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Abstract

This chapter presents an overview of the literature which deals with appli-
cations of models framed as coupled map lattices (CML’s), and some recent
results on the spectral properties of the transfer operators induced by various
deterministic and stochastic CML’s. These operators (one of which is the well-
known Perron-Frobenius operator) govern the temporal evolution of ensemble
statistics. As such, they lie at the heart of any thermodynamic description of
CML’s, and they provide some interesting insight into the origins of nontrivial
collective behavior in these models.

1 Introduction

This chapter describes the statistical properties of networks of chaotic, interacting el-
ements, whose evolution in time is discrete. Such systems can be profitably modeled
by networks of coupled iterative maps, usually referred to as coupled map lattices
(CML’s for short). The description of CML’s has been the subject of intense scrutiny
in the past decade, and most (though by no means all) investigations have been pri-
marily numerical rather than analytical. Investigators have often been concerned with
the statistical properties of CML’s, because a deterministic description of the motion
of all the individual elements of the lattice is either out of reach or uninteresting, un-
less the behavior can somehow be described with a few degrees of freedom. However
there is still no consistent framework, analogous to equilibrium statistical mechanics,
within which one can describe the probabilistic properties of CML’s possessing a large
but finite number of elements. The results presented in this chapter illustrate some
recent attempts to partially fill this theoretical void.

1.1 Coupled map lattices: Initial presentation

Models framed as coupled discrete time maps are not a novelty. Caianiello [10] pro-
posed his “neuronic equations”, which are coupled iterative maps, as generalizations
of the McCulloch and Pitts neural networks more than three decades ago. Similarly,
the work of Denman [22], trying to characterize the dynamics of interacting pressure
and electromagnetic waves in plasmas, made use of coupled discrete maps, and re-
lated models were used in the early theory of transmission lines [82]. However, the
modern body of work dealing with coupled map lattices can be traced back to the
beginning of the eighties (cf. work by Kaneko [39], Waller and Kapral [98, 99] and
Deissler [20]) as phenomenological models to study the behavior of large collections
of coupled chaotic elements (we will return to more precise descriptions of these and
more recent investigations of CML dynamics).
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1.1.1 Deterministic CML’s

In their most general form, deterministic coupled map lattices are mappings Φ :
RN 7−→ RN governing the evolution of a state vector xt = (x1t , · · · , xNt ),

xt+1 = Φ(xt) t = 0, 1, · · · . (1)

More specifically, the evolution of a component x
(i)
t of the state vector xt is governed

by the difference equation

x
(i)
t+1 = Φ

(i)
local(x

(i)
t ) + Φ

(i)
neighbours(· · · , xi−1

t , xi+1
t , · · ·)

where Φ
(i)
local models the local dynamics at site i, and Φ

(i)
neighbours denotes the mechanisms

acting on i from a specified neighbourhood. If those mechanisms are the same for all
sites on the lattice, and if they are locally modeled by the map S : R 7−→ R, and in
the neighbourhood by the map T : R 7−→ R one can write

x
(i)
t+1 = S(x

(i)
t ) +

∑

some
neighbourhood

T (xjt ).

In many situations of interest, it is possible to further simplify the formulation of the
models by letting T ≡ S, and using a linear coupling scheme between the elements1.
In these circumstances, we have

x
(i)
t+1 = (1 − ε)S(x

(i)
t ) +

ε

p

∑

p
neighbours

S(xjt ) (2)

where ε ∈ [0, 1] is the coupling term. Again, i denotes a discrete spatial index (of
arbitrary finite dimension), and t denotes discrete time.

In our description of CML’s, we view the sites of the lattice as being located on the
nodes of a regular body centered cubic lattice, and in this chapter periodic boundary
conditions are always enforced. There are investigations of coupled map lattices in
which the underlying lattice is not as simple as the body-centered-cubic example
chosen here, and possesses intrinsically “complex” (sometimes called hierarchical)
structure. In these cases, it was demonstrated [18, 19] that the bifurcation structure
of the CML can depend on the topology of the lattice, but we will not dwell on this
point, since most of the analytical tools discussed in this chapter do not depend on
the properties of the underlying lattice topology.

We consider cases where the phase space X of Φ is a restriction of RN to the
N -dimensional hypercube: X = [0, 1] × · · · × [0, 1]. In two spatial dimensions, the
evolution of each site of a deterministic coupled map lattice with linear interelement
coupling is given by

x
(kl)
t+1 = Φ(kl)(xt) = (1 − ε)S(x

(kl)
t ) +

ε

p

∑

p nearest
neighbours

S(x
(ij)
t ), ε ∈ (0, 1), (3)

1The coupling scheme of equation (2) is called linear because x
(i)
t+1 is linearly proportional to

S(x
(i)
t

). Some authors [46] would call such architectures nonlinear but we will adhere to this con-
vention.
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where S : [0, 1] 7−→ [0, 1] describes the local dynamics. When p = 4, the coupling in
(3) mimics a discrete version of the diffusion operator, and when the p-neighbourhood
encompasses the entire lattice, the coupling is known as mean-field.

To allow for the possibility that stochastic perturbations influence the evolution
of the CML, we now introduce a class of stochastic CML’s which will be investigated
numerically and analytically in Section 5.

1.1.2 Stochastic CML’s

It is of interest to understand and clarify the influence of noisy perturbations on the
evolution of these CML’s. The perturbations considered here are random vectors
of N numbers (for an N element CML), whose components are independent of one
another, each being distributed according to a one dimensional probability density
g. The density g of the vector random variable ξ = (ξ(1), · · · , ξ(N)) will therefore be
constructed as the product of independent (identical) components:

g(ξ) =

N∏

i=1

g(i)(ξ(i)) =

N∏

i=1

g(ξ(i)). (4)

There are various ways in which a stochastic perturbation can influence the evolution
of a coupled map lattice: the perturbation can be additive or multiplicative, and it
can be applied constantly or randomly. The influence of the noise on the dynamics
depends on which of these is considered.

When the stochastic perturbations are applied at each iteration step, they can be
either added to, or multiply, the original transformation Φ. In the former case, the
evolution of a lattice site is given by a relation of the form

x
(kl)
t+1 = Φ(kl)(xt) + ξ

(kl)
t ≡ Φ

(kl)
add (xt) (5)

and ξ is then referred to as additive noise. In the latter, we have

x
(kl)
t+1 = Φ(kl)(xt)× ξ

(kl)
t ≡ Φ

(kl)
mul (xt) (6)

and ξ is then referred to as multiplicative or parametric noise. In general, the effects of
additive and multiplicative noise on CML’s can be different, since they model different
perturbing mechanisms. The density (4) of the perturbations present in (5) and (6)
is always defined so that the phase space of the perturbed transformations remains
the N dimensional hypercube X defined above. In other words, Φadd : X 7−→ X and
Φmul : X 7−→ X.

