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”It is not very difficult to show that the combination of the reversible laws of mechanics with
Gibbsian statistics does not lead to irreversibility but that the notion of irreversibility must be added
as a special ingredient...

...the explanation of irreversibility in nature is to my mind still open.”

Bergmann (1967)
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PROLOGUE

In 1935, Eddington wrote “The law that entropy always increases—the second law of thermodynamics-holds, I
think, the supreme position among the laws of Nature.”. Much has changed in science in the intervening half century,
but I believe that Eddington’s pronouncement still carries a great deal of truth.

The central question this book addresses is the dynamic origin of the Second Law of thermodynamics. Specifically,
the goal is to define the dynamical foundation of the evolution of entropy to maximal states. This is accomplished
through an application of recent results in ergodic theory to so-called “chaotic” dynamical systems (Lasota and Mackey,
1985, 1994; M.C. Mackey, 1989).

The Second Law of thermodynamics comes in so many forms that it is often confusing to understand precisely
what a given author understands by the use of this term. This is unfortunate since the first statement of the Second
Law was so clear. It was first enunciated by Clausius (1879), in his remarkable work building on the considerations of
Carnot, when he wrote ”Die Energie der Welt ist Konstant. Die Entropie der Welt strebt einem Maximum zu.” (The
energy of the world is constant. The entropy of the world tends to a maximum.) Though this simple declaration has
been rephrased so many times that it is often unrecognizable, I find that Clausius’ formulation is the most transparent.
However, I will explicitly distinguish two variations on the original theme.

Let Syp(t) denote the thermodynamic entropy at time ¢.

Weak Form of the Second Law.
—00 < Stp(te) < Stp(t) <0 for all times tg < t

and there ezists a set (finite or not) of equilibrium entropies {S%(f)} dependent on the initial preparation f of the

system such that
lim Srp(t) = Sip(f) < max Sto(f)-

t—+00

Thus the entropy difference AS(t) = Stp(t) —maxy St (f) satisfies AS(t) <0 and

lim AS(t) < 0.

t—+oo

In this case system entropy converges to a steady state value S}, which may not be unique. If it is not unique it
characterizes a metastable state.
The second form of the Second Law of thermodynamics is more interesting.

Strong Form of the Second Law.
—00 < Stp(te) < Stp(t) <0 for all times tg < t
and there is a unique limit S¥- (i.e. independent of the initial system preparation f) such that

lim Stp =855
t—+o0 D D

for all initial system preparations f. Under these circumstances,

lim AS(t) =0.

t—+oo

In this case the system entropy evolves to a unique maximum irrespective of the way in which the system was prepared.

In my investigations of the connection between dynamics and entropy evolution, I have been heavily influenced by
the work of Khinchin (1949), Dugas (1959), Kurth (1960), Truesdell (1960), Farquhar (1964), O. Penrose (1970, 1979),
Lebowitz (1973), Lebowitz and Penrose (1973), G.W. Mackey (1974), Wehrl (1978), and Prigogine (1980). Because of
the approach taken here and the nature of the material presented, a brief outline of the main points may be helpful.

Chapter 1 defines a thermodynamic system in terms of measure spaces, draws a one to one correspondence
between a density and a thermodynamic state, and introduces the Boltzmann-Gibbs entropy of a density.

In Chapter 2, using a Maximal Entropy Postulate, it is a simple demonstration that the entropy of a density
will assume a maximal value if and only if this density is (in the terminology of Gibbs) either the density of the
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microcanonical or a generalized canonical ensemble. Then it is shown that the Boltzmann-Gibbs entropy of a density
can be plausibly argued to coincide with the thermodynamic entropy Stp of a system characterized by that density.

Chapter 3 introduces Markov operators. These are linear integral operators that describe the evolution of den-
sities by dynamical or semi- dynamical systems. Fixed points of Markov operators, known as stationary densities,
define states of relative or absolute thermodynamic equilibrium depending on whether there are multiple or unique
stationary densities. Thus, a central question that must be answered in any treatment of thermodynamics is under
what circumstance will the entropy change from its original value (determined by the way in which the system was
prepared) to a final state corresponding to one of these states of relative or absolute equilibrium. Following this the
conditional entropy, a generalization of the Boltzmann- Gibbs entropy, is introduced and identified with AS. Under
particular conditions, the conditional entropy is shown to have its maximal value of zero if the stationary density of
the state of thermodynamic equilibrium is that of the canonical ensemble. Then the distinction between invertible
and noninvertible systems is made. This is used to provide the not too surprising proof that entropy is constant for
invertible systems. It is only in noninvertible systems that the entropy may increase. Thus, irreversibility is necessary
but not sufficient for the entropy to increase. Following this, a variety of sufficient conditions are derived for the
existence of at least one state of thermodynamic equilibrium based on convergence properties of the system state
density average.

Chapter 4 introduces a special type of Markov operator, the Frobenius- Perron operator. Following illustrative
material demonstrating its utility in studying the evolution of densities by a variety of dynamical and semi- dynamical
systems, we turn to a consideration of the conditions that guarantee the existence of a unique state of thermodynamic
equilibrium. The necessary and sufficient condition for this existence is the property of ergodicity, which may be shared
by both invertible and noninvertible systems.

Chapter 5 presents the concept of mixing, introduced in a qualitative sense by Gibbs, which is a stronger property
than ergodicity though it still may be shared by noninvertible and invertible systems. However, it is not sufficient to
permit the entropy of a system to change from its initial value.

Chapter 6 introduces a particular form of dynamical behaviour, called asymptotic periodicity, that is sufficient
for the evolution of the entropy to a metastable state of relative equilibrium (weak form of the Second Law).

Chapter 7 is, in a sense, the core of this work. There it is shown that for there to be a global evolution of the
entropy to its maximal value of zero (strong form of the Second Law) it is necessary and sufficient that the system
have a property known as exactness.

In a very real way, the results of Chapter 7 raise as many questions as they answer. Though providing totally
clear criteria for the global evolution of system entropy, at the same time these criteria suggest that all currently
formulated physical laws may not be at the foundation of the thermodynamic behaviour we observe every day of our
lives. This is simply because these laws are formulated as (invertible) dynamical systems, and exactness is a property
that only noninvertible systems may display

One possibility is that the current invertible, dynamical system statements of physical laws are incorrect and that
more appropriate formulations in terms of noninvertible semidynamical systems await discovery. Alternately, other
phenomena may mask the operation of these invertible systems so they appear to be noninvertible to the observer.
Chapters 8 through 11 explore this latter possibility.

In Chapter 8, we examine the effects of coarse graining of phase space, due either to measurement error or to
an inherent graininess of phase space that is imposed by Nature. It is easy to show that if we observe a system with
mixing dynamics, but operating in a coarse grained phase space, then the entropy of the coarse grained density will
evolve to a maximum as time goes either forward (¢ — 400) or backward (¢t — —o0). Thus, though coarse graining
induces entropy increase to a maximum of zero it fails to single out any unique direction of time for this to occur.
This illustrates that the origin of noninvertible behaviour is not a consequence of invertible dynamics operating in a
coarse grained phase space.

Chapter 9 explores the consequence of taking a trace in which we observe only some of the important dynamical
variables of a dynamics operating in a higher dimensional space (hidden variables). In this case the complete dynamics
may be invertible and, consequently, have a constant entropy while the entropy of the trace system may smoothly
evolve to a maximum (weak or strong form of the Second Law).

Chapters 10 and 11 respectively examine the effects of external perturbations on discrete and continuous time
dynamics. This situation is usually called interaction with a heat bath. Interactions with a heat bath, depending on
how they occur, can be shown to lead to either local (metastable) or global states of thermodynamic equilibrium.

In Chapter 10 we show that under very mild assumptions concerning the nature of the perturbation, discrete time
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systems with the most uninteresting dynamics in the unperturbed situation will become either asymptotically periodic
or exact in the presence of perturbations. Thus they will display evolution of entropy toward states of thermodynamic
equilibrium (either form of the Second Law).

Chapter 11 continues this theme by examining the effects of white noise perturbations of continuous time systems
whose dynamics are described by systems of ordinary differential equations. Again these perturbations induce exactness
and the consequent increase of the conditional entropy to its maximum value of zero (strong form of the Second Law).

Lest there be any misapprehension on the part of the reader, let me state at the outset that it is my firm conviction
that the answer to the question of the origin of the “arrow of time” does not lie in Chapters 8 through 11. Rather, I
feel that the answer lies in yet undiscovered modifications of the laws of physics that render them noninvertible.

As should be evident from this survey of the contents, it is not my intent to develop statistical mechanics as a
subject. This is done rather nicely from several points of view in a variety of texts. Kestin and Dorfman (1971), Reichl
(1980), Ma (1985), Pathria (1985), and Grandy (1988) are representative of some of the more thought provoking of
these.

Throughout, I have tried to include as much material as necessary so this book can be read as a unit. Proofs of
almost all of the theorems are given, though they need not be read to grasp the thread of the argument. Examples
are offered to try to illustrate the physical significance of the results discussed. To more clearly delineate material, the
end of proofs are marked with a “ [0 ” and the end of examples by a “ e 7.

This work was started at the Universities of Oxford and Bremen, 1986-7 and continued in the same locations
1993-4. T thank Profs. J.D. Murray and Andrew Fowler (Oxford) and H. Schwegler (Bremen) for their hospitality
during these periods. Several colleagues have helped me clarify various points, and I hope that they will not be offended
by my lack of explicit acknowledgment of their interest. They know who they are. I am especially indebted to Helmut
Schwegler for his continued interest and support in reading and commenting on almost every aspect of this work. He
has given of his time and energy as only a true friend can.

My wife, Nancy, and my children—Fraser, David, Alastair, Linda, and Christopher—have all contributed a great
deal through their love, interest, and encouragement.

Fraser (who died on 7 November, 1992 after a three year struggle against Ewing’s sarcoma), and to whom I
dedicate this book, always asked “Hi Mike, how’s it going?”. It is my personal sadness that he could not be present in
body to ask the same question during the preparation of this second edition. But, as is always the case with Fraser,
he is here in spirit.

Montreal, 15 May, 1994
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PART I.
BACK TO BASICS
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CHAPTER 1.
STARTERS

In this chapter we introduce some elementary concepts from measure theory as a start in our examination of the
dynamical origin of increasing entropy. Section A draws a connection between thermodynamic systems and measure
spaces. Section B briefly considers dynamics and phase spaces, while Section C introduces the notion of a density and
postulates that the state of a thermodynamic system is characterized by a density. In Section D we introduce the
Boltzmann Gibbs entropy, and prove that it is the unique (up to a multiplicative constant) entropy definition that
satisfies the physical requirement (additivity) that entropy be an extensive quantity.

A. THERMODYNAMIC SYSTEMS.
In defining a thermodynamic system we need some terms and concepts come from measure theory.
We first start with a set X. Measure theorists often like to keep X pretty abstract, but for us X is going to be
the phase space (more about this in the next section) on which all of our dynamics operates. Sometimes X will be a
closed finite interval like [0, 1], sometimes it may be infinite in extent like R*, R® or even R?, and sometimes X is a
function space. In any event, whatever X is we are going to assume that it does not have any pathological properties.
Given a phase space X we turn to a definition of what measure theorists call a o-algebra. Namely, we let A be
a collection of subsets (subspaces) of X, and say that A is a o-algebra if:
(1) A € Aimplies that X \ A € A4;
(2) Given a sequence (infinite or not) {A} of subsets of X, Ay € A, then UA;, € A; and
(3) X e A.
(Note that properties 1 and 3 imply that the empty set §) is a member of A since f = X \ X).
The final notion we need for the definition of a thermodynamic system is that of measure. Any real valued
function p defined on a o-algebra A is a measure if:
(1) p(0) =05
(2) u(A) >0 for all A € A; and
(3) m(UrAr) = >, n(Ar) whenever {A,} is a sequence (infinite or not) of pairwise disjoint subsets of A, i.e.
AiﬂAj :waI“’L;é']
With the three concepts of a set X, a o-algebra A, and a measure u we call the triple (X, .4, ) a measure
space. If, in addition, we can find a sequence {4y} of subsets of the o-algebra A such that

X = U Ay and p(Ag) < o0
k=1

then we say that the measure space (X, A, u) is o-finite. All of the measure spaces we consider will be o-finite.

Example 1.1. If we were considering a phase space like X = [0,1] or X = R, then a reasonable ¢ algebra would be
the smallest collection of closed intervals of the form [a, b]. These intervals have Lebesgue measure ur([a,b]) = b — a.
[ ]

Throughout, we will associate a thermodynamic system with a measure space through the following postulate.

POSTULATE A. A thermodynamic system is equivalent to a measure space.
Thus, every time we use the term thermodynamic system we are referring to the triple consisting of a phase space X,
a o-algebra A, and a measure p.

B. DYNAMICS.

We next consider a thermodynamic system operating in a phase space X. On this phase space the temporal
evolution of our system is described by a dynamical law S; that maps points in the phase space X into new points,
i.e., St : X — X, as time ¢ changes. In general X may be a d-dimensional phase space, either finite or not, and
therefore z is a d-dimensional vector. Time ¢ may be either continuous (¢ € R) as, for example, it would be for a
system whose dynamics were governed by a set of differential equations, or discrete (integer valued, ¢ € Z) if the
dynamics are determined by discrete time maps.

We only consider autonomous processes in which the dynamics S; are not an explicit function of the time ¢ so it
is always the case that S;(Sy (x)) = Siye (x). Thus, the dynamics governing the evolution of the system are the same
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on the intervals [0, t’] and [t,t + t’]. This is not a serious restriction since any nonautonomous system can always be
reformulated as an autonomous one by the definition of new dependent variables.

Two types of dynamics will be important in our considerations, and some preliminary discussion will be helpful.
Consider a phase space X and a dynamics S; : X — X. For every initial point z°, the sequence of successive points
Si(2°), considered as a function of time t, is called a trajectory. In the phase space X, if the trajectory S;(z%) is
nonintersecting with itself, or intersecting but periodic, then at any given final time ¢; such that ol = St; (20) we
could change the sign of time by replacing ¢ by —t, and run the trajectory backward using 7 as a new initial point
in X. Then our new trajectory S_;(zf) would arrive precisely back at 2° after a time ¢; had elapsed: 2° = S, (zf).
Thus in this case we have a dynamics that may be reversed in time completely unambiguously. Dynamics with this
character are known variously as time reversal invariant (Sachs, 1987) or reversible (Reichenbach, 1957) in the
physics literature, and as invertible in the mathematics literature.

We formalize this by introducing the concept of a dynamical system {S;}.cr (or, alternately, ¢t € Z for discrete
time systems) on a phase space X, which is simply any group of transformations S; : X — X having the two properties:

(1) So(z) = x; and
(2) St(Stf (CU)) = St+t’ (CU) for t,tl € Ror Z.
Since, from the definition, for any ¢ € R, we have

St(S—t(w)) = v = S_¢(Se(z)),

it is clear that dynamical systems are invertible in the sense discussed above since they may be run either forward
or backward in time. Systems of ordinary differential equations are examples of dynamical systems as are invertible
maps. All of the equations of classical and quantum physics are invertible.

To illustrate the second type of dynamics, consider a trajectory that intersects itself but is not periodic. Now
starting from an initial point z° we find that the trajectory {S:(z°)} eventually has one or more transversal crossings
2L of itself. If we let ¢, be the time at which the first one of these crossings occurs, and choose our final time ¢ty > ¢,
then picking z/ = Stf(xo) and reversing the sign of time to run the trajectory backward from z/ poses a dilemma
once the reversed trajectory reaches x* because the dynamics give us no clue about which way to go! Situations like
this are called irreversible in the physics literature, while mathematicians call them noninvertible.

Therefore, the second type of dynamics that is important to distinguish are those of semidynamical systems
{St}+>0, which is any semigroup of transformations S; : X — X, i.e.

(1) So(z) = z; and

(2) Si(Se(z)) = Spiv () for ¢, € RT (or N).
The difference between the definition of dynamical and semidynamical systems lies solely in the restriction of ¢ and
t to values drawn from the positive real numbers, or the positive integers, for the semidynamical systems. Thus, in
sharp contrast to dynamical systems, semidynamical systems are noninvertible and may not be run backward in time
in an unambigious fashion. Examples of semidynamical systems are given by noninvertible maps, delay differential
equations, and some partial differential equations.

Often there is a certain confusion in the literature when the terms reversible and irreversible are used, and to
avoid this we will always use the adjectives invertible and noninvertible. In spite of the enormous significance
of distinguishing between dynamical and semidynamical systems later, at this point no assumption is made concerning
the invertibility or noninvertibility of the system dynamics.

C. THERMODYNAMIC STATES.

The usual way of examining the dynamics of systems is by studying the properties of individual trajectories,
but in keeping with the ergodic theory approach adopted here we opt instead to study the way in which the system
dynamics operate on an infinite number of initial points.

More specifically, we will examine the way in which the dynamics alter densities. What do we mean by a density?
If fis an L' function in the space X, i.e., if

J @) ds <.

then f is a density if f(z) > 0 and || f ||= 1. As usual, || f || denotes the L' norm of the function f,

1 fll= /X ()| da.
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The examination of the evolution of densities by system dynamics is equivalent to examining the behaviour of an
infinite number of trajectories. This apparently simple assumption concerning the way in which systems operate on
densities is so fundamental and important to the understanding of the foundations of thermodynamics that it is given
a special status.

POSTULATE B. A thermodynamic system has, at any given time, a state characterized by a density
f(x), not necessarily independent of time.
Given a density f then the f-measure ug(A) of the set A in the phase space X is defined by

MNMZAﬂ@M,

and f is called the density of the measure py. The usual Lebesgue measure of a set A is denoted by pr(A), and the
density of the Lebesgue measure is the uniform density, f(z) = 1/ur(X) for all points z in the phase space X. We
always write pr,(dz) = du.

The Lebesgue measure of the entire phase space, denoted by ur,(X), may either be finite or infinite. If it is finite,
we often take it to be normalized so pr(X) = 1. It is important to realize that the measure of a set can be quite
different depending on the density f. Thus for example, the Lebesgue measure of the positive real line RT is infinite,
whereas the measure of R with respect to the density f(z) = ke™*? is just

pp(RY) = /0 ke % dx = 1.

It is instructive to compare the approach used here with that of Boltzmann and Gibbs in their treatments of
statistical mechanics. Both started from the assumption that they were dealing with systems of dimension d = 2s
whose dynamics were described by s position variables z; and s momentum variables p;. Boltzmann considered the
phase space to be a 2s dimensional space which is usually called i space. He then considered the evolution of a large
number N of identical particles, each with the same dynamics, in p space. N is large and typically on the order of
Avagadro’s number, 6 x 1023, The limiting case of N — oo is the thermodynamic limit in which case the Boltzmann
approach is equivalent to studying the evolution of a density in u space. Gibbs also considered N identical particles
operating with these 2s dimensional dynamics in a phase space (commonly called the I' space) of dimension 2sN.
He then considered an infinite number of copies of this original system, and gave this construct the name ensemble.
Thus Gibbs studies the evolution of the ensemble density, and I' space has proved to be the most useful in statistical
mechanics.

This book is devoted to the study of systems by the evolution of densities, how system properties (dynamics)
determine the character of the density evolution, and how this is translated into entropy behaviour. Later, it will
become clear what types of systems may be described by the evolution of densities. However, if for now we accept
Postulate B that such systems exist, then it will be easy to examine the consequences of this postulate.

D. BOLTZMANN-GIBBS ENTROPY.

Having postulated that a thermodynamic system has a state characterized by a density f, we are now in a position
to develop the physically useful concept of entropy as both Boltzmann and Gibbs introduced the term.

First we define an observable O to be a real number characterizing some aspect of a thermodynamic system,
for example the energy, pressure, or temperature. As such, an observable corresponds to a map O : X — R from the
phase space X that yields this number. The expected, or average, value of the observable O is just given by weighting
O(z) with the system state density f(z) and integrating over the entire phase space:

E(0) =< 0 >= /XC’)(a:)f(a:) dz.

In his celebrated work Gibbs, assuming the existence of a system state density f on the phase space X, introduced
the concept of the index of probability given by log f(z) where “log” denotes the natural logarithm. Though Gibbs
identified — log f with entropy, now it is customary to introduce a quantity H(f) which is the negative of the phase
space average of the index of probability weighted by the density f, i.e.

Hmz—AﬂMMﬂmw
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This is now known as the Boltzmann-Gibbs entropy of a density f since precisely the same expression appears in
Boltzmann’s work (with the opposite sign) but the phase space is different for Boltzmann (u space) and for Gibbs (T
space). Clearly, the Boltzmann Gibbs entropy is just the expectation of the observable defined by the negative of the
index of probability.

As it stands, the definition of the Boltzmann-Gibbs entropy may seem a bit obscure, and some motivation
illustrates why it is the only reasonable candidate for a mathematical analog of the empirical thermodynamic entropy.
It is easily shown that the only observable which is a function of a thermodynamic state that gives the requisite
additive property to make the entropy an extensive quantity is the logarithmic function, and that it is unique up to a
multiplicative constant (Khinchin, 1949; Skagerstam, 1974).

To be more specific, consider two systems A and B operating in the phase spaces X4 and Xp respectively, and
each having the densities of states f4 and fg. We now combine the two systems to form a new system C operating
in the product space X¢ = X4 x Xp, so system C will have a density of states fo(z,y) = fa(z)fs(y) if A and B
do not interact. Experimentally we expect that when the two systems are combined into a larger system C, then the
entropy of system C should equal the sum of the individual entropies of A and B, since entropy is generally held to be
an extensive system property. We wish to show that the Gibbs choice for the index of probability is the only choice
(up to a multiplicative constant) that will ensure this.

To demonstrate this, assume that the index of probability is left as an unspecified observable O. If the observable
O is such that it transforms products to sums, O(fc) = O(fafs) = O(fa)+O(fB), then the relation H(f4)+H(fB) =
H(fc) holds. It is certainly clear that picking O(w) = dlogw, where d is any arbitrary nonzero constant, will work
but are there any other functions O with the requisite property?

Assume there exists a second continuous observable O such that

O(fafs) = O(fa) + O(fB).

Define two new functions v4(a) and vg(b) through
fa(@)=e"@ and  fp(b) = e

Then we have R R R
O(e?41vs) = O(e¥*) + O(e"?),
or with h(w) = O(e*) this becomes
h(va +vB) = h(va) + h(vp).

This, however, is just the famous Cauchy functional equation that has the unique solution
h(w) = dw with ¢ an arbitrary constant
(Kuczma, 1985). This in turn implies that O(e*) = dw so
O(w) = dlogw.

Thus the only observable that gives the requisite additive property for the Boltzmann-Gibbs entropy is the logarithmic
function and it is unique up to a multiplicative constant.

We formalize the entropy definition by saying that the Boltzmann Gibbs entropy of the density f is defined
by

1) = [ alf@)de (1.1)
where the function 7(w) is given by

—wlogw w >0,

w) = 1.2
o ={ oo (1.2
The function n(w) has properties that are important for demonstrating properties of the entropy H (see Figure

1.1). First, note that n(w) is continuous for w > 0 since n(0) = 0 by definition. Further, 5”(w) = —w ™! so p(w) is

strictly concave since " (w) < 0 for all w > 0. From this it is an immediate consequence (see Figure 1.1) that

n(w) < (w=v)n'(v) +n(v) (1.3)
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for all w,v > 0. Combining equation (1.2) defining n with inequality (1.3) gives the Gibbs inequality
w—wlogw < v—wlogv for w,v > 0. (1.4)

Integrating (1.4) gives another useful inequality. If f and g are two densities, and n(f(z)) and n(g(z)) are both
integrable, then we have directly from (1.4) that

- / f(z) log f(x) d < — / f(2)log g(z) d, (1.5)
X X

which we call the integrated Gibbs inequality. Only when f = g does the equality hold.

E. SUMMARY. This chapter has introduced some key concepts and postulates necessary in our examination of
the foundation of evolution of entropy. We have identified thermodynamic systems with measure spaces and states of
thermodynamic systems with densities. We have also defined the Boltzmann Gibbs entropy and proved it is the unique
(up to a multiplicative constant) definition of entropy that is consistent with the physically motivated requirement of
entropy additivity. In the next chapter we turn our attention to maximal entropy principles and their consequences.
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Figure 1.1. The graph of 5(z) as a function of . The solid line tangent to the curve at x = v has slope 7'(v),
while the dashed line connecting the points v and w has slope [n(w) — n(v)]/(w — v). This illustrates the origin of
inequality (1.3).
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CHAPTER 2.
MAXIMAL ENTROPY PRINCIPLES.

In this chapter we examine the surprising consequences of maximizing the Boltzmann Gibbs entropy subject to
various constraints. In Section A we show that for a system operating in a phase space of finite measure with no other
constraints, the entropy will assume a maximal value if and only if the density (in the terminology of Gibbs) is the
density of the microcanonical ensemble. Further, in Section B for a general phase space it is demonstrated that given
the expectation value of a particular observable, the Boltzmann-Gibbs entropy of a density will attain its maximum if
and only if the density is a generalization of the density of the canonical ensemble.

In Section C we show that the mathematical definition of the Boltzmann-Gibbs entropy of a density can be
plausibly argued to coincide with the thermodynamic entropy of a system characterized by that density, and that all
of equilibrium thermodynamics follows.

Section D shows how other constraints, coupled with the maximal entropy principle, yield the densities of the
Maxwell Boltzmann or other distributions. Section E shows how the use of a maximal entropy principle can be used
to derive the Planck blackbody radiation law. Section F briefly considers how the maximal entropy principle can be
extended to situations in which there are known expectation values of several observables.

