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Abstract 
The interference of logarithmic oscillations characteristic to statistical 
fractal and ultrametric structures is analyzed. We introduce an ultrametric 
model consisting in a hierarchy of branches for which the probability dis- 
tribution f ( n )  of the total number, n, of branches has a long tail of the 
inverse power law type f (n )  - A(1n n ) n - ( l + H )  as n + to where H is a fractal 
exponent characteristic for the ultrametric structure and A(1n n)  is a periodic 
function of In n. A comparison is made with a statistical fractal derived 
by means of the Shlesinger-Hughes stochastic renormalization approach. 
We consider a positive random variable, X, selected from a narrow 
unimodal probability density with h i t e  moments. A process of stochastic 
amplification of the random variable is introduced which leads to a prob- 
ability density of the amplified variable with a long tail: p(X) dX - dX 
X-(l+x)B[ln (X/Xd] as X + cc where S' is another fractal exponent, X, 
is a cutoff value of the random variable X and B@n (X/X,)] is a periodic 
function of In (X/Xd. Finally, the interaction between these two types of 
logarithmic oscillations is analyzed by assuming that the stochastic amplifi- 
cation of the random variable X takes place on an ultrametric structure. 
The final probability density of X, P*(X) dX, displays a phenomenon of 
amplitude modulation P*(X) dX - d[ln (XjXJ] [In (X/Xd]-(l+H)Z as 
X + to where E = E") + 8") is made up of two additive contributions: a 
periodic function Zc1)Pn (X/XJ] of In (XIX,) and a superposition S2) {In 
(X/Xd, In @n (XjXd]} of periodic functions of In (X/Xd modulated by 
much slower periodic functions in in @n (X/X,)]. The model is applied for 
the analysis of recycle flows in porous media. We assume that a hierarchi- 
cal structure of pores exists which corresponds to an ultrametric space and 
that the recycle flow leads to a stochastic amplification of the residence 
time of fluid elements in the system. We show that the probability density 
of the residence time has an asymptotic behavior similar to that of P*(X) 
dX and investigate the possibilities of measurement of multiple logarithmic 
oscillations by means of tracer experiments. A physical interpretation of 
multiple logarithmic oscillations is given in the case of flow systems: they 
are generated by two delayed feedback processes occurring in two different 
logarithmic time scales, In t and In In t. The fast delayed feedback process 
in In t is given by the recycle flows corresponding to a given level of the 
porous structure whereas the slow delayed feedback process in In In t is due 
to the exchange of fluid among the different levels of the hierarchical struc- 
ture of pores. 

1. Introduction 

It is now well established that the probability distributions 
corresponding to the statistical fractal or ultrametric struc- 
tures may have long tails of the inverse power law type 
modulated by oscillatory functions depending on the 
logarithm of the random variable (Novikov [l], Schreken- 
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berg [2], Giacometti, Maritan and Stella [3] and references 
therein, West [4, 51 and references therein, Shlesinger [6] 
and references therein). Such logarithmic oscillations have 
been experimentally identified in many biological as well as 
physical systems (Anselmet et al. [7], Smith, Fournier and 
Spiegel [XI, West, Bhargava and Goldberger [9], Nelson, 
West and Goldberger [lo], Shlesinger and West [ll]). 

This note addresses a problem which has not been inves- 
tigated yet, the analysis of interactions between two such 
logarithmic oscillatory processes. In order to build a model 
which incorporates two different logarithmic oscillations we 
shall apply the stochastic renormalization procedure of 
Shlesinger and Hughes [12] to an ultrametric model intro- 
duced by Vlad [13, 141. As a simple physical example of the 
interaction between two logarithmic oscillatory processes 
we consider the recycle flow in porous media with a hierar- 
chical structure described in terms of the probability density 
of residence times (Nauman and Buflham [lS] and refer- 
ences therein). This example from hydrodynamics has two 
main advantages: it is amenable to analytical treatment and 
on the other hand it may be studied by means of tracer 
experiments. 

2. Ultrametric topology 

In this section an ultrametric structure is constructed by 
using a method suggested by Vlad [13, 141. We assume that 
the ultrametric structure is generated by a branching 
process with a random number of branches. The process of 
branches generation is similar to a hierarchical clustering. 
We suppose that the probability jl of a branch generation is 
constant. Thus the probability that a branch from the 
(q - 1)th level is connected to n branches from the qth level 
is p-'(l - 8). If there are n' branches at the (q - 1)th level 
the probability &(n) that there are n branches at the 4th 
level is equal to 
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The probability, tq(n),  that there are n branches at the qth tively 

By solving these equations recursively we get = [e-yf-l{fPnSb In y) dy. 