The developments which followed the introduction of CML’s have established the
usefulness of these models to investigate the dynamics of a wide variety of systems
in various areas of research ranging from population dynamics to solid state physics.
Our own research was motivated in part by this activity, and we therefore give a fairly
extensive though by no means exhaustive review of the literature before proceeding
to a description of CML thermodynamics.
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2 Overview of models framed as CML’s

Two collections of papers on the subject, both edited by K. Kaneko [38, 24] are
available, so the present section focuses primarily on some of the more recent published
works on CML dynamics.

2.1 Biological applications

There are many biological systems which can be thought of as collections of interact-
ing elements with intrinsic nontrivial dynamics. When this is case, and if the local
dynamics can reasonably be modeled by discrete time maps, it is feasible to introduce
models framed as CML’s.

This approach has been fruitful in population dynamics, in which the discrete
time occurs naturally if generations do not overlap (insect populations constitute one
possible example). The investigations of Solé et al. [87, 88] have led these authors
to conclude that CML’s provided the simplest models for discrete ecological models.
Franke and Yakubu [26] have recently proposed a CML to investigate the inter-species
competition of large bird populations. These CML’s are crude models for the evolution
of species competing for shared resources, which are obtained by straightforward (al-
beit not very realistic) multidimensional generalizations of proposed one-dimensional
maps [70, 96]. They open the way for more realistic population competition models
which could be framed as CML’s in which the underlying lattice is not regular, per-
haps taking into account some of the spatial features observed in the field. Ikegami
and Kaneko [45] have also proposed a model for host-parasitoid networks, and their
study of the corresponding CML have led them to introduce a generalization of the
idea of homeostasis. The proposed alternative, “homeochaos”, describes an asymp-
totic state reached by networks of evolving and mutating host-parasite populations
in which chaotic fluctuations in the numbers of hosts and parasites are observed at
equilibrium.

Beyond population dynamics, the mathematical description of neural behavior
has also benefited from discrete time, discrete space models. The foundations of the
modeling of cortical function were laid in two seminal papers by Wilson and Cowan
[102, 103]. However, the original models presented by these authors are computa-
tionally costly, and are not easily amenable to analytic investigations. As a result,
there have been attempts to reduce the original networks of integro-differential equa-
tions to simpler spatially extended models. Reduction to CML’s are presently being
considered by some of the same authors [68]. In its methodology, this work [ibid] is
typical of investigations in which the CML is proposed as a discrete-time version of
previously considered continuous-time systems. For example, Molgedey et al. [71]
made use of coupled map lattices to examine the effects of noise on spatiotemporal
chaotic behavior in a neural network which was originally proposed (in its continuous-
time version) by Sompolinsky et al. [89]. Following a similar path, Nozawa [73] has
presented a CML model, obtained by using the Euler approximation to the original
Hopfield equations.

One of the outstanding problems motivating this neural oriented research is the
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identification of organizing principles to explain the synchronization of large popula-
tions of neurons possessing individually complex dynamics. Such synchronizations are
thought to take place in pathological situations (e.g. epileptic seizures) as well as in
the normal brain. For example, Andersen and Andersson [1], and later Steriade and
Deschênes [90] have hypothesized that such a synchronized activity of the reticular
thalamic nucleus (RTN) acted as a pacemaker for the so-called “spindle oscillations”
observed during various sleep stages. Models of the RTN framed as networks of
coupled differential delay equations have been proposed by Destexhe [23], and these
can be reduced, by a straightforward singular perturbation procedure [34], to CML’s.
Models of the RTN framed as coupled ODE’s have also been considered recently, and
provide a motivation for the theoretical description of globally coupled arrays of oscil-
lators [27]. An interesting review of the mathematical description of cortical behavior
in terms of coupled nonlinear units is given in [104]. A less recent, but somewhat
broader view of the contemporary efforts to mathematically describe the behavior
of neural networks using the conceptual tools of nonlinear dynamics is presented in
[84]. For the sake of completeness, we also refer the reader to the review by Herz
[30], which describes some of the earlier neural modeling attempts which made use of
CML’s, as well as some of the models based on delay differential equations.

At the molecular level, Cocho et al. [15] proposed a CML model to describe
the evolution of genetic sequences. A comprehensive account of the development of
this idea can be found in [16]. In this simplified formalism, each genetic sequence is
made up of m nucleotides, which come in four flavors. The latter is determined by
which of four possible bases (guanine, cytosine, adenine, thymine) complements the
phosphate and deoxyribose groups which make-up the nucleotide. The building block
of a genetic sequence is then a triplet of nucleotides, called a codon (which codes
for an amino acid). Cocho et al. established that for certain viruses, it is relevant
to restrict attention to sequences containing only two types of codons, denoted type
I and II. Hence a sequence of length L = m/3 codons is uniquely characterized by
the number iI of type I codons it possesses. iI can also be thought of as a position
index in a configuration space, and in this case two sequences are “close” if they differ
by a small number of codons. Under specified fitness constraints (whose meaningful
definition imposes the most important limits on this approach), sequences can mutate:
a type I codon becomes type II, or vice-versa. The CML model for genetic sequence
evolution describes the evolution of the number of sequences at location iI in the
configuration space, and therefore, local interactions are due to mutations, whereas
ecological constraints (i.e. coming from limited food supplies) generate long range
coupling. Recently [17], the same authors have extended this approach to study the
mutations of the HIV1 virus, and their predictions concerning the regularity of the
chemical compositions of this virus’ RNA sequences agree with statistical analyses of
gene data.

The use of CML’s, though interesting from the mathematical biologist’s point of
view, is not restricted to biological models. Contemporary developments in the theory
of image processing have led to the introduction of various algorithms which are in
fact coupled map lattices.
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2.2 Image processing applications

One of the basic challenges in image processing is the so-called “shape from shad-
ing” problem [8], which surfaces both in computer graphics, where shading is used to
enhance realism, and computer vision, where the study of shading is crucial for the
proper interpretation of a pattern’s two dimensional projection (its picture). In com-
puter vision, a typical task is the classification of patterns into classes (e.g. faces vs.
landscapes), where the input patterns possess underlying “shapes” describing their
essential features (nose, eyes, vs. trees or clouds) which are immersed in secondary
information due to the shading of the image.

Several approaches to this problem [8, 92, 97] make use of algorithms which are
coupled map lattices, although there appears to be no explicit awareness in this
literature of the link between the structure of the algorithms and their formulation as
CML’s. We illustrate this link with a frequently encountered model used to approach
shape from shading, which was introduced by Brooks and Horn and is known as the
B-H algorithm [7]. To derive the model, the shape of an object is thought of as a
function which minimizes a given functional. After minimization of the proper errors
[97], the B-H algorithm is written

x
(ij)
t+1 = x̄

(ij)
t +

ε2

4λ

(
E(ij) − x

(ij)
t · S

)
S (7)

where E(ij) is the shading, x
(ij)
t is the surface normal at site (i, j) of the image, λ

and ε describe the role of a smoothness constraint, and S is the light source vector

(the light source being responsible for the presence of shade), and x̄
(ij)
t is the average

of the normals in a neighbourhood of site (i, j). The local coupling comes from this
latter term, and as a result, the evolution of the initial image under the action of the
B-H shade from shading algorithm is akin to the evolution of an initial vector under
the action of a CML. There are more recent descriptions of this problem which do not
make use of the variational techniques used to derive (7), and which lead to different
CML’s (one example is given in [97]).