A. MICROCANONICAL ENSEMBLES.

Armed only with the integrated version of the Gibbs inequality (1.5) we may immediately understand the origin
of the classical Gibbs microcanonical ensemble as reflecting a manifestation of extremal properties of the entropy.
Consider a given space X with finite Lebesgue measure, pr(X) < oo (forgo the normalization pz (X) = 1 temporarily),
and all possible densities f. Then the only density that maximizes the entropy is the (uniform) density of the Lebesgue
measure of X. More precisely,

Theorem 2.1. When ur,(X) < oo, the density that mazimizes the Boltzmann-Gibbs entropy is the uniform density

felz) = : (2.1)

For any other density f # f«, H(f) < H(f.).
Proof. Pick an arbitrary density f so, by definition, the entropy of f is

zﬂﬁz—AJmWMﬂmMm

With g(z) = 1/pr(X) the integrated Gibbs inequality (1.5) gives

() < - [ s@oggterds = —tog || [ sy

or H(f) < —log [ﬁx)] since f is a density. The equality holds if and only if f = f.. The entropy of f, is easily

Hf) =~ /x uLEX) tos [uLEX)} dr=—log [ﬁ} ’

so H(f) < H(f.) for any density f, or H(f) < H(fs) for f # f.. Clearly, if X is normalized so puy(X) = 1, then
H(f)<0. O

calculated to be

Example 2.1. The uniform density f. defined by (2.1) is a generalization of the density of the microcanonical ensemble
introduced by Gibbs in his work on the foundations of thermodynamics.

Specifically, Gibbs considered the special case of a conservative mechanical system, i.e. one in which the forces
are such that the work W (z,z2) required to move a particle between two points x; and x2 in the phase space X is
independent of the path connecting z; and z5. For conservative systems the energy U is a constant of the motion,
which simply means U is constant along any given trajectory. Furthermore, any density f which is a function of the
energy U alone, f(U), will also be a constant of the motion. (This invariance of the density along trajectories is what
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Gibbs referred to as conservation of extension in phase.) Inasmuch as it is necessary to have an ensemble with an
(ultimately) time independent density to describe the behaviour of a system in thermal equilibrium, Gibbs reasoned
that a natural first choice would be to pick an ensemble characterized by the density

£(U) = { Constant U UO. (2.2)
0 otherwise,
where the energy Up is to be specified.

The density in equation (2.2) is the density of what Gibbs called the microcanonical ensemble, and it is
clearly a special case of the uniform density (2.1) which maximized the entropy of a finite space. In the microcanonical
ensemble the phase space X is taken to be the space X* of conjugate position and momenta (g,p) restricted by the
requirement that U(p,q) = Up. The constant appearing in the density (2.2) is simply related to the measure of the
restricted space X* by Constant = 1/ur(X*). e

Notice that in the derivation of the density (2.1) maximizing the entropy on a finite space, there was no reference
to the nature of the dynamics of the system generating the density. This is in sharp contrast to the usual approach in
thermodynamics in which the dynamics are quite specifically used to argue for the plausibility of the microcanonical
density (2.1). The fact that a generalization of this density appears in such a natural way merely illustrates the gener-
ality of both the density and the method used to obtain it, and that the existence of the density of the microcanonical
ensemble is independent of the system dynamics.

B. CANONICAL ENSEMBLES.

Even more fascinating consequences can emerge from the extremal properties of entropy that offer insight into
the basic foundation of thermodynamics of both classical and quantum systems. In this section we state and prove a
theorem that is used to deduce all of conventional equilibrium thermodynamics in the next section.

Theorem 2.2. Assume that an (observable) nonnegative measurable function O(x) is given as well as the average
< O > of that function over the entire space X, weighted by the density f:

<0 >= /X(’)(:L“)f(a:) dx. (2.3)

(Note that < O > is nonnegative and may be time dependent.) Then the maximum of the entropy H(f), subject to the
constraint (2.8), occurs for the density

fo(x) = Z7Le 0@ (2.4)
where Z is defined by
Z :/ 0@ d, (2.5)
X
and v is implicitly determined from
<0 >= Z_l/ O(z)e="°®) dg. (2.6)
X

Proof. The proof again uses the integrated Gibbs inequality. From (1.5), for densities f and f.,

H(f) < - /X f(z)log fu(z) dx

—/ f(z)[-log Z — vO(x)] dx
b'e

= 10gZ+1// f(2)O(x) dx
b'e
=logZ+v<0>.

However it is easy to show that
H(f.) =logZ+v<O> (2.7)

and therefore H(f) < H(f.), with the equality holding if and only if f = f.. O

The choice of notation in (2.4) and (2.5) was intentional to draw the connection with the density of the Gibbs
canonical ensemble.
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Example 2.2. If X* is the conjugate position-momentum (q,p) space, O(z) is the system energy functional, and
< O > the average (over the phase space) energy of the system, then Z as given by (2.5) can be identified directly
with the partition function and the density f. given in (2.4) that maximizes the entropy is to be identified with the
density of the Gibbs canonical ensemble.

In deriving the density of the Gibbs canonical ensemble, it is implicit in the writing of the average < O >,
given by equation (2.3), over the entire phase space that if the density (2.4) is to describe a state of thermodynamic
equilibrium then the quantity O(z) must eventually be independent of time at long times. An even more restrictive
requirement would be that O(z) is a constant of the motion. If O(z) is identified with the system energy U, then we
are dealing with a system in which the energy is conserved.

Example 2.3. As another illustration of the application of Theorem 2.2, consider the family of densities f with a
given variance, i.e.

o = /OO 22 f(x) de.

— 00

Under this constraint, the maximal Boltzmann Gibbs entropy is attained when the density is Gaussian,

1 2,5 2

z° /20

«\T) = (& .
f() /—2 >

This is quite easy to show, since for an arbitrary density f,

HO <= [ fwog{ e i

log{ﬁ}+%/_mm2]¢(m)daj
1 1
:E_log{ QWUQ}:H(]E*)- *

C. THE THERMODYNAMIC CONNECTION.
All of conventional equilibrium thermodynamics can be deduced from the density (2.4). Let us see how.
It is a fundamental assumption of thermodynamics that

POSTULATE C. There exists a one to one correspondence between states of thermodynamic equilib-
rium and states of maximum entropy.
We add to this the following.

POSTULATE D. Given an observable O(z) and its average < O >, the density given by (2.4)-(2.6)
maximizing the entropy with respect to O corresponds to the density of the state of thermodynamic
equilibrium attained physically.

If there is but one state of thermodynamic equilibrium that is attained regardless of the way in which the system
is prepared then this is called a globally stable equilibrium and is associated with a globally stable state of maximal
entropy (strong form of the Second Law). If, however, there are multiple states of thermodynamic equilibrium, each
corresponding to a state of locally maximal entropy and dependent on the initial preparation of the system, then we
say that these are local or metastable states of equilibrium (weak form of the Second Law).

Given these observations, it is natural to examine the consequences of associating the equilibrium thermodynamic
entropy Sk, with the maximal Boltzmann Gibbs entropy H given by (2.7):

H(f.) < Stp-
Since we have not specified units for H, a multiplicative constant ¢~ may be necessary, viz.
H(f.) = Srp/ec,
which implies from (2.7) that the equilibrium thermodynamic entropy is given by

Stp=clogZ+cv<O>
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If, as before, we make the association of < O > with the internal thermodynamic energy U,
<0 >=U,

we wish to then associate the parameter v with some function of the temperature T'. At this point, it should be noted

that 147
0>=__2
<Ur=-zw

Taking the derivative of < O > with respect to the parameter v in this equation we have

dv 72 |dv| Z |dv?

=<0>2-<O0®>.

d<0> 1 {dzr 1 {d?Z]

Remembering that the variance D?(O|f.) of a function O with respect to a density f. is simply given by

D*(0)f.) =< O* > — < 0 >?
=< (0-<0>)*>

and that the variance is by necessity non-negative, D? > 0, we immediately have that

d< 0> 9
_— = — <0.
= = —D*0|f.) <0

Therefore, if there is any connection between variations in the parameter v and the average energy < O >= U, it
must be an inverse one. Since our experience tells us that that temperature T and energy U are directly proportional
to one another, this leads us to conclude that if the parameter v and the temperature 7" are related to one another
then it must be an inverse relationship.
Next in our investigation of the potential physical meaning of the parameter v, consider two systems:
(1) System A, operating in a phase space X4, characterized by an energy functional O4(z,), average energy
< 04 >, parameter v4; and
(2) System B, operating in a phase space Xpg, characterized by an energy functional Op(z;), average energy
< Op >, and parameter vg.

By Theorem 2.2, the densities maximizing the entropy for systems A and B are, respectively,
1
fea(ze) = Z—Ae_"“o“(“) with Za = /X e~va0al@a) gy (2.8)
A

and .
fep(@p) = ——e7vBOB(T0) with Zp = / eVBOB(@) gy (2.9)
ZB XB

We combine systems A and B into a third system C, operating on the product space X4 X Xp, so the new system C'
has an energy functional O¢(z,, ;) and average energy < O¢ >, and is characterized by a parameter vc. Again by
Theorem 2.2 the density maximizing the entropy of the combined system C' will be given by

1
fec(Ta, ) = Z—C€7VCOC(I“’zb) (2.10)

with
Zo = / e veOc(@ame) do  dry.
XA XXB

If systems A and B do not interact, then the density of the combined system C will be the product of the
individual densities of systems A and B:

fo(za,mp) = fa(za) fB(20). (2.11)
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Furthermore, the energy of the combined system, O¢, will be the sum of the separate energies of system A and system
B:
Oc(za,xp) = Oalzy) + Op(xp) and <O0c>=<04>+<0p>. (2.12)

Remember from Theorem 2.2 that the < O >’s are nonegative. Inserting equations (2.8) and (2.9) into the right hand
side of (2.11), and (2.10) into the left hand side along with the relations (2.12) gives

L velOa@) s = L vi0a(@a) v 0s () (2.13)

Zc ZAZB

Now consider two possibilities. First, assume that the two systems A and B are characterized by the same
parameter v = v4 = vp. Then it is clear from (2.13) that vo = v. If the parameter v is a monotone function of
temperature then this argument implies that combining two systems of the same temperature (v4 = vg) results in a
system of the same temperature.

Next, assume that v4 < vg. Then, how can equation (2.13) be satisfied? Clearly, if the combined system C has
a parameter v¢ such that

veOc (e, mp) =va0a(x,) + veOps (1)),

then (2.13) will be satisfied. What is the value of the parameter v¢? It is easily obtained by multiplying the last
relationship by fo = fafp and integrating over the product space X¢ = X4 x Xp to obtain

ve < Oc >=v3 <04 >+rvg <O >. (2.14)

Furthermore, by writing (2.14) in the form
vo =var+vp(l—r),

where 0 < r = <OA<>O+7A2>OB> < 1, it is clear that v < vp. Alternately, equation (2.14) can be rewritten in the form
vo =va(l —s) +vps,
where 0 < s = <OA<>(1732>03> < 1, 80 v4 < vo. Thus we have proved that when v4 < vp the parameter vo of the

combined system is limited by
va < v < VB.

If v is interpreted as a monotone function of temperature this last result is in accord with our experience, since
combining two systems of two different temperatures T4 and T will result in a combined system with a temperature
Tc¢ intermediate between Ty and Tg.

Thus, we conclude from these arguments that v is a monotone function of the inverse temperature. If we take v

to be
1

T kT
where k is Boltzmann’s constant, then the entropy expression in (2.7) becomes

14

Stp =clogZ + cU/KT,
or
TSy, =cTlogZ + (c/k)U. (2.15)

If the constant ¢ is taken to be identical with Boltzmann’s constant, ¢ = k, then (2.15) immediately gives the Gibb’s
function

F=U-TS}p, (2.16)
the fundamental equation of equilibrium thermodynamics relating the Helmholtz free energy
F=—kTlogZ

to the internal energy U, temperature 7', and equilibrium entropy Stp,.

Thus, by the use of Postulates A through D in conjunction with the identification of certain parameters and
functions with corresponding quantities of thermodynamic interest, the result is the fundamental relationship on
which all of equilibrium thermodynamics is based.
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D. BOLTZMANN AND OTHER STATISTICS.

In addition to the relative ease with which the fundamental relationships of equilibrium thermodynamics can
be deduced by a suitable identification of quantities in the density of the canonical ensemble, other results can be
obtained by considering situations in which the energy functional is specified.

Continuous Energy Spectrum. First, consider the situation in which we have a system for which the energy

functional is continuous and given by
2

_ L
O(p) =€+ om’

where € is a zero point energy and p is the momentum, taken to be continuous. This might, for example, describe
the situation in a one dimensional classical gas. The partition function is

2mm
_ —Veo
Z = » e ,

while the density maximizing the entropy is just

f*(p) =1/ ﬁeiﬁa (217)

and the parameter v and the average energy < O > are connected by the relation
v l=< 0> —€g

as before. Taking v~! = kT as we have argued for in the previous section, (2.17) takes the form

[ 1 _»
f«(p) = wmiTS

which is the continuous Maxwell-Boltzmann distribution for particle momenta in one dimension, and k7 =< O >
—€Q-

This picture changes quite radically if the assumption concerning the continuity of the energy spectrum O of the
system is replaced by the assumption that it is discrete.

Discrete Two-level Energy Spectrum. As an example consider the situation in which the energy functional has

only two values
00) =€ or O(1) = €o + de,

where €y and de are both constants with the dimensions of energy. €q is to be thought of as some “ground state energy”
O(0), while de is the value by which the energy can increment to its second level O(1). Now in searching for a density
which maximizes the entropy we must interpret the integrals in equations (1.1), (2.3), and (2.6) as Stieltjes integrals
from which we easily calculate that the partition function Z is given by

7 = efueo(]_ + e*l/dﬁ),
and thus the density maximizing the entropy is simply

f.(0) = — ¢ =
* - 1+6—V66 an * - 1+6—V66'

Discrete Equally Spaced Multi-level Spectrum. Alternately, consider the situation in which the energy function
can take on a number of discrete values of the form

O(n) = €9 + nde n=0,1,---, (2.18)

where €9 and de are interpreted as before.
In this case the partition function Z is given by
e*l/eo
and the density maximizing the entropy is

fin) =1 —e e V™ pn=0,1,---. (2.20)
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General Discrete Multi-level Spectrum. Finally, we look at the situation in which the system energy may take
any one of (m + 1) discrete values,
O(n) = e + €, n=20,---,m

where m may be finite or not. Now the partition function is easily calculated to be

m
__ _—Vep —VeE;
Z =e Ee i
=0

and the density maximizing the Boltzmann Gibbs entropy is

fen) =

—Ven

e
which is just the density of the discrete Maxwell Boltzmann distribution.
E. BLACKBODY RADIATION.

In the previous section when we considered the case where the energy had a discrete and equally spaced multi-

level spectrum, had we allowed all values of n € R* and not restricted ourselves to integer values of n in equation
(2.18), the corresponding result would have been

n:O’...,m,

fu(n) = véee™V™¢,

which does not seem too different from (2.20). However, the differences become immediately apparent when the
average energy < O > is calculated in the discrete (integral n) case:

o0

<0 >= Z[eo + nde] fu(n)

n=0
Se 671/66

:60+1_6—V66'

(2.21)

If it is assumed that the energy functional in (2.18) is that of a system in which there is a strict relationship between
the frequency of oscillation and the incremental energy de of the form

de = hw,
and that v = 1/kT as we have argued for in Section C, then (2.21) takes the form

>

w

e kT
< Ow,T) > —€g = hw———. (2.22)
— e"®T
This will be immediately recognized as the Planck formula for the average energy of a system of oscillators (relative
to the ground state energy €) at a temperature T’ and frequency w. From this it is quite straightforward to derive the

Planck formula for the spectrum of black body radiation €(w,T) from the general relation

w2

€w,T) =[<Ow,T) > —eo] T2c3’ (2.23)

where c¢ is the velocity of light. Substituting (2.22) into (2.23) immediately gives the Planck blackbody radiation

formula
h w3

= .
m2e3 ert — 1

€(w,T) = (2.24)
Note that had we used the result for the average energy of an ensemble with a continuous dependence on n in (2.18),

then the result would have been T

_ 2
the Rayliegh-Jeans radiation law with its “ultraviolet catastrophe”. The same expression results from (2.24) in
the high temperature limit with Aiw < kT, while the low temperature limit with Aw > kT gives the Wien radiation

law
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F. GENERAL ENTROPY MAXIMA.
It is quite easy to state and prove an obvious generalization of Theorem 2.2 applicable to systems in which there
are multiple known averages < O; >. This generalization is contained in:

Theorem 2.3. Assume that a sequence of m mnon-negative measurable functions O;(z),i = 1,...,m, and their
averages < O; > over the entire space X are given. Then the mazimum of the entropy H(f) for all densities f,
subject to the conditions

<0 >:/ Oi(2) f(z) da (2.26)
X
occurs for the density

fo(x) = e vi0i(@) (2.27)

—

N

=1

where
m

Z:/ [Ie "€ da, (2.28)
X i=1

and the v;’s are implicitly determined from

<0;>= l/ O;(z)e "9 dg, (2.29)
Z Jx

Proof. The demonstration is an extension of the proof of Theorem 2.2. [

The density (2.27) maximizing the entropy is a generalization of the density of the grand canonical ensemble.
If we know that a given system has a number of independent averages (2.26) of functions O;(xz), then the content of
Theorem 2.3 can be used to construct the density that maximizes the entropy. This density can, in turn, be used to
construct a generalized thermodynamics for that system. Grad (1952) and Jaynes (1957) have followed this procedure.

G. MAXIMAL ENTROPY PRINCIPLES.

As attempts to justify Postulate D on dynamical grounds increasingly met with failure, more and more authors
tried to enshrine this hypothesis as a basic principle, often known as the Maximal Entropy Principle. Tolman
(1938) seems to have been one of the first to espouse this point of view. He argued that since the techniques being
used in thermodynamics were statistical in nature, one had to have some principle that would guide the selection of
the proper density out of the unlimited number of possibilities. The Maxmimal Entropy Principle certainly offers one
such guide. Jaynes (1957), Scalapino (1961), and Katz (1967) have written extensively on the use of the maximal
entropy principle in reformulating classical and quantum statistical mechanics, and Lewis (1967) has tried to justify
it on dynamical grounds.

It may appear that the use of the maximal entropy principle gives a great deal (equilibrium thermodynamics)
for very little. Such is surely not the case. In actuality the hardest aspect of the understanding of thermodynamics is
determining which systems, described by densities, will evolve toward equilibrium in such a way that the entropy is
maximized.

H. SUMMARY.

Based on the topics covered in this chapter it is clear that the central questions of what systems can be reasonably
described by densities that approach a limit that maximizes the entropy rank as the most important ones that must
be answered if we are to have any clear and comprehensive understanding of the foundations of thermodynamics
since (Postulate D) we assume that the density maximizing the entropy characterizes the physically attained state of
thermodynamic equilibrium. The treatment of these problems constitutes the remainder of this book.
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PART II.
DYNAMICS AND THERMODYNAMICS
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CHAPTER 3.
INVERTIBLE AND NONINVERTIBLE SYSTEMS.

From the perspective of the previous chapter, the central problem in thermodynamics is “How may one guarantee
that the entropy of a system will increase to its maximum value regardless of the manner in which it was prepared?”
In this chapter we start our investigation of this question.

We first introduce in Section A the concept of a Markov operator, which describes the evolution of densities in a
variety of important physical situations. Frobenius-Perron operators, special types of Markov operators, are touched
on only briefly as they are introduced formally in Chapter 4.

In Section B we turn to a consideration of the behaviour of the entropy of a sequence of densities evolving under
the action of a Markov operator. We first define the conditional entropy, a generalization of the Boltzmann-Gibbs
entropy, argue that it is a reasonable analog of the entropy difference AS, and then show that this entropy is either
stationary (constant) or increasing. Following this it is demonstrated that for an invertible Markov operator the
entropy is always constant, while for noninvertible Markov operators the entropy may increase. This establishes the
not too surprising result that noninvertibility is necessary (though not necessarily sufficient) for the entropy of any
system to increase.

Fixed points of the Markov and Frobenius-Perron operators, known as stationary densities, correspond to states of
(relative or absolute) thermodynamic equilibrium, and several sufficient conditions for the existence of these equilibrium
states are given in Section C.

A. MARKOV OPERATORS.

In every situation considered by theoretical physics, as developed to this point in time, the evolution of densities
may be studied by the use of the linear Markov, Frobenius-Perron, or Koopman operators. This is in spite of the fact
that the underlying system dynamics responsible for the evolution of the density may be highly nonlinear.

The Frobenius-Perron and Koopman operators, introduced formally in the next chapter, are the two most useful
types of operators to describe the evolution of densities in systems for which the dynamics are totally deterministic,
i.e. the dynamics evolve according to a very specific law that in principle permits the accurate specification of a system
trajectory at any point in time.

Example 3.1. As an example in which the evolution of the density is described by the Frobenius-Perron operator,
consider a set of ordinary differential equations operating in R%:

dzr i
dt

=Fi(x) i=1,...,d (3.1)

As shown in Chapter 4, starting from an initial density f(x), the evolution of the time dependent density f(t,z) =
Ptf(z) (here P is a Frobenius-Perron operator) is described by the generalized Liouville equation

of O(fF;)

The Frobenius-Perron and Koopman operators are special cases of the more general Markov operator which may
be used in the description of both deterministic and stochastic systems. Since the first results on invertibility and
noninvertibility that are of importance for an understanding of thermodynamics can be stated for Markov operators,
we start with them and defer the formal introduction of the Frobenius-Perron and Koopman operators to the next
chapter.

Any linear operator P : L' — L' that satisfies

(1) Ptf > 0; and

@) IPfl=IsI
forallt € Rand f >0, f € L' is called a Markov operator. If we restrict ourselves to only considering densities
f, then any operator P which when acting on a density again yields a density is a Markov operator. It is important

to remember that although we usually state results concerning the dynamical behavior of Markov operators in terms
of their action on densities, these results also usually hold for all L' functions.
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Example 3.2. As an example of a system in which the evolution of the density is governed by the operation of a
Markov operator, consider the system of stochastic differential equations

d:vi

=R +o@g,

1,....d (3.3)

obtained when the system of ordinary differential equations (3.1) is perturbed by white noise & of amplitude o(x).
Then, as we consider in Chapter 11, starting from an initial density f(z) the evolution of the time dependent density
f(t,z) = Ptf(z) (now P is a Markov operator) satisfies

of
ot _zi: 63:1 Z 8:1:@63:] ’ (34

a modified form of the generalized Liouville equation (3.2) known as the Fokker-Planck equation. e

Markov operators have a number of useful properties. Since they are easy to demonstrate, we only state them
here and leave their proof as an exercise. In stating these properties, as well as later, we will find it useful to introduce
the notation

fH(z) = max(0, f(z)) and f~(z) = max(0, —f(z)).

There are four properties that hold for every f € L' (note that we are not restricting ourselves to densities, or even
to nonnegative f):

(1) (Ptf( )" < PUfF(x)
(2) (P'f(w))” < P'f(x)
(3) |P'f(2)] < P'If ()]
@ 1P I A

The last is the most important, and it states the contractive property of P. This contractivity implies that during
the iteration of two functions f; and f» by a Markov operator P, the distance between the two functions, f = fi — fs,
can only decrease or stay constant and will never increase.

With the concept of the Markov operator, we can introduce the important notions of fixed points and stationary
densities. If an L' function f. satisfies P! f. = f, for all ¢, then f. is called a fixed point of the Markov operator.
If, further, f. is a density, then f, is known as a stationary density. The importance of stationary densities comes
from the fact that the existence of a stationary density may be associated with a state of thermodynamic equilibrium
using the material at the end of the next section.

Example 3.3. For the system of ordinary differential equations (3.1), the stationary densities f,. are given by the

solutions of
Z 3% =0,

while for the stochastic differential equations (3.3) the f. are the solutions of

62(02f*) _
Z 65[71 _Z Ox;0z; =0

)

In precise analogy with the definitions of dynamical and semidynamical systems in Chapter 1, we may discuss
invertible and noninvertible Markov operators. Given a Markov operator P!, then P! is an invertible Markov
operator if:

(1) P°f = f and
(2) PH(PYf) =Pttt f  forall t,t' € R(or Z).
Clearly, allowing ¢,t' € R or Z is the origin of the invertibility.

IThere is a result concerning the fixed points of a Markov operator P? that will be used a number of times. That is, if P{f. = f.
for all ¢, then Ptf; = fit and Ptf; = f. . The demonstration is quite easy, since if f« is a fixed point of Pt, then fi¥ = (Ptf.)* < PtfF
and [T = (P'fo)= < PYfT. Thus [x[P'fF(2) = fF(2)]de + [ [P'fI(2) — [T (@)]de = [x P|fu(a \dw - fx () dz =[] P*[f.] ||
— || |f«] [I< 0 since P is contractive. Since PtfF — fF >0 and Ptf; — fo >0, then we must have Ptft = fF and PtfT = fo.
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Example 3.4. As an example of an invertible Markov operator, again consider the evolution of the density f described
by the Liouville equation (3.2) for dynamics determined by the system of ordinary differential equations (3.1). Replacing
t by —t in (3.1) gives dynamics described by dz/dt = —F;(z), and the corresponding generalized Liouville equation

(3.2) becomes
3f
Z 65[71 ’

so the equation for the evolution of the density f(¢,z) is simply related to (3.2) by a change of sign corresponding to
the transformation ¢ — —t or, equivalently, to a reversal of the dynamics F; — —Fj.e
If the definition of an invertible Markov operator is replaced by

(1) P°f = f and
(2) PY(P! f) =Pt f  forallt,t € R* (or N),
then P is a noninvertible Markov operator.
Example 3.5. The stochastic differential equation (3.3) with its associated Fokker-Planck equation (3.4) is an example

of an equation governing the evolution of a noninvertible Markov operator. Going through the same exercise of replacing
t by —t in the stochastic differential equation yields a corresponding Fokker-Planck equation

Z 65[71 2 Z 83:183:]

that is different from the original equation (3.4) since the sign of the second term on the right hand side, arising from
the noise, is reversed. As a consequence the equation for the evolution of the density f(¢,z) does not correspond to a
reversal of the dynamics F; — —Fj.e

Example 3.6. To illustrate some of the concepts of this section, choose the discrete time transformation

():{256 O§m<% (3.5)

2(1 — x) %Smgl,
s0 Tt+1 = S(x¢), t > 0. This noninvertible transformation is commonly known as the hat or tent map after the
appearance of its graph shown in Figure 3.1.