<,(?I) = (1 - @[1 - (1 - 8)4]"-'. (3) 

Now we introduce the probability, a, that the growth of a 
level of the hierarchy occurs. The probability, x4, that the 
growth of the hierarchy stops after q steps is equal to 

xq = ag(1 - a). (4) 

The probability f ( n )  that the total number of branches from 
a hierarchy is n may be computed as an average of tq(n)  
over the possible number of levels 

( 5 )  

By inserting eqs (3) and (4) into eq. ( 5 )  we obtain 

m 

f (n )  = aq(1 - ax1 - p)q[1 - (I - /3)qn-'. (6) 
q = o  

3. Statistical fractals 

We consider a positive random variable, X, selected from a 
narrow, unimodal probability density, Po(X) dX, with finite 
positive moments. A probability distribution, P(X) dX, with 
a long tail may be generated by applying the Shlesinger- 
Hughes renormalization procedure (Shlesinger and Hughes 
[121). We assume that the random variable X is subject to a 
multi-step amplification process characterized by an amplifi- 
cation factor b > 1. We have 

d(Xb" - X)Po(X') dX', (12) 
n = O  

where E, is the probability that a cascade of amplification 
processes is made up of n amplification events; it is given 

Equation (6) is typical for an ultrametric model. Each con- 
tribution of a level to [(n) is an exponential probability dis- 
tribution in n [eq. (3)]; the corresponding average values 

by: 

&, = - (13) 

(7) 

increase exponentially with the level index, q. On the con- 
trary, the corresponding weight function aq(l - a) decreases 
exponentially as q increases. The interplay between these 
two factors may lead to the absence of a characteristic scale 
of the system generating a statistical fractal. Indeed, by 
evaluating the asymptotic behavior of eq. (6) by means of 
the Poisson summation formula [ 161 we get 

where I is the probability that an amplification event 
occurs. By inserting eq. (13) into eq. (12), computing the 
integral over X' and evaluating the resulting sum by means 
of the Poisson formula we get the following expression for 
the asymptotic behavior of p(X) 

P(x) s x - ( ~  +IP)B(ln X) as X + CO, (14) 

where X is a fractal exponent similar to H: 

S = In (1 - A)/ln b, (1 5 )  

&n) - n-(l+H)A(ln n) as n CO, 

where H is a fractal exponent given by 

(8) and B(ln X) is a periodic function of In X with period In b: 

B(ln x) = [(I - n)/ln bl(<xf> 

H = In a/ln (1 - p), \ 

m 
(9) 

+ 2 1 {(Xf cos [(2xm In Xo)/ln b]) 

x cos [(27rm In X)pn b] 

+ (Xf sin [(2xm In Xo)/ln b]) 

m = l  
A(ln n) is a periodic function of In n with period 
-In (1 - 8): 

A(ln n) = 
-In (1 - 8) 

x sin [(27rm In X)/ln b]}  . ) 
x c o s (  2nm(ln n) ) + F - ( l  + H ,  Here the average over X, is computed in terms of Po(Xo) 

-In (1 - 8) 

x sin ( 2rrm(ln n, )I}, 
-In (1 - 8) (lo) (a. .) = Po(Xo) dXo. J (17) 

r(x) = ji? Y"- exP ( - Y )  dY, X =- 0 is the complete If there is a cutoff value, X,, of X for which 
gamma function and F*(a, b) are the real and imaginary 
parts of the gamma function of complex argument, respec- Po(X > X,) = 0, (18) 
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then eq. (16) becomes 

m n  W X 3 1  = - 4/ln bl( ((xo)'L"> 

x sin { [2nm In (X/X,J]/ln b})). 

m 

+ 2 c 
x cos {[2nm In (X/X,,J]/ln b} 

+ ((X0)# sin { [2nm In (Xo/Xd]/ln b}) 

cos { P n m  In Wo/Xd1/ln b}) 
m =  1 

(19) 

4. Statistical fractals on ultrametric structures 

Now we can combine the two approaches. We assume that 
to each new branch of the ultrametric structure there corre- 
sponds an amplification event; in other words if the ultra- 
metric structure has only one branch then there is no 
amplification; for two branches, there is an amplification 
event; in general, for n branches there are n - 1 amplifica- 
tion events. It follows that the probability density of X, 
P*(X) dX, attached to the whole hierarchy, is given by 

P*(X) = [(n) la(x - Xb"-')P0(X') dX.  (20) 
n =  1 

By using eqs (3)-(6) we can express P*(X) as a sum of con- 
tributions corresponding to the different levels of the ultra- 
metric structure 

m m  

x [l - (1 - fl)']"-'b'-"P o(Xbl-n) 
m 

where 
CO 

Pq(X) = C(1 - /?)'Cl - (1 - fi)~"-'b'-"Po(Xb'-"), (22) 
n =  1 

is the probability density of X corresponding to the qth level 
of the ultrametric structure. By applying the Poisson 
method we get the following expression for the asymptotic 
behavior of Fq(X) 