The treatment of fuzzy images is not limited to the shape from shading problem.
In fact, prior to this analysis, “dirty” images, possibly obtained with remote sensing
equipment must be “cleaned”. This procedure, known as the segmentation of an
image, is an attempt to highlight edges while smoothing the noise in regions devoid
of edges. A “physicist-friendly” presentation of the segmentation problem is given by
Price et al. [78]. They introduce a coupled map lattice designed as an alternative to
the costlier and more unstable segmentation algorithms obtained by the minimization
of a cost function. Their work is an additional illustration of the potential benefits to
the image-processing community which could follow from an increased awareness of
the wealth of dynamics displayed by high-dimensional nonlinear discrete time maps:
the stability properties of the algorithms, and their possible pathological treatments
of real images can sometimes be determined beforehand by an in-depth investigation
of the corresponding CML.
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2.3 Phenomenological models

In spite of the obvious interest generated by CML’s for their many potential appli-
cations, the main motivation for their investigation from a physicist’s point of view
undoubtedly lies in their use as phenomenological models for the study of more general
spatially extended systems

2.3.1 Spatiotemporal intermittency and weak turbulence

An example of the fruitful application of CML’s to study fluid dynamics is given by
the work of Chaté and Manneville, concerning the transition to turbulence via spatio-
temporal intermittency [11, 12]. In this work, the CML’s are constructed to reflect
what are thought to be the essential features of a fluid undergoing the transition from
laminar flow to turbulent flow via the so-called intermittency scenario, according to
which a laminar flow gradually becomes turbulent by the growth of regions in the
laminar regime in which the flow is turbulent. Hence, the essential features of the
Chaté-Manneville models are the partition of the local phase space into two regimes:
one laminar, and the other turbulent. Their analysis of the corresponding CML’s lead
to the identification of universality classes describing the “contamination process” of
the laminar flows by turbulent “islands” [11, 13, 12]. The usefulness of the CML
approach is that these models capture much of the phenomenology while remaining
amenable to extensive numerical simulations.

The destabilization of laminar flows does not always occur via spatiotemporal
intermittency. Various convective instabilities can result in alternate destabilizing
mechanisms, and some of the recent work on CML’s focuses on the dynamics of these
instabilities in so-called “open flow” models [21]. Convective instabilities grow as they
are transported downstream, and they are localized in the sense that a laboratory
observer sees them pass by from upstream to downstream as localized defects [66].
Such situations are encountered, for example, in the modeling of shear flows and
boundary layers, and they provide situations in which spatial order can be coexistent
with temporal chaos. Given the complexity of the full equations of motion, it has
been helpful to consider reduced models framed as CML’s. In [4], Biferale et al.
describe the convective instabilities of a unidirectionally coupled CML by focusing on
the tangent vector associated with a trajectory of the CML. This analysis resulted in
a relatively simple description of the localization of temporal chaos around the defects
of the lattice. Other descriptions of asymmetrically coupled CML’s include the works
of Jensen [37, 36], Aranson et al. [2], and Willeboordse [101]. In all these, the
coupling between the elements of the CML is not isotropic, and there is a preferred
spatial direction in the lattice along which information is more easily transmitted.
More recently, we have used CML’s with unidirectional coupling to investigate the
statistical properties of some differential delay equations [61].

2.3.2 Reaction diffusion models

Reaction-diffusion models play an important role in the description of real spatially
extended systems because the competition between these two general mechanisms is
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ubiquitous in nature. In one dimension, they are modeled by the generic PDE

du(x, t)

dt
= D∇2u(x, t) + F (u(x, t)), (8)

where F is the reaction term. In a seminal work, Turing [95] established that this
competition was at the origin of many pattern-forming instabilities. Reaction diffu-
sion systems have been the subject of many descriptions in terms of CML’s because
diffusion is approximated by a nearest neighbour coupling in CML’s of the form (2)
(examples of this reduction are given by Puri et al. [81] for the one dimensional
Cahn-Hilliard equation, and by some of the same authors for the Fischer equation
[75]). We note that the reduction of models framed as PDE’s to their CML coun-
terparts is usually not a rigorous procedure, although there are special circumstances
(for some externally forced models) in which the CML provides a close approximation
to the PDE [48]. As mentioned in [58], the benefits of using CML’s in the majority
of investigations stem from the fact that they reproduce most of the interesting phe-
nomenology, without requiring the prohibitively large computing resources associated
with PDE simulations. In addition, it is likely that as those resources increase with
technological breakthroughs, so will the complexity of the problems considered by the
modeling community, so that there is some intrinsic virtue in trying to understand
reduced systems, such as CML’s, to help in the study of more complicated ones.

Because of their computational efficiency, CML’s are well-suited for the intro-
duction of new quantifiers of spatiotemporal dynamics, or for the multidimensional
generalizations of one-dimensional concepts [93] (this was an important motivation for
the early discussions [20, 98, 99]). In this spirit, Kaneko has introduced such concepts
as the “comoving mutual information flow” [40], and various “pattern entropies” and
“pattern distribution functions” [41], to mention a few of the frequently encountered
statistical descriptors of the motion. Reaction diffusion CML’s are then usually of the
form (2) with p = 2 in one spatial dimension, or p = 4 in two dimensions, and used
to explore in great detail the behavior of the quantifiers of spatio-temporal motion
more efficiently than if PDE’s were considered.

Similar lattices have been used to simulate interfacial phenomena in reaction dif-
fusion systems [58]. In these investigations, the CML’s usually arise from the phe-
nomenological simplification of PDE’s of the form (8), and they provide the simplest
models which retain the disparate length and time scales necessary for the appear-
ance of rich interfacial dynamics. Other typical examples of this approach are given
for crystal growth by Oono and Puri [74] and for chemical waves by Barkley [3]. A
phenomenological description of interfacial phenomena was recently given by Kapral
et al. [47], using a piecewise linear CML (with a branch with slope zero in the lo-
cal map) which displays some of the interfacial structures associated with continuous
time, continuous space models. In a similar spirit, the behavior of liquids at the boil-
ing transition was studied by Yanagita [105] with another reaction-diffusion CML. To
conclude, we refer the interested reader to the comprehensive review of the applica-
tions of CML’s to capture the essential features of pattern formation in chemically
reacting systems given by Kapral in [46]
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2.3.3 Arrays of globally coupled oscillators