To investigate how the tent map (3.5) transforms densities, we first derive an expression for the operator P
corresponding to this transformation. (This operator is actually a Frobenius Perron operator.) To do this, suppose

first of all that we start with some initial density f which is transformed by one application of the map S into a new
density Pf. Then the fraction of the density Pf contained in some interval [0, z] is given by

/ " Pf(s) ds

After one application of the map S the points in [0, ], which have contributed to Pf, had their origin in the coun-
terimage of the interval [0, z] under the action of S. This is denoted by S~1([0,z]) and defined by S—*([0,z]) = {y :
S(y) € [0,z]}. With these comments, it must be the case that the fraction of the density Pf in the interval [0, z] is
equal to the fraction of the original density f in the set S™1([0,z]), or that

sz ds = f(s)ds.
/0 (s)ds /S—l([(),z]) (s)ds

For the tent map it is a straightforward calculation to show that the counterimage of an interval [0, z] is given
explicitly by the union of two intervals:

S7H([0,2]) = [0, 22] U [1 — Lz, 1].

Substituting this into the previous integral expression between f and P gives the result

| Pf(s)dsz/ff(s)dw/llgf(s)ds
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Finally, differentiating both sides of this expression with respect to z gives an explicit form for Pf in terms of f:
Pf(z) = 5[f(52) + f(1 - 32)]. (3.6)

This expression for the Frobenius-Perron operator P corresponding to the tent map (3.5) is a noninvertible
Markov operator. It is a straightforward exercise to show that the uniform density f. = 1 is a stationary density for
the operator P defined by (3.6) since it satisfies Pf, = fi. ®

In closing this section, it is appropriate to point out a useful consequence of the Radon-Nikodym theorem. We
consider two measures p. and v, on a phase space X, and assume that u.(A) = 0 for all sets A C X such that
vi(A) = 0, and vice versa. Then it follows from the Radon-Nikodym theorem that there are unique non-negative
integrable functions g and h such that

va(4) = /A 9(x) ja (dz),

and

we(A) = /Ah(a:) v, (dz).

Now assume that f is a density with respect to the measure p,. This then implies from the above that

/ f(@) pa(dr) = 1= / F@)h(z) va(de),
X X

or that when f is a density with respect to the measure u,, then (fh) is a density with respect to the measure v,.
Conversely, if f is a density with respect to the measure v, then (fg) is a density with respect to pi..
In the special case that one of the measures is the Lebesgue measure, v, = uy, for example, then it is an immediate
consequence of these observations that if f. is the density of the measure u, we can identify h = f, and g = 1/ f..
Now consider a Markov operator P with a stationary density f.. By definition, || Pf ||=]|| f || if f is a density,

which can be rewritten as Pio)
T

pefdo) = |

X

]{((i:)) px(dx) = 1.

x f«(2)
Since (f/f«) is a density with respect to u. we can define a new Markov operator R by
P(hf.)
Rh =
Pf, ’

where h is a density with respect to u. and (hf,) is a density with respect to the Lebesgue measure pr,.

Markov operators, whether invertible or noninvertible, are quite general. In many situations it is possible to talk
about the evolution of densities in physical systems by studying the properties of special types of Markov operators
like the Frobenius-Perron and Koopman operators. On some occasions we may be able to state results that are only
true in a discrete time system. If this is the case, then a note to this effect will be made. Otherwise, it is to be
implicitly understood that all results hold for both continuous and discrete time systems.

B. CONDITIONAL ENTROPY.

Before starting an examination of the behaviour of the entropy of a density under the action of a Markov operator,
we introduce a generalization of the Boltzmann-Gibbs entropy, the conditional entropy. We start with a motivating
example.

Example 3.7. We examine the behaviour of the Boltzmann Gibbs entropy when the system dynamics are governed
by the quadratic map
S(z) =rz(l —x) (3.7)

operating on the phase space [0,1] when r = 4. (It is precisely for this value of r, and no other, that the map is
onto, see Figure 3.2.) This transformation, like the tent map, is not invertible, and indeed can be obtained from the
tent map (3.5) from Sg = h™! 0 Sy o h, where S and Sy denote, respectively, the quadratic and tent maps and the
conjugating function h is given by

h(z) = sin !(1 — 22)

3|

1
2
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% 1 1
ey _ *
h(z) = 5 3 cos(mx).

[Two functions Sy and Sg are said to be conjugate if there exists a transformation h such that Sg = h™! 0 Sy o h,

[1P2)

where “o” denotes composition.]

To construct the Frobenius-Perron operator P governing the evolution of densities by the quadratic transformation
(3.7), proceed as for the tent map. Given a set [0, ] it is straightforward to show that the counterimage of this set
consists of the union of two disjoint intervals:

S7H[0,2]) = [0,5(1 = V(1 - 2)] U [5(1 + /(1 — ), 1].
Thus, the operator P corresponding to the quadratic map (3.7) with r =4 is
_
4./(1 —z)

It is easy to verify that the nonuniform density

Pf(x) = {fG-3vVA-2)+fz+3V(1-2))} (3-8)

1
() = ———— 3.9
) = s (39)
is a stationary density of P defined by (3.8).
Now consider the Boltzmann-Gibbs entropy of a density evolving under the action of the operator P defined by
equation (3.8). Pick as an initial density f =1, so H(f) = 0. Further, with this choice of initial density, from (3.8)

1

Pf(x) = Wi

and the Boltzmann-Gibbs entropy of Pf is given by

H(Pf)=- dxr =log2 — 1.

/01 2¢11——a: o8 {Nll——m]

Obviously, H(Pf) < H(f) = 0, and the Boltzmann-Gibbs entropy has decreased! e

In Chapter 2 we associated the equilibrium thermodynamic entropy S}, with the maximum Boltzmann Gibbs
entropy H (f.), and showed how this and other assumptions led to the fundamental relation (2.16) of equilibrium
thermodynamics. However, as the previous example clearly shows, the time dependent Boltzmann Gibbs entropy may
in fact decrease. This behaviour is unacceptable if we are to be able to draw a connection between the behaviour of
the Boltzmann-Gibbs entropy and the temporal behaviour of thermodynamic entropy. The way out of this difficulty
involves the definition of a generalization of the Boltzmann-Gibbs entropy called the conditional entropy.

If f and g are two densities such that supp f C supp g [supp f denotes the support of f], then the conditional
entropy of the density f with respect to the density g is

[ som (52 s

—/Xf(a:) log {%} dz (3.10)

H.(f|g)

Note that the conditional entropy is always defined, i.e. H, is finite or equal to —oo, since g is a density and 7 is a
bounded function. As is evident from the defining equation (3.10), H.(f|g) measures the deviation between the two
densities f and g.
There are two important properties of H.(f|g):
(1) Since f and g are both densities, the integrated Gibbs inequality (1.5) implies that H.(f|g) < 0. It is only
when f = g that the equality holds.
(2) If g is the constant density of the microcanonical ensemble, i.e. ¢ = 1/ur(X) throughout the phase space
X, then H.(f|g) = H(f) — logpr(X). If the space X is normalized, then g = 1 and H.(f|1) = H(f). This
illustrates how the conditional entropy is a generalization of the Boltzmann-Gibbs entropy.
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From the definition of H.(f|g) it follows that
H(flg) = H() + [ f(e)logg(e) da
~H(f) - Hg) + [ [f@) - g(@)]logg(a) .
X
Replace f by P'f and identify g = f, where f, is a stationary density of P. Then we have
H.(P'f|f.) = H(P'f) = H(f.) + /X[Ptf(r) = f«]log fi(x) dx.

Under the conditions of Theorem 2.2, the Boltzmann-Gibbs entropy H(f) is maximized by the density f. given by
equation (2.4) and
H(f.)=logZ+v<a>. (3.11)

Thus, within the context of Theorem 2.2 we conclude that the conditional entropy will be zero whenever the Boltzmann-
Gibbs entropy is at its maximum value of H(f,) if, in addition, lim; ., P'f = f..

These observations, in conjunction with our formulations of the weak and strong forms of the Second Law,
immediately suggest that the conditional entropy H. be interpreted as the difference between the thermodynamic
entropy and the equilibrium entropy. With only the few tools developed so far, the behaviour of the entropy of
a sequence of densities {P!f} evolving under the action of a Markov operator may be examined in light of our
identification of H. with AS.

The first result along these lines validating this association is a result stating that the conditional entropy is never
decreasing. More precisely,

Theorem 3.1. (Voigt, 1981). Let P be a Markov operator. Then
H.(P'f|P'g) > Hc(flg)

for f >0, and all densities g.

Proof. Though Voigt (1981) has given the full proof, we only consider the situation in which g > 0 so f/g is bounded,
and Ptg > 0, as this is quite easy.

Remembering our comments at the end of the previous section, we define a new operator R : L® — L (remember
that L just consists of bounded measurable functions) by

P'(hg)

Rth =
Ptg

This new operator has the properties that R*h > 0 when h > 0, R'1 = 1, and if g is a stationary density of the
operator P! then gR!h = Pt(hg).

For any function n(u), u > 0, with a concave graph (i.e. " < 0), and a linear operator P! : I? — [P, 1 < p < o0
that satisfies P{1 =1 and P'f > 0, the Jensen inequality

n(P'f) > P'n(f) (3.12)

holds for all nonnegative L? functions f whenever Pin(f) exists (Kuczma, 1985). [Insight into the origin of the Jensen
inequality (3.12) can be obtained by considering Figure 1.1. Pick a point u € [0,v] so we can write u = av with
a € [0,1]. It is a simple matter of geometry to show that n(u) = n(av) > an(v).]

It is easy to show that the operator R! satisfies the Jensen inequality so

n(R'h) > R'n(h). (3.13)
If we take h to be f/g and n(u) = —ulogu, then the left hand side of this inequality becomes

pt pt
1) = =g os 77
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while the right hand side is
f
Pt flog {—
Pt <

Pty Ptg

pt
—Plflog —f > —P!|flog i .
Ptg g
Integration of this expression over the entire phase space gives
' f1P'g) > - [ P{ s | 15] L as
g(w)
= / f(z)log { a: ] dz
(x)

= H.(flg),

Thus (3.13) is equivalent to

which completes the proof. O
Notice in this theorem that if g = f. is a stationary density of P! so P!f, = f., then

He(P'f|f.) > He(f1fs)-

Thus the conditional entropy with respect to a stationary density is always a nondecreasing function bounded above
by Hpae = He(fi|f<) = 0. In examining the behaviour of H.(P!f|f.) we therefore know that it has a limit as ¢ — oo,
though more information about P? is required to define the limiting value.

In the special case that the system is operating on a finite space and the Markov operator P! has the density of
the microcanonical ensemble as a stationary density, i.e. P'1 = 1, then this theorem implies that

H(P'f) > H(f)

for all nonnegative f. Coupling this with the observation from Chapter 2 that on a finite space the maximum entropy
is Hypew = — log [ﬁ], we have

1 t
| 2 2 H)
for all ¢ so, once again, H(P?f) has a limit as t — co.

The conclusions of Theorem 3.1 seem to be precisely the same as those reached by Boltzmann (1909) in his
pioneering work on the mechanical foundations of thermodynamics. However, things are not quite as transparent as
this since to this point nothing has been said about the invertibility or noninvertibility of the Markov operator P
with respect to the behaviour of the entropy. This distinction is crucial for the limiting value of H.(P!f|f.) since the
entropy for an invertible Markov operator is constant and determined by the way in which the system is prepared.
More precisely, for invertible Markov operators we can state the following theorem.

Hu = —log [

Theorem 3.2. If P is an invertible Markov operator, then the conditional entropy is constant for all times t, and
equal to the value determined by the choice of the initial densities f and g. That is,

H.(P'f|P'g) = H.(flg)

for all t.
Proof. Since P is invertible, by Theorem 3.1 it follows that

H. (P f|P*" g) = H.(P" P'f|P" P'g) > H.(P' f|P'g) > H.(f|g)
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for all times ¢ and t’. Pick ¢/ = —t so for all times ¢

H.(flg) > H.(P'f|P'g) > H.(flg)

and therefore
H.(P'f|P'g) = H.(flg)
forallt. O

From this theorem, in any system whose evolution of densities is described by an invertible Markov operator
the entropy is forever fixed at a value determined by the initial state. Or, put another way, the entropy is uniquely
determined by the method of preparation of the system. A specialized form of the proof of Theorem 3.2 was used by
Loschmidt (1876) in his Umkehreinwand (objection based on time reversal) argument against the Boltzmann approach
to statistical mechanics.

Example 3.8. In particular, for the system of ordinary differential equations (3.1) whose density evolves according
to the Liouville equation (3.2) we can assert that the entropy of the density P!f will be constant for all time and will
have the value determined by the initial density f with which the system is prepared. This result can also be proved
directly by noting that from the definition of the entropy we may write

He(f|fe) = —/Rd f(z) {log <i> NP 1} dz

f f
when the stationary density is f,. Differentiating with respect to time gives
dH, df f
=- —log || d 3.14
dt pedi B [ e (3.14)

or, after substituting from (3.2) for (0f/0t), and integrating by parts under the assumption that f has compact

support,
dHc _ f a(f*Fl)
dt /Rd f* zz: ox; d.

Since f, is a stationary density of P?, it is clear from (3.2) that

dH,

dt ’

and we conclude that the conditional entropy H.(P?!f|f.) does not change from its initial value when the dynamics
evolve in this manner. o

Thus, not too surprisingly, we conclude that noninvertibility in system dynamics, as reflected in an evolution
of densities via a noninvertible Markov operator, is necessary for the entropy to increase as the system evolves. We
cannot, however, assert that noninvertibility is sufficient to guarantee this, and indeed it is not the case.

Based on much more specific assumptions, this result concerning the necessity of noninvertibility was well known
to Clausius (1879) and Boltzmann (1909), two of the founders of modern thermodynamic theory. How, then, did
Boltzmann arrive at his conclusion that the entropy would increase to a maximum in a collection of particles moving
under the action of (invertible) Hamiltonian dynamics? Both he and Clausius tried to circumvent this clear problem
[the use of invertible (Hamiltonian) dynamics] by the addition of their Stosszahlansatz (molecular chaos) postulate.
This reduces, quite simply, to a postulate of noninvertibility.

Spohn (1978) has put forward a slightly different interpretation of the conditional entropy defined in (3.10) when
g is taken to be a unique stationary density f.. This is done by starting from a (local phenomenological) balance

equation for the entropy density S

95 _ s+

dt S g,
where Js is interpreted as an energy flow and o (> 0) is an entropy production. In the special case of a system coupled
to a reservoir at a single temperature he identifies S with the Boltzmann-Gibbs entropy H (f), the entropy production

o with
_ dH(f|f)
0= ————"7F"""
dt
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and the energy flow Js with
d
Js = d_/ f(z)log f.(z)dx.
tJx

These relations follow immediately as a special case of the definition of the conditional entropy if one takes g = f.,
writes the definition (3.10) of the conditional entropy in the form

H(f) = - /X f(@)log fu(z) dz + HL(f|f.),

and takes the time derivative. In this interpretation the conditional entropy H.(f|f.) is to be viewed as the entropy
production integrated over time. It is a consequence of Theorem 3.1 that ¢ > 0 and that system noninvertibility is
necessary (though not sufficient) for o > 0.

C. EXISTENCE OF EQUILIBRIA.

As we have observed in the early part of this chapter, a stationary density f. of a Markov operator P satisfies
Ptf, = f, for all times t. As a consequence, the existence of a stationary density f. may be put into a one to one
correspondence with a state of thermodynamic equilibrium. Thus, in our attempts to ultimately examine the various
ways in which systems approach equilibrium states, and whether or not these routes to equilibrium correspond to
situations in which the entropy increases to a maximum, it is important to first have some concept of the conditions
sufficient to ensure the existence of at least one state of thermodynamic equilibrium. That is the goal of this section.

Throughout, use will be made of properties of the system state density average, defined by either

t—1
1
Af = ;ZP’“f (3.15a)
k=0
in the discrete time case, or by
1 rt
Af = ?/ Pk fdk (3.15b)
0

in the continuous time case, where P is a Markov operator.
First, note that from the definition of A;f in the discrete time case we can write the difference of two system
state density averages as

Af — AP = (f~ ')

$0
| Aef — AP f <

| =
~ | N

LA+ 0PN <S A

by the triangle inequality (|| f + ¢ |I<|| f || + || g ||) and the contractive property of Markov operators. Similarly, in
the continuous time case for any € > 0 we obtain

. 2e
A = AP IS I FI-
Taking the limit as ¢ — oo in both cases shows that
lim || Atf - AtPEf ||: 0
t—o0

where € = 1 in the discrete time case.
As usual, on a measure space (X, A, uu,) the scalar product of an L' function f with a bounded measurable
function g € L*°, denoted by < f,g >, is defined by

<fig>.= /X F(@)g(z) pa (de).
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Note that if p.(dz) is absolutely continuous with respect to the Lebesgue measure uy (dz) = dz, then

<fﬂ>fiLf@M@ﬁm®%=<fﬂﬂ>,

where the omission of a subscript “L” on the right hand term simply means that it is the scalar product with respect
to the Lebesgue measure. Furthermore, a sequence {f;} of L' functions f; is said to be weakly convergent to an L'
function f if

lim < f,9g >=<f,g> for all g e L*°.

t—o00

Then we have the first sufficient condition for the existence of a state of thermodynamic equilibrium with a corre-
sponding stationary density f. of the Markov operator describing the evolution of system states.

Sufficient Equilibrium Condition (SEC) 3.3. Given an initial system density f evolving under the action of a
Markov operator P and a system state density average A.f, if there is a subsequence {A,, f} of the sequence {A.f}
that is weakly convergent to a density f., then P'f. = f. for all times t and a state of thermodynamic equilibrium
eTists.

The proof follows immediately from the observation that since P is a linear operator, P{A,, f = A,, P'f and
thus {A,,Ptf} is weakly convergent to P!f,. However, {A,, f} and {A,, P!f} have the same limit so P!f, = f..

Let F be a sequence of L? functions. F is called weakly precompact if every sequence {f;} of functions f; € F
contains a weakly convergent subsequence {f,,} converging to an L? function f. Furthermore, the sequence {f;} is
called strongly convergent to an LP function f if

dim | fi— f =0,
[ee]

The concept of weak precompactness and strong convergence allow us to establish a second sufficient condition for the
existence of a state of thermodynamic equilibrium. It is a special case of a result of Kakutani and Yoshida known as
the Abstract Ergodic Theorem.

Sufficient Equilibrium Condition (SEC) 3.4. If, for all initial system densities f evolving under the action of a
Markov operator P, the sequence of system state density averages {Aif} is weakly precompact, then {A;f} is strongly
convergent to a stationary density f. and a state of thermodynamic equilibrium exists.?

How does one test for the existence of this state of thermodynamic equilibrium using the weak precompactness
condition of SEC 3.47 One test for weak precompactness is (Dunford and Schwartz, 1957):

Weak Precompactness Condition (WPC) 1. Any set F of L' functions f satisfying |f(z)| < g(x), where g(z) > 0
is also an L' function, is weakly precompact.

Thus, if f is a density then identifying an upper bound L' state function g ensures that F is weakly precompact.
This upper bound criterion for weak precompactness immediately leads to a third sufficient condition for the
existence of a state of thermodynamic equilibrium. To see this, first assume that for a system in which densities f
evolve under the action of a Markov operator P we have P!f < g for all times ¢. As a consequence, 0 < A;f < g so
|A: f| < g and thus the sequence {A;f} is weakly precompact. An application of SEC 3.4 then completes the proof of

Sufficient Equilibrium Condition (SEC) 3.5. If, for an initial density f evolving under the action of a Markov
operator P there is an upper bound state function g such that Ptf < g for all times t, then P has a stationary density
f+ and a state of thermodynamic equilibrium is guaranteed.

To this point there was no restriction on the phase space X in which our system is operating. If, however, the
phase space X has finite measure then there is a second criterion for weak precompactness:

2To prove this, first note that since {A:f} is assumed to be weakly precompact, there must exist a subsequence {Aq, f} that is
weakly convergent to a function f. that satisfies Ptf. = f. by SEC 3.3. Write f = (f — f«) + f«. For € > 0 it is a consequence of the
Hahn-Banach theorem that there is an L' function g such that f— f« can be written as f — f« = Ptg—g+r, wherein || 7 ||< e. Then we have
Arf = Ag(Ptg—g)+Ar+Aq f«. Since P! f. = f., it follows that A¢f« = f« and thus || A¢f—fu [|=|| Ae(f—fx) [|<]] Ae(Ptg—g) || + || Aef ||-
By our initial observations after the definition of the system state density average, || A¢(P*g— g) || is strongly convergent to zero as t — oo,
and || A¢f ||<]| r ||< € by assumption. Thus for sufficiently large times ¢ we have || A¢f — f« ||< € and {A¢f} is strongly convergent to
f« since e is arbitrary. To show that f. is a density, note that if f is a density we have Ptf > 0 and || Ptf ||=|| f || for all times t.
Consequently, A;f > 0 and || A¢f ||=1 and since {A;f} is strongly convergent to f« it follows that f. is a density.
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Weak Precompactness Condition (WPC) 2. If u(X) < oo and M > 0, then the set of all L' functions f whose
L? norm for some p > 1 satisfies || f ||L»< M is weakly precompact.

Now assume that || P f ||< M for all times ¢ so that || A;f ||< M by the triangle inequality. This observation in
conjunction with the Abstract Ergodic Theorem (SEC 3.4) and the second criterion for weak precompactness, WPC2,
demonstrates

Sufficient Equilibrium Condition (SEC) 3.6. If there is some initial density f evolving in a finite phase space X
under the action of a Markov operator P, and a positive constant M and p > 1 such that || Pt f ||»< M for all times
t, then P has a stationary density f. and a state of thermodynamic equilibrium exists.

A third condition for weak precompactness which we will use later is given by

Weak Precompactness Condition (WPC) 3. A set of L' functions F on a finite phase space X is weakly
precompact if and only if: (a) || f ||< M < oo for oll f C F; and (b) For every positive € there is a § > 0 such that

/A|f(x)|,u(dm)<e if w(A)<dé and feF.

None of these four sufficient conditions for the existence of a state of thermodynamic equilibrium offer any insight
into the uniqueness of that state. If it is known that the state is unique and thus that the stationary density is likewise
unique, then the following theorem tells us that the stationary density f. is the long time limit of the system state
density average for all initial system preparations.

Theorem 3.7. For a system in which densities evolve under the action of a Markov operator P with a unique positive
stationary density f. > 0 over the entire phase space X,

lim Atf = f*
t—o00

for all initial system preparations characterized by an initial density f.>

D. SUMMARY.

The results of this chapter are essential for our investigation of the foundation of the dynamics responsible for
the operation of various forms of the Second Law of Thermodynamics.

We have first introduced Markov operators, which control the evolution of densities under the action of system
dynamics. This is important because densities characterize thermodynamic states, and in particular stationary densities
of Markov operators define states of relative or absolute thermodynamic equilibrium.

Next, we have introduced the concept of conditional entropy, which is a generalization of the Boltzmann—Gibbs
entropy. Though Theorem 3.1 demonstrates that entropy is always a nondecreasing function, we have also shown that
it is only when densities evolve under the action of a noninvertible Markov operator that the entropy may increase
(Theorem 3.2). Thus, noninvertibility is necessary (though not necessarily sufficient) for system entropy to increase.

Finally, four sufficient conditions for the existence of a state of thermodynamic equilibrium have been given
(SEC 3.3 through 3.6) based on various convergence properties of the system state density average. These sufficient
conditions provide no insight into the possible uniqueness of this state of equilibrium. However, if it is known that the
equilibrium state is unique and characterized by a strictly positive stationary density, then Theorem 3.7 tells us that
this unique density will be the long time limit of the system state density average for all initial system preparations.

In the next chapter, we turn to a consideration of the necessary and sufficient conditions for the existence of a
unique state of thermodynamic equilibrium characterized by a unique stationary density f, of the Markov operator.

3In the case when the system is prepared in such a way that f/f. is bounded the proof is almost trivial since, with ¢ = sup(f/f«),
we have P!f. < Pt(cfs) = cP!fs« = cf« 50 Atf < cArfe = cf« and {A;f} is weakly precompact and convergent to a stationary density by
the Abstract Ergodic Theorem (SEC 3.4). Since f« is unique by assumption, the proof is complete. When the initial system preparation
is such that f/f« is not bounded the proof is technically more complicated and may be found in Lasota and Mackey (1985, pages 85-6).
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Figure 3.1. The graph of the tent map (3.5).
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Figure 3.2. The graph of the quadratic map (3.7) when r = 4.
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CHAPTER 4.
ERGODICITY AND UNIQUE EQUILIBRIA.

In the last chapter we proved the necessity of irreversibility for increases in entropy to take place. Then conditions
sufficient to guarantee the existence of relative states of thermodynamic equilibrium were given. The two interrelated
questions of the existence of a unique state of thermodynamic equilibrium, and the global approach of the entropy to
an absolute maximum, were not addressed.

This chapter provides a complete answer to the first of these questions by giving a necessary and sufficient
criterion for the existence of a unique state of thermodynamic equilibrium as characterized by a unique stationary
density fi.

We start with a formal development of the Frobenius-Perron and Koopman operators in Sections A and B, having
given an informal introduction to the Frobenius-Perron operator when discussing the tent map in Chapter 3. These
operators are specific types of Markov operators appropriate for describing the evolution of densities by nonsingular
dynamical or semidynamical systems. Section C briefly considers the subject of Poincaré recurrence.

We then define the property of ergodicity for a system, which is both necessary and sufficient to guarantee the
existence of a unique state of thermodynamic equilibrium. We close with a proof that ergodicity, and hence the
uniqueness of a state of thermodynamic equilibrium, is necessary and sufficient for the weak (Cesaro) convergence of
the sequence {P!f} to a unique stationary density f. for all initial densities f. In spite of this convergence property,
ergodicity is insufficient to guarantee that the entropy will increase to its unique maximum value.

A. THE FROBENIUS PERRON OPERATOR.

To formalize the development of the Frobenius-Perron operator introduced in the previous chapter, a few new
concepts are needed. A transformation S; is said to be measurable if S;'(4) C X for all A ¢ X. Furthermore,
given a density f. and associated measure j., a measurable transformation S; is nonsingular if p,(S;*(A)) = 0 for
all sets A such that u.(A4) = 0.

If S; is a nonsingular transformation, then the unique operator P! : L' — L' defined by

/APtf(:n)dm:/Sﬂ (@) do (4.1)

v (4)

is called the Frobenius-Perron operator corresponding to S.