Fq(x) 1 x-(' +'L"q)Bq(ln X) as x + 03. (23) 

Hq = -In [(l - fi)q]/ln b, 

To each level corresponds a fractal exponent 

(24) 
and a periodic function of In X with period In b: 

OD + 2 

x cos [(2nk In X)/ln b] 

+ ((X0)%q sin [(Znk In Xo)/ln b]) 

x sin [(2nk In X)/ln b]) 

{((Xo)'L"q cos [(2nk In Xo)/ln b]) 
k = l  

For fl < 1 even a moderate value of the level index q (say 
4 or 5) leads to (1 - 8)' 4 1 and, thus, a very good approx- 
imation for H ,  is 

H q  (1 - fl)q/ln b. (25) 
By combining eqs (21), (23), (25) and (26) and applying again 
the Poisson summation formula we get the following 
asymptotic expression for P*(X) as X -, 00 : 

1 - a  * X) = ( - X (In b)[-In (1 - b)] 

X [(( In b )H+l cos (2nk In (XjX,)) 
In (XIXO) In b 

2nm In [ln (X/X,)/ln b] 
-In (1 - 8) x cos ( 
-In (1 - #I) 

(2nm In nn (X/X,)/ln b] 
-In (1 - 8) x sin 

as X-+ 00, (27) 
where the average over Xo is computed by using the prob- 
ability distribution Po(Xo), H is the fractal exponent 
attached to the ultrametric structure [eq. (911 and the other 
variables have the same significance as before. 

It is difficult to analyse eq. (27) in the general case; 
however, if the approximation (18) is valid we get a simpler 
expression for P*(X) as X + CO : 

P*(X) dX = Z[ln (X/X,J] - w +  ') d[ln (X/X,,J] 

as X-, 00, (28) 

is a slowly varying function of X made up of two contribu- 
tions 

( 1  - aHln b)H 
-In ( 1  - 8) P [ l n  (X/Xd] = 

k = l  In b 

X 
In b 

+ sin 

In b 9 
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- - 4(1 - aXln b)" f { [ cos (2nk In (X/X,,,)) 
-In (1 - B )  k = l  In b 

X 
In b 

+ sin 
In b In b 

2nm In [ln (X/X,,,)/ln b] 
-In (1 - B) 

-In (1 - B) 

-In (1 - B) 

x cos ( 

(2nm In [ln (X/X,,,)/ln b] 
x sin 

X%X,,,,X+oo. (31) 

E(') is a periodic function of In (XlX,,,) with period In b; it 
has the main contribution to E. E(2) is the sum of a set of 
periodic functions of In (X/X,,,) with period In b modulated 
by much slower periodic functions in ln[ln (X/XJ with 
period -In (1 - B). 

5. Recycle flows in open systems 

Residence time distribution measurements have been used 
in engineering for 50 years (Nauman and Bufiham [ 151 and 
references therein). The mathematical formalism used for the 
interpretation of experimental data is somewhat similar to 
some models used in statistical physics, e.g. with the random 
walk theory. Although several papers outlining the ana- 
logies between these two fields have already been published 
(Rappaport and Dayan [17], Schweich [18], Van den 
Broeck [19], Vlad [20-22]), the formalism of residence time 
distributions is almost unkown by physicists. 

Our purpose is to describe the residence time distribu- 
tions for recycle flow in porous media by using the formal- 
ism developed in the preceding section. The fist step of our 
analysis is the study of recycle flows in homogeneous 
systems without pores. We shall show that the recycling of a 
fluid in a given region of space may result in stochastic 
amplification of residence time provided that certain condi- 
tions are fulfilled. 

We use a simplified version of a model developed by Vlad 
[22]. We consider an open continuous flow system and 
assume that the fluid is incompressible and that the outlet 
rate is the same as the inlet rate. The flow process is made 
up of many cycles m = 0, 1,2, . . . . For each cycle, m, we can 
introduce a probability density of the residence time of a 
fluid element in the system 

@,(r) dr = independent of time, @,(z) dz = 1; (32) r 
@,(T) dr is the probability that a fluid molecule entering the 
cycle at time t will leave it at a time between t + z and 
t + z + dry i.e. that the residence time corresponding to a 
given cycle is between z and z + dz. We assume that all 
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moments of the residence time corresponding to a cycle 
exist and are finite. In particular the average residence times 

(33) 

may be expressed as [ 15,223 : 

em = VdQm, (34) 

where V, is the volume available for the mth flow cycle and 
Q, is the corresponding flow rate. We assume that all flow 
cycles are similar to each other so that @, obey the scaling 
law [l5, 223 

= (63-  '~(r/ed, (35) 
where the probability density q(x) dx of the dimensionless 
residence time, x = r/O,,,, is the same for all cycles. The 
scaling law (35) is commonly used in the literature [l5, 22, 
231. 

