make an analogy with the phenomenon of motional narrowing in spectroscopy 
described in terms of Anderson-Kubo theory:‘1~‘2~45 in both cases a relaxation function depends 
multiplicatively on a random rate described by a stochastic process. The mechanism of fluctua- 
tions leads to a given type of relaxation behavior. In case (b) the generation of acceptors with a 
constant rate o is compensated by their removal with a rate (/3-l. For large time the statistical 
compensation between these two opposite factors leads to a constant hazard rate as t -+ ~0 which 
corresponds approximately to a Markovian behavior for large time. In case (c) although there is no 
removal a similar compensation exists due to the decrease of the efficiency of acceptors [Eq. (44)]; 
however, the corresponding attenuation of an individual relaxation rate is slower than the process 
of removal and as a result even for very large times the process is still non-Markovian. The case 
(d) corresponds to a very efficient relaxation; in this case no compensation mechanism exists; the 
fast relaxation is due to the accumulation of the acceptors around the donor; this is essentially a 
transient effect which leads to the enhancement of the process of energy transfer. 

Although the present approach has been suggested by the problem of direct energy transfer in 
fractal systems with dynamic disorder, our approach may also be used for investigating the dy- 
namics of other types of relaxation processes. Of course our method is far from being universal: 
it is limited to the systems for which the dynamic disorder can be described in terms of the random 
point processes introduced in Sets. II and VI. However, even though the stochastic dynamics is 
different a basic feature of the present approach is still valid: the dynamic average of the survival 
function can always be represented in terms of the generating functional which describes the 
fluctuations of the total relaxation rate. It turns out that the evaluation of the average survival 
function is possible, at least in principle, for any stochastic system for which the generating 
functional can be computed analytically, for instance, for certain types of Markov processes or for 
some processes with long memory which can be embedded in a Markov process by increasing the 
number of degrees of freedom.46 Such an approach can be applied for describing the decay of 
positrons or of positronium atoms trapped in dense fluids.33 

In this article the main focus has been on the study of the average behavior of a relaxation 
system described in terms of a point process. Concerning the fluctuations of the number of 
surviving particles (or quasiparticles) for a relaxation process with dynamic disorder there are two 
different sources of stochasticity: (1) the fluctuations generated by the random variations of the 
relaxation rate W(t’) and (2) the sample fluctuations due to the intrinsic random nature of the 
relaxation process. 

The first type of fluctuations due to dynamic disorder can be easily investigated by using the 
generating functional approach developed here. The one-time moments of the survival function 
(l(t)) are given by 
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mW(t’)dt’ flW(r’)-jD[W(t’)l, m>O. ) (115) 

By comparing Eqs. (21) and (115) we note that 

(emtt))=(df(t,Wtt’) --+ mW(t’))), (116) 

that is, the superior moments of the survival function can be computed from the expressions for 
the average survival function by replacing the relaxation rate W(t ‘) by m W( t ‘). 

The study of interactions between the sample fluctuations and dynamical disorder is more 
complicated. In this case a double dynamic averaging procedure should be developed which will 
be presented elsewhere.47 Here we mention only that the theory leads to a set of general 
fluctuation-dissipation relations 

F,(t)IF,(O)=(P(r))=(&,W(t’) + mW(t’))), (117) 

which relate the factorial moments of the number .&l“(t) of surviving particles at time t 

F,(t)=(.M(N- l)***(n’-m+ l))(t), m= 1,2,... (llf3) 

to the average survival function. The fluctuation-dissipation relations (117) are general: they are 
valid not only for the relaxation processes considered here but also for any independent decay 
process with dynamical disorder. Equations (117) are independent of the stochastic behavior of the 
random rate W( t’). An important consequence 47 of the fluctuation-dissipation relations (117) is 
that in the thermodynamic limit the fluctuations of the number of particles are intermittent: for 
large systems the relative fluctuation of the number of surviving particles does not decrease to zero 
but rather tends towards a constant positive value. 

Although we have studied mainly the relaxation processes with dynamic disorder, some re- 
sults obtained here are also of interest for the description of systems with static disorder. The 
formalism presented in Sec. VI may serve as a basis for a new physical interpretation of the Huber 
equation (91) leading to a new way of evaluating the experimental data. Such an approach would 
be of interest in the study of protein relaxation, for instance, the photodissociation of carbonmon- 
oxy myoglobin.*s 

There are still some unsolved problems related to our approach, especially in connection with 
the relationships between the two types of random point processes introduced in Sets. II and VI. 
For the clarification of these relationships further investigations are necessary. 
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