From our comments in Chapter 3 and the formal definition, if f is a density, then equation (4.1) defining the
Frobenius-Perron operator has an intuitive interpretation. Start with an initial density f and integrate this over a
set B that will evolve into the set A under the action of the transformation S;. However, the set B is S, *(A). This
integrated quantity must be equal, since S; is nonsingular, to the integral over the set A of the density obtained after
one application of S; to f. This final density is Pt f.

The fact that the Frobenius-Perron operator is unique is a straightforward consequence of the Radon-Nikodym
theorem. It is clear from the definition that the Frobenius-Perron operator is a Markov operator, and so P! is a
linear contracting operator. Also, if f > 0 then P'f > 0 and || P'f ||=|| f ||. Finally it is easy to show that if
Spt = Sgo---08;, and P and P? are, respectively, the Frobenius-Perron operator corresponding to S,; and Sz, then
pnt :Pto---opt — (pt)n

An important property of the Frobenius-Perron operator which we will have occasion to use is contained in:

Property 4.1. If Pt is the Frobenius-Perron operator associated with a nonsingular transformation Sy, then for all
nonnegative functions f

supp f C S[l(supp Ptf)

(supp denotes support). More generally for every set A, Pt f(z) =0 for all elements x € A if and only if f(z) =0 for
allz € S; ' (A).

Proof. By definition

/APtf(a:) dx = /St_l(A)f(a:) dx

/XIA(JE)Ptf(m)dm:/)(15;1(A)(a:)f(m)dm.

SO
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Thus if P!f(z) = 0 on A then f(z) = 0 on S, '(A) and conversely. Take A = X \ supp (P'f) so P!f(z) = 0
for all z € A and thus f(z) = 0 for all z € S;'(4). This in turn implies that supp f C X \ S; *(4). Since
S; 1 (A) = X\ S, (supp P!f) the proof is complete. [

Sometimes (as for the tent and quadratic maps of Examples 3.6 and 3.7) the implicit defining equation (4.1) for
the Frobenius- Perron operator allows one to obtain an explicit formula for P!. For example if A = [a,z] then (4.1)
becomes

/ P f(s) ds:/ f(s)ds (4.2)
a 57 (la,a])
which, after differentiating, becomes
d
Ptfa::—/ f(s)ds. 4.3
@ =g o T (13)

This process may be carried even further if the transformation is invertible so S; * = S_; and S_; has a continuous
derivative with respect to . Then,

S{l([a,x]) = [S—t(a)vs—t(x)]a
and (4.3) becomes
dS,t(iL’)
dr |’

P'f(2) = F(S (@) \

(4.4)

An extension of (4.4), valid for higher dimensional spaces X = R? when S; is invertible, may also be derived. We
first of all require a change of variables formula for integrals. If S; is a nonsingular transformation and f a bounded
integrable function, then for every set A we have

[ fs@ e [ sons = [ 0@,

wherein the measure fhgrt is
g1 (B) = u(S; (B)):

and the density of the measure frgo1 with respect to the Lebesgue measure pr, is J ', i.e.

hi(S74(B)) = /B 7 () de.

From this it is relatively straightforward to obtain a generalization of equation (4.4) valid for any invertible trans-
formation S; operating in R?. First consider the defining equation for the Frobenius-Perron operator corresponding

to an invertible S;:
[ Pr@as= [ f@as,
A S_i(A)

and change the variables on the right hand side by using y = S;(z) so
[ t@de= [ fs-w) W)
S_+(A) A

Thus we have
/ P! f(x) dir = / F(S—i(@) T () de
A A
Ptf(z) = £(S_o(a)) T~ (2). (4.5)

Given a density f and associated measure pf, then a measurable transformation S; is said to be f measure

preserving if
pr (ST (A)) = py(A4)

for all sets A. Measure preserving transformations are necessarily nonsingular. Since the concept of measure preserva-
tion is not only dependent on the transformation but also on the measure, we alternately say that the measure py is
invariant with respect to the transformation S; if S; is f measure preserving.
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Example 4.1. We can either say that the tent map (3.5) preserves the Lebesgue measure or that the Lebesgue
measure is invariant with respect to the tent map. In an entirely analogous fashion, we say that the quadratic map
(3.7) with r = 4 preserves the measure defined by

pele) = [ .(5)ds

0

where the density f. is the stationary density (3.9) of the Frobenius- Perron operator P, given by (3.8), corresponding
to the quadratic map. If A = [0, z], this takes the more explicit form

T

1 1
— —sin” (1 — 2z).
—sin ( x)

N | =

1
5=
1—3s)

/J’*(x): 0 71'\/8(7

We also express this by saying that the measure u, is invariant with respect to the quadratic map. Note that the
quadratic map does not preserve the Lebesgue measure, and that . is just the conjugating function h of Example 3.7
used in transforming between the quadratic and tent maps, Sg = u; ' o St o fi..®

It is possible to draw a connection between states of thermodynamic equilibrium, invariant measures and sta-
tionary densities of the Frobenius-Perron operator through the following theorem.

Theorem 4.2. Let S; be a nonsingular transformation and P' the Frobenius-Perron operator associated with S;.
Then there exists a state of thermodynamic equilibrium whose density f. is a stationary density of Pt if and only if
the measure i,

szLﬂ@M

is invariant with respect to S;.

Proof. If ju, is an invariant measure, then by definition p.(A) = p.(S; *(A)) or

[ r@a= [ rwa= [ Preae

which follows from the definition of the Frobenius-Perron operator. Thus P! f, = f. and f, is a stationary density. The
converse is equally easy to prove. Note in particular that the Lebesgue measure is invariant if and only if P{1 =1. O

This theorem is important because of the three way connection it draws between the existence of a state of
thermodynamic equilibrium and the attendant stationary density f., the invariance of the associated measure p,, and
the f. measure preserving nature of S;. In particular the density f. = 1 of the microcanonical ensemble corresponds
to a state of thermodynamic equilibrium if and only if the system dynamics preserve the Lebesgue measure. That is,
systems preserving the Lebesgue measure may be appropriately described by the microcanonical ensemble. Of course
it is important to realize that this theorem says nothing about either the uniqueness of this state of thermodynamic
equilibrium or of the invariant measure corresponding to it.

B. THE KOOPMAN OPERATOR.

Next, we turn to a definition of the Koopman (1931) operator, which bears an important relationship to the
Frobenius-Perron operator. If S; is a nonsingular transformation and f is a bounded measurable function, i.e.,
f € L*, then the operator U : L>® — L* defined by

U'f(z) = f(Se(2))

is called the Koopman operator with respect to S;.

As with the Markov and Frobenius-Perron operators, the Koopman operator has several easily demonstrated
properties. The first is that U? is a linear operator, while the second is that [|Uf||p~ < ||f||ze so U is a contracting
operator. The most important and useful, however, is that the operator U? is adjoint to the Frobenius-Perron operator,
i.€.

< Plf g>=<fUlqg>. (4.6)
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(To demonstrate that U? and P! are adjoint, check the property first with g(z) = 14(z). This gives the defining
relationship for the Frobenius-Perron operator. Since it is true for characteristic functions it is true for simple functions
and thus for all g.)

Having introduced the Koopman operator we can now state, without proof, a famous theorem due to Birkhoff
(1931) that gives information about the behaviour of trajectories of measurable transformations with an invariant
measure. We introduce this theorem not because it is central to our investigation of the foundations of statistical
thermodynamics, but rather because of the historical interest of a consequence of this result, given in Theorem 4.6
after our definition of ergodicity. Hence we have the following.

Theorem 4.3. (Birkhoff Individual Ergodic Theorem.) Let S; be a measurable transformation operating in a phase

space X, and g be an integrable function. If there is an invariant measure u, then there exists a second integrable
function g* such that

1

g*(z) = lim -

t—oo t

3" g(Si(a), (4.7
k=0

i-e. the time average of g along a trajectory converges to a definite value g*.

The limiting value g* of the time average is in fact a fixed point of the Koopman operator. This is easily seen
by replacing x by S;(x) in equation (4.7) to immediately give the relation g*(x) = g*(S;(x)) = Utg*(z), thus finishing
the demonstration.

Rewriting equation (4.6) in the integral form

/g(m)Ptf(a:)da::/ f(z)g(Se(z)) dx
X X

gives some insight into the relation between the Frobenius- Perron and Koopman operators. If for some set A in the
phase space X we pick
f(z)=0 for all z¢ A and 9(x) = 1x\s,(4)(2),

then the integral form of (4.6) may be written as

/ ]_X\St(A) (m)Ptf(a:) dx = / f(:L’)lx\St( 4)(St(1')) dzr
X «
- /A f(l‘)lX\Si(A)(St(m)) dr.

Since Si(x) ¢ X \ S¢(A) for z € A, the right hand integral is clearly zero. Also, the left hand integral is simply the L,
norm so ||1x\s,(4)P'f|| = 0, implying that 1x\g,(a)(z)P'f(z) =0 or
P'f(z) =0 for x ¢ Si(A).
Thus the Frobenius-Perron operator P! transports the function f, supported on the set A, forward in time to a
function supported on some subset of S;(A) [see Property 4.1.]. Consequently densities are transformed by P! in a

way analogous to the way points are transformed by S;.
Next consider the Koopman operator Ut f(z) = f(S;(x)) with the same f so

f(Se(x)) =0 if  Si(x) ¢ A,
implying that
Ulf(z)=0 for x ¢ S, (A) (4.8)

Therefore Ut can be thought of as transporting the density f supported on A backwards in time to a density supported
on a subset of S;'(A).
If the system S; is invertible and nonsingular, then these observations are even more transparent since S; ' (x) =
S_¢(z) and (4.5) becomes
P'f(x) =U""f(x)J " (2) (4.9)

which makes our comments connecting the actions of the Frobenius- Perron and Koopman operators more explicit.
Note that if the transformation S; is Lebesgue measure preserving then J=t(x) = 1 and (4.9) becomes

Plf(x) =U " f(x). (4.10)
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C. RECURRENCE.

For transformations S; with an invariant measure operating in a phase space X, a point z in a subset A of the
phase space X is called a recurrent point if there is some time ¢ > 0 such that Si(z) is also in A. An important
result, which deals with recurrent points, has become known as the Poincaré recurrence theorem.

Poincaré Recurrence Theorem. Let S; be a transformation with an invariant measure . operating in a finite
phase space X, p.(X) < 0o, and let A be a subset of X with positive f. measure. Then there exists a point x in A
that is recurrent.

Proof. (Adapted from Petersen [1983]). Assume the contrary, i.e. that there are no recurrent points in A. This then
implies that S; '(4) N A = () for all times ¢ > 0, and thus S; '(4) N S, *(A) = 0 for all positive times ¢ # ¢'. Since S;
is measure preserving this implies that . (S; ' (A4)) = p.(S; " (A)) and this, coupled with the pairwise disjoint nature
of the sets S; ' (A) and S;'(4), leads to

D (A = (S HA) = (U Stl(A)> < s (X) < 0.
t=0 t=0 t=0

The only way in which this inequality can be satisfied is for u.(A) to be zero, which is a contradiction. Thus we
conclude that A contains recurrent points. O

The proof of the Poincaré recurrence theorem also demonstrates that the set of nonrecurrent points has measure
zero, so almost every point is recurrent! Furthermore, repeated application of the theorem tells us that a recurrent
point of A will return to A infinitely often.

Following Loschmidt’s 1876 objections to Boltzmann’s attempt to justify thermodynamics using (invertible)
classical mechanics, this recurrence result was used by Zermelo (1896) as the basis for an attack on Boltzmann’s
celebrated “H theorem” concerning the behaviour of the entropy. In what has become known as the Wiederkehreinwand
(objection based on recurrence). Zermelo argued that, because of recurrence, almost all points would constantly revisit
the same areas of phase space and thus it would be impossible for the entropy to ever monotonically increase to its
maximum.

Zermelo was right in his assertion that the entropy of a system whose dynamics are governed by Hamiltons
equations, or any set of ordinary differential equations for that matter, cannot change as we have proved in Example
3.8. He was wrong, however, to base his argument on the result of the Poincaré recurrence theorem. The fallacy in
the argument is to be found in his implicit assumption that densities (on which the behaviour of the entropy depends)
will behave like points and also be recurrent as, perhaps, in the Spectral Decomposition Theorem 6.1. Just because
points are recurrent, densities need not be, and indeed in Chapter 7 we give a necessary and sufficient condition for the
entropy of a system to increase to its maximum that is completely compatible with the Poincaré recurrence theorem.

D. DENSITIES AND FLOWS.
Given a set of ordinary differential equations

dz; .
d_tz = Fi(z), i=1,....,d (4.11)
operating in a bounded region of RY, it is possible to derive an evolution equation for P! f(x) by using the invertibility
of (4.11) in conjunction with (4.5). However, it is much easier to derive an evolution equation for U f(x), and then to
use the adjointness property (4.6) to obtain an analogous result for P! f(z).

Thus, start with the definition of the Koopman operator written in the slightly more explicit form

U f(2°) = f(Si(2?)),
where 2° is the d-dimensional vector of initial conditions. From this we have

U'f(a%) = f(a%) _ f(Se(a®)) = f(a°) _ f(z(t) — f(=°)

t t t ’
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where z(t) = S;(2°). By the mean value theorem, there must be a constant 6 satisfying 0 < # < 1 such that
U () — £(a)
S = B ety
= 3 fu (D) e 00)
= Zfzi Sor(z°))Fi(Spe(2°)).
[Here we have used the convention f, = (0f/0x)]. Taking the limit as ¢ — 0 and noting that f(z) = f(S;(z%)) =
Ut f(2°) we have
Fi(z 4.12
Z 8351 (4.12)

which is the desired evolution equation for f(x) = U®f(z").
Now, to obtain the analogous evolution equation for P!f(x) use the adjointness relation (4.6) with a function g
that has compact support. Then it is straightforward to show that

<Ptft—f > <f,Utg g> (413)

Taking the limit as ¢ — 0 in (4.13) in conjunction with (4.12) gives
ty (7,221 ><LZF >
g
Fy(z)==
/ I Z o,
Ra
T Z /Rd al’l

&rz g 61‘,
[In going from the third to the fourth line we have used the fact that g has compact support.] The last line is simply
(> fF;) p
- awz ’ ’

P~ f(@) _ 9f()
t—0 t ot

we have the following evolution equation for f(t,z) = P!f(x):

and thus, with

of O(fF;)
Uy A, (4.14)

As noted in Chapter 3, we call this the generalized Liouville equation.

The partial differential equation (4.14), describing the temporal evolution of the density f by the Frobenius Perron
operator P!, is quite familiar from mechanics. In fact, from Theorem 4.2 we can obtain a necessary and sufficient
condition for a measure u. to be an invariant measure with respect to the system of ordinary differential equations
(4.11). Since ps will be invariant if and only if f. is a stationary density of P!, from (4.14) this reduces to

0=>3" a(gfi), (4.15)

i
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which is immediately recognized as Liouville’s theorem.
More specifically, if we wish to know when the Lebesgue measure

uL(A):/d:rl ---dmd:/ dz,
A A

with its associated density f. = 1, is invariant, simply replace f. in (4.15) by 1 to give

OF;
Z 837@ - 0’

which is sometimes called Liouville’s equation.

Example 4.2. If the system of ordinary differential equations (4.11) is a Hamiltonian system,

do _OHdp M
it~ 9p;’ it~ oq’ T

where s = 2d, and p and ¢ are the momenta and position variables and H(p, q) is the system Hamiltonian, then (4.14)
takes the form

of i{@f@?—[ of oH
ot | 0q; Op;  Op; Oq; |
From this it is clear that Hamiltonian systems always preserve the Lebesgue measure. However, this is not the only
invariant measure as may be easily shown by taking an arbitrary function G of the system Hamiltonian  satisfying
G(H) > 0 and fRs G(H)dH =1 so G is a density. Then it is once again possible to show that Hamiltonian systems
preserve the measure pg(z)- ®

E. ERGODICITY.

We are ready to begin consideration of the characteristics the dynamics S; must have to guarantee the existence
of a unique state of thermodynamic equilibrium that maximizes the entropy. The density maximizing the entropy
should also be an equilibrium density, so our search is really one for the properties of S; necessary to guarantee that
a density f. is a stationary density of the Frobenius-Perron operator corresponding to S;, i.e. Ptf, = f., and that f,
is unique.

We start by defining a few new terms. First, any set A such that S, *(A4) = A is called an invariant set. Given
a density f. on a space X, any invariant set A such that p.(A) =0 or p.(X \ A) =0 is called trivial.

A nonsingular transformation S; is said to be f, ergodic if every invariant set A is a trivial subset of the phase
space X, i.e. either u,(A) = 0 or p.(X \ A) = 0. If the phase space is finite and f, is the uniform density of the
microcanonical ensemble, then we say that S; is uniformly ergodic instead of f, ergodic. In the older physics and
mathematics literature, ergodic systems were often called metrically transitive or metrically indecomposable.

Example 4.3. Probably the simplest example of a physical system that is ergodic is a one dimensional harmonic
oscillator? (O. Penrose, 1979), but to illustrate the property of ergodicity, we consider a dynamical system in which
momentum (p) and position (¢) evolve according to

dp dgq

a _ i 4.16
T—a, =8 a#s (4.16)
on a unit torus (doughnut). For concreteness, we could imagine that the dynamics (4.16) describe the behaviour of a
single gas particle (atom or molecule). Imagine cutting the torus apart in both directions and laying it down in the

4Although the one dimensional harmonic oscillator is ergodic, a system of d > 1 independent autonomous oscillators (p and q are,
respectively, momentum and position):
dpy, dgy
E:_w%qu E:pkn ]{}:1,”-,(1

is ergodic if and only if the frequencies wy, are linearly independent (Lasota and Mackey, 1994, Example 7.7.1 and Remark 7.7.1).
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plane so we have a phase space X = [0,1) x [0,1). Then, starting from any initial point (go,pp) in X, the trajectory
of our particle, emanating from that initial position, is given by

p(t) =po +at, q(t) =qo+ St (mod 1) (4.17)

as depicted by the solid lines in Figure 4.1.

If either « or 3 is irrational, then (4.16) is an example of a uniformly ergodic transformation [Arnold and Avez,
1968]. If, instead of examining the trajectory behaviour of a single particle, we look at the motion of many individual
particles with initial conditions located in some subset of the phase space X (as an approximation to the behaviour of
a density), then we obtain the behaviour of Figure 4.2 in which is shown the first six iterations of 10* particles with
initial conditions located in the subset [0, %] x [0, %] by the uniformly ergodic dynamics

Sp,q) =(V2+p,V5+q)  (mod 1),

obtained from (4.17) by restricting the time ¢ to the set of nonnegative integers and picking o = v/2, 8 = V/5 .
This clearly illustrates an important property that ergodic dynamics may display, namely particles with nearby initial
conditions may remain close to one another in spite of the fact that in the limit as ¢ — oo the entire phase space has
eventually been visited.

This example of an ergodic transformation (if o and/or § are irrational) can also be viewed as a Hamiltonian

system

dp  OH dqg OH

dt  9q’ dt Op
where the Hamiltonian # is given by H = —aq + Bp. Note, however, that substitution of the explicit expressions for
p(t) and ¢(t) from (4.17) into the Hamiltonian gives H = Bpp — aqo, and thus the “energy” of this system (ergodic or
not) is forever determined by its initial values. o

By themselves, neither the definition of ergodicity nor its illustration are terribly instructive with respect to

the question of how one might prove ergodicity and the relation of ergodicity to the existence of stationary densities
and to states of thermodynamic equilibrium. The following two results help clarify the property of ergodicity and its
connection with the uniqueness of a state of thermodynamic equilibrium. First we have:

Theorem 4.4. Let S; be a nonsingular transformation and Ut the associated Koopman operator. Then S; is ergodic
if and only if the fized points of Ut are constant functions, i.e. if the only solutions of

9(St(z)) = g(x) (4.18)
are constants.

Proof. Assume that S; is ergodic but that g is not constant. Then there is some constant r such that the sets
A={x:g(z) <r} and B={z:g(z) >r}
have positive measure. A is invariant since
Sy H(A) = {z : Si(x) € A} = {z: g(Si(2)) <7}
={z:g9(z)<r} =4,
as is B. Since A and B are invariant, S cannot be ergodic which is a contradiction so ¢ must be constant.

Now assume that S; is not ergodic but that (4.18) is only satisfied by constant g. Then by definition there must
be a nontrivial invariant set A. Set ¢ = 14. Since A is nontrivial g is not constant. Further since A is invariant
A= S, '(A) and

9(Si(@)) = 14(S: (@) = Ly 14y (@) = g(a),
so (4.18) is satisfied by a nonconstant function which is a contradiction. Thus S; must be ergodic. O

This result can sometimes be used to prove the ergodicity of a given system, for example to show that the system
(4.17) is ergodic if a # B and if @ and/or f3 is irrational.’

The second result is even more important as it establishes a one to one correspondence between the uniqueness
of a state of thermodynamic equilibrium and the ergodicity of the dynamics.

5To do this we set
S(p,q) = (p+at,g+pt)  mod1
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Theorem 4.5. Let S; be a nonsingular transformation and P the corresponding Frobenius Perron operator. There
is a unique state of thermodynamic equilibrium with associated stationary density f., P f. = f. if and only if S; is
ergodic.

Proof. Assume that f, > 0 is the unique stationary density of P?, but that S; is not ergodic. If S; is not ergodic there
must exist a nontrivial set A, which is invariant so that S;*(A) = A. If we also set B = X \ A then S;'(B) = B.
Since A and B are clearly disjoint we can write f. in the form f. = 14f. + 1pf.. Furthermore since P! fx = f, we
have

Pt(lAf*) + Pt(le*) = lAf* + le*

Since 1pf. is equal to zero on the set A = X \ B = S, *(A), by Property 4.1, Pt(1pf.) is also zero on A and we
conclude that
P'(1af.) =1af. and  P'(1pf.) = 1gf..

Since A and B are clearly disjoint this means that there are two stationary densities of P, 14 f, and 1 f., which is a
contradiction. Thus S; is f. ergodic.

Next, assume that S; is ergodic but that f; and f, are different stationary densities of P*. Let g = f; — f» so it
is clear that P'g = g and, by our observations in footnote 1 of Chapter 3, we have

Pigt =g* and Plg~ =g~ (4.19)

Since fi and f, are different densities it is also the case that g # 0 and g~ # 0. Define two sets A and B by
A=suppg" ={z:9"(z) >0} and B =supp g~ = {x : g~ (x) > 0}. A and B are obviously disjoint and have
positive measure. From the relations (4.19) and an inductive extension of Property 4.1. it is also clear that

AcC S HA) c---c S (A,
and
Bc S (B)c---c S;"(B).

Since A and B are disjoint, S; "(A) and S, "(B) are also disjoint for n > 0 and, as a consequence, the sets
o0 o0
A =|JS™4)  and B =|]S(B)
n=0

and use the fact that the phase space X = (p, ¢) is periodic in p and ¢ with period 1 to expand the function g in (4.18) in a Fourier series:

g(p7q) = Z akpquQﬂl(kpp+qu),
kp,kq

where the summation is taken over all possible integers ky, kq. Substituting this series representation for g into (4.18) we obtain

2mi(kpptkqq) 2mi(kpptkqq) 2mit(kp+kq)
Z Okpkq© - Z Okpkq© € :
kp,kq kp,kq

Thus, for all t and all kp, kq; we must have
Uephy = Qppkg e ™ Ertha), ()

This last expression can be satisfied under two circumstances: Either when ag,r, = 0, or when the integers kp and kq are such that
kpa + kg = 0. (**)
If @ and (3 are rational, then we can always find nonzero integers kp and kg such that (*) is satisfied. As a consequence, the nonconstant
function )
g(p7q) = Z akpkqe27”(kpp+qu)7
kp.kq

satisfies g(p,q) = Utg(p,q) = g(St(p,q)), and S; is not ergodic by Theorem 4.4. Conversely, if @ and/or 3, a # 3, are irrational then the
only integers kp and kq for which (**) is satisfied are the trivial values kp = kg = 0 which means that o and 8 are linearly independent.
In this case the only Fourier coefficient that can be nonzero is ag,o so that the function g(p,q) = ao,0 is a constant. Then, since there are
only constant solutions g to the equation (4.18) we have proved the ergodicity of (4.17) when a and/or 8 are irrational.
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are also disjoint. Furthermore, since
SitAn) = sim) = [ S (4) = 4,
n=1 n=1

and similarly for B*, A* and B* are also invariant sets. Since A and B are both of positive measure, A* and B* must
also be of positive measure and A* and B* are thus nontrivial invariant sets which contradicts the ergodicity of S;.
Thus we conclude that f; and f> cannot be different stationary densities. O

What does this result, in conjunction with Theorem 4.2, tell us? First consider the microcanonical ensemble with
its uniform density. Then a given dynamics S; will be measure preserving with respect to the Lebesgue measure if and
only if the uniform density of the microcanonical ensemble is a stationary density of the Frobenius-Perron operator
corresponding to S;. Furthermore, from Theorem 4.5 the uniform density of the microcanonical ensemble will be the
unique stationary density of P? if and only if the system S; is uniformly ergodic. Hence, the existence of a unique state
of thermodynamic equilibrium, characterized by the uniform density of the microcanonical ensemble which maximizes
the Boltzmann-Gibbs entropy to zero, is totally dependent on the operation of a uniformly ergodic dynamics that
preserves the Lebesgue measure.

In the more general case, the nonuniform density f. of the canonical ensemble which maximizes the conditional
entropy will be the unique density corresponding to a state of thermodynamic equilibrium if and only if it is the
stationary density of the Frobenius-Perron operator corresponding to an f, ergodic system S; with respect to which
the measure

i (A) = /A fo(x) do

is invariant.

Thus in complete generality ergodicity is necessary and sufficient to guarantee the existence of a unique state of
thermodynamic equilibrium at which entropy is maximal. That this unique state exists is, of course, only half of the
picture for we must also understand what kind of systems can evolve to that state.

