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We consider a dynamical system with dependent variables (x,p) evolving according
to the dynamics

dx

— = F(x,

Z; (z,p) 0
g = 9@p).

[One could think of a position x and momentum p for concreteness.] We assume in a short
time interval At, with probability ¢(z, p)At there is a perturbation f(z,p) to F and g(z, p)
to G. To capture the essence of this scheme, we use an Euler approximation for (1) and

T e Al =~ a(t) + Fal0),p() A + F(@(0).p(0)lylt + AD) — yi) o)
p(t+ At) =~ p(t) + G(z(t), p(t)) At + g(z(t), p(t))[y(t + At) — y(1)],
where the distribution of z = y(t + At) — y(t) is given by
_ [ 1 with probability o(z,p)At
ap(d2) = { 0 with probability 1 — p(x,p)At. 3)

If we examine an ensemble of test particles with dynamics described by (1) subject to
these perturbations, then we wish to find the evolution equation for the density u(t, z, p)

defined by
prob{z(t) € X,p(t) € P} = / / u(t, z, p)dxdp.
xJy

The following derivation of this evolution equation is an extension of a similar derivation
by A. Lasota carried out in April, 1990.
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Let h(z,p) € CZ(R) be an arbitrary function with compact support. The expected
value of h(z(t + At), p(t + At)) is given by

Eny = E(h(x(t + At), p(t + At)) / / u(t + At,z, p)dxdp (4)

SO

Eo = E(h( / / u(t, z, p)dzdp. (5)

Defining
Q(ﬂﬁ,p, Z) =x+ f((L’,p)At + f(iL',p)Z
R(x,p,z) =p+G(x,p)At + g(z,p)z

it is clear that we may also write

(6)
Ene =

e p(t), 2), R(x(1), p(t), 2)))
/ / / IL' P2 R(:L‘,p’ Z))U(t, $ap)(1>mp(dz)da:dp (7)

Using the properties of the distribution ®,,, equation (7) can be rewritten in the form
Eny = / / Q(x,p,0), R(x,p,0))u(t,z,p)[l — ¢(z, p)At]dzdp
/ / Q(x,p, 1), R(x,p, 1))u(t, z,p)p(x, p)Atdxdp
/ / Q(x,p,0), R(x,p,0))u(t,z, p)dzdp

s [ [ @ ). R, 1) - QG p.0), B p.0)}
u(t, x, p)e(z, p) Atdzdp. (8)

Note that to O(At?) we may write

h(Q(z,p,0), R(z,p,0)) ~ h(z + F(x,p)At,p + G(x, p)At)

Oh

= hia.p) + F(r.p) 5 At + Gla,p) 5 A, (92)

ox

while

hQ(z,p, 1), R(z,p,1)) ~ h(z 4+ F(z,p)At + f(z,p),p + G(x, p)At + g(z, p))

Oh(z+ f,p+9)
d(x+ f)

At. (9b)

~ h(x+ f,p+9g)+ F(z,p) At

oh(xz + f,p+g)
dp+g)

+G(z,p)
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Inserting the approximations (9a,b) into equation (8), we have
oh oh
Ent ~ / / { z,p) + F(z, p)axAt—f—g(a:,p)a—pAt} u(t, x, p)dzdp

+/_Oo/_oo[h(-’r+f,p+g)—h( plult,z.p)p(e,p)Atdadp.  (10)

Equating (4) and (10), we have

/ / u(t + At, z, p)dxdp =

/ / { z,p) + F(z, p)gZAt—I—Q(a:,p)g—ZAt} u(t, z, p)dzdp

[ [ B+ ot o) bl el Atdedy (1)

— o0 — 00

Rearranging the terms in (11), dividing through by At, taking the limit as At — 0 in the
result yields

(z,p) dmdp—f— +Q(m,p)@ u(t, x, p)dxdp
[ [ ] Az o

- / / [h(z+ f,p+g) — h(x,p)|ult,z,p)p(x,p)dedp (12)

Using integration by parts on the left hand side of (12), and remembering that h has
compact support, we arrive at

/ / {8u . 8(;?) n 8(@?;:) } dedp

- /_OO /_OO [h($+f’p+g) _h(x7p)]u(tax7p)90($,p)d$dp (13)

We are almost there! All we have to do is change the variables in the integral

/ / h(z + f,p+ g)u(t, z,p)e(x, p)dxdp.

Define new variables v = z + f(z,p) and w = p + g(z, p) so the pair (v, w) is given by the
transformation (v,w) = T(z,p). Assume that T is invertible so (z,p) = T~ (v,w), and
denote the Jacobian of T~! by J~!(v,w). Then we can write

/_Oo /_oo h(z + f,p + g)ult, =, p)o(x, p)dzdp =
/_OO /_OO h(v, wyu(t, T~ (v, w))p(T~" (v, ) I~ (v, w)dvdw.  (14)
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From (14) and the fact that the function h was arbitrary, it is immediate from equation
(13) that u satisfies the evolution equation

ou  O(Fu)  0(Gu)
o Tor | op

—u(t,z,p)e(z,p) + u(t, T~ (z,p))J " (z,p)p(T~ " (z,p)). (15)

To proceed to investigate equation (15), assume for simplicity that the perturbations
f and g are both independent of z and p. Then our evolution equation (15) takes the form

ou  O(Fu)  9O(Gu)
g + 81’ + ap - u(t,x,p)go(x,p) + uf,g(t,m,p)wf,g(x,p), (16)

where we have used the notation uy (¢, z,p) = u(t,z — f,p — g). Assume further that the
pair (f,g) is distributed with density o(f, g). Multiplying (16) by o(f,g), and integrating
we obtain

ou  O(Fu) 9(Gu R
=+ (ax )4 (8])) = —u90+/_oo /_OO uf,g#1.90(f,9)dfdg. (17)

Example 1. To proceed further, expand the product u(t,z— f,p—g)p(x— f,p—g) about
the point(z, p) to give

ur(t. 2.0 (0.0) = ult, gl p) + O EEED] DLL R D)

1 {f2 0% [u(t, z, p)p(x,p)]

02 [u(t, z,p)o(z, p)] e 02 [u(t, z, p)o(z, p)]

+ R
OxOp Op? } (18)

2 Ox2 + 19

Inserting the expansion (18) into (17) and carrying out the indicated integrations we obtain

ou  O(Fu)  0O(Gu) 0 [uyp] 0 [uyp]
ot or T ap 7 Ter TS97 g,
1 2 07 uy] 0 [up] 2 _ 0% uy]
+§{<f> 92 +<fg>m+<g >6—p? +---, (19)
where

<ﬁ>=[_f%mm#@

and the other moments are defined in an obvious way.