The introduction of all-to-all (or mean-field, or global) coupling in theoretical physics
to investigate the dynamics of spatially extended systems is not novel; it has always
been one of the standard techniques used to describe the magnetic properties of spin
systems. As experimentalists probe ever deeper into the behavior of systems with a
large number of degrees of freedom, new models of globally coupled oscillator arrays
are introduced, in which the individual oscillators are either continuous or discrete in
time. Some of the experimental situations in which global coupling arises naturally
are related to nonlinear optics, with examples ranging from solid-state laser arrays
[107], to multimode lasers [35]. In electronics, a number of experiments on Josephson
junction arrays coupled in series or in parallel have indicated the presence of very
rich dynamics, often related to the multiplicity of attractors, or the linear stability
properties of fully synchronized states (cf. [72] and references therein). The majority
of models proposed to describe these dynamics are framed as globally coupled sets
of ordinary differential equations [29, 85, 91]. The ODE’s are usually not rigorously
reduced to CML’s, and the introduction of the discrete-time map lattices is often
motivated by the desire to improve the phenomenological insight into the evolution
of the continuous-time oscillators. For example, Wiesenfeld and Hadley [100] found
that CML’s provided useful reduced systems to investigate the effects of low levels of
noise on large globally coupled arrays which possess an even larger number of attrac-
tors. More recently, discrete maps were used to describe the dynamical properties of
periodic attractors in arrays of p − n diode junctions [25], and the stability regions
of various solution types for the CML’s agreed qualitatively with the experimental
data obtained from two coupled diode junctions. We close this admittedly incomplete
presentation of some contemporary discussions of global coupling in the physical sci-
ences, by mentioning that CML’s have recently been used to study theoretically the
remarkable phenomenon of mutually destructive fluctuations in which the activity
of the mean field is observed to have a much smaller variance than the individual
trajectories [72]. This phenomenon is extremely interesting for researchers trying to
understand the role of noise in the transmission of information in spatially extended
processing systems. For example, it is well known that the behavior of individual neu-
rons can sometimes be more erratic than that of the average behavior of a population
of neurons [69].

We now turn to the presentation of some of the conceptual tools which will be
used throughout the remainder of this chapter to discuss the statistical properties of
models framed as CML’s.

3 CML’s and probability densities

Suppose that the dynamics of a physical system are modeled by a (deterministic or
stochastic) dynamical system denoted by T : X 7−→ X (many examples of such sit-
uations are described in Sections 2 and 2.3). Suppose further that some observable
O(xn), which depends on the state xn of T , is being measured at time n (The ob-
servable O is arbitrary, though it must be a bounded measurable function). The
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expectation value of this observable, denoted by E(On), is the mean value of O(xn)
when the measurement is repeated a large (ideally infinite) number of times. Mathe-
matically it is given by

E(On) =

∫

X

fn(y)O(y) dy, (9)

where fn(x) is the density of the variable xn, i.e. the probability p(x′
n) of finding xn

between x′
n and x′

n + δx′
n, is

p(x′
n) =

∫ x
′
n+δx′

n

x′
n

fn(y) dy.

All extrinsic functions which characterize the thermodynamic properties of a system
are observables whose expectation values are defined by (9) since O was arbitrary.
Therefore, the thermodynamic state of the CML T at time n is completely character-
ized by the density function fn. Hence a complete description of the thermodynamics
of T must focus on the behavior and properties of fn. To this end, we introduce the
transfer operator associated with T , denoted by PT , which governs the time evolution
of fn

fn+1(x) = PT fn(x), n = 0, 1, · · · . (10)

To draw an analogy with more familiar physical systems, the transfer operators dis-
cussed here describe the arbitrary dynamical system T much as the Liouville equation
describes the ensemble dynamics of ODE’s, the Fokker Planck equation those of the
Langevin equation (which is a stochastic ODE), or the Perron-Frobenius operator
(defined in Section 3.1) those of deterministic maps (cf. Table 1.1).

Description of the model Description of ensemble dynamics

Deterministic maps The Perron-Frobenius operator
Stochastic maps The transfer (Markov) operator
Deterministic ODE’s The generalized Liouville equation
Stochastic ODE’s (white noise) The Fokker Planck equation
Stochastic ODE’s (non-white noise) The Kramers- Moyal equation
Differential delay equations The Hopf equation for the characteristic functional

Table 1.1:

Brief summary of the probabilistic descriptions associated with various types of discrete

and continuous-time models.

3.1 The Perron-Frobenius operator PΦ

A discrete-time nonsingular transformation Φ : X 7−→ X (X ⊂ RN) induces an oper-
ator denoted PΦ which acts on probability densities, and which is defined implicitly
by the relation

∫

A

PΦf(x) dx =

∫

Φ−1(A)

f(x) dx, for all A ⊂ X, (11)
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and all probability densities f . PΦ is called the Perron-Frobenius operator induced by
Φ, and a study of its properties will be the cornerstone of our probabilistic description
of deterministic CML’s. If the transformation Φ is piecewise diffeomorphic, it is
possible to give a more explicit definition of PΦ by performing a change of variable
in the above definition.

Define Π to be a partition of the phase space X which contains s(Π) elements
denoted π1, π2, · · · , πs(Π). Let Φ|i be the monotone restriction of Φ to the set πi ⊂
X, i = 1, · · · , s(Π) (with

⋃s(Π)
i=1 πi = X). Let π̃i denote the image of the set πi:

π̃i ≡ Φ|i(πi). The Perron-Frobenius operator induced by Φ can be written

fn+1(x) ≡ PΦfn(x) =

s(Π)∑

i=1

fn(Φ
−1
|i (x))

JΦ|i
(Φ−1

|i (x))
χπ̃i

(x), (12)

where χπ̃i
(x) ≡ 1 iff x ∈ π̃i, and 0 otherwise, and Jτ (Z) is the absolute value

of the Jacobian of transformation τ , evaluated at Z. It should be clear from our
presentation that the asymptotic properties of the sequence {fn} of the iterates of an
initial density f0 under the action of PΦ determine the thermodynamic behavior of the
dynamical system Φ. These asymptotic properties of {fn} are themselves dependent
on the spectral characteristics of the operator PΦ, and our investigations of CML
thermodynamics will in fact focus on the spectral properties of PΦ.

There have been several attempts to use the Perron-Frobenius operator to describe
the dynamics of CML’s [32, 33, 42, 77], but these have all concentrated on the prop-
erties of an operator acting on one-dimensional densities. The “proper”, or complete
description is given instead by the N -dimensional operator, and it will be the object
of our attention.

Remark 1 The invariant density f∗ is implicitly defined by the relation

f∗ = PΦf∗,

and it plays a special role in the thermodynamic description of any dynamical system,
since it describes the state(s) of thermodynamic equilibrium(ia). Uniqueness of the
invariant density implies uniqueness of the state of thermodynamic equilibrium for
the system, and the approach of the sequence {fn} to f∗ describes the non-equilibrium
behavior of the dynamical system.

3.2 The transfer operators PΦadd
and PΦmul

When considering stochastic CML’s like the ones introduced in Section 1.1.2, an
operator governing the evolution of ensemble densities can be defined in analogy with
the definition of the Perron-Frobenius operator of the previous section. The main
difference in the derivation of this operator is that (11) does not hold since the system
is no longer deterministic. This equality must be replaced by one which equates the
expectation to be in a given preimage at a time t, with the expectation to be in the
image at time t + 1. More precisely, we introduce an arbitrary bounded measurable
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function h : X 7−→ R which can be written

h(x) =

N∏

i=1

h(i)(x(i)).