For ergodic dynamics there is an important and simply proved consequence of the Birkhoff individual ergodic
theorem, Theorem 4.3. That is:

Theorem 4.6. S; is f. ergodic (with unique stationary density f.) operating in a finite normalized phase space X if
and only if for any integrable function g the time average of g along the trajectory of Si is equal to the f. weighted
average of g over the entire phase space. That is,

) 1 t—1
}g;%?ﬁHZAﬂ@ﬁ@MﬁKg> (4.20)
in the discrete time case, or
1 T
lim _/ g(St(a:))dt:/ 9@ fulz) dz =< g > (4.20b)
T—)OOT 0 X

in the continuous time case.

Proof. The proof that ergodicity implies the equality of temporal and spatial averages follows first from the observation
that multiplying by f, in (4.7), integrating over X and noting that

/ 9(@) fu(z) dz = / 9(Se(@)) . () dw = / 9(2)P' () da
X X X
by the adjointness of Ut and P! gives, after passing to the limit,
/ g* () () di = / 9(0) () dz.
X X

The second essential point to note is that the limiting function g* is a fixed point of the Koopman operator Ut. Thus,
since S is f« ergodic, by Theorem 4.4 we know that g* must be constant with respect to . We have directly that

| r@r@d=g [ f@d=g = [ sof@d.
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so it follows immediately that

g = /X o) () de,

and this, in conjunction with Theorem 4.3, completes the proof. The converse is equally easy to prove. O

In the physics literature the statement of this theorem is usually used as the definition of ergodicity: namely that
an ergodic system is one for which the spatial and temporal averages coincide.

Theorem 4.6 also offers a way to derive an extension of the Poincaré recurrence theorem that gives an explicit
formula for the fraction of the iterates of an f, measure preserving and ergodic transformation S; that fall in a subset
A of a finite phase space X. Using the characteristic function 14 of the set A, the fraction of the points {S;(z)} that
are in A is given simply by

By equation (4.20), this is simply p«(A). Thus the sojourn time in a set A is directly proportional to the f, measure
of A.

To conclude this section we state one last theorem concerning necessary and sufficient convergence properties for
the ergodicity of a transformation S; and thus, by our comments following Theorem 4.5, for the existence of a unique
state of thermodynamic equilibrium.

Theorem 4.7. Let S; be a nonsingular transformation and P? the corresponding Frobenius Perron operator with
stationary density f. for all points in the phase space X. Then S; is f. ergodic if and only if {P'f} is Cesdro
convergent to f. for all densities f, i.e., if

t—1
.1 &

tlggoz E < Pf,g>=< fi,9> (4.21a)

k=0

in the discrete time case, or if

1 T

lim —/ < Plf g> dt =< f.,g > (4.21Db)
T—oo T 0

in the continuous time case, for all bounded measurable functions g.

Proof. We only give the proof for the discrete time case, as the continuous time proof follows directly using continuity
arguments. Assume S; is f. ergodic which, by Theorem 4.5, implies that f, is the unique stationary density of P?t.
Then by Theorem 3.7 we have

t—1
.1 &
fim 32 P =
k=0
immediately. Multiplication by a bounded measurable function g and integration over the entire phase space X gives

t—1
1 )
lim ZI;)<P fog>=<Ffo, 9>

t—o00

and (4.21a) is recovered.
Conversely, assume that (4.21a) holds and pick g(z) = 1x(z) so we have

t—1
.1 &
i 2 [ Pro@ds = [ f)as,
which implies that

t—1
Jim X{%gP’“f(ﬂf)—f*(x)} dz = 0
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or that
lim |[A:f = f|| =0
t—o00

for all densities f. Assume that the density f is a stationary density of P! so Ptf = f for all ¢ and, as a consequence,
Aif = f for all t. Then we have

If = fll =0,

or f = f. is the unique stationary density of Pt. Since P! has a unique stationary density f., by Theorem 4.5 S; is f.
ergodic. O

Since Frobenius-Perron operators are specialized Markov operators, there is a certain logic to extending the
concept of ergodicity to Markov operators. Thus let P? be a Markov operator with a stationary density f.. We will
say that P? is f,. ergodic if {P!f} is Cesaro convergent to f. for all initial densities f.

F. SUMMARY.

This chapter introduces the important notion of the Frobenius- Perron and Koopman operators, which describe
the evolution of densities by nonsingular dynamical or semidynamical systems. This is by way of an introduction
to the notion of f, ergodicity in these systems, a type of mild irregular dynamical behaviour both necessary and
sufficient for the existence of a unique stationary density f. and thus a unique state of thermodynamic equilibrium
(Theorem 4.5). However, ergodicity by itself cannot guarantee the approach of the entropy to the maximum value
corresponding to this unique state, in spite of the fact that ergodicity is also necessary and sufficient for the weak
Cesaro convergence of the sequence {P!f} to f. for all initial densities f (Theorem 4.7). Our identification of states
of thermodynamic equilibrium with densities, in conjunction with the contents of Theorems 4.5 and 4.7, shows that
f« ergodicity, Cesaro convergence of {P!f} to f., and the uniqueness of a state of thermodynamic equilibrium with
density f. are all equivalent. We have also discussed the concept of Poincare recurrence, pointing out it was incorrectly
utilized by Zermelo to criticize the work of Boltzmann.

In the next chapter we introduce the dynamic property of mixing.
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Figure 4.1. A single trajectory of the ergodic system (4.16) in (p,q) phase space, starting from the initial point
(po,qo). o= V2 and 8 = /5, thus ensuring uniform ergodicity. The numbers indicate successive portions of the
trajectory and the arrows show the direction.
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Figure 4.2. The iteration of 10* initial points concentrated on a small region of phase space by a discrete time
version (4.17) of (4.16). « and S as in Figure 4.1.
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CHAPTER 5.
MIXING.

In this chapter, we consider systems with irregular dynamical behaviors that are stronger than ergodic. Namely,
we consider with dynamics described by measure preserving transformations that have the property of strong, or Hopf,
mixing. Systems with mixing dynamics have entropies that are forever fixed by their mode of preparation. This is
followed by a brief discussion of Kolmogorov systems in Section B. The final Section C discusses the behaviour of
temporal correlation between dynamical variables, showing that mixing is necessary and sufficient for the decay of
temporal correlations to zero.

The dynamical property of mixing, like ergodicity, will not account for the evolution of system entropy. However,
it is important to discuss mixing for three reasons. First, there is a general, though not universal, misconception
that mixing is, in fact, sufficient to allow the evolution of entropy to a maximum. This is most certainly not the
case. Second, comparison of the temporal correlation and entropy behaviour of mixing and asymptotically periodic
dynamics (Chapter 6) shows that there is no special connection to be drawn between the behavior of the correlation
function and the emergence of thermodynamic behaviour. Finally, as we will show in Chapter 8, if there is a certain
imprecision in our knowledge of the values of the state variables in a mixing system then this is sufficient to cause the
system entropy to evolve to its maximal value.

A. MIXING.

Gibbs (1902) realized that ergodicity, while necessary and sufficient to guarantee the existence of a unique state
of thermodynamic equilibrium characterized by a stationary density f., was inadequate to guarantee the approach of
a system to that equilibrium. As a consequence he qualitatively discussed a property stronger than ergodicity which is
now called (strong) mixing.® This was subsequently developed mathematically by Koopman (1931), von Neumann
(1932), and Hopf (1932).

Let S be an f. measure preserving transformation operating on a finite normalized [u.(X) = 1] space. Then S;
is called f. mixing if

Jim 1 (AN ST (B) = jra(A)ua(B) (5.1)

for all subsets A and B of X. If f, is the uniform density of the microcanonical ensemble, then in analogy with our
definition of ergodicity we say that S; is uniformly mixing. Notice in particular that with A = X the f, measure of
any subset B of the phase space does not change under the action of a mixing transformation.

Example 5.1. To see how mixing works, examine Figure 5.1 where the evolution of 10* points by the uniformly
mixing transformation
S(z,y) =(z+y,xz+2y)  (mod1)

is shown in the phase space [0,1] x [0,1]. As in Example 4.3, one could once again think of this as depicting the
motion of a large number of imaginary atoms with different initial conditions in their two dimensional phase space. In
contrast to the uniformly ergodic transformation of Figure 4.2, here the mixing dynamics act to very quickly spread

the particles (or initial set of points) throughout phase space in thread like structures.” o

Example 5.2. As a second example of a uniformly mixing transformation we introduce the baker transformation,
so called because of the similarity of its operation to the kneading and folding operations involved in the preparation of
pastry dough. We take the phase space X to be the unit square X = [0, 1] x [0, 1] and define the baker transformation
by

(22, 3y) 0<z<y

5.2
2r-1,1+1y) i<z<Ll (5:2)

() = {
To see pictorially how the baker transformation works, consult Figure 5.2a where X is indicated as a dotted region.
The first operation involved in the application of S, shown in Figure 5.2b, involves a compression of X in the y direction
and a concomitant stretching in the x direction by a factor of 2. Finally, in Figure 5.2c, this deformed area is divided
vertically at x = 1 and the right hand portion is placed on top of the left hand portion to give the final result of one
application of S to the entire space X. Since it is clear from this geometric construction that the counterimage of any

6There is another type of mixing, weak mixing, but we will not find it of use in our investigations here (see Lasota and Mackey, 1994.
"The transformation of Example 5.1 is an example of an Anosov (or C) diffeomorphism. Consult Arnold and Avez (1968,
Chapter 3) for an extensive discussion of these and their continuous time analogs, the Anosov (or C) flows.
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rectangle A in X is again a rectangle or a pair of rectangles with the same total area as A, the baker transformation
S is measurable and preserves the Lebesgue measure.

To further illustrate the operation of the baker transformation and to show that it is in fact uniformly mixing,
consider Figure 5.3a where two sets A and B of the phase space X are indicated with ur(B) = % By taking repeated
counterimages of B with the baker transformation we find that after ¢ counterimages (3 are shown), S, *(B) = S_(B)
consists of 2!=1 vertical rectangles of equal area whose total area is puz(B). Clearly the measure of the set A C
S, (B) = S~*(B) approaches ur,(A)pr,(B) = ur(A)/2 in the limit as ¢ becomes large and the condition (5.1) defining
mixing is satisfied. (A more mathematical proof with less insight is possible by analytically calculating the successive
counterimages).

If, instead of running the baker transformation backward we run it forward in time (Figure 5.3b) the behaviour
is remarkably similar to that found for counterimages. Namely after ¢ applications of the baker transformation
S¢(B) consists of 2t horizontal rectangles whose measure is still equal to pr(B). It is this characteristic of mixing
transformations that gives rise to the thready behaviour seen in Figure 5.1. o

The behaviour of the uniformly mixing baker transformation as time runs either backward (Figure 5.3a) or
forward (Figure 5.3b) simply reflects the fact that the defining relation (5.1) for mixing could equally well be written

Am 1. (A0 S(B)) = ps(A) e (B), (5.3)

for all ¢t € R whenever S; is invertible. Again taking A = X we see that the measure of any set B is unchanged by
either forward or backward action of invertible mixing dynamics.

Example 5.3. A third example of a mixing transformation in a continuous time system is given by a model of an
ideal gas in which the position of the i** particle is denoted by a position vector ¢; and a momentum vector p;, so
(gi,p;) is a point in RS. Tt is assumed that the particles in the gas are physically indistinguishable from one another,
and that the gas is so dilute that for any bounded region of the phase space there are at most a finite number of
particles present at any given time. Under the assumption that the particles move with constant speed and do not
interact, the transformation describing the evolution of this system is given by

Si(p,q) = (p,q + pt). (5.4)

The surprising result is that this system of noninteracting particles is mixing (Lasota and Mackey, 1994). o

Example 5.4. There is a whole class of continuous time systems of importance in classical mechanics which are
mixing. These systems, known as geodesic flows on manifolds with negative curvature, have been intensively studied
by Anosov (1963, 1967), and discussed in Arnold and Avez (1968) and Abraham and Marsden (1978). Sinai (1963,
1970) has shown that the Boltzmann-Gibbs model of a dilute gas (spherical molecules with totally elastic collisions)
is an example of this type of system and is thus mixing. e

It is a straightforward consequence of the definition that mixing implies ergodicity.® Furthermore, an f, measure
preserving transformation Sy, with associated Frobenius-Perron operator P! and stationary density f,, is mixing if
and only if the sequence {P!f} is weakly convergent to the density f. for all initial densities f. If f. =1, then S; is
uniformly mixing if and only if {P?f} is weakly convergent to the density of the microcanonical ensemble for all initial
densities f.

This is expressed more formally in:

Theorem 5.1. Let S; be an ergodic transformation, with stationary density f. of the associated Frobenius- Perron
operator, operating in a phase space of finite f. measure. Then S; is f. mizing if and only if { P! f} is weakly convergent
to fi for all densities f, i.e.,
lim < P'f,g >=< f.,g>
t— o0

8To see this assume that S; is mixing and that the set B in (5.1) is an invariant set which means, by definition, that S’t_l(B) = B.
Since A in (5.1) is arbitrary, take A = B, which implies from the definition (5.1) of mixing that

Jlim (AN S7HB)) = e (B B) = e (B) = w2 (B).

This, in turn, implies that u«(B) = 0 or 1 so B is a trivial subset of X and S; is ergodic.
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for every bounded measurable function g.

Proof. The proof that mixing implies the weak convergence of {P!f} to f. is easily accomplished by first writing the
definition of u.(A N S;'(B)) in a functional form so

lim p, (AN S, (B)) = lim fe(x) do
S Anst @ =g [ 5w

= tlggo . Lyns=1(B) () fi(z) dz

= lim 1A(m)1s;1(3) (z) fi(z) dz

t—o0 X

= lim 14(2)1p(Se(x)) fu(x) dx

t—o0 b

= lim < 14f,,Ullp >
t—00

= lim < PtlAf*,lB >
t—o0

= lim < Pif, g >,
t—00

for functions f = 14f. and g = 1p.
In a similar fashion, the right hand side of the defining relation (5.1) can be written as

e (A (B) = /X 14(2) f. () da /X 15(@) fu(2) de

=<1afs,1>< fi,1 >
=< f,1>< fe,9>.

Thus, combining these two results yields, for f = 14f. and g = 15,
Jim < Pif,g>=< f,1>< fo,9>.

Since this result holds for characteristic functions, it must also be true for simple functions and thus all others since
every L' function is the strong limit of a sequence of simple functions, and every bounded measurable (L>°) function
is the uniform limit of simple functions. Finally, taking f to be a density completes the proof. This argument is easily
reversed to prove the converse. [

In our subsequent discussion, we will call a Markov operator P! with stationary density f. mixing if {P!f} is
weakly convergent to fi.

Gibbs (1902), Krylov (1979), and many other authors have emphasized the importance of mixing for the under-
standing of thermodynamic behaviour. Indeed, at first one might think that the weak convergence of the sequence
{Ptf} to the density f. of the canonical ensemble, or to the density f. = 1 of the microcanonical ensemble, no matter
what initial density f was chosen, would be exactly what is required to guarantee the approach of the entropy to its
maximum. Such is not the case. It is most certainly true that mixing is necessary for this convergence of the entropy,
but it is also not sufficient as we show in Chapter 7.

Example 5.5. As an illustration of this fact we again return to our example of the uniformly mixing baker transfor-
mation. The baker transformation (5.2) is clearly invertible, so

o1 [ (Gz,2y) 0<y<$
(l',y) - 1 1 1 (55)
(5+37,2y—-1) 5<y<l,

and we may apply equation (4.5) directly to obtain an expression for the Frobenius-Perron operator corresponding to
S. The only other fact that we must use is that S preserves the Lebesgue measure so J ! = 1, which can be verified
directly from (5.2). Thus

142 0
PSf(may):{ Je2) lg
2



50 THE ORIGIN OF THERMODYNAMIC BEHAVIOUR

so Ps1 =1 and the density of the microcanonical ensemble is a stationary density of Ps.
Since the stationary density of Pg is the uniform density (it is easily proved that f. = 1 is the unique stationary
density) we may calculate the entropy of Psf as

1
5 1
H(Psf):—/ /f(%m,?y)logf(%xﬂy)dmdy
o Jo
11
1 1 1 1
_/%/0f(§+§x’29_1)10gf(§+§ﬂf,2y—1)da:dy

A change of variables on the right hand side in the two integrals gives

H(Psf) = H(f),

and we have proved that H(PLf) = H(f) for all positive times ¢ and all densities f. This argument also extends to
negative times when the baker transformation is being run backward. Thus the uniformly mixing baker transformation
has an entropy that is constant for all of time and equal to the entropy of the initial density f with which the system
was prepared.

This is illustrated in Figure 5.4. At ¢ = 0 we prepare the phase space with an initial density

fl@,y) = 51x,(2) + 51x, (2) (5.6)

where X; = [0,1) and X, = [1,1] (Figure 5.4b). Then the entropy of the initial state is

1
2
H(f)=—1{log3 +3log 2} ~ —0.13.
After one application of the baker transformation (Figure 5.4c) we have
filz,y) = 51v,(v) + 31w (v)

where Y7 = [0,1) and Y> = [3,1]. It is an easy matter to show that H(f;) = H(f). Further applications of the baker
transformation yield H(f;) = H(f) (Figure 5.4d for ¢ = 2) which also holds for negative times (Figure 5.4a for t = —1)
since the baker transformation is invertible. o

This example illustrates the content of the following theorem which is a consequence of Theorem 3.2.

Theorem 5.2. Let S; be an invertible f. mizing transformation. Then the system entropy is forever fized at the value
corresponding to the way in which the system was prepared:

He(P'f|f.) = He(f]f)
for allt € R.

B. KOLMOGOROV SYSTEMS.

In this section, a concept that will be used in Chapter 9 is briefly introduced, namely that of Kolmogorov systems,
or K systems.

We use the notation Si(A) = {S:(A) : A € A} ,t € R(or Z), where A is a sigma algebra. If S; is an invertible
transformation operating on a normalized space, and both S; and S_; are f, measure preserving, then S; is said to
be a K-system if there is a sigma algebra Ay € A such that:

(1) Sft(.Ao) € Ap;
(2) The sigma algebra defined by

() S-¢(Ao)
t=0

is trivial in the sense that it only contains sets of f, measure 0 or 1; and
(3) The smallest sigma algebra containing

L Se(Ao)
t=0

is identical to A .
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Kolmogorov systems have behaviors stronger than mixing in that if a transformation is a K-system then this
also implies that it is mixing (Walters, 1982). The other property of K-systems that is important for thermodynamic
considerations is that since they are f. measure preserving they have a unique stationary density f.. However, since
they are invertible, by Theorem 3.2 the entropy of a K-system is identically equal to the initial entropy determined by
the initial density with which the system is prepared. In fact, our example of the baker transformation (5.2), which
we used to illustrate uniform mixing, is an example of a Kolmogorov system (Lasota and Mackey, 1994).

C. THE DECAY OF CORRELATIONS.

To understand the connection between mixing and the decay of correlations requires the introduction of a few
concepts. If we have a time series z(t) [either discrete or continuous], and two bounded integrable functions o,n : X —
R, then the correlation of o with 7 is defined as

T-1

Roy(7) = lim %Za(a:(t%—ﬂ)n(m(t))

T—oc0
t=0
in the discrete time case, or
1 (T
R, ,(7) = lim T/ o(z(t +7))n(z(t)) dt
0

in the continuous case. The average of the function o is just
T—1

<o>= lim % > o(z(t)),

— 00
or
1 T
<o >= lim —/ o(z(t)) dt,
T Jo

T—o00
so it is clear that
(1) Rs5(0) =< on >; and
(2) R,2(0)R,2(0) > Ry (7). This follows directly by writing out the expression < [ao(t) + An(t + 7)]> > for real
and nonzero « and 3, and noting that it must be nonnegative.

The covariance of o with 1, C,,,(7), is defined by
Con(T) = Ry p(1)— <0 >< 11>,
while the normalized covariance p, ,(7) is

Ryp(t)— <o><n>
Pa,n(""): - .
<on>—<o><n>

Clearly, p,,(0) = 1.

Now assume we have an ergodic transformation S; with consequent unique stationary density f., operating in a
finite normalized phase space X, and that S; is generating the sequence of values {z(¢)}. Then the correlation of o
with n can be written in both the discrete and continuous time case as

Ry() = /X o(S, (@))(@) f (2) da (5.7)

by use of the extension of the Birkhoff Ergodic Theorem 4.6. Using the definition of the Koopman operator, along
with the adjointness of the Frobenius-Perron and Koopman operators, equation (5.7) can be rewritten in the form

Ry (1) =< nfs,UT0 >=< P"(nf),0 > . (5.8)

Writing the defining relation for mixing transformations as in the proof of Theorem 5.1, it is clear that for general
functions 7 and o we have
lim < P'(nf.),0 >=<nfi,1>< fo,0 >,

so (5.8) yields
lim R, ,(7) =<n><o>

T—00
when S; is mixing. Thus we have the following result connecting mixing with the limiting behaviour of the normalized
covariance. Namely,
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Theorem 5.3. S; is f. mizing if and only if
lim_ pg,y(7) = 0.
D. SUMMARY.

In this chapter we have introduced a type of dynamical behaviour, mixing, that leads to an evolution of densities
that is more complicated than ergodicity. Mixing systems cause densities to evolve in phase space such that they are
eventually supported on thready, fractal-like structures spread through the entire phase space. A slightly stronger
type of behaviour than mixing, that displayed by K-systems, was also introduced.

We have shown (Theorem 5.1) that a necessary and sufficient condition for a dynamics S; to be mixing is the
weak convergence of {P!f} to a unique stationary density f, for all initial densities f. However (Theorem 5.2), for
reversible mixing dynamics the entropy is fixed at the value determined by the system preparation. Finally, in Theorem
5.3 we have shown that this weak convergence of {P!f} to a unique stationary density is completely equivalent to the
eventual decay to zero of the correlation between any dynamical variables. Thus, in spite of this weak convergence and
the decay of correlations, mixing by itself is not sufficient to ensure the convergence of system entropy to a maximum.

In the next chapter we introduce another dynamical property, asymptotic periodicity, which is sufficient for the
evolution of system entropy to a local maximal value generally less than zero. Interestingly, the final thermodynamic
state of an asymptotically periodic system depends, in general, on the initial state.
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Figure 5.1. Iteration of 10* initial points under the action of a uniformly mixing transformation. Note the
development of the thread-like structures.
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Figure 5.2. Graphical illustration of the operation of the baker transformation. See the text for details.
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Figure 5.3. The behaviour of an initial set B under backward (a) and forward (b) iteration by the uniformly
mixing baker transformation, and the generation of the thready behaviour as seen in Figure 5.1. See the text for
more discussion.
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Figure 5.4. A graphical illustration of the behaviour of an initial nonuniform density for backward and forward
iteration of the baker transformation. See the text for the behaviour of the entropy, and Example 8.1 for a
discussion of the corresponding changes in the coarse grained entropy.
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CHAPTER 6.
ASYMPTOTIC PERIODICITY AND ENTROPY EVOLUTION

In this chapter we turn to an investigation of the fascinating property of asymptotic periodicity in the evolution
of densities. This behaviour is the statistical analog for densities of the more common periodicity found in some time
series. The existence of asymptotic periodicity will allow us to prove a weak form of the Second Law in which the
conditional entropy increases to (at least) a local maximum.

In Section A we introduce a class of Markov operators known as smoothing. Smoothing operators have three
characteristics that are important for our ultimate understanding of the basis of the Second Law of thermodynam-
ics. First, the sequence of densities evolving under the action of a smoothing Markov operator has the property of
asymptotic (or statistical) periodicity. This is illustrated in Section B using the hat and quadratic maps. Second, any
smoothing Markov operator has at least one stationary density thus ensuring that there is a state (perhaps not unique)
of thermodynamic equilibrium. In Section C we show how, for asymptotically periodic systems, the entropy of the
sequence of densities always increases to a maximum. This maximum, however, may only be relative and less than the
maximum possible entropy value, thus corresponding to a metastable state. The relative maximum of entropy which
asymptotically periodic systems approach usually depends on the initial density of the system (the way in which the
system was prepared). In Section D we show that the correlation function for an asymptotically periodic system is
made up of a stochastic component and a strictly periodic (nondecreasing) component.

A. ASYMPTOTIC PERIODICITY.

First, we define a smoothing Markov operator. A Markov operator P! is said to be smoothing if there exists a
set A of finite measure, and two positive constants k < 1 and 6 > 0 such that for every set E with ur(F) < ¢ and
every density f there is some integer to(f, E) for which

/ Pif(z)dx <k for t > to(f, E).
EU(X\A)

This definition implies that any initial density, even if concentrated on a small region of the phase space X, will
eventually be smoothed out by P* and not end up looking looking like a delta function. Notice that if X is a finite
phase space we can take X = A so the smoothing condition looks simpler:

/Pt Ydr <k fort > to(f, E).

Smoothing operators are important because of a theorem of Komornik and Lasota (1987), first proved in a more
restricted situation by Lasota, Li, and Yorke (1984).

Theorem 6.1. Spectral Decomposition Theorem (Komornik and Lasota, 1987). Let Pt be a smoothing Markov oper-
ator. Then there is an integer r > 0, a sequence of nonnegative densities g;, a sequence of bounded linear functionals
Xi,i=1,...,7, and an operator Q : L' — L' such that for all densities f, Pf has the form

Z Ai()gi(@) + Qf (). (6.1)

The densities g; and the transient operator () have the following properties:
(1) The g; have disjoint support (i.e. are mutually orthogonal and thus form a basis set), so g;(x)g;(xz) =0 for all
i F -
(2) For each integer i there is a unique integer a(i) such that Pg; = go(;). Furthermore, a(i) # a(j) for i # j.
Thus the operator P permutes the densities g;.
3) I P'Qf||= 0 as t — oo, teN.

Notice from equation (6.1) that P! f may be written in the form

P f(2) 2/\ )9at(iy(@) + Qef(x), tEN (6.2)
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where Q; = P'Q, || Q+f ||— 0 as t — oo, and a!(i) = a(a’"!(i)) = ---. The density terms in the summation of (6.2)
are just permuted by each application of P. Since r is finite, the series

ZA )gat () (@) (6.3)

must be periodic with a period T" < r!. Further, as

{a'(1),...,a'(r)}

is just a permutation of 1,--- ,r the summation (6.3) may be written in the alternative form

Z Ag—t () (f)gl (Z’),

where a~t(i) is the inverse permutation of o (i).

