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ABSTRACT 

This paper examines the dynamics of 
physiological control mechanisms with 
negative and "mixed" feedback from the 
point of view of delay-differential 
equations (DDEs). 

INTRODUCTION 

Oscillations and other complex dynamical 
behaviors are ubiquitous features of 
physiological control mechanisms. 
However, the nature of the mechanisms 
which generate these behaviors are 
unknown. Consequently interest has 
focussed on the characterization of the 
dynamics which can be produced by known 
physiological control mechanisms (see 
also Layton, this session). 

In many instances the dynamics of 
physiological variables, x(t), can be 
modeled by DDEs of the form 

x(t) = F(x(t-r)) - C X (1) 

where the feedback, F(x(t-r)), depends 
on the value of x(t) at a time t-r in 
the past, r is the time delay and c is a 
positive constant. The formulation in 
terms of DDEs arises because an 
important intrinsic property of many 
physiological control mechanisms is the 
presence of time delays. The time 
delays arise, for example, because of 
non-zero conduction times in the nervous 
system and maturation times in 
replicating cellular populations. 

Most commonly F(x(t-r)) is a monotone 
decreasing function of x(t-r) ("negative 
feedback"), e.g. 

F(x(t-r)) = b8n/(Sn + x(t-r)n) 

where b, e, n are positive constants. 
However, in some cases F(x(t-r)) is more 
complex and represents a mixture of 
positive and negative, i.e. "mixed", 

feedback, e.g. 

F(x(t-T)) = bx(t-r)Sn/(Sn + x(t-r)n) 

Here we use results from analytical, 
numerical and experimental studies to 
compare the dynamics which can be 
produced by negative and mixed feedback 
mechanisms. 

NEGATIVE FEEDBACK 

Negative feedback mechanisms arise, for 
example, in the control of red blood 
cell populations [l], respiration [2], 
and simple neural networks [3]. Two 
types of stable solutions of (1) exist: 
i) a locally stable equilibrium point 
defined by :i = O, and ii) a stable limit 
cycle oscillation. The oscillation 
period, T, is 2r < T < 4r and its onset 
coincides with a supercritical Hopf 
bifurcation. Numerical studies suggest 
that more complex oscillations, such as 
chaos, cannot be generated by feedback 
mechanisms of these types. 

Experimentally it has been found that 
the properties of oscillations in the 
PLR [3-4], Cheyne-Stokes respiration [2] 
and autoimmune hemolytic anemia [l] are 
consistent with these predictions. 

In the special case of piecewise 
constant negative feedback (PCNF), i.e. 

F(x(t-r)) =a, if x(t-r) < e 
= 0, if x(t-r) > e 

where a, e are positive constants, it 
is possible to show that (1) has only 
one type of oscillatory solution [SJ. 
In studies of the oscillations in pupil 
area which occur when the pupil light 
reflex (PLR) is electronically "clamped" 
with PCNF a quantitative agreement 
between prediction and observation is 
found [6]. 

"MIXED" FEEDBACK 

Mixed feedback mechanisms arise in 
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descriptions of neural networks [7] and 
in the control of white blood cell 
populations (2]. It is well known from 
numerical studies that (1) with mixed 
feedback produces a richness of dynamics 
not seen with negative feedback [2]. 
These dynamics include simple and 
complex periodic oscillations and 
aperiodic fluctuations which exhibit a 
sensitive dependence to initial 
conditions ("chaotic" in the current 
vernacular). Better characterization of 
these dynamics has been made possible by 
the recent development of electronic 
analog circuits to integrate this 
equation (see Lesson, this session). 

The distribution of interspike intervals 
from a CAl neuron was measured in a rat 
hippocampal slice. The distribution of 
interspike intervals produced by a mixed 
feedbak model of hippocampal recurrent 
inhibition [7] was in qualitative 
agreement. 

As for negative feedback, it has been 
possible to obtain greater analytical 
insight for the case of piecewise 
constant mixed feedback (PCMF),i.e. 

F(x(t-r)) 0 
= a 
= d 

if x(t-r) < e 
if e1 < x(t-rt < e2 
if 0 2 < x(t-r) 

where e > 0 > 0 and a> d > O. It 
.has beea proled for constant initial 
conditions that there exist stable 
equilibria, stable and simple limit 
cycles, Li and Yorke type chaos, and 
mixing and exact motions for various 
parameter values [7]. Experiments in 
which the PLR is clamped with PCMF yield 
a variety of complex oscillations in 
pupil area which are not seen when the 
reflex is clamped with PCNF [8-9]. 

CONCLUSIONS 

Our observations suggest that the type 
of dynamics generated by a physiological 
control mechanism depends on the type of 
feedback involved. Complex dynamics are 
more likely to be associated with mixed 
feedback mechanisms. However, 
irregular fluctuations are often 
measured in physiological variables 
thought to be controlled by negative 
feedback mechanisms, e.g. "hippus" in 
the PLR (10]. These fluctuations 
presumably reflect noise injected into 
the reflex arc (see Longtin, this 
session) and/or arise because multiple 
feedback loops are involved (see Beuter, 
this session). Thus it is important to 
develop methods to assess the relative 
roles of stochastic and deterministic 
mechanisms in shaping the observed 
dynamics (see papers by Longtin and by 
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Rapp, this session). In this way it 
should be possible to develop novel 
diagnostic techniques (see [6,11] and 
Collura, this session) and, hopefully, 
effective therapuetic strategies based 
on manipulation of the properties of 
feedback [2,12]. 
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