The expectation value of h(xt+1) is given by

E(h(xt+1)) =

∫

X

h(x)ft+1(x) dx. (13)

In the additive noise case, we also have

E(h(xt+1)) = E(h(Φadd(xt)))

=

∫

X

∫

X

ft(y)
N∏

i=1

h(i)(Φ(i)(y) + z(i))g(z(i)) dzdy, (14)

while in the multiplicative case,

E(h(xt+1)) = E(h(Φmul(xt)))

=

∫

X

∫

X

ft(y)

N∏

i=1

h(i)(z(i)Φ(i)(y))g(z(i)) dzdy. (15)

Using (14) and (15) in conjunction with the right hand side of (13), one can obtain the
explicit expression for the transfer operators governing the evolution of ensemble den-
sities in CML’s perturbed by additive or multiplicative noise. For CML’s perturbed
as in (5), the expression is [55]:

PΦadd
ft(x) ≡ ft+1(x) =

∫

X

ft(y)g(x − Φ(y)) dy, n = 0, 1, · · · . (16)

For CML’s perturbed as in (6), we have [62]

PΦmul
ft(x) ≡ ft+1(x)

=

∫ 1

x(N)

· · ·

∫ 1

x(1)

ft(y)
N∏

i=1

[
g

(
x(i)

Φ(i)(y)

)
1

Φ(i)(y)
.

]
dy (17)

It is not difficult to show (cf. [55, 62]) that the operators defined in (16) and (17)
are Markov, and defined implicitly by stochastic kernels. [recall that P is a Markov
operator if it is linear, and if for all probability densities f it satisfies (1) Pf ≥ 0 for
f ≥ 0, (2) ‖Pf‖L1 = ‖f‖L1].

In Section 5.2, these observations are used to gain insight into the thermodynamic
properties of the corresponding CML’s. It is useful at this point to recall some basic
notions which will be needed as we proceed.
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3.3 Ergodicity, mixing and asymptotic periodicity

Here we discuss the behavior of the sequence of densities {fn} which is intimately
linked to the equilibrium and nonequilibrium statistical properties of the CML. For
example, T is ergodic if and only if the sequence is weak Cesàro convergent to the
invariant density f∗(x),

lim
n→∞

1

n

n−1∑

k=0

∫

X

fk(x)q(x) dx =

∫

X

f∗(x)q(x) dx, for all q ∈ L∞(X),

and all initial probability densities f0(x). A stronger (and more familiar) property,
mixing, is equivalent to the weak convergence of the sequence to f∗:

lim
n→∞

∫

X

fn(x)q(x) dx =

∫

X

f∗(x)q(x) dx, for all q ∈ L∞(X)

and all initial probability densities f0(x). An even stronger type of chaotic behavior,
known as exactness (or asymptotic stability) is reflected by the strong convergence of
the sequence {fn} to the invariant density f∗:

lim
n→∞

‖PT fn − f∗‖L1 = 0

for all initial probability densities f0(x). Exactness implies mixing and is interesting
from a physical point of view because it is the only one of the properties discussed
so far which guarantees the evolution of the thermodynamic entropy of T to a global
maximum, irrespective of the initial condition f0 [65].

The hierarchy of chaotic behaviors

Exactness =⇒ Mixing =⇒ Ergodicity

is discussed here because it is shown in Sections 4 and 5.2 that some deterministic
and many stochastic CML’s are either exact, or possess a another dynamical property,
known as asymptotic periodicity, of which exactness is a special case.

Asymptotic periodicity is a property of certain Markov operators which ensures
that the density sequence {fn} converges strongly to a periodic cycle.

Definition 1 (Asymptotic Periodicity) A Markov operator P is asymptotically peri-
odic if there exist finitely many distinct probability density functions v1, · · · , vr with
disjoint supports, a unique permutation γ of the set {1, · · · , r} and positive linear
continuous functionals Γ1, · · · ,Γr, on L1(X) such that, for almost all initial densities
f0,

lim
n→∞

∥∥∥∥∥P
n

(
f0 −

r∑

i=1

Γi[f0]vi

)∥∥∥∥∥
L1

= 0 (18)

and
Pvi = vγ(i), i = 1, · · · , r.

Clearly, if P satisfies these conditions with r = 1, it is exact (or asymptotically
stable). If r > 1 and the permutation γ is cyclical, asymptotic periodicity also implies
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ergodicity [65]. The early papers discussing asymptotically periodic Markov operators
are [52, 51, 56, 57, 53]. A somewhat more intuitive presentation is given in [54]. Ξ

Remark 2 The phase space density fn of an AP system at any (large) time n is a
linear combination of “basis states” (denoted vi above) with disjoint supports, and
at every time step the coefficients (Γi) of this linear combination are permuted by γ.
Therefore, the density evolution in such systems is periodic, with a period bounded
above by r!, but with the exact cycle depending on the initial preparation since
the Γi’s are functionals of the initial density (cf. (18)). A direct consequence of
asymptotic periodicity is that the thermodynamic equilibrium of the system consists
in a sequence of metastable states which are visited periodically. It was shown in [54]
that AP systems are ergodic if and only if the permutation γ is cyclical.

4 Deterministic CML’s

As mentioned in Section 2, there are numerous motivations for investigating the dy-
namics of coupled map lattices. When these dynamics are temporally and/or spatially
chaotic, it is natural to turn to a probabilistic description in terms of the Perron-
Frobenius operator. For example, there is now ample evidence [67, 60] that CML’s
can possess different phases which correspond to qualitatively different behavior of
statistical averages, and it is legitimate to try and understand the connection between
the presence of these different phases and the properties of the Perron-Frobenius op-
erator. Before proceeding with the analysis, it is instructive to numerically illustrate
this multi-phase phenomenology in a relatively simple toy model.

Consider a lattice of the form (2) with S : [0 : 1] 7−→ [0 : 1] given by the tent map
S(z) =min(az, a(1− z)), and with p = 4 (to mimick diffusive coupling in two spatial
dimensions). As the slope of the local transformation is varied in the interval (1, 2],
for fixed ε ∈ [0, 1], one observes a sequence of “bifurcations”: on both sides of the
bifurcation point, the lattice evolves chaotically in time, but the number of “bands”,
or simply connected subsets of [0, 1] on which the activity of a site is supported,
changes abruptly. This behavior is observed in the single tent map, where it can
be shown to reflect a change in the degeneracy of the Perron-Frobenius operator’s
eigenvalues of unit modulus (i.e. a change in r in (18); for a detailed discussion see
[79, 106]). The extension of these results for one-dimensional maps to lattices with
arbitrarily large numbers of elements has proven to be a major theoretical challenge,
which has only been met in rather small regions of parameter space.