We consider that from cycle to cycle a bigger and bigger 
volume is involved in the flow process with a smaller and 
smaller flow rate. For two successive pairs of values Vm-lt 
Q, - and V, , Q, we have the relationships [22] 

Vm = P m  Vm - 1, Qm = a m  Qm- 1 (36) 

where p, > 1, m = 1, 2, . . . are expansion coefficients of the 
volumes involved in different flow cycles and a, is the frac- 
tion of the flow rate, Qm-l corresponding to the (m - 1)th 
cycle, involved in the mth cycle. Following Wad [22] we 
assume that the pairs (al, p1), (a2, p2), . . . are independent 
random variables selected from the same probability law 

@, da dp, 6" [.(a, p) da dp = 1. (37) 

By combining eqs (34)-(36) we get the following expressions 
for the flow rates, Q, , and average residence times, 8, , cor- 
responding to the different cycles 

Q o = ( l - a l ) Q ,  Qm=(1-am+Jam***a1Q, (38) 

em = 01, :.. p1/a,,, ... a,)eO, 

and 

(39) 

where 
m 

Q =  C Q m ,  
m = O  

is the total flow rate and eo is the average residence time 
corresponding to the 0th cycle. 

The above hypotheses concerning the flow mechanism are 
identical with the ones used by Vlad [22]. Now we intro- 
duce a supplementary assumption which is different from 
the one used in Ref. [22]. We assume that the recycle flow 
takes place within the system and that a fluid element 
leaving the system can never return; in the engineering lan- 
guage we deal with internal backmixing. In contrast, Ref. 
[22] discusses the case of external backmixing that is, it is 
assumed that for each cycle a certain amount of fluid 
leaving the system can return into it. 

For internal backmixing the overall probability distribu- 
tion +(z) dz of the residence time in the system can be evalu- 
ated as an average over the number of cycles and over the 
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values of the random parameters (al, pl), (a2, p2), . . .: 

= m = O  f [ 6” Jol bm(Qm/Q)@m(T) 

m + l  

x n Ca(am,,  pm,) dam,d~m*I* 
m ’ = l  

After some arrangements eq. (41) can be written as 

where 

b, = pJu, > 1, m = 1, 2, ..., 
are effective amplification factors of the total residence time 
corresponding to different cycles 

f(a, b) da db = O(U, ,U) da dp 

= aa(a, ab) da db, bmf(a, b) da db = 1, (44) 

is the probability density of the random vectors (al, bl), (a2, 
b2), ... and q50(~ )  is the probability density of the residence 
time for the 0th cycle. 

By comparing eqs (12) and (13) with eq. (42) we note that 
the recycle problem for homogeneous systems is equivalent 
to the stochastic renormalization approach presented in 
Section 3 provided that the random vectors (al, bl), (a2, b2), 
. . . can take only one value (a, b) = (ao , bo), that is, if the 
probability densityf(a, b) is given by a delta function 

f(a, b) = d(a - ao)S(b - bo). (45) 

If the condition (45) is fulfilled then eq. (42) reduces to a 
relation equivalent to eqs (12) and (13) 

m 

#(z) = c (1  - a)am sS(z’b“ - T)@~(Z’) dr’. (46) 
m = O  

By comparing eqs (12), (13) and (46) we can derive the fol- 
lowing “dictionary” 

7*x, T ’ O X ,  (47) 

W) 4+ P ( X )  90(7’)  + PO(X’), (48) 

U, = a w l ,  bo = b-b. (49) 

The physical interpretation of the above results is simple: 
each recycle event of the fluid corresponds to an event of 
stochastic amplification of the residence time of fluid ele- 
ments in the system. For the more general process described 
by eq. (42) the effective amplification factors b, = pJu, and 
the probabilities of occurrence of the different amplification 
(recycle) events a, are random variables selected from the 
probablity law (44). The probability that m amplification 

(recycle) events occur is given by the ratio between the flow 
rate corresponding to the mth cycle and the total flow rate, 

E, = QJQ = (1 -a,+&, * * e  U,. (50) 

The process of stochastic amplification of the residence time 
described by eq. (42) is more general than the stochastic 
renormalization scheme considered in Section 3. Only if eq. 
(45) is valid then the parameters (al, bl), (a2, b2), . . . are 
constant, the two models are equivalent and the asymptotic 
behavior of the probability density, $(z) dz, of the total 
residence time has an inverse power law asymptotic behav- 
ior modulated by logarithmic oscillations described by eqs 
(14)-(19) where the significance of the symbols is given by 
the “dictionary” (47)-(49) and by 

where T, is the cutoff value of the residence time for which 
the probability density attached to the 0th cycle is practi- 
cally equal to zero, 

@o(z > T,) x 0. (52) 