This rewriting of the summation portion of (6.2) makes the effect of successive applications of P completely
transparent. Each application of P simply permutes the set of scaling coefficients associated with the densities g;(x)
[remember that these densities have disjoint support].

Since T is finite and the summation (6.3) is periodic (with a period bounded above by r!), and || Q;f ||— 0 as
t — oo, we say that for any smoothing Markov operator the sequence {P!f} is asymptotically periodic or, more
briefly, that P is asymptotically periodic. Komornik (1991) has recently reviewed the subject of asymptotic periodicity.

One interpretation of equation (6.2) is that any asymptotically periodic system is quantized from a statistical point
of view. Thus if ¢ is large enough, which simply means that we have observed the system longer than its relaxation
time so || Q+f || is approximately zero, then

P f(x) ZA )9 (i) ().

Asymptotically, Pt f is either equal to one of the basis densities g; of the i*" pure state, or to a mixture of the densities
of these states, each weighted by X;(f). It is important to also realize that the limiting sequence {P?f} is, in general,
dependent on the choice of the initial density f.

How would the property of asymptotic periodicity be manifested in a continuous time system? If ¢ is continuous,
t € R, then for every t we can find a positive integer m and a number 6 € [0,1] such that t + 1 = m + 6. Then,
asymptotically

Pt+1f( )=P" Pe ZAa’"(z) Pf)Ql( )-
i=1
Now, in the continuous time case we expect that there will be a periodic modulation of the scaling coefficients A
dependent on the initial density f, and the asymptotic limiting density will continue to display the quantized nature
characteristic of the discrete time situation. This behaviour has been discovered and studied by Losson (1991) in
differential delay equations.
Asymptotically periodic Markov operators always have at least one stationary density given by

=23 0@, (64

where r and the g;(z) are defined in Theorem 6.1. It is easy to see that f.(z) is a stationary density, since by Property
2 of Theorem 6.1 we also have
Pf* Z ga(z)

and thus f. is a stationary density of P!. Therefore, for any smoothing Markov operator the stationary density (6.4)
is just the average of the densities g;.

Our next theorem will be very useful in Chapter 10 when we study the entropy behaviour of discrete time systems
placed in contact with a heat bath.
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Theorem 6.2. Let P be a Markov operator. If there exists an h € L' and v < 1 such that

limsup [|(P'f —h)*|| <y  for feD, (6.5)
t—o00

then {Ptf} is asymptotically periodic.

Proof. Let e = %(1 —+) and take F = {h}. Since F, which contains only one element, is evidently weakly precompact,
then by WPC3 of Chapter 3 there exists a § > 0 such that

/Eh(a:) u(dz) < e for w(E) <. (6.6)

Furthermore, there is a measurable set A of finite measure for which
/ h(z) p(dz) < e. (6.7)
X\A

Now fix f € D. From (6.5) we may choose an integer ng(f) such that
(P f=mF]|<y+e for t>to(f),

and, as a consequence

/ P f(2) p(de) < / h@) u(dz) +y+e  for ¢ to(f) (6.8)
C C

for an arbitrary set C. Setting C = EU (X \ A) in (6.8) and using (6.6) and (6.7) we have

[ P@utdn) < [ hw)udn) + [ b ptdn) £+ e
BU(X\A) E X\A
<3e+y=1-¢€ for t > to(f).

Thus P is smoothing. This, in conjunction with Theorem 6.1, completes the proof. O

The interpretation of Theorem 6.2 is straightforward. Namely, for those regions where P'f > h for sufficiently
large t, if the area of the difference between P!f and h is bounded above by v < 1, then {P!f} is asymptotically
periodic.

We close this section with the statement and proof of a necessary and sufficient condition for the ergodicity of a
smoothing Markov operator.

Theorem 6.3. Let P be an asymptotically periodic Markov operator in a normalized measure space. Then P is ergodic
if and only if the permutation a(i) of the Spectral Decomposition Theorem 6.1 is cyclical.

Proof. We start with the proof that when P is ergodic then a(i) must be a cyclical permutation. Suppose that the
disjoint supports of the r densities g;(x) are labeled by A;, i = 1,--- ,r. Assume that a(i) is not cyclical so there is
an invariant subset I € {a(i)}. As a consequence, there is at least one set A; that is invariant, and since the supports
of the densities g;(x) have positive measure we conclude that there is an invariant subset of the phase space X that is
not trivial. This contradicts the definition of ergodicity, so when P is ergodic the permutation a(i) must be cyclical.

To prove the converse, that if a(i) is a cyclical permutation then P is ergodic, we first use the spectral decompo-
sition of P!f given by equation (6.1) to write the system state density average (3.15a) as

r t—1 t—1
Af(@) = gt 3 Aamry () + 7 3 Quf(a).
i=1 k=0 k=0

Now the limit
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exists because the cyclicity of the permutation (i) of the set {1,---,r} implies the periodicity of the A, (f)-
Furthermore, since every portion of this summation of length r consists of exactly the same set of numbers but in a
different order for each different i, it is clear that the limit \;(f) is, in fact, independent of 4. Call it A(f). Thus, from
the Spectral Decomposition Theorem 6.1, we have that

hm Aif(x Z gi(z
Since lim;_, o, A;f is a density, integrating over the entire phase space X gives
[ Jim Aupte)de = () = 1.

so A(f) =1 and
hm Atf Zgl *

which is a stationary density of the asymptotically periodic Markov operator P. Thus, {P?f} is Cesaro convergent to
a unique stationary density f. and P is ergodic by Theorem 4.7. This finishes the proof. O

This theorem tells us that for an asymptotically periodic system, cyclicity of the permutation «(%) is necessary
and sufficient for the existence of a unique state of thermodynamic equilibrium characterized by the stationary density

e

B. ASYMPTOTIC PERIODICITY ILLUSTRATED.

Asymptotic periodicity may be either inherent to a dynamical system, or induced by stochastic perturbations
of a system (Chapter 10). For dynamics described by maps on the unit interval, the following theorem (Lasota and
Mackey, 1994) is sometimes useful in establishing the existence of inherent asymptotic periodicity.

Theorem 6.4. Let S : [0,1] — [0,1] be a nonsingular transformation satisfying the following three conditions:

(1) There exists a partition 0 = by < by < -+ < by, = 1 of [0,1] such that for each integer i = 1,--- ,m the
restriction of S(z) to [bi—_1,b;] is a C? function.

(2) [S'"(z)| 29 > 1, z #bi.

(3) There exists a real constant ¢ such that ‘lg,((ﬂl <e<oo,x#b;,i=0,1,--+ m.

Further, let P be the Frobenius-Perron operator corresponding to S. Then for all densities f, the sequence {P!f} is
asymptotically periodic.

Example 6.1. To examine the properties of an asymptotically periodic system, choose a generalization of the tent
map (3.5),

S(z) =

{am 0<z<i (6.9)

a(l—z) 2<z<l,

where 1 < a < 2 (see Provatas and Mackey, 1991a).

To investigate how the map (6.9) transforms densities, we must first derive an expression for the operator P that
corresponds to this transformation. Proceeding as in Example 3.6 where the tent map with a = 2 was introduced, it
is a simple calculation to show that the Frobenius-Perron operator corresponding to (6.9) is given by

Pfle)y=11f(Lz) + f(1-1a)]. (6.10)

For 1 < a < 2, and for the partition by = 0 < b1 = § < by = 1, the generalized hat map (6.9) satisfies the conditions
of Theorem 6.4. Thus, the hat map is asymptotically periodic and the evolution of densities via the operator (6.10)
can be expressed through the spectral decomposition (6.1).

Ito et al. (1979) have shown that the hat map is ergodic, thus possessing a unique invariant density f. of the
form (6.4). Its form has been derived in the parameter window a,; = Q12 <ol g =1,2,-
by Yoshida et al. (1983). Provatas and Mackey (1991a) have proved the asymptotic periodicity of (6.9) with period
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T = (n+1) for 1/2Y/ Y ¢ < 91/2Y" | Thys, for example, {Pf} has period 1 for 2'/? < a < 2, period 2 for
21/4 < a4 < 212 period 4 for 2V < a < 21/4, ete.

To analytically illustrate the eventual dependence of the sequence { P! f} on the initial density f for asymptotically
periodic systems, pick a = v/2 which is the upper boundary of the range of a values for which (6.9) is asymptotically
periodic with period 2. For this value of a, the unique stationary density (6.4) satisfying P f. = f., where P is given
by (6.10), takes the explicit form

fu(@) = ulsy (@) + vl (@) (6.11)

where u = $[3 + 2v/2], v = 3[4 + 3v/2], and the sets J; and J, are defined by
1
Ji=V2-1,2—-V2] and J= [2—\/5,5\/5] (6.12)

respectively (¢f. Provatas and Mackey (1991a)). S maps the set J; into Jo and vice versa.
It can be shown analytically that picking f.(x) given by (6.11) as an initial density simply results in a sequence of
densities all equal to the starting density. This is quite different from what happens with an initially uniform density

f@) = 2+ V2)Ly,un(@). (6.13)
In this case, the first iterate f; = Pf is given by
filz) = (L +V2)1y, (2) +2(1 + V2)1,(2) (6.14)

and iteration of fi(z) leads, in turn to an fo(z) = f(x) and thus the cycling of densities repeats indefinitely with
period 2 (cf. Figure 6.1a).

This effect of the choice of the initial density on the sequence of subsequent densities can be further illustrated
by choosing an initial density

f(z) =[3+2v2]1(2) (6.15)
totally supported on the set J;. In this case,

filz) = Pf(z) = [4+ 3v2]1,(x), (6.16)

and fo = f, fs = f1, --- so once again the densities cycle between f and f; with period 2 (¢f. Figure 6.1b). Figure
6.1c illustrates the behaviour of {P!f} for an initially nonuniform density.e

Example 6.2. Sharkovski (1965) has shown that maps like (3.7),
S(z) =rz(l —x) (6.17)

with a single quadratic maximum display period doubling in the number of fixed points as the parameter r is increased.
For example, with 0 < r < 1 the single fixed point of (5.17) is #* = 0, while for 1 < r < 3, equation (6.17) has one
stable fixed point given by z* =1 — % For r between 3 < r < r, ~ 3.57--- there is a cascade of parameters which
sequentially give rise to 2 unstable fixed points, then 4, 8 etc. The periodicity in each of these intervals is equal to the
number of fixed points. At r., also known as the accumulation point, there are an infinite number of unstable fixed
points.

On the other side of the critical parameter, r. < r < 4 the quadratic map (and maps like it with a single quadratic
maximum) has a spectrum of parameter values, labeled by r,, n = 1,2, - where so-called “banded chaos” has been
reported by Crutchfield et al. (1980), Lorenz (1980), and Grossman and Thomae (1977, 1981) based on numerical
work. At these values the unit interval X = [0, 1] partitions into 2™ subintervals, labeled J;, I = 1,2,---,2". These
are such that S2" : J; — J; maps J; onto J;. As well each J; is mapped cyclically through the whole sequence of {Ji}
after 2™ applications of S. The iterates of a time series are attracted to these J; subsets, returning to any J; every
2™ iterations. These iterates form an aperiodic sequence with a positive Liapunov exponent [Devaney, 1986]. The
procedure whereby which one obtains the parameter values 7, at which 2" banded chaos occurs is given by Grossman

and Thomae (1981).
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The Frobenius-Perron operator corresponding to the quadratic map (6.17) is
1 1 1 4z 1 1 4z
P = — -+ —4/1-— ———y/1-—1. 1
o= [f<2+2\/ r>+f<2 ; )] (6.18)

At values of r = r,, the iterates of any initial density f supported on [0, 1], acted on by (6.18), will eventually
decompose so they are supported on disjoint sets J;. Subsequent to the contraction of density supports onto the
sequence of sets {J;}, the evolution of the sequence {P?!f} becomes periodic in time. At these values, the observed
periodic evolution of ensemble densities, is, in fact, asymptotically periodic (Provatas and Mackey, 1991a).

The parameter values = r, define a reverse sequence to the period doubling sequence for r < r.. For the latter
sequence, we talk of a period doubling in the number of unstable fixed points. When r = r,, however, fixed points are
replaced by “chaotic bands” and going from r,, to r,41 involves a doubling in the number of bands.

As with the hat map of Example 6.1, the scaling coefficients A;(f), A2(f) can be analytically determined for
period two asymptotic periodicity for the quadratic map when r = r1, and the attracting phase space consists of the
subsets J; and Jo. These are disjoint and connected at the fixed point of (6.17), and S : J; = Jo, S : J» — Ji. The
coefficients A; (f), A\2(f) may be obtained for any arbitrary initial density f supported on the phase space X = [0, 1].

Figure 6.2 illustrates the period 2 asymptotic evolution of {P!f} after 20 transients, for r = r;. In Figure 6.2a
the initial density is uniform on the region of J; U J given by [0.7,0.8]. Figure 6.2b shows an asymptotic cycle of
{P!f} with f(z) = 200(z — 0.9) supported on [0.9,1]. Figure 6.3a illustrates a period 4 cycle in {P'f} when r = ra,
with the initial density f uniform on [0.5,0.85]. Figure 6.3b shows one period 4 cycle of P! f with f(x) = 200(z —0.91)
supported on [0.9,1]. All of the illustrated sequences are dependent on the initial density. e

C. THE WEAK FORM OF THE SECOND LAW.

The fact that asymptotically periodic Markov operators have a stationary density given by (6.4) does not guar-
antee the uniqueness of this stationary density. Regardless of whether or not asymptotically periodic systems have
unique stationary densities, they have the important property that their conditional entropy is an increasing function
that approaches a maximum. This result is formulated more precisely in

Theorem 6.5. Let P be an asymptotically periodic Markov operator with stationary density f.. Then as t — oo the
conditional entropy H.(Ptf|f.) of P'f with respect to f. approaches a limiting value Hpor(f|fs) <0, where

Honao (11 ==Y /X X(f)gi (@) log {ﬁ > w)gi(m)} dz. (6.19)

Proof. Since P is asymptotically periodic, the representation of the Spectral Decomposition Theorem 6.1 is valid, and
more precisely equation (6.2) for P!f. Write equation (6.2) in the form

P f(2) = S(f, @) + Qe f (2),

where X;(f,z) denotes the summation portion of (6.2). Remember that since P is asymptotically periodic, for large
times t, || Q¢ f ||~ 0 and thus P**! f(z) ~ X;(f,z), so the long time conditional entropy is given by

oy )

H(P 100 =~ [ 5ifa) 1og{
= H.(S(DIf).

However, ¥;(f, z) is periodic with finite period T'. Since by Theorem 3.1 we also know that H.(P!f|f.) > H.(f|f«) [the
conditional entropy can never decrease], it follows that the approach of H.(P?f|f.) to He.(X¢(f)|f«) must be uniform.
Even though X:(f, z) is periodic with a finite period T', H.(X:(f)|f«) is a constant independent of ¢. In fact we have

He(3(f)|f) = —/X ZAi(f)gi(iﬂ) log {ﬁ ZAi(f)gi(w)} dz

Hmaac(f|f*) <0
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for large t. The nonpositivity of H,...(f|f«) is a consequence of the integrated Gibbs inequality (1.5). O

Note that if the stationary density f. of P is given by (6.4), then the expression for H..(f|f+) becomes even
simpler. Namely, with

fu@) = =3 gilo),

Hpnaz(f1f+) as given by (6.19) becomes
Hppao (fIf2) = —logr = > Xi(f) log Xi(f) (6.20)
i=1

when we use the orthogonality of the densities g;(x). Since 0 < \;(f) < 1 for all ¢, we may also place a lower bound
on Hypau (f]f+):
_logr S Hma:t(f|f*) S 0

This weak form of the Second Law of thermodynamics is the strongest result that we have yet encountered.
It demonstrates that as long as the density evolves under the action of a Markov operator that is smoothing, the
conditional entropy of that density converges to a maximum. There are two important facets of this evolution that
should be recognized:

(1) The convergence of the entropy is due to the fact that || Q'f ||— 0 as t — oo in the representation (6.2) of
Theorem 6.1.

(2) The maximum value of the entropy, Hpqz (f|f+), as made explicit by the notation, is generally dependent on
the choice of the initial density f and, thus, the method of preparation of the system. This indicates that
systems with asymptotically periodic dynamics may have a discrete or continuous spectrum of metastable
states of thermodynamic equilibrium, each with an associated maximal entropy.

Example 6.3. To illustrate the evolution of the conditional entropy of an asymptotically periodic system we return
to our example of the tent map (6.9) with a = /2. For this value of a, the stationary density f, is given by equation
(6.11). If we pick an initial density given by f., then the conditional entropy H.(P!f.|f.) = 0, its maximal value, for
all t. However, if we pick an initially uniform density (6.13), f(z) = (24 v/2)17,07,, then it is straightforward to show
that

Hc(f|f*) = Hc(fl|f*) = _001479)

where f; = Pf is given by equation (6.14). Thus by choosing an initial density given by (6.13) or (6.14), the limiting
conditional entropy approaches a value less than its maximal value of zero.

This effect of the choice of the initial density affecting the limiting value of the conditional entropy can be further
illustrated by choosing an initial density

f(z) = [3+2v2]Ly (2)

totally supported on the set J;. In this case, as we have shown,
fi(z) = Pf(z) = [4+3V2]Ly, (),

and fo = f, fs = f1, etc. so once again the densities cycle between f and f; with period 2. The limiting value of the
conditional entropy is given by

H.(f|f«) = H.(fi|f«) = —log(2) ~ —0.69316.

Thus, with three different choices of an initial density f we have shown that the conditional entropy of the asymptot-
ically periodic system (6.9) may have at least three different limiting asymptotic values. o

Example 6.4. The continuous functional dependence of H,,4.(f|f«) on the initial density f can be illustrated ana-
lytically for the maps (6.9) and (6.17) when they generate period 2 asymptotic periodicity. In particular consider a
class of initial densities given by (¢f. Provatas and Mackey, 1991a)

¢ T€[nm+{

. (6.21)
0 otherwise,

) = {
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where v; is the solution of 7; = S%(7;) and is given by

1
a+1

’I”% T
nEy (1 4 )
for the quadratic map.

A plot of Hypaq (f|f«) for the hat map is shown in Figure 6.4. A remarkable feature of Figure 6.4 is the existence of
a sequence of & values at which the limiting conditional entropy values are equal. For these values of £ the asymptotic
decomposition of P!f is identical and the limiting conditional entropy is Hyqaz (f|fs) =~ —0.01479 as we calculated in
the previous example with an initial density given by (6.13). Note also the local minima in the limiting conditional
entropy as the spreading parameter £ increases.

A similar comparison of the limiting conditional entropy can be made for the asymptotic periodicity of the
quadratic map at r = r1. The same set of initial densities defined by (6.21) is considered. Figure 6.5 is the plot
analogous to Figure 6.4 for the hat map. Note that for the quadratic map the maxima in the limiting conditional
entropy do not define isoentropic points, although Hyaq (f|f+) ~ —0.093 as £ — 1. Moreover, a zig-zag pattern similar
to Figure 6.4 emerges but on a much smaller scale, as shown by the insets. ®

We close this section with the statement and proof of a sufficient condition for the weak form of the Second Law
of thermodynamics.

"=

for the hat map and by

Theorem 6.6. Let P be a Markov operator in a normalized measure space, and assume that there is a stationary
density f. > 0 of P. If there is a constant ¢ > 0 such that for every bounded initial density f

H.(P'f|f.) > —c
for sufficiently large t, then Pt is asymptotically periodic and

tll>nolo Hc(Pt.ﬂf*) = Hpax (f|fe) <0.

This theorem assures us that if we are able to find some time ¢; such that the conditional entropy is bounded below
for times ¢ > t1, then the entropy is evolving under the action of an asymptotically periodic Markov operator and, as
a consequence of Theorem 6.5, the conditional entropy of P!f approaches a maximum that is generally dependent on
the initial density with which the system was prepared.

Proof. Pick a subset E of the phase space X with nonzero Lebesgue measure py(E). From the definition of the
conditional entropy H.(P!f|f.) and our hypothesis, for all sufficiently large times ¢ we have

w11 = - [ Psayiog (CHD) s [ RECE (Z29)

fu(z) fe(z)

>

Remembering the definition of the function # from equation (1.2), it follows that

s (5 o o ()

o (1)
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- frex (549 -3}

where the constant N is selected to make ur(E) < §. Then,

o5 [ P11 < [ siion (P19 gy oy )

Further specify the set E by

or 0

c+ B=2)
pt de < ——&£— =e.
/E fla)dz < log N ‘

Next, pick a second subset A C X of nonzero measure so
x)dm:/Pt dm—/Pt Ydz =1— pup(A).
X\A X
Thus,

/ Pf(2) dz <1 — pn(A) + e = k.
BU(X\A)

It is clear that we may always select the set A in such a way that e < py(A) < 1 and, hence, 0 < k < 1. Therefore, P
is smoothing by definition. The rest of the proof is a direct consequence of the Spectral Decomposition Theorem 6.1
and Theorem 6.5 concerning the convergence of the conditional entropy under the action of an asymptotically periodic
Markov operator. [

D. ASYMPTOTIC PERIODICITY AND CORRELATIONS.

In the previous chapter we showed that temporal correlations in mixing systems decay to zero in spite of the fact
that entropy is absolutely constant when the system is invertible. Suppose that instead of a mixing transformation
we have an asymptotically periodic transformation with a unique stationary density f. of the corresponding Markov
operator P, and, as a consequence, the system is ergodic. In this case the behaviour of the correlation function is quite
different.

Since P is asymptotically periodic and Theorem 6.1 also holds for L' functions, we can choose f = 5 to obtain

PTHy( Z Ai(Mgar i) (2) + Qrn().

Further, because of the ergodicity of P we can write the correlation function as
Roy(r+1) =< P y,0 >

or, more explicitly,

Ryp(T+1) = Z/\ /Xgar(i)(a:)a(m)dx+/XU(JJ)QT77(x)da:. (6.22)

Due to the asymptotic periodicity of P, the first term in (6.22) is periodic in 7 with period T' < r!. Furthermore,
because of the convergence properties of the transient operator ) the second term will decay to zero as 7 — oo.
Therefore, for asymptotically periodic dynamics the correlation function naturally separates into sustained periodic
and decaying stochastic components.

This decoupling of the time correlation function into two independent components can be understood as follows.
Asymptotically periodic systems have r disjoint attracting regions of their phase space X whose union is given by

|J supp {g:}-

i=1
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Each of the regions supp{g;} map onto each other cyclically according to «(i). All ensembles of initial conditions
will asymptotically map into these regions (i.e., all densities will decompose). Thus a time series will also visit these
supports periodically, and we expect a periodic component in the time correlation function. However, iterates of the
time series which return into any one of the supp {g;}, are described by a density g;, and so there must exist a stochastic
component of the correlation function (the second term of (6.22)).

Thus, asymptotically periodic systems have temporal correlations which are a combination of both periodic and
stochastic elements and which never decay to constant values as ¢ — oo in spite of the fact that their conditional
entropy does approach a local maximum as ¢ — oo. This is to be compared with mixing systems whose entropy is
forever fixed by the mode of preparation of the system, but which nevertheless show an approach of the correlations in
the system to zero at long times. The contrasting nature of these two results indicates that there is no connection to
be drawn between the limiting behaviour of entropy in a system and the limiting behaviour of temporal correlations.

E. SUMMARY.

In this chapter we have shown how the property of smoothing for Markov operators is equivalent to asymptotic
periodicity of sequences of densities (Theorem 6.1), and that asymptotic periodicity is sufficient to guarantee the
existence of at least one state of thermodynamic equilibrium (with density given by equation (6.4)) as well as the
increase of the entropy to a maximum as time progresses (Theorem 6.5). Interestingly, the maximum entropy to which
asymptotically periodic systems evolve in this circumstance (equation (6.19)) may be less than the absolute maximum
value corresponding to equation (6.4), and usually depends on the initial density with which the system is prepared.
Thus the entropy of the final thermodynamic state of an asymptotically periodic system depends, in general, on the
initial state. Theorem 6.6 gives a sufficient condition for this behaviour in the form of the existence of a finite lower
bound on the conditional entropy. Further, the behaviour of the entropy and correlations in asymptotically periodic
systems is opposite to that of mixing systems, indicating that there is no connection to be drawn between entropy
evolution and the limiting behaviour of correlations.

In the next chapter we introduce a dynamical property even stronger than asymptotic periodicity which is both
necessary and sufficient for the evolution of system entropy to its unique maximal value of zero.
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Figure 6.1. The evolution of P! f in the period two window under the action of the hat map, with a = v/2. In (a)
f is uniform over .J; U J». Since the g; are uniform over J;, i = 0,1, P! f sets into immediate oscillations without
transients. In (b) f is uniform over the subspace J;. Again P!f sets into immediate oscillations through the

states g1 and ¢o. In (¢) f(z) = Mm, restricted to J; U Jo. Now P! f evolves through two transient densities

before settling into a periodic oscillation.
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Figure 6.2. A numerical illustration of one periodic cycle of the asymptotic sequence {P!f} under the action of
the quadratic map for the parameter r = r; = 3.678573508. A transient of 20 densities has been discarded, and
the iterates P2 f, P?2f and P?3f are shown. Since P2'f = P?3f, the sequence {P!f} asymptotically repeats
with period 2. In (a) the initial density f, shown in the inset, is uniform over [0.7,0.8]. In (b), f(z) = 200(z—0.9)
over [0.9, 1].
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Figure 6.3. Two period 4 cycles of the asymptotic sequence {P!f} for the quadratic map when r = 7, =
3.592572184. In this figure 40 transients have been discarded and the iterates P f, P42 f P43 f P4 f and P*f
are shown. Since P''f = P%f the sequence {P!f} asymptotically repeats with period 4. In (a) the initial
density (inset) f is uniform over [0.5,0.85]. In (b) f(x) = 200(z — 0.9) over [0.9, 1].
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Figure 6.4. The limiting conditional entropy, Hyqz(f|f«), versus the spreading parameter ¢ for the hat map at
a = 2. £ is equal to the width of the support of an initial uniform density f. The local maxima in the figure
correspond to equal limiting conditional entropy values.
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Figure 6.5. A graph of the limiting conditional entropy H,q.(f|f«) versus £ for the quadratic map at r = ry.
The parameter £ plays the same role as in Figure 6.4. Variations in H,q. (f|f«) occur over a smaller £ scale for
the quadratic map. (i) is a blow-up of the inset box in frame (7). (7i%) is a blow-up of the inset box in (7i).