4.1 Phenomenology of the tent CML

Here we focus on the model (2) with local map defined by either the tent map, de-
fined in the previous paragraph. For the tent map lattice two qualitatively different
types of statistical behavior are evidenced in Figure 2. The first is characterized by
the evolution of large scale patterns from the random initial conditions; this is the
clustered, or ordered state a = 1.1, · · · , 1.5. The panel a = 1.3 presents an interesting
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limiting case for which the “cluster” covers the entire area of the lattice; different ini-
tial conditions for such parameter values evolve to the more usual large scale patterns.
Note that the lattices are not at equilibrium in the panels displayed in this figure.
It is not possible to observe the true equilibrium because of the astronomically large
transients typical of a lattice of 40000 elements. The point of our investigation is not
to describe explicitly the presence, stability and asymptotic behavior of the patterns
presented here, but to understand how the thermodynamics of these lattices should
be investigated. Although the problem of pattern formation in CML’s is fascinating,
it is not the focus of our investigation, and we will therefore not spend more time
discussing the pattern dynamics per se. The interesting observation from our point
of view is that the pattern-forming behavior associated with small values of a is also
accompanied by statistical cycling in the lattice. This is illustrated by the behavior
of various statistical quantifiers of the motion discussed below, rather than by the
snapshots of Figure 2.

The second phase is described statistically by a unique invariant measure generated
by almost all initial conditions. This corresponds to the spatiotemporally chaotic state
described rigorously by Bunimovich and Sinai [9] in infinite lattices.

Before proceeding, we should note that this oscillatory behavior of macroscopic
observable has also been observed in lattices of logistic maps, as well as in more
complex, biologically motivated models [63]. In fact, in the recent literature [76, 14],
this behavior has been referred to as periodic collective behavior, and understanding
its origin in various spatially extended models is an on-going endeavour.

We propose as a possible mechanism that the Perron-Frobenius operator induced
by lattices such as the tent CML in the statistically periodic regime are in fact asymp-
totically periodic and possess the cyclical spectral decomposition (18). At present,
proving this statement is only possible in very limited cases, namely, in lattices per-
turbed by noise (as in Section 5), and in lattices of piecewise linear, expanding maps
(see the contribution of Keller in this issue for more on this topic). Nevertheless, this
working hypothesis is interesting because it provides some insight into the dynamics
underlying periodic collective behavior (cf the last paragraph of the next section).
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from left to right: a = 1.1, a = 1.2, a = 1.3

from left to right: a = 1.4, a = 1.5, a = 1.6

from left to right: a = 1.7, a = 1.8, a = 1.9

Figure 2:

Snapshots of the activity at the surface of a 200 × 200 lattice of diffusively coupled
tent maps when the coupling is constant (ε = 0.45) but the local slope is increased
from a = 1.1 to a = 1.9. For all panels, the transient discarded is of length 105. The
256 grey scales range from black when xi,j = xmin to white when xi,j = xmax where
xmin and xmax are the lower and upper bounds of the attracting subinterval of [0, 1]
respectively. The initial values on the lattice were in all cases given by a random
number generator yielding uniform distributions on the unit interval. The transition
from statistical cycling to statistical equilibrium occurs between a = 1.5 and a = 1.6
for this value of the coupling. This observation is not made from Figure 2 but with
the help of other the statistical quantifiers (cf. Figure 3 for example).
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Figure 3:

The collapsed density f c
t for a 200× 200 lattice of diffusively coupled tent maps with

ε = 0.45. The first 105 iterations were discarded as transients. In a) the cycle is of
period 4, and a = 1.3. The initial density was uniformly distributed on [0.3 : 0.4]. In
b) the cycle is of period 2, a = 1.4 and the initial density was uniformly distributed
on [0 : 1]. In c), the parameters are as in b) but the initial density was supported on
[0.39 : 0.43]. This illustrates the dependence of the density cycle on the initial density.
d) the slope of the map is a = 1.99 and the initial density is uniform on [0 : 1]. This
density is numerically reached for all densities.
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4.2 Discussion

Until now, most attempts at constructing the statistical mechanics of high dimensional
chaotic dynamical systems have followed two broad and intersecting paths. One is
the extension of the so-called thermodynamic formalism of Ruelle [83], Bowen [5]
and Sinai [86] to high dimensional hyperbolic dynamical systems, which has led to
various proofs of existence of Gibbs measures describing spatio-temporal chaos in such
models [9]. The other is an operator-theoretic approach which focuses on the Perron-
Frobenius operator (11) as an operator acting on some suitably defined function space
[6, 50]. The kinds of results that are sought are again the existence and uniqueness
of invariant measures which are associated with fixed points of the Perron-Frobenius
equation, and the properties of the system’s relaxation to equilibrium when it is
started out of equilibrium. Given that the Perron-Frobenius operator is a Markov
operator, this information is given by its spectral properties. Obviously, these depend
on the function space on which PΦ operates. We always consider here PΦ acting
either on L1(X) (X ⊂ Rn), or on a subspace of L1(X). So far most investigations have
actually focused on Banach spaces “properly” embedded in L1(X), where “properly”
means here that one can then apply a now-famous theorem of Ionescu-Tulcea and
Marinescu [94] to study the spectral properties of PΦ acting on the embedded space.
Examples of such spaces are BV (X), the space of functions of bounded variation
(discussed in some detail in Chapter 5 of [16]), and the related GH(X), the space of
Generalized Hölder continuous functions (described in [64]).

If this second approach is followed, the objective is to place conditions on the
parameters of the CML such that the conditions of the Ionescu-Tulcea and Marinescu
theorem are satisfied. If one considers PΦ : BV (X) 7−→ BV (X), then it is possible
to obtain conditions on the parameters of an expanding Φ such that PΦ satisfies (18)
(see for example [28, 50, 61]). The weakness of this approach is that the conditions are
usually extremely complicated, and they require very detailed geometrical knowledge
of the transformation Φ (for example one needs to know a lot about the geometry of
sets on which Φ is strictly monotone).

For a description of the operator-theoretic approach, and a discussion of its appli-
cations and limitations, the interested reader is referred to the contribution of Keller
(this issue). One important step in this theoretical analysis is that the CML’s which
can be studied effectively with this operator-theoretic approach are product dynamical
systems, which are close, in some clearly defined sense, to a direct product of inde-
pendent low dimensional dynamical subsystems. This indicates that CML’s which
display periodic collective behavior, far from “synchronizing” in some loosely defined,
and poorly understood manner, in fact desynchronize into a collection of statistically
independent “clusters”, each containing a few degrees of freedom. If this hypothesis
holds, the statistical properties of a single CML’s trajectory then approximate the
ensemble properties of those low dimensional clusters. This in turn motivates the
analysis of the cluster’s Perron-Frobenius operator. The programme outlined in this
paragraph, which is a direct consequence of the “cluster working hypothesis” is the
subject of ongoing research [59].

We now turn our attention to the probabilistic description of CML’s whose evo-
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lution is stochastically perturbed.

5 The statistics of stochastic CML’s

The transfer operators for the stochastic CML’s (5) and (6) were introduced in Section
3.2. The study of these operators is greatly simplified by the observation that they
are Markov operators defined by stochastic kernels [54]. Before proceeding to their
analysis, we will briefly describe some of the observed phenomenology in models
like (5) and (6), since these are less frequently described than their deterministic
counterparts in the literature.