6. Recycle flows in hierarchical porous media 

Now we can proceed to discuss the problem of backmixing 
in hierarchical porous media. We assume that the flow 
system is not homogeneous but rather filled with a porous 
substance in which a broad distribution of pores of different 
sizes exists. We consider that the pores are arranged in a 
hierarchical way : the large pores are connected to small 
pores, the small pores to smaller pores, etc. Like the 
branches of an ultrametric structure the pores may be 
grouped in levels. The pores of largest size correspond to a 
label q = 0 and as q increases the sizes of the pores 
decrease; a pore from the qth level is connected to one 
larger pore from the (q - 1)th level and to a variable 
number of smaller pores from the (q + 1)th level. Such a 
hierarchy of pores which is similar to an ultrametric struc- 
ture is commonly encountered in nature [24, 251. Of course, 
for real systems the self-similarity typical for an ultrametric 
space does not act up to infinity; there is always a cutoff 
value for which the self-similarity no longer exists. In many 
cases the influence of the cutoff value on the macroscopic 
properties of the system is negligible. Experimental electro- 
chemical [26] and adsorption [27, 281 measurements show 
that this is indeed the case. 

From the hydrodynamic point of view a hierarchical 
structure of pores slows down the speed of flow and 
increases the efficiency of recycling. For a homogeneous 
flow system without pores and with (A, b) = (a, b) = (ao, 
bo) = constant the probability, E,, of the occurrence of m 
cycles is given by the Pascal law (13): 

E, = (1 - a)a? (13) = (53) 

This distribution is rather narrow and all positive moments 
of the number of cycles exist and are finite. A straightfor- 
ward calculation gives 

(m(m - 1) * . (m - k + 1)) = 1 m(m - 1) . 
(m - k + l ) ~ ,  = k ! [ ~ / ( l  - (54) 
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On the contrary, for an ultrametric structure of pores one 
expects that E, has a long tail of the invese power law type 
and all positive moments of the number of cycles are infin- 
ite. 

The simplest model for the recycle flow in hierarchical 
porous media is the one which ascribes to a given number of 
branches of the ultrametric structure discussed in Section 2 
a cycle index. By observing that an ultrametric structure 
should have at least one branch, n = 1, 2, . . . , and that the 
cycles are labeled starting from zero, m = 0, 1, 2, .. ., we 
should have 

m = n - 1 .  (55)  

We express the probability, E,, that m cycles exist in two 
different ways: as a ratio of the flow rate Q, corresponding 
to the mth cycle to the total flow rate Q and in terms of the 
probability z(n) that an ultrametric structure is made up of 
n branches. We have: 

Em = QJQ = k m  + 11, (56) 

where [(n) is given by eq. (6). By assuming an internal back- 
mixing mechanism, eq. (4 1) remains valid with the difference 
that the ratio QJQ is given by eq. (56). By considering that 
(a, b) = (ao ,  bo) = constant and combining eqs (6), (39, (39), 
(41) and (56) we obtain: 

m w  

$(T) = c (1 - U ) W  - 8)* 
m=O q = O  

x [l - (1 - 8)qmb-"@o(z/b"') 

m 

= c (1 - u:,uq&(z,, 
q=o 

(57) 

where 

m 

$,(T) = C (1 - /3)'[1 - (I - p)q]"b-mOo(~/bm), (58) 
m = O  

is an overall probability density of the residence time corre- 
sponding to the qth level of the ultrametric structure, that is, 
to the population of pores from the qth level. 

Equations (57) and (58) give an integrated account of two 
different kinds of random behavior: the first one is due to 
the stochastic nature of the recycling process and the second 
one is due to the hierarchical structure of the porous 
medium, which is also stochastic. The model described by 
these equations is isomorphic with the process of stochastic 
amplification on ultrametric structures discussed in Section 
4. By comparing eqs (21) and (22) with eqs (57) and (58) we 
come to the following "dictionary" 

z - X ,  z'wX', m - n -  1, (59) 

iw - P*(X) ,  &(7) * P,(X), dJo(7') * PO(X'), (60) 

b o = b - b ,  U - U ,  8-p. (61) 

If we assume that the probability density Oo(z) of the 
residence time corresponding to the 0th cycle is character- 
ized by a cutoff value T~ for which Oo(z) is practically equal 
to zero [eq. (52)] then the dictionary should be supplement- 
ed by eq. (51). 
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By using the equivalence between the two models it 
follows that the probability densities of the residence time, 
g1(z), a&), . . . , corresponding to the populations of pores 
from the different levels have long tails of the inverse power 
law type modulated by periodic functions of the logarithm 
of the residence time [eq. (23)], the corresponding fractal 
exponents decreasing exponentially with the label index, 4 
[eq. (2611. These logarithmic oscillations are due to the 
recycle flow; the only influence of the ultrametric structure 
is the exponential dependence of the fractal exponents on 
the level index, q. By assuming the existence of a cutoff value 
zc of O0(z) the asymptotic behavior of the overall probabil- 
ity density of the residence time is given by a very broad 
logarithmic tail; the corresponding proportionality factor 
is a superposition of oscillatory functions in In (z/zc) due 
to recycling and of much slower oscillatory terms in 
In [In (T/T~)] due to the hierarchical porous medium [see 
eqs (28)-(31)]. 