72 THE ORIGIN OF THERMODYNAMIC BEHAVIOUR

CHAPTER 7.
GLOBAL EVOLUTION OF ENTROPY

In Chapter 3 we have shown that invertible systems have absolutely constant entropy, namely H.(P!f|f.) =
H.(f|f«) for all times ¢ (Theorem 3.2), while for noninvertible systems the entropy may increase (Theorem 3.1) since
H.(Ptf|f.) > Hc(f|f«). Thus, noninvertibility is absolutely necessary (though not necessarily sufficient) for the
entropy of any system to increase from its initial value.

To this point we have introduced three types of dynamics that have important consequences for understanding
thermodynamic behaviour. The first is ergodicity, introduced in Chapter 4, which is both necessary and sufficient for
a unique state of thermodynamic equilibrium to exist (Theorem 4.5). In Chapter 5 mixing, an even stronger type of
irregular behaviour, was introduced. In spite of the fact that mixing systems display weak convergence of P! f to a
unique state of thermodynamic equilibrium regardless of the initial density (Theorem 5.1), when they are invertible the
entropy of these systems is constant and equal to the initial entropy corresponding to the density with which the system
is prepared (Theorem 5.2). Finally, in the last chapter we discussed asymptotic periodicity. Asymptotic periodicity
is important since it ensures the existence of at least one state of thermodynamic equilibrium with stationary density
f«. It further guarantees the convergence of the conditional entropy to an extremum which is not only equal to or less
than its maximal value of zero (corresponding to f.) but also dependent on the choice of initial density (Theorem 6.5).

These observations indicate that attention should be focused on extensions of the concepts of ergodicity, mixing,
and asymptotic periodicity that may only occur in noninvertible systems. Since we also know that increases in entropy
need not culminate in the maximum value of the entropy (e.g. asymptotically periodic systems, Chapter 6), the
essential question we now face is: Under what circumstances will the entropy of a noninvertible system
approach its maximum value of zero?

To start to construct the answer, in Section A we introduce the concept of exactness, a new type of irregular
behaviour that only irreversible transformations may display. Section B provides the complete answer to the question
we posed above.

A. EXACTNESS.

To extend the catalog of irregular behaviors that transformations may exhibit, we make the following definition.
If S is an f, measure preserving transformation operating on a normalized phase space X, then S; is said to be f,
exact if

Jim g (5:(4)) =1

for all sets A of nonzero measure. If f, is the uniform density, f. = 1, then we say that S; is uniformly exact.

To understand the nature of exactness, it is first important to realize that invertible systems can not be exact. To
see this, note that for an invertible f, measure preserving transformation S; we have p.(S¢(4)) = (S, *(S:(A))) =
i« (A). Thus the definition of exactness is violated.

Example 7.1. An example, similar to that for ergodicity and mixing, is helpful in showing how exact systems operate.
Figure 7.1 shows the first six iterates of 10* points randomly distributed in [0, {5] % [0, {5] under the action of the
uniformly exact transformation

S(z,y) = 3z +y,z + 3y) (mod 1). (7.1)

It is clear that the behaviour is quite different from a mixing transformation. Under the action of an exact transforma-
tion an initial set A is quickly dispersed throughout the entire phase space X. If one interpreted this example in terms
of many different particles moving with dynamics given by (7.1), and each with a different pair of initial conditions,
then we would very soon find them uniformly dispersed throughout the phase space.

Example 7.2. A second example of a uniformly exact transformation is given by the tent map (3.5). The tent map
preserves the Lebesgue measure and if we start with an initial set B = [0, b], then a simple geometric argument (try
it!) suffices to show that after a finite number of iterations ur (S:(B)) = 1 and the transformation is uniformly exact.
A more precise proof can be carried out using the behaviour of the evolution of densities by the Frobenius-Perron
operator contained in Theorem 7.1 below. e

Example 7.3. Though not as well studied as discrete time systems, some noninvertible continuous time systems have
been shown to be exact (Lasota and Mackey, 1994). Lasota (1979, 1981), Brunovsky (1983), Brunovsky and Komornik
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(1984), Rudnicki (1985a,b; 1988) and Loskot (1985) have also considered the properties of the solutions u(t, z) of the
first order partial differential equation
ou ou
5 T @) = flz,u)
with the initial function
u(0,z) = v(z) for z €[0,1].

Both ¢ and f are assumed to be continuously differentiable, and it is further assumed that
(1) ¢(0)=0, c(z)>0 for x € [0,1];
(2) fu(0,up) <0, f(0,u)(u—wup) <0 for w>0,uu,; and
(3) 0< f(x,0), f(r,u) <ku+ky for ze€][0,1],u >0 with constant ki, k2 > 0 and ug > 0.

With these conditions, whenever the initial function v(x) satisfies v(0) = 0 then the semidynamical system S;(v(x)) =
u(t,z) is f. exact. f. is the (Gaussian) density of the Wiener measure (see Lasota and Mackey, 1994) on the function
space V = {v € C4([0,1]) : v(0) = 0} and C4(A) is the set of all nonnegative continuously differentiable functions on
A e

Example 7.4. Some delay differential equations, which are also noninvertible, have been studied as examples of
continuous time exact systems. an der Heiden (1985) has studied the delay differential equation

d
= = alf(a(t - 1) — 2(t)]
with a suitably defined initial function ¢(t'), t' € [—1,0]. It is known that this equation with a mixed feedback function

of the form f(z) = z/(1 + 2™), n > 0, has solutions that are stable, periodic, or chaotic [Mackey and Glass, 1977; an
der Heiden and Mackey, 1982]. an der Heiden uses a piecewise constant mixed feedback function f of the form

0 z<1
fz)=< ¢ 1<z<b
d b<z,

so the analytic solution z4(t) can be written as the sequential joining of exponential functions of ¢. He then identifies
the sequence of times ¢; such that z4(¢;) = 1, and derives an analytic map S relating successive differences in crossing
times, A; = ty; — t2i-1,

Ai1 = S(A).

He has proved that for some parameter values (a, b, ¢, d) the Frobenius- Perron operator P corresponding to S is either
asymptotically periodic or f, exact.
Peters (1980a,b; 1983) has considered the solution behaviour of the delay differential equation

X = glalt—1)
where
a z< —1
1 -1<z <0
9= 1 n<.<t
—a 1<z

Asin the system considered by an der Heiden the solutions z4(t), corresponding to an initial condition ¢(t'), t' € [-1,0],
can be written analytically as piecewise linear functions of time. Again by considering sequences of solution crossing
times he derived a map Sy which, using techniques developed in Lasota and Mackey (1985), may be shown to be either
asymptotically periodic or f, exact. e

Exact systems are important for an understanding of how convergence to a stationary density f. of the canonical
ensemble may be reached in a way that is an extension of mixing. To be specific, we have:
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Theorem 7.1. If S; is an f. measure preserving transformation operating on a finite normalized phase space X and
Pt is the associated Frobenius-Perron operator corresponding to Sy , then S; is f. ewact if and only if

lim || P'f— f. |I=0,
t—00

i.e., {P'f} is strongly convergent to f., for all initial densities f.

This theorem offers a necessary and sufficient condition for the exactness of S; in complete analogy with the
previously presented necessary and sufficient ergodicity (Theorem 4.7) and mixing (Theorem 5.1) conditions related
to the convergence properties of {P?f}.

Proof. We start by showing that the strong convergence of {P!f} to f. implies f. exactness. Pick a set A of nonzero
u« measure and pick an initial density f4 supported entirely on A. We also define a sequence {r;} by r; = ||Ptfa — f.||
so {r:} is convergent to zero by the assumed strong convergence property.

By writing the functional form of the measure u.(S;(A)) and using the definition of the Frobenius-Perron operator,
we have

pe(Su) = [

S.

R /S ReCES /S )~ s
zéwpan—Awn@—mmm

:/ Plfa(x)de —r
Si(A)

:/ ) fa(z)dx —ry.
S7(Se(A))

Since A C S;"(S:(A)), this entire sequence reduces to
i (Se(A)) > 1 =y,

and since {r;} converges to zero the proof is complete. The proof that f. exactness implies the strong convergence of
{P!f} to f. is accomplished by a reversal of the argument. O

The f. exactness of a transformation implies that it is f, mixing. To show this it suffices to remember that, from
the Cauchy-Holder inequality, for a sequence of functions {f;} we have

| <fe—=Ffig> <N fe=fI-1lgll-

Thus the convergence of || fi — f || to zero implies that < f; — f,g > also converges to zero and strong convergence
therefore implies weak convergence. As a consequence exactness implies mixing just as mixing implies ergodicity.

As with ergodicity and mixing, we extend the definition of exactness to Markov operators P? with a stationary
density f.. Then we say P! is f. exact if {P!f} is strongly convergent to f,. for all initial densities f.? Since strong
convergence implies weak convergence which, in turn, implies Cesaro convergence, for Markov operators P we have
immediately that exactness implies mixing implies ergodicity.

We may draw a connection between the exactness of systems with either the density of the microcanonical or
canonical ensembles as stationary densities through the following result.

Theorem 7.2. Consider a Markov operator P with the density of the microcanonical ensemble as a stationary density,
P1 =1, and a second Markov operator P defined by

_ra( L
Pf‘ﬂp<ﬂ>‘

90perators P! that are f. exact have been called strong Markov operators by Misra et al. (1979), and monotonic Markov operators
by Goldstein et al. (1981).
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Then P! is f, exzact if and only if Pt is uniformly ezact.

Proof. First notice that P1 =1 if and only if Pf, = f.. By induction it is clear that

te_ o Pt i)
Pif=f.P <f* .

Furthermore,

el

consiogm (1)

lim || P'f — f. || = lim ‘
t—00 t—o0

As a consequence, P! uniformly exact implies that P! is f, exact. A reversal of the argument completes the proof. [
Example 7.5. As an illustration of Theorem 7.1, consider the dyadic transformation

S(z) =2z (mod 1) (7.2)
which is a special case of the r-adic transformation S(z) = rz (mod 1) when r is a positive integer. The dyadic
transformation (7.2) is clearly not invertible. A short calculation shows that it preserves the Lebesgue measure so the

constant density f. = 1 is a stationary density. (In fact, this is the unique stationary density.) The counterimage of
an interval [0, z] under the action of the dyadic transformation is

S_l([oam]) = [Ov %CE] U [%7% + .7;],
so the Frobenius-Perron operator corresponding to S is given by

Psf(x) = 3[f(32) + f(5 + 52)].

It is obvious that Ps1 = 1. By an inductive argument, P%f can be written in the form

2f—1 .
i =5 3 (5.
i=0

In the limit as ¢ — oo, the right hand side of this expression becomes the Riemann integral of the density f over [0, 1],
i.€.

1
Jim PLf@) = [ gty e =1

Therefore the dyadic transformation is uniformly exact, and precisely the same argument generalized in an obvious
way extends to the r-adic transformation when r > 2 is an integer. o

We can use this same technique to show that the tent map (3.5) is uniformly exact. Further, the uniform exactness
of the tent map implies the f,. exactness of the quadratic transformation (3.7) when r = 4, with f, given by equation
(3.9), through the following result for one dimensional maps. It also offers a constructive method to develop dynamics
with any desired statistical property.

Theorem 7.3. Let T : [0,1] — [0,1] be a nonsingular transformation, f. be a positive density on (a,b), and S :
[a,b] — [a,b] be a second transformation defined by S = h=' o T o h where

h(m):/zf*(y)dy a<x<b.
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Then T is uniformly exact if and only if S is f. exact.

Proof. The hardest part of the proof is the calculation of the relation between the Frobenius Perron operators corre-
sponding to S and T'. We start by writing the definition of Ps and using the definition of S with a sequence of variable

changes:
y
[ psi@de= [ fads
a S5 ([a.y])

f(z)dx

/91 (T=*([9(a),9(x)]))
dz

B /Tlag(a),g(y)]) Ia™ ) fe(g71(2))
g(y) —1(y

:/ (1{(((; 1(<z)>)>> *

:/y{PT@(?)) fulz) de.

Psf = f.Pr (}f)

and a straightforward application of Theorem 7.2 completes the proof. O

Thus, Ps and Pr are related through

At this point it is appropriate to note some convergence properties of exact systems. Suppose we have an exact
system and wish to construct an approximation to f,. from the time series {S¢(zo)}+>0. Pick a small subset A of the
phase space X with positive Lebesgue measure, say ur(A) = A, and take g(x) = 14(x) in equation (4.20) to give

t1
/1,4( ) fe( dm—/f* )do = lim ZIASk

By the Mean Value Theorem for integrals, this can be written, for € A as

fe(z) ~ — lim — ZlA Sk(z

A t—oo ¢

showing that the convergence of the series to the desired value of f, goes as t~!. This illustrates the necessity of using
long time series to numerically approximate densities.

The situation is quite different when we are given an initial density f and examine the convergence properties
of the sequence {P!f} to f. when P is f. exact. Jabloriski et al. (1985) [see also Jablonski and Malczak, 1983; 1985]
have shown that for large classes of exact transformations the convergence of {P!f} to f. is exponential, i.e., goes as
e~ with @ > 0. This convergence of iterates to f, is significantly faster than is the convergence of the time series
approximation to f, as can be easily shown using the hat map (3.5) or the quadratic transformation (3.7) as examples.

We close this section with three theorems related to exactness. The first is a sufficient condition for the exactness

of asymptotically periodic Markov operators.

Theorem 7.4. Let P be an asymptotically periodic Markov operator in a phase space X. If r = 1 in the spectral
decomposition (5.1) of P'f, then P is exact.

Proof. Since, by hypothesis, r = 1 in (6.2) we may write

P'f(z) = A(f)g(z) + Q¢ f ()
and thus
lim P'f(x) = M(f)g(x)-

t—o00

Both f and g are densities, so integration over the entire phase space X gives A\(f) = 1 and thus {P!f} is strongly
convergent to g, and exactness follows by Theorem 7.1. O

This theorem shows, for example, that the generalized hat map (6.9) is in fact f. exact for 2'/2 < a < 2. Our
second result is
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Theorem 7.5. Let P be an asymptotically periodic Markov operator. Assume that there is a subset A of the phase
space X with positive measure such that for every density f there is an integer t,(f) such that Ptf(xz) > 0 for all
t > t1(f) and almost all points © in A. Then {P!f} is ezact.

Proof. Since P is asymptotically periodic, we know that the expansion (6.1) of Theorem 6.1 is valid. If we can show
that 7 = 1 in this expansion, then Theorem 7.4 will complete the proof.

Assume the contrary, that » > 1, and choose an integer iy such that the subset A is not contained in the support
of gi,(x). Pick a density given by f(z) = g;,(z) and let 7 be the period of the permutation a. Then it follows
that P! f(x) = g;,(x), so that P!7 f is not positive on A since A is not contained in the support of g;,. This is in
contradiction to the assumption of the theorem, and thus we must have r = 1. Hence {P*!f} is exact by Theorem
74. O

The final result requires the introduction of the notion of a lower bound function for a sequence of densities
{P!f}. We say that an L' function h is a lower bound function for a Markov operator P if, for every density f,
. te —I =
Jim [|(P'f —h) || = 0.
This condition could be written in the alternate form
Ptf Z h — €t

where ||e]] = 0 as t — oo, illustrating that a lower bound function is such that successive iterates of a density f by a
Markov operator P! are eventually above it. Further, h is a nontrivial lower bound function if 4 > 0 and ||h|| > 0.

With these concepts, we can now state the following result that will be of use in our examination of the behaviour
of entropy in later chapters.

Theorem 7.6. P! is an evact Markov operator if and only if Pt has a nontrivial lower bound function.

The original proof of this theorem by Lasota and Yorke (1982) was quite long. The proof that is given here
(Lasota and Mackey, 1991) is considerably shorter.

Proof. First observe that if P! is exact then the existence of a lower bound function is easy since we may take h = f.
Conversely, assume P has a nontrivial lower bound function. Pick a density f and choose a number ¢y(f) such
that

1
(P f=h) "I < ZlIhll - for &> to(f).
From |a —b| = a — b+ 2(a — b)~ we have
(P f =) || <|IP'f = bl < [IP'FI| = IRI] + 211 (P'f = h)~ I,

and since || P f|| = 1 this becomes
1
(P f=mT I <t=glhll for &> to(f).

Thus by Theorem 6.2 we know that the operator P is asymptotically periodic and we may use the decomposition
formula (6.1).

We now show that » = 1 by necessity. Assume the contrary and take r > 2. Consider two basis functions g; and
g2 in the decomposition (6.1). From Pg; = g,(;) we have P""g; = g; for m = r!. However from the definition of the
lower bound function it also follows that

Pi™g; > h—¢, i=1,2,

so g; > h — €, for i = 1,2. This then implies that g;g> > 0 which contradicts the orthogonality of the g; required by
Theorem 6.1. We are led to a contradiction and therefore must have » = 1. Thus Theorem 7.4 implies the exactness
of {Ptf} with f. = g1 and the proof is compete. O
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B. THE STRONG FORM OF THE SECOND LAW.

The main result of this chapter is a necessary and sufficient condition for the Second Law of thermodynamics to
operate in its strong form. We consider a Markov operator P that has a stationary density f, which is not necessarily
constant, thus corresponding to the density of the canonical ensemble, and give a necessary and sufficient condition
for the conditional entropy to go to its absolute maximal value of zero. Namely we have:

Theorem 7.7. Let Pt be a Markov operator operating in a phase space X. Then the conditional entropy of Ptf with
respect to a density f. goes to its mazimal value of zero as t — oo,

. t _
lim H.(P'f|f.) =0,

if and only if Pt is f. exact.

Proof. We give the proof in the case that f, > 0 and for densities f that are bounded. The result holds in the general
case.

We first prove that lim;_, o H.(P!f|f.) = 0 implies that P! is f, exact. Since f is assumed to be bounded, there
must exist a lower bound constant such that

HC(Ptf|f*) > —c.

By Theorem 6.6, this implies that P is asymptotically periodic, so the spectral decomposition (6.1) is valid and P?

has a stationary density f.(z) = 2 37| g;(z). We will show that r = 1 and therefore, by Theorem 7.4, P is f, exact.
As usual, let the sets A; C X be the supports of the densities g;(xz). Remember that u.(A;) > 0, and select an

initial density

_ ]‘Ai (:L’)

B p (Ai)

If T is the period of the asymptotically periodic sequence {P!f}, then

f(z)

gi(z).

A ),

tT —
PITfa) = A0

By our hypothesis, lim;_, o, H.(P!f|f.) = 0 for all initial densities f, so

(o] ) -

By the elementary properties of the conditional entropy discussed in Chapter 3, this implies that

sor =1 and P? is f. exact by Theorem 7.4.
To prove the converse, that when P! is f. exact we have limy_, ., H.(P!f|f.) = 0, first realize that since f is
assumed to be bounded and f, > 0 by assumption, there must be a constant v > 1 such that for some z

Pf
fe

<.

Define a subset B; C X by
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Then,

J 1 (77 woa

1) (1)‘ )

=t dn
= —d’LL M dl'
/B/ U du 1a(dr)

Pt
< s ot [ [EIE)
1<u< 2L B;

- 1\ o ()

()

< swp o) [ 1P - @) ds

1<u<P S

= sup 7'(u) [|P'f = £l
1§u§”f—if

Since P! is f, exact by assumption, Theorem 7.1 tells us that

(7)o

=0.

lim
t—o00

This, in conjunction with

0> 118 = [0 ZHE) ) z/Btn<Ptf(x)) (),

fe(2) fe(2)

completes the proof that the f, exactness of Pt implies the global convergence of the conditional entropy. [

Example 7.6. An illustration of this theorem is given by the quadratic map (3.7) with r = 4, which is f. exact by
Theorem 7.3 and the uniform exactness of the tent map (3.5). Both have a smooth increase of the conditional entropy
to zero at long times irrespective of the initial system density. o

Theorem 7.7 sets forth necessary and sufficient criteria for the operation of the strong form of the Second Law of
thermodynamics, namely for the entropy of a system to globally converge to its maximal value regardless of the way
in which the system was prepared. The only requirement that the system must satisfy is that the density must evolve
under the action of an exact Markov operator. If this operator is a Frobenius Perron operator then the dynamics must
be f. exact. Since f,. exactness implies f, ergodicity, the state of thermodynamic equilibrium characterized by the
density f, is unique

There is a corollary to Theorem 7.7 concerning the behaviour of the Boltzmann Gibbs entropy of systems operating
in a finite normalized phase space when the stationary density is that of the microcanonical ensemble, f, = 1.

Corollary 7.8. If P is a Markov operator operating in a finite normalized phase space X, then the Boltzmann-Gibbs
entropy of P'f approaches its mazimal value of zero as t — oo, i.e.,

. t _
lim H(P'f) =0,

if and only if P is uniformly ezact.

Thus, the Boltzmann-Gibbs entropy will converge to its maximal value of zero if and only if the density of the
microcanonical ensemble is a stationary density and the system evolves under the action of a uniformly exact Markov
operator P. As before, ergodicity of P guarantees that the uniform density of the microcanonical ensemble is the unique
state of thermodynamic equilibrium, while the uniform ezxactness of P guarantees that the entropy will approach its
mazximum value of zero regardless of the way in which the system is prepared. Both the r-adic transformation, when r
is an integer (Example 7.5), and the tent map (3.5) are uniformly exact by our previous observations, and thus display
a smooth evolution of their Boltzmann-Gibbs entropy to zero for all initial system states.
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Thus, for finite normalized spaces:
P'is uniformly exact < tlim H(P'f) =0,
— 00

while in general
Plis f, exact & 1tlim H.(P'f|f.) =0.
—00

These results point out a very important property of the entropy wvis a vis the common notion that maximal
entropy should be associated with maximal disorder, or minimal structure. Experimentally, what we measure is that
the entropy of a system evolving in time goes to a maximum. Further, in the course of any experiment the dynamics
are the ultimate selector of the proper f. with respect to which the conditional entropy is “computed” during the
system evolution. This state of maximal entropy, in turn, corresponds to a state of thermodynamic equilibrium, and
in no way makes a judgment about whether this state is totally structureless (f. uniform) or highly ordered. Any
apparent inconsistency between a state of maximal entropy and a nonuniform f, comes exclusively from the erroneous
identification of f, = 1 as the preferred state of thermodynamic equilibrium. This partially stems from the long
historical preoccupation of trying to find a rational foundation for thermodynamics in the statistical mechanics of
Hamiltonian systems which preserve the Lebesgue measure and for which the attendant density f. = 1 is a stationary
density.

C. SUMMARY.

With the results of this chapter giving necessary and sufficient conditions for the approach of system entropy to
a maximum, one might think that our quest for the dynamical foundations of thermodynamics and the functioning of
the second law was at an end. This is far from the reality of the situation as a moments reflection reveals.

Here it has been demonstrated that it is only through the operation of noninvertible f. exact systems that
the entropy will increase to its maximal value (Theorem 7.7). Further, given the observation that dynamics are the
ultimate determinant of the stationary density f,, that this corresponds to a state of thermodynamic equilibrium, and
that since states of thermodynamic equilibrium depend on a variety of parameters (temperature, pressure, etc.), we
must conclude that the corresponding f, must also depend on these parameters as must the underlying dynamics.

Given these results we are now faced with another problem since all of the laws of physics are framed in terms
of invertible dynamical (as opposed to noninvertible semidynamical) systems which are independent of these external
parameters.

This dilemma seems to have at least two solutions. Either:

(1) The laws of physics are at present incorrectly formulated. R. Penrose (1979, 1989) has argued quite lucidly
and simply for this point of view, basing his thesis on CPT violation in K° meson decay. Fer (1977) makes
a similar point, basing his argument on the neglect of time delays in the usual formulations of physical laws.
Gal-Or (1974, 1981) and Davies (1974) have examined possible sources of time asymmetry in physics, primarily
from a cosmological and electromagnetic perspective; or

(2) There is some effect, neglected to this point in our considerations, which alters the behaviour of a dynamical
system to give rise to the experimentally observed behaviour.

The next four chapters are devoted to an exploration of the second of these possibilities, as the first involves a
drastic restructuring of the entire formulation of classical and quantum physics.

In the next chapter we examine the concept of coarse graining, and in Chapter 9 we consider traces. These two
concepts are closely linked. Coarse graining, in spite of the fascination that it has held for decades as a potential source
of irreversible thermodynamic behaviour, is unable to stand as a viable candidate because it induces an increase in
entropy to its maximal value of zero regardless of the direction of time (forward or backward)! A more extreme form
of coarse graining, known as a trace and implying the existence of hidden variables, is able to induce truly irreversible
thermodynamic behaviour.
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Figure 7.1. The behaviour of an initial 10 points under the action of the exact transformation (7.1). Note
in particular how rapidly these points spread throughout the phase space without developing the thread-like
structures seen in Figure 6.1 for a mixing transformation.
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PART IIIL
POSSIBLE, BUT IMPROBABLE, SOLUTIONS
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CHAPTER 8.
COARSE GRAINING

To this point, in studying entropy behavior it has been assumed that the dynamical variables are known with
infinite precision. As a consequence, the density f corresponding to a given thermodynamic state would also be known
precisely. While this is the situation when an analytic form for the density is available, in the world of experiment
the reality is that the density f (or, more usually, some functional of f) is either measured or estimated with some
associated error.

Perhaps the most obvious way in which this situation might arise is that due to errors (arising, for example, from
measurement impreciseness) f will not be known exactly but will be known only to some level of accuracy. Alternately,
it is entirely possible that Nature herself may have introduced an inherent graininess to phase space, rendering the
absolute determination of dynamical variables, and thus densities, impossible. Many have suggested that there is an
elementary fundamental volume in position-momentum space whose measure corresponds to Planck’s constant. This
would be entirely in keeping with other apparently fundamental indivisible units in the real world.