5.1 Some numerical observations

Here we focus on the effects of additive noise on a piecewise linear toy model originally
introduced by Keener [49]. The purpose is not to give an overview of the effects of
stochastic perturbations on the dynamics of CML’s, but to illustrate with a simple
example that sometimes the presence of a little noise can have dramatic consequences
which can, at first glance, seem rather counterintuitive.
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Figure 4:

Left: Grey scale representation of the state of a 200×200 lattice of diffusively coupled
Keener maps without noise, at time t = 103 with a = 0.5, b = 0.571 and ε = 0.45.

The 256-level grey scale is such that if x
(kl)
103 = 0, it is represented by a black pixel,

while if x
(kl)
103 = 1 it is represented by a white pixel. Center panel: 200-bin histogram

of the state of the lattice displayed on the left panel. The fractal nature of the support
of this distribution is suggested by the right panel, which was obtained from a larger
lattice (106 sites) and a larger number of bins on [0, 1] (103).

The example considered here is a perturbation of a two-dimensional lattice of
diffusively coupled “Keener maps”

x
(i,j)
t+1 = (1− ε)S(x

(i,j)
t ) +

ε

4

[
S(x

(i+1,j)
t ) + S(x

(i−1,j)
t )

+ S(x
(i,j+1)
t ) + S(x

(i,j−1)
t )

]
, (19)



60 J. Losson and M.C. Mackey

where the local map (a slight generalization of the r-adic map) was considered by
Keener [49]

S(z) = (az + b) mod 1 , a, b ∈ (0, 1), x ∈ [0, 1]. (20)

Before considering the dynamics of the lattice, it is useful to recall some basic proper-
ties of the single map. There exists a range of values for the parameters a and b such
that the trajectories are chaotic in the sense that they attracted to a subset of [0, 1]
of zero measure (a Cantor set) [49]. Numerically, this is reflected by the fact that
if the histogram along a trajectory is constructed, the number of histogram peaks
will increase as the bin size decreases. In this case, the Perron Frobenius operator
does not possess a fixed point in the space of probability densities. In fact, it asymp-
totically transforms almost all initial probability densities into generalized functions.
A rigorous treatment of such operators is possible, and studying the nonequilibrium
statistical properties of the corresponding CML’s involves the reformulation of the
problem in terms of the evolution of measures. Figure 4 shows that the fractal nature
of the attractor of the single map survives diffusive coupling.
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Figure 5:

Noise induced statistical cycling in a lattice of 200× 200 noisy “Keener maps” (21),
with a = 0.5, b = 0.571, ε = 0.1 and ξ uniformly supported on [0, 0.05]. The top panels
display three successive iterations, and the bottom panels display the corresponding
histograms (produced with 200 bins). The grey scale for the top row is the same as
in Figure 4.

This picture is greatly simplified when the local transformation is replaced by

Sξ(z) = (az + b+ ξ) mod 1 , a, b ∈ (0, 1), x ∈ [0, 1] (21)
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where ξ is a random variable distributed with density g. Figure 5 displays the re-
markable behavior of the lattice (19) when the map S is replaced by Sξ. Note that the
noise present in (21) is multiplicative. The activity of the lattice no longer seems to
be supported on a set of measure zero, and furthermore, it appears that the evolution
of the histogram of activity on the lattice is periodic with period 3. To understand
the origin of this simplification of the dynamics as a result of stochastic perturbations,
one must focus on the properties of the transfer operators defined in Section 3.2.

5.2 Analytic results

In this section it is shown that under rather general circumstances, the transfer op-
erators induced by stochastic coupled map lattices are asymptotically periodic.

5.2.1 Additive noise

Consider the CML (5), for which the density of the noisy perturbation satisfies

g(ξ) =
N∏

i=1

χ[b,c](ξ
(i)), 0 ≤ b < c ≤ 1, (22)

where the indicator function χ is defined by χ[b,c](x) = (c − b)−1 if x ∈ [b, c] and
χ[b,c](x) = 0 otherwise. This form for g is chosen here to simplify the statement of
the proof of Theorem 1 below, but more general forms can be treated in exactly the
same way.

Theorem 1 If the CML Φadd is written in the form (5), where the density of the
perturbation ξ is given by (22), and the local map S of (3) is bounded and nonsingular
then PΦadd

defined by (16) is asymptotically periodic.

The proof consists in showing that PΦadd
is a Markov operator defined by a stochas-

tic Kernel which satisfies the conditions of theorem 5.7.2 of [55]. It is discussed in
[62]. This is a general result. The two main assumptions which are necessary for
its derivation are that S be nonsingular and bounded. This generic nature of the
result explains the ubiquitous presence of statistical cycling which has been reported
in stochastic CML’s elsewhere [62].

5.2.2 Multiplicative noise

Here the transformation Φmul is given by (6). In this section it is proved that mul-
tiplicative noise induces the spectral decomposition (18) in a large class of CML’s.
Our presentation is inspired by the treatment of one-dimensional maps perturbed by
parametric noise given by Horbacz [31].

Theorem 2 Let K : X×X 7−→ R be a stochastic kernel and P be the Markov operator
defined by

Pf(x) =

∫ 1

x(N)

· · ·

∫ 1

x(1)

K(x,y)f(y) dy. (23)
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Assume that there is a nonnegative λ < 1 such that for every bounded B ⊂ X there is
a δ = δ(B) > 0 for which

∫

A

K(x,y) dx ≤ λ for µ(A) < δ, y ∈ B, A ⊂ B. (24)

Assume further there exists a Lyapunov function V : X 7−→ R such that

∫

X

V (x)Pf(x) dx ≤ α

∫

X

V (x)f(x) dx+ β, α ∈ [0, 1), β > 0 (25)

for every density f. Then P is asymptotically periodic, and therefore admits the
representation (18). [ Recall that a nonnegative function V : X 7−→ R is known as a
Lyapunov function if it satisfies lim|x|→∞ V (x) = ∞.]

The proof of the theorem is based on demonstrating that the operator defined by
(23) is contractive. This property, in turn, was shown by Komorńık [51] to imply
asymptotic periodicity. The complete proof is given in [62].

The connection with stochastic CML’s of the form (6) should now be clear: the
operator PΦmul

can easily be shown to satisfy the conditions of Theorem 2 under
rather general circumstances. More precisely, we have the following corollary:

Corollary 1 A CML of the form (6), perturbed by the noise term ξt distributed with
density (4) will induce a transfer operator PΦmul

defined by (17). If the deterministic
part of the transformation (denoted Φ) is bounded and nonsingular, then PΦmul

is
asymptotically periodic.

In light of this result, we can interpret the statistical cycling displayed in Figure 5
as an illustration of the cyclical spectral decomposition (18) of the transfer operator
PΦmul

. In addition, the presence of asymptotic periodicity in this model, and in
the large class of models which satisfy the conditions of Theorem 1 or Corollary
1, has some interesting applications for the construction of statistical mechanics for
these models. Before exploring these, we briefly note that the results presented in
this section do not allow us to predict the periodicity observed numerically in the
evolution of histograms of activity (cf. Figure 5). The periodicity of these density
cycles stems from stable period 3 orbits of the isolated Keener maps for certain values
of the parameters (cf [80] for details).