An attractive feature of the approaches based on the use 
of the probability density of residence time $(r) is that this 
function can be measured by means of tracer experiments 
[l5]. If we inject an inert tracer into the fluid stream enter- 
ing the system then the input and output concentrations as 
functions of time Cin(t), Cout(t) are related to each other 
through the superposition law [ 151 : 

CDut(t) = Cin(t')$(t - t ' )  dt'. (62) s 
In particular if the input concentration has the shape of a 
delta function, 

cin(t) N S(t), (63) 

then the output concentration is proportional to the overall 
probability density of the residence time, 

Cout(t) W). (64) 
For observing the logarithmic oscillations of the probabil- 

ity density of the residence time $(z) it is tempting to 
analyze the answer of the system to input concentrations 
which are periodic functions of In ( t /zC)  and In vn (t/zc)], 
respectively 

By varying the periods of oscillation of the functions (65) 
and (66) and recording the response of the system it might 
be possible to evaluate the periods of oscillation in In (z/zC) 
and In [In (2/zC)] of the tail of $(z). It seems plausible to 
assume that the output concentration, CDUt(t), displays a 
kind of resonance phenomenon for these frequencies; unfor- 
tunately we have been unable to prove that this is indeed 
the case, The main difficulty is that in eq. (62) we have a 
convolution product in real time and on the other hand the 
oscillations of Cin [eqs (65) and (66)] do not take place in 
real time but rather in two different logarithmic scales, 
In ( t / z c )  and In [ln ( t /zc)] ,  respectively; the answer of the 
system CO,,([) to the excitations Cjn(t) given by eqs (65) and 
(66) is not really a stationary frequency response. Because of 
this the standard form of the Fourier analysis cannot be 
applied for excitations described by eqs (65) and (66); in order 
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to clarify the way in which these excitations can be used for 
the study of logarithmic oscillations further investigations 
are necessary. 

7. The mechanism of logarithmic oscillations 

Although the above analysis provides a mathematical 
description of the multiple logarithmic oscillations, it does 
not clarify their mechanism of generation; the physical sig- 
nificance of the model is hidden in the mathematical formal- 
ism. 

The problem of fluid dynamics discussed in Sections 5 
and 6 suggests a physical explanation for the occurrence of 
logarithmic oscillations. We can make an analogy with the 
relaxation oscillations in population dynamics generated by 
the time delay due to the maturation of the individuals. The 
recycling of the fluid in the system may be described in 
terms of a cascade of delayed feedback processes. This 
analogy is rather superficial; the main difference between 
the two problems is that in population dynamics the oscil- 
lations occur in real time whereas in fluid mechanics they 
occur in two logarithmic time scales. However, in spite of 
this difference, the delayed feedback gives a simple explana- 
tion for the occurrence of multiple logarithmic oscillations. 

We start out by investigating the fast logarithmic oscil- 
lations with a period In b which occur in the logarithmic 
time scale In t .  For the qth level of the pore hierarchy the 
recycle flow is described by the overall probability density, 
Jq(r), of the residence time given by eq. (58). By making an 
analogy with the renormalization group approach to critical 
processes [l2] we rewrite eq. (58) in a self-similar form 

where 

vq = 1 - (1 - B)‘. (68) 

Equation (67) is similar to other stochastic renormlization 
group equations used in the literature [l, 4-61; in order to 
clarity its physical significance we rewrite it as 

J,(z) = (1 - v ~ ) ~ ~ ( T )  + vq $,(z’)S(z - z’b) dz’. (69) s 
The physical interpretation of eq. (69) is simple. We note 
that vq can be interpreted as the probability that at qth level 
the process of recycling occurs. By using this interpretation 
of vq the r.h.s. of eq. (69) expresses the contributions of two 
complementary possibilities to $,(z) : (a) no recycling occurs 
with a probability 1 - vq and (b) recycling occurs with a 
probability vq. Equation (68) has the structure of a feedback 
equation: the answer of the system to recycling, $,(z), is 
determined by an excitation, $&’), which was itself also an 
answer at a previous time, z‘. The delay z - z’ is not an 
additive function; due to the fact that from cycle to cycle the 
volume involved in the flow process is getting bigger and 
bigger and the flow rate is getting smaller and smaller the 
excitation time, z’, is related to the answer time, z, by a 
multiplicative, rather than additive law (z = z‘b). As a result 
an additive delay does not exist in real time, but rather in a 

logarithmic time scale 

6, = In (&I, (70) 

where zc is a characteristic residence time introduced for 
dimensional consistency. By expressing the probability den- 
sities of the residence time in terms of el, 
40@) dz = 4 m )  del, 

M e , )  = 40czc exp (e1)lzC exp (el), (71) 

and 

the renormalization group equation (67) becomes an addi- 
tive delay equation 

$,*(el) = (1 - vq)4t(O,) + v,$:(81 - In b). (73) 

The solution of this delay equation has the following 
asymptotic behavior 

$,*(el) exp (-e,/e;)n,(e,Xin bye; as e, -, CO, (74) 

where 

8; = In bfln vq x (1 - b)-q In b, (75) 

is a characteristic logarithmic time and lI(0,) is a periodic 
function of 8, with a period In b 

nl(el + In b) = n,(e,). (76) 

The above analysis shows that the oscillations in the In t 
scale are due to a delayed feedback generated by recycling 
at a given level: the logarithmic scale of these oscillations is 
generated by the multiplicative structure of the delay in real 
time. 

The slow logarithmic oscillations with a period 
-In (1 - B) which occur in the In In t scale can be inter- 
preted in a similar way. These oscillations correspond to a 
delayed feedback due to the exchange of fluid among the 
pores from the different levels. The hierarchical structure of 
pores leads to a feature which is typical for an ultrametric 
topology [2, 31. The minimal path connecting two close 
pores may be very long; due to the tree structure of the pore 
hierarchy such a minimal path may involve very large pores 
belonging to the lower levels. Taking into account that at a 
given level recycling may occur the delay corresponding to 
the whole hierarchy of pores is much longer than the delay 
corresponding to recycling. The multiplicative structure of 
the ultrametric topology leads to a logarithmic time scale in 
e,, that is to a double logarithmic scale in the real time. 

By inserting eqs (74) and (75) into eq. (57) we obtain 
W 

$*(el) = (1 - a) 1 aq exp [ - ( I  - B)qO1/ln b]n,(e,)(i - B)4, 

(77) 

q=o 

where 

$*(el) = $C7c exp P 1 ) I ~ c  exp (8,) (78) 

is the probability density of the residence time for the whole 
system expressed in the logarithmic time scale 8,. Equation 
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(77) can be transformed into two renormalization group 
equations similar to eqs (67) and (69), 

$*(el) = (1 - a) exp (-elm ~ ) ~ l ( e l )  

in porous media. This picture is also valid in the general 
case : in comparison with Shlesinger-Hughes amplification 
discussed in Section 3, the process of amplification on ultra- 
metric structures is much more efficient. By comparing eqs 
(12) and (13) and (20)-(26) we note that the corresponding 

(79) probability distributions, E, and &n), are different: E, has an 
exponential shape whereas kn) has a long tail of the power 
law type. Besides, the probability density pq(X) of the 
random variable X corresponding to a given level q has also 
a long tail due to stochastic amplification. The super- 

+ a(1 - j?)$*C(l - B)ell, 

$*(el) = (1 - a) exp (-elm Wl(e1) 

(80) + a 6[01 - &/(1 - del. 

These relationships are feedback equations with a multipli- 
cative delay; indeed the answer logarithmic time, e,, is 
related to the excitation logarithmic time, el, by the multi- 
plicative law 8, = e1/(l - 8). This multiplicative delay can 
be transformed into an additive one by means of a second 
logarithmic transformation, 

6, = In dl = In In (r/rc). (81) 

By expressing the probability density of the residence time 
for the whole hierarchy of pores in this new time scale we 
have 

where 

The asymptotic behavior of the solution of eq. (83) is given 
by 

$**(e,) - exp (-~,/4)l-IZ[exp (&I, &I as -+ m, 

(84) 

where 

and I12(x, y) is a double periodic function of x and y with 
periods In b and -In (1 - B), respectively, 

l&(x + In b, y) = l-I,[x, y - In (1  - B)] = llz(x, y). (86) 

By expressing in eq. (86) the variable 0, in terms of the real 
time we recover an asymptotic behavior for $(T) similar to 
the one given by eq. (28). 

8. Discussion 

The logarithmic decay law given by eq. (28) is much slower 
than the inverse power laws given by eqs (8), (14) and (23): 
for 1 2 H > 0 not only all positive moments of X are infin- 
ite, but also all positive moments of In (XIX,) are infinite. A 
physical picture for this type of asymptotic behavior has 
been given in Sections 6 and 7 in the context of recycle flows 
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position of these two long tails of [(n) and F&X) leads to-the 
logarithmic decay law given by eq. (28). 