6 Conclusion

This chapter has described the statistical dynamics of CML’s by focusing on the prop-
erties of the transfer operators induced by these models. For deterministic CML’s, the
spectral characteristics of the Perron-Frobenius operator are investigated using some
well-known bounded-variation techniques. When the CML’s are perturbed by noise,
the transfer operators are Markov and defined by stochastic kernels. This allows us to
treat them using some basic results of the theory of Markov operators, and we show
that in many cases of interest they are asymptotically periodic.
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Asymptotic periodicity is an intriguing dynamical property which has several im-
portant implications for the construction of statistical mechanics for these high di-
mensional dynamical systems. The first one is that when the period of the density
cycle in (18) is greater than one, the asymptotic ensemble statistics of the CML de-
pend on the initial ensemble. This is due to the dependence of the functionals Γi on f0
in (18), and it generalizes the usual dependence of trajectory dynamics on the initial
conditions, to the evolution of ensemble probability densities. Another consequence
of the presence of AP is the possible presence of phase transitions in the system: If
the period of a density cycle changes as a control parameter is tuned, then the model
undergoes a qualitative change in the behavior of its statistical quantifiers.

More importantly, some of the usual misconceptions concerning the true meaning
of ergodicity are exacerbated when supposed consequences of ergodicity are violated
by systems which turn out to be asymptotically periodic. Observations of the coherent
behavior of globally coupled and some locally coupled CML’s reported by Kaneko [43,
44] and Perez et al. [76] have led to a controversy in the recent literature concerning
an apparent violation of the law of large numbers in these models. In fact, since the
law of large numbers is a theorem, it cannot be violated, but its verification for CML’s
must performed with care. As explained by Pikovsky and Kurths [77], it is important
when considering this law for ergodic systems which are non mixing, to compute the
relevant averages with respect to ensemble densities, and not with respect to densities
constructed from trajectories. Even if a system is ergodic, the two constructions will
not in general be equivalent when it comes to verifying the law of large numbers. This
is because the type of convergence to equilibrium guaranteed by ergodicity (cf. Section
3.3) is not strong enough to imply the equality of the two types of averages (trajectory
vs. ensemble) when the system is started out of equilibrium. In most circumstances
this would seem like a technical mathematical objection, not of great relevance to the
practicing physicist, because one would nevertheless expect the system to relax to a
state described by the invariant density. But if it is asymptotically periodic, a system
will almost surely not converge to equilibrium, and in that case, the verification of
the law of large numbers must necessarily be performed with ensemble densities.
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M.C. Mackey acknowledges support from NSERC (Canada) and the Fonds FCAR.

References

[1] Andersen, P. and S. A. Andersson. Physiological basis of the alpha rhythm. Appleton
Century Crofts, New York, 1968.



64 J. Losson and M.C. Mackey

[2] Aranson, I., D. Golomb, and H. Sompolinski. Spatial coherence and temporal chaos
in macroscopic systems with asymmetrical coupling. Phys. Rev. Lett., 68:3495–3498,
1992.

[3] Barkley, D.. A model for fast computer simulation of waves in excitable media. Physica
D, 49:61–70, 1991.

[4] Biferale, L., A. Crisanti, M. Falcioni, and A. Vulpiani. One-dimensional asymmetrically
coupled maps with defects. J. Phys. A, 26:L923–L928, 1993.

[5] Bowen, R.. Equilibrium states and the ergodic theory of Anosov diffeomorphisms.
Springer, New York, 1975. Lecture notes in mathematics 470.

[6] Bricmont, J. and A. Kuppiainen. Coupled analytic maps. , , 1995. Preprint.

[7] Brooks, M.J. and B.K.P. Horn. Shape and source from shading. In Proc. Int. Joint
Conf. Artificial Intel., pages 932–936, 1985.

[8] Brooks, M.J. and B.K.P. Horn. Shape from shading. MIT Press, Cambridge, MA,
1989.

[9] Bunimovich, L.A. and Ya.G. Sinai. Spacetime chaos in coupled map lattices. Nonlin-
earity, 1:491–516, 1988.

[10] Caianiello, E.R.. Outline of a theory of thought processes and thinking machines. J.
Theor. Biol., 2:204–235, 1961.
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[13] Chaté, H. and P. Manneville. Structure of clusters generated by spatiotemporal inter-
mittency and directed percolation in two space dimensions. Phys. Rev. A, 38:4351–
4354, 1988.
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d’opérations non complètement continues. Ann. de Math., 52:140–147, 1950.

[95] Turing, A.M.. Chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B,
237:37–72, 1952.

[96] Vandermeer, J.. The qualitative behavior of coupled predator-prey oscillations as
deduced from simple circle maps. Ecological modelling, 73:135–148, 1994.

[97] Vega, O.E. and Y. H. Yang. Shading logic: A heuristic approach to recover shape from
shading. IEEE Trans. Patt. Anal. Machine Intel., 15:592–597, 1993.

[98] Waller, I. and R. Kapral. Spatial and temporal structures in systems of coupled non-
linear oscillators. Phys. Rev. A, 30:2047–2055, 1984.

[99] Waller, I. and R. Kapral. Synchronization and chaos in coupled nonlinear oscillators.
Phys. Lett. A, 105:163–168, 1984.

[100] Wiesenfeld, K. and P. Hadley. Attractor crowding in oscillator arrays. Phys. Rev.
Lett., 62:1335–1338, 1989.

[101] Willeboordse, F.H. and K. Kaneko. Bifurcations and spatial chaos in an open flow
model. Phys. Rev. Lett., 73:533–536, 1994.

[102] Wilson, H.R. and J. D. Cowan. Excitatory and inhibitory interactions in localized
populations of model neurons. Biophysical J., 12:1–24, 1972.

[103] Wilson, H.R. and J. D. Cowan. A theory of the functional dynamics of cortical and
thalamic nervous tissue. Kybernetik, 13:55–79, 1973.

[104] Wright, J.J. and R. R. Kydd. The electroencephalogram and cortical neural networks.
Network, 3:341–362, 1992.



Thermodynamic properties of coupled map lattices 69

[105] Yanagita, T.. Coupled map lattice model for boiling. Phys. Lett. A, 165:405–408,
1992.

[106] Yoshida, T., H. Mori, and H. Shigematsu. Analytic study of chaos of the tent map:
Band structures, power spectra and critical behaviors. J. Stat. Phys., 31:279, 1983.

[107] Yu, N., R.K. DeFreez, D. J. Bossert, R. A. Elliott, H. G. Winful, and D. F. Welch.
Observation of sustained self-pulsation in CW operated flared Y-coupled laser arrays.
Electron. Lett, 24:1203–1204, 1988.

[108] Ziemer, W.P.. Weakly differentiable functions. Springer Verlag, Berlin, 1989.

J. Losson, Service de Chimie Physique, Université Libre de Bruxelles,
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