Two types of logarithmic oscillations are generated by a 
multiplicative feedback mechanism. Their interaction leads 
to amplitude modulation : the logarithmic oscillations in In 
(X/XA due to the stochastic amplification are modulated by 
a much slower oscillatory process in In [ln (X/XA] due to 
the ultrametric structure. This fact outlines the “hierarchy 
into hierarchy” structure characteristic to our model: the 
amplification process is hierarchic, consisting in a cascade of 
amplification processes; the ultrametric structure is also 
hierarchic. According to eq. (21) to each level of the ultra- 
metric hierarchy corresponds a hierarchy of amplification 
events described by the probability density Pq(X). 

In a recent paper (Vlad [14]) we have derived a logarith- 
mic decay law similar to eq. (28) for the probability density 
of the waiting times attached to an ultrametric structure 
with random energy barriers. In this case a long tail due to 
an exponential distribution of energy bamers interacts with 
another long tail due to the ultrametric structure. As the 
long tail due to the randomness of the energy barriers is 
non-oscillatory no interaction of logarithmic oscillations 
exists. 

Another possible approach related to the “hierarchy on 
hierarchy” structures is to construct a model with multiple 
stochastic amplification processes by assuming that the 
average number of amplification events is also a random 
variable subject to stochastic amplification. A repeated 
application of such a scheme leads to very broad probability 
densities whose tails are inverse powers of the multiple iter- 
ated logarithm of the random variable In * * * In (X/X& the 
main trend is modulated by a superposition of many 
logarithmic oscillatory terms involving the multiple iterated 
logarithms of the random variable In (XIX,), In [ln (X/XJ, 
. . . , In * In (XlX,,.,). The interaction of these multiple oscil- 
lations is much more complicated than the amplitude 
modulation described by eq. (31). A preliminary report on 
this type of stochastic amplification is presented in Ref. [29]. 
However, this paper does not deal with the interference of 
multiple logarithmic oscillations; for the sake of simplicity 
only a special limit is studied for which the very broad 
logarithmic tails are still present but the logarithmic oscil- 
lations vanish. 

Concerning the hydrodynamic application presented in 
this paper we should say that the fluid flow in porous media 
has already been analyzed in connection with the possible 
occurrence of fractal and multifractal structures [30, 311. 
However, these reports do not make use of the concept of 
statistical fractals and do not investigate the possible exis- 
tence of multiple logarithmic oscillations of the type con- 
sidered here; they focus on the fluid invasion in porous 
media [30] and on the occurrence of the random geometri- 
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cal fractal interfaces resulting from immiscible displacements 
of fluids [31]. 

The hydrodynamic model presented in this paper is very 
simple. We have considered only the case of internal back- 
mixing with constant probabilities a = a ,  = a2 = . . *  and 
constant effective amplification factors b = b,  = b2 = e . . ;  if 
these two parameters are random then only the recycling in 
homogeneous systems without pores can be analyzed in a 
simple way. A general study of eq. (42) for an arbitrary 
probability density f(a, b) with finite moments can be done 
by means of a method developed by Vlad [32] in other 
physical contexts. The asymptotic behavor of the tail of Y(T) 
is given by a sum of inverse power tails with different fractal 
exponents modulated by logarithmic oscillatory functions in 
In (T/T,) with different characteristic periods. We have tried, 
without success, to generalize this approach to recycle flows 
in porous media. 

The problem of external backmixing is much more com- 
plicated. Even the flows in homogeneous systems cannot be 
analyzed exactly. For external backmixing in eq. (41) the 
functions @&) should be replaced by the multiple time con- 
volution products of @,,(T), . . . y @&. 

@AT) + @ @ * * * @ @m(r). (87) 
Vlad [22] has developed an approximate method for the 
evaluation of the asymptotic behavior based on a double 
Laplace and Mellin transformation. Unfortunately this 
method cannot be extended for recycle flows in porous 
media. 

9. Conclusions 

In this paper we have analyzed the interaction of the 
logarithmic oscillations due to the occurrence of ultrametric 
and statistical fractal structures. The main result is that the 
oscillations occur in two different logarithmic scales, In 
( X / X d  and In [ln ( X / X d ] ,  characteristic for the statistical 
fractal and ultrametric structures, respectively and the 
amplitude of the oscillations due to the statistical fractal 
structure is modulated by the oscillations due to the ultra- 
metric structure. 

As an illustration of our approach we have discussed a 
simplified model for the recycle flows in hierarchical porous 
media. The study of recycle flows has shown that the 
mechanism of generation of multiple logarithmic oscil- 
lations involves two types of multiplicative feedback pro- 
cesses. Besides, the recycle flows present the advantage that 
the probability density of residence time can be measured by 
means of tracer experiments. This example from fluid 
mechanics does not exhaust the possible applications of our 
approach. The theory developed here is of interest in con- 
nection with the study of very slow relaxation processes, 
occurring for instance in frozen systems far from equi- 
librium. Another possible application is the analysis of 

multiple hierarchical aggregation; the limit law (28) may 
describe the process of multiple hierarchical fractal aggre- 
gation corresponding to a catalytic mechanism [33]. 
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