In this chapter we examine the consequences of lack of knowledge of the specific values of dynamical variables
by studying the properties of the coarse grained entropy. In Section A we define the coarse grained entropy, and in
Section B we prove that for a mixing system the coarse grained entropy always approaches zero for long times but that
this behaviour is independent of the direction (positive or negative) with which time is allowed to increase. Finally, in
Section C we consider the effect of observing or sampling a continuous time process at a set of discrete times which
might be likened to a temporal coarse graining.

A. COARSE GRAINED ENTROPY.

To examine the effect of imprecision in our knowledge of dynamical variables on entropy calculations, we introduce
the entropy of a coarse grained density, or more briefly, the coarse grained entropy. This concept seems to have
been first qualitatively discussed by Gibbs (1902), and quantified by Ehrenfest and Ehrenfest (1959). Denbigh and
Denbigh (1985) have considered aspects of the effects of coarse graining on the behaviour of entropy.

Coarse graining is carried out by first partitioning the phase space X (finite and normalized) into discrete cells
A; that satisfy

( i#]

Obviously, there is no unique way in which such a partition {A4;} may be formed, but we require that the partition is
nontrivial with respect to the Lebesgue measure pur, s0 0 < pr,(4;) < prn(X) =1 for all values of i. For every density
f, within each cell A; of this partition we denote the average of f over A; by < f >,

1
< f>i= 7/ f(z) de, (8.2)
' o (As) A;
so the density f coarse grained with respect to the partition A; is given by

f(x) = Z < f>ila (@) (8.3)

Thus, f9 is constant within each cell A; and ), < f >; ur(4;) = 1.

Therefore, given a partition A; satisfying (8.1) (nontrivial with respect to Lebesgue measure), a density f, and a
coarse grained density ¢ defined by (8.2)-(8.3), then the Boltzmann-Gibbs entropy of the coarse grained density f¢
is given by

H(f) ==Y < f>ipe(A)log < f>;.
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The demonstration is direct since, from (8.3) and the definition of the entropy, we have
-,
= —Z < f>; / 14,(z)log
p X
-y <f >i/ log lz < f>i lAi(m)l dz
i Aq i

=Y < f>ipp(A)log < f >

H(f*)

Z < f>; lAi(m)] log Z < f>i lAi(m)] dr

Z < f>i lAi(aj)] dr

It is noteworthy that for any density f, the Boltzmann-Gibbs entropy of the coarse grained density f°9 may be
greater than the entropy of f, or more specifically:

Theorem 8.1. For any density f and any nontrivial partition A; of the phase space X, H(f) < H(f9).

Proof. This is quite straightforward to prove using the integrated form of the Gibbs inequality (1.5). First, by use of
the indicator function 14(x) we may write

H(f)

- [ st@)tog )
-2 /X f(@)La, (x) log f(z) dz

IN

— ()1 d
Ei / f(z)1a,(z)logg(z) dz,
for g(x) an integrable density. Pick g(z) =< f >; so
H(f) < % og < f> / f(x)14,(x)dx

— % . d
;°g<f> /Al_f(w) @
:_Z<f>iNL(Ai)log<f>i

= H(f%),

and the assertion is proved. [

Thus, the effect of any error in the estimation of a density f characterizing a system, no matter what the origin,
will be to either increase the entropy of the estimated (coarse grained) density H(f?) above its actual value H(f), or
leave it unchanged.

Precisely analogously to the way in which the entropy of the coarse grained density was derived, it is easy to
show that the conditional entropy of f with respect to a second density g, also coarse grained with respect to the
partition A;, is given by

H( 1) = = 32 < 1 > tog | L2

<@g >;

It is equally easy to show that H.(f|g) < H.(f9|g??) for all densities f and g, and nontrivial partitions A; of the
phase space X.

Therefore, in general, coarse graining of the phase space, and the consequent coarse graining of a density, will
either increase the entropy or leave it equal to its value before coarse graining.
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Now assume that an initial density f evolves under the action of a Markov operator to give the sequence {P!f}.
In analogy with (8.3), the coarse grained P!f is given by

(P'f(z 09—2<Pf>Z1A()

where
1

7NL(A1') /AiP f(z)dz.

It is important to realize that we are assuming that the Markov operator operates without any error on the density f,
and that the coarse graining arises because of our inability to precisely measure dynamical variables, and consequently
densities, for whatever reason. The converse situation in which we may measure densities with infinite precision, but
the dynamics always work with some error are considered in Chapters 10 and 11 where we consider system interactions
with a heat bath.

< Ptf >i=

Example 8.1. An example is helpful in illustrating the effect of coarse graining, and we return to the baker trans-
formation (5.2), illustrated in Figure 5.4, with f given by equation (5.6).

Consider first of all the situation with the partition {A;, A2} = {¥1,Y2}. Then we have < f >;=< f >3=1 and
thus H(fY) = 0. Following one application of the baker transformation (Figure 5.4c), H(f ") ~ —0.13 and finally
(Figure 5.4d), H(f5%Y) = 0. On the other hand, after one application of the inverse of the baker transformation
(Figure 5.4a) we have H(fY) = 0.

Alternately, if we choose the partition to be {A;, A2} = {X1, X}, then H(f°9X) ~ —0.13 while H(f% Xy =
H(f{"™) = H(f;"") = 0. o

These computations illustrate that coarse graining in this invertible mixing system:

(1) Induces the entropy of the coarse grained density to approach the equilibrium entropy for both positive and
negative times;
(2) This approach may not be monotone (compare H(f°%Y) with H(f"));

(3) The approach is not necessarily symmetric with respect to a reversal of time (compare H(f%") with H(ff*"));
and
(4) The approach may be dependent on the partition chosen (X wversus Y).

B. COARSE GRAINING OF MIXING SYSTEMS.

Coarse graining has interested numerous authors since the concept was first introduced by Gibbs (1902, pp
148-150) with the observation that coarse graining of a mixing system should lead to an increase in the entropy to its
maximal value as we have just illustrated. To prove this, assume that P! is an f, mixing Markov operator and rewrite
the definition (5.1) of an f, mixing Markov operator in the equivalent integral form:

t—00

i [ [P'f@)lg(e)dz = [ f.(0)g(e) da. (8.4)
X X

If we pick g(z) = 14,(x)/pr(4;), then equation (8.4) becomes

i 1 t —# x z)dzx
Jim — [ [P @) @) de = — [ 1@ (@)

The left hand side of this equality is < P!f >; while the right hand side is identically equal to < f. >;. Thus
lim < Pif >i=< f, >;
t—o00
lo)
hmZ<Pf>llA Z<f*>llA()
Finally, from the definitions of (P?f)¢¢ and f.? it follows that
. t g\Cg _ fcg
Jim (PEf)* = f7.

Thus, nontrivial coarse graining of an invertible f, mixing Markov operator causes it to become f, exact. Finally, if
Pt is also invertible (as for the baker transformation) we have proved the following.
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Theorem 8.2. If P! is an invertible f. mizing Markov operator with a unique stationary density f., and {A;} is a
nontrivial partition of the phase space X, then

lim (P'f)® = f

t—+o0

for all initial densities f, where

fOx) =Y < fo>ila(2).

As a consequence of this result and Theorem 7.7, we have

Theorem 8.3. If P! is an invertible f. mizing Markov operator with a unique stationary density f. and {A;} is a
nontrivial partition of the phase space X, then

Jim H((P'f)™]f) =0

for all initial densities f.

For uniformly mixing systems operating in a normalized finite space, it is an easy consequence of these results
that after coarse graining of the phase space, { P! f} will approach the uniform density of the microcanonical ensemble,
and that the Boltzmann-Gibbs entropy will approach its maximum value of zero.

C. SAMPLING.

Consider a continuous time sequence of densities { P’ f};>o and the corresponding sequence { P f}°2  obtained
by sampling at times t, where t,, < t,41. For convenience we suppose that there is a basic sampling interval ¢y so
t, = nty, but this is not necessary for the conclusions that follow. Since t, = nty by assumption we may define
P = P so Pt~ = P™o = P" and the sampled sequence can be written {P"f}22 .

With respect to sampling, the basic question we wish to address is whether this procedure can give rise to any
entropy behaviour of the sampled sequence {]5” 152, that was not present in the original sequence {P!f};>o. As
summarized in the following theorem, the answer is a definitive no.

Theorem 8.4. Let P be a Markov operator with stationary density f., define a sequence of densities {P" f};>o, and
let P = P be the corresponding Markov operator obtained by sampling at times to to generate the sequence {P"f}5° .
Then {P™f}>2, is f« ezact (mizing) if and only if {P'f}i>0 has the same property.

oo

Proof. The if part of this theorem, that exactness (mixing) of {P!f}¢>o implies the same property for {PrfYoo,, is
easily proved. We prove the converse only for the case of exactness as the proof for the mixing situation is similar.
Since, by assumption, {P"f}7° , is f. exact, we know that P"f, = f. for all n and

lim [|P"f — f.|| =0 forall feD.
n—o0

We first show that Ptf, = f. for all ¢ follows by picking an arbitrary time ¢' and setting f' = P* f, (which is a
density), and further noting that f. = P"f. = P™o f,. Thus,

|PY fo — full = [|PY (P £.) — .|
=[P f — f.]|
= ||P"f" = f]]

By assumption the right hand side converges to zero as n — oo for all densities f', and since the left hand side is
independent of n we must have ||Pt f, — f.|| = 0 for all ¢ and thus Pt f, = f..

Next we must show that lim;, ||P!f — f«|| = O for all densities f. By Property 4 of Markov operators,
[|Ptf — full = |IPY(f = fo)ll < |If — f«|| and since we have convergence to zero on a subsequence of nonincreasing
functions, lim; o ||P'f — fu|| = 0. O

The situation is not so straightforward if we are considering ergodicity in sampled systems, as the following
example shows.
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Example 8.2. Consider the transformation S; : [0,1) — [0,1) defined by
Se(x) = x 4+ wt (mod 1),

which is a special case of the system considered in Example 4.3. From our comments there and in footnote 5 (Chapter
4), we know that S; is ergodic if and only if w is irrational.

Now suppose we sample S at an interval o such that wtq is rational. Then it is clear that the sampled system,
for this particular value of ¢y, is not ergodic. e

This example illustrates that even though a sequence {P*f};>o is ergodic, it may happen that the sampled
sequence {P"f}2°, will not be ergodic. The converse, however, is not true and is given by the following theorem.

Theorem 8.5. Under the assumptions of Theorem 8.4, if {P”f};l'ozo is ergodic, then {P'f};>¢ is also.

The proof proceeds much as for Theorem 8.4.

Thus we see from Theorems 8.4 and 8.5 that sampling a continuous sequence of densities {P*f};> at an interval
to cannot induce any new thermodynamic behaviour in the sampled sequence {P"f}2 ;. The same conclusion holds
if we consider an irregularly sampled sequence { Pt 10 .

D. SUMMARY.

Here, we have introduced the concept of coarse graining and the coarse grained entropy. We have shown that
the introduction of coarse graining of the phase space is sufficient to cause the entropy of an (invertible) mixing
transformation to increase to its maximal value of zero irrespective of the direction of time.

Given the fact that the result of Theorem 8.3 was clearly known by Gibbs, though not proved with rigor, it is
surprising that the effects of nontrivial coarse graining have had, and continue to have, so much attention as possible
sources of irreversible thermodynamic behaviour.

Even setting aside the lack of invertibility of the behaviour of the coarse grained entropy, it is important to
realize that the rate of convergence of the entropy of the coarse grained densities that Theorem 8.3 guarantees will,
in general, depend on the way in which the coarse graining of the phase space is carried out. Experimentally, if
entropy increases to a maximum only because we have invertible mixing dynamics but there is coarse graining due
to measurement imprecision, then the rate of convergence of the entropy (and all other thermodynamic variables)
to equilibrium should become slower as measurement techniques improve. Such phenomena have not been observed.
Thus, it seems likely that nontrivial coarse graining plays no role in determining thermodynamic behaviour, even if
the coarse graining is externally imposed by Nature in the form of an inherent graininess or unitary cellularity of phase
space. The same conclusion relative to temporal coarse graining, or sampling, also holds.
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CHAPTER 9.
TRACES AND FACTORS

As an alternative to the coarse graining of the previous chapter, we now explore the consequences of having
an invertible dynamics in which not all dynamical variables are observable. Essentially this means that we have a
dynamical system operating in an m-dimensional space, but are able to observe only n < m of these variables. That
is, we observe only a trace of its operation in an n-dimensional space because (m — n) of the variables are hidden to
us, e.g. because either we do not know about them, or do not have the technology to measure them.

A. TRACES.

To make these ideas more specific, we return to a brief consideration of dynamical systems which were first
formally introduced in Chapter 1. If we have a dynamical system S; operating in some phase space X, then only three
possible types of limiting trajectories may be observed. Either:

(1) The trajectory is a single fixed point x, such that z, = S¢(z.) for all times ¢; or

(2) The trajectory of S; is a nonintersecting curve, which we express as Sy (x) # Sy (x) for all times ¢' and ¢" that
are not equal; or

(3) S: has a periodic trajectory so Si(x) = Sty () for all times ¢ and all points = in some subset A of the phase
space X. In this case we say that the trajectory has period w.

The only possible type of intersecting trajectory that a dynamical system may have is a periodic one. To
demonstrate this, assume that for some point z in the phase space X we have Sy (r) = Sy(z) for a time " > ¢'.
Apply S,_, to this relation, and use the definition of a dynamical system to obtain

Stft’ [¢] St’ (1‘) = St(m) = Stft’ (o} St” (1‘) = St+(t”—t’)(m)'

With w =¢" — ¢’ > 0, we have arrived at S¢(z) = Syt (x) for all times ¢.

However, we often observe (apparently) nonperiodic intersecting trajectories, and it is not terribly difficult to
understand how they might arise. As an example, a periodic or aperiodic trajectory of a three dimensional oscillator
might display an intersecting trajectory in a two dimensional projection of its phase space.

As alluded to earlier, this projection is called a trace, a concept that is made more precise by the following. Let
X and Y be two (topological Hausdorff) phase spaces, F' : ¥ — X a given continuous function, and Sy : ¥ = Y a
dynamical system operating in the phase space Y. A function h: R — X is a trace of the dynamical system if there
is a point y in the space Y such that h(t) = F(S¢(y)) for all times ¢.

One is naturally led to wonder under what circumstances a nonperiodic intersecting trajectory can be viewed
as the trace of a higher dimensional dynamical system. It is actually easy to give a surprising answer to a much
more general question. Every continuous trajectory (function) in a space X is the trace of a single dynamical system
operating in a higher dimensional phase space Y'! More precisely, we have the following result which I like to call the
God Theorem because of an amusing conversation with my colleague A. Lasota in Katowice, Poland, in April, 1984.
We had both enjoyed the fruits of an especially good Bulgarian vineyard.

Theorem 9.1 (God Theorem). Let the phase space X be arbitrary. Then there is a second phase space Y, a
dynamical system S; operating in Y, and a continuous function F :' Y — X such that every continuous trajectory
h : R — X is the trace of S¢. That is, for every trajectory h there is a point y in the phase space Y such that
h(t) = F(Si(y)) for all times t.

Proof. The proof can best be understood by using the following diagram.

v ey 20y 540

Foy(f)l lFoy(t+t~)

y(0)e X —— X >9(t)
StOZJ(O)

We let Y be the space of all continuous functions y : R — X, and define a transformation S; operating on Y by the
simple shift

Seoy®) =y(t +1).
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(It is clear from the definitions of Chapter 1 that S; is a dynamical system.) Furthermore, we define a projection
F:Y — X by

Foy(d) = y(0).

Now let h : R — X be an arbitrary and continuous trajectory. From our definitions it follows that S; o h(f) =
h(t + %) and F o S; o h(f) = h(t). Thus the trajectory h(t) is the trace of the dynamical system S; operating in the
space Y that had h(f) as its initial function. O

There are important consequences for the behaviour of the entropy when one is considering the trace of a
dynamical system.

If we have a dynamical system S; operating on Y, then the entropy is always identically equal to the entropy of
the initial density since it is impossible for the entropy of an invertible system to change (Theorem 3.2.). This need
not be the case for the entropy of a density evolving under the action of a trace of a dynamical system.

Example 9.1. To illustrate this point, again consider the baker transformation (5.2) which is a K-automorphism.
We have shown directly that the entropy of the baker transformation is absolutely constant and equal to the value
determined by the choice of the initial density. However, note that if we consider only the x portion of the baker
transformation, it is identical to the dyadic transformation T'(z) = 2z (mod 1), introduced in Example 7.5, which is
uniformly exact and whose entropy smoothly increases to zero.!°

This example illustrates that taking a trace of a dynamical system with time independent entropy may be sufficient
to generate a system in which the entropy is increasing. Of course, in general we do not know what the limit of this
increase may be, and the entropy may approach a limit considerably less than its maximal value if, for example, the
trace is asymptotically periodic.

B. FACTORS.

This leads us to discuss specific types of traces for which much more can be said about the behaviour of the
entropy. To see how this works, we introduce the notion of a factor of a transformation with the aid of the following
diagram.

y 2,y

r| |7
X — X
T:

Let X and Y be two different phase spaces with normalized measures p¢, and p,, and associated densities f. and g.
respectively, and 73 : X — X and S; : Y — Y be two measure preserving transformations. If there is a transformation
F:Y — X that is also measure preserving, i.e., if p,, (F7'(A)) = ps.(A) for all subsets A of the phase space Y, and
such that Ty o F = F o S; (so the diagram commutes), then 7} is called a factor of S;.

From this definition a trace of the system Sy is a trajectory of the factor T;. In Example 9.1 the dyadic transfor-
mation is a factor of the baker transformation (5.2).

Example 9.2. As a second example of the effect of taking the factor of an invertible system, consider the quadratic
baker transformation L L
{(4@“(1_33):531) 0<z< 35

(dz(l-z),3+3y) 1<z<Ll

This system, like the original baker transformation, is invertible and in fact

11 1
(3 —3v1—12,2y) 0<y<s
1,1
2 T2

G+ivi—-=z2y-1) L<y<l.

S(z,y) = (9.1)

5 4w = {

Using this in conjunction with the observation that J!(z,y) = 1/4y/1 — z and equation (4.5) gives an explicit form
for the Frobenius Perron operator corresponding to (9.1):

1

4,/(1 —z)

10Goldstein and Penrose (1981) have called this trace entropy a coarse grained entropy.

Pf(x) = {(fG-3Vi-z29)+ f(5+5V1-2,2y -1} (9.2)
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The density
Lio,11(y)

m/z(l —x)
is the unique stationary density of (9.2), and in fact (9.1) is f. mixing. As for the standard baker transformation (5.2)
the conditional entropy satisfies H.(P!f|f«) = H.(f|f.) for all initial densities f with which the system is prepared.
As in Example 9.1, if we assume we have access to only the z variable of (9.1) then we have a factor system given
by T'(x) = 4z(1 — x) which we know is f. exact, with f, given by (3.9), and consequently lim; ., H.(P!f|f.) = 0 for
all initial system preparations. e
The formal connection between these concepts and the behaviour of the entropy is furnished by the following
theorem due to Rochlin (1964). The proof may be found in Cornfeld et al. (1982).

f*(may) =

Theorem 9.2. (Rochlin, 1964). Every f. exact transformation is the factor of a K-automorphism.

The transformation F' involved in our discussion of factors and traces is precisely what Misra et al. (1979) and
Misra and Prigogine (1981) refer to as a projection operator in their work on the generation of noninvertible behaviour
from invertible dynamics. The Rochlin Theorem 9.2 serves as the analytic link in their work between invertible
K-automorphisms and f, exact transformations (or strong or monotonic Markov operators).

As noted in Chapter 5, since K-automorphisms are invertible their entropy is forever fixed at its initial value
by Theorem 3.2. On the other hand, by Theorem 7.7 and Corollary 7.8, we know that the entropy of an f,. exact
transformation, which by the above theorem is the factor of a K- automorphism, increases smoothly to its maximum
value of zero irrespective of the initial density with which the system was prepared.

C. COARSE GRAINING AND TRACES.

One way to view the connection between the effects of coarse graining the phase space and taking the trace of a
dynamical system is as follows. In coarse graining, we lose some information about the exact values of the dynamical
variables. One could easily imagine the situation in which we have m variables, of which n were measured with infinite
precision, and (m — n) of them were measured with some error. Thus the act of taking a trace is just a more extreme
case of coarse graining in which we are not able to measure any of the (m — n) variables.

Given a phase space in which the evolution of densities is governed by the generalized Liouville equation (3.2), it
is partially this operation of taking a trace that leads to the Boltzmann equation and its successful predictions of the
behaviour of dilute gases. The Boltzmann equation describes the behaviour of a density evolving under the action of
a factor of the original dynamics. Thus there is an analogy between the dynamics of the Liouville equation and of the
Frobenius-Perron operator for the baker transformation, while the dynamics of the Boltzmann equation are analogous
to those of the Frobenius-Perron operator corresponding to the dyadic transformation:

INVERTIBLE
—_—

Liouville equation baker transformation

Tracel J(Trace

Boltzmann equation » dyadic transformation
NONINVERTIBLE

D. SUMMARY.

This and the previous chapter have presented two possible ways out of the clear problems associated with the
necessity of noninvertible exact system dynamics for entropy to increase, and the fact that all of the laws of physics
are formulated as invertible dynamical systems that are not exact.

Here we have introduced the concept of a trace, and shown that when a trace is a factor of a dynamical system,
the entropy may increase. Even stronger results are available in some circumstances when the trace is taken from a
K-automorphism, for then the trace may be f, exact with an entropy that increases to its maximal value of zero.
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CHAPTER 10.
OPEN DISCRETE TIME SYSTEMS.

To this point we have examined two situations in which the entropy of a reversible system may appear to increase.
In the first (coarse graining, Chapter 8), we have a transformation operating precisely but are unable to measure the
dynamical variables with perfect accuracy. The second situation (taking a trace, Chapter 9) assumed that we did not
have access to all of the dynamical variables, but only to a subset of them. In both situations, the system is closed in
that there are no external influences acting on the system.

This chapter examines the consequences of having a discrete time deterministic transformation experience a
perturbation from an outside source. Thus we are starting to examine what could be considered as the mathematical
analogue of the interaction between a system and a “heat bath”, or an open system. These considerations are also
important since in any numerical investigation of the dynamics of discrete time or continuous time systems, one is
always dealing with finite difference schemes in which “noise” from roundoff error is present. Stochastically perturbed
continuous time systems with dynamics described by ordinary differential equations are considered in the next chapter.

Assume that, in general, a system evolves according to a given transformation S(z;). The qualifying phrase ‘in
general’ means that the transition z; — x;11 = S(x¢) occurs with probability (1 — €). In addition, with probability
€, the value of x4, is uncertain. If x; = y is given, then, in this case, z;y1 may be considered as a random variable
distributed with a density K (x,y) which depends on y. In Section A we derive a density evolution equation for this
process.

One interpretation of this process is that e corresponds to the degree of coupling between the system under study
and the heat bath. If this is the case, then the parameter € can be thought of as a number related to the ratio of the
fundamental frequency of operation of the basic deterministic system, Fp, to the frequency of the outside perturbation
coming from the heat bath, Fp. Thus when Fp <« Fp, € ~ 1 and the system operates almost like a random walk,
while with Fp > Fp, we have € ~ 0 and the system evolves almost completely deterministically. We will refer to the
situation when 0 < € < 1 as ‘loose coupling’ (Section B). For € = 1, in which the influence of the external system is
always experienced, we will speak of strong (or continuous) coupling (Section C). However, as will become clear in
Section D, precisely the same formulation may be interpreted in a totally different fashion as arising from taking a
trace. Sections E and F respectively consider the effects of additive and parametric perturbations in inducing weak
and strong form Second Law behaviour. The chapter closes with Section G in which we consider the approximation
of a Markov operator by a sequence of Frobenius Perron operators.

A. AN OPERATOR EQUATION.

The first step in the study of this process is the derivation of an equation for the operator P which gives the
prescription for passing from the density f; of x; to the density fiy1 of z¢r1. Assume that the dynamics operate in
a phase space X (with positive measure, of course) which is some measurable subset of R?, and that the dynamics S
are nonsingular.

If the density f; of z; is given, we wish to know the probability that some point z;11 is in a subset A of the
phase space. Clearly, z;11 may be reached in only one of two ways: deterministically with probability (1 — €) and
stochastically with probability e. In the deterministic case, z;+1 = S(z;) and

PrObD(.’IJt+1 S A) = PI'ObD(S(CEt) € A) (101)

(The index D denotes the deterministic situation.) From the definition of the Frobenius-Perron operator, the density
of S(z;) is Psf; and, as a result,

Probp (S(z:) € A) = / Ps f(x) da (10.2)
A
If the stochastic perturbation occurs, and if y = x;, then
Probp(zi41 € Alay = y) = / K(z,y)dx.
A

(P denotes the perturbation). Since x; is a random variable with density f;, it is also the case that

PI‘ObP(.’EH_l € A) = / PrObP(ZEt+1 € A|.’L't = y)ft(y) dy
X
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Combining this relation with the previous one gives

Probp(zrs1 € A) = /A { /X K(z.9)fi(y) dy} dz (10.3)

From equations (10.1) through (10.3), it follows that
Prob(z;41 € A) = (1 — €)Probp(z¢+1 € A) + eProbp(ziy; € A)

:/A{(1—G)Psft(cv)+€/XK(a:,y)ft(y)dy} d.

Since A is an arbitrary subset of the phase space, the density f;11 exists whenever f; exists and is, in fact, given by

frr(®) = (1— O Psfi(a) + ¢ /X K (2,9) fo(y) dy.

Thus the full expression for the operator P describing the evolution of densities in this mixed system operating with
both deterministic and perturbed elements is

Pf(z) = (1— )Psf(x) +¢ /X K(z,9)f(y) dy. (10.4)

It is straightforward to show that the operator defined by (10.4) is a Markov operator.
Since K (z,y) for fixed y is a density, it clearly satisfies

K(z,y) >0 and / K(z,y)dz =1. (10.5)
X

Conditions (10.5) in conjunction with the requirement that K is measurable means that K is a stochastic kernel.
Further, we will always assume that for every n > 0 there is a d(n) > 0 such that

/ K(e,y)dr <, (10.6)
E

for every y in X and subset E of X with uy(E) <4, i.e. K is uniformly integrable in z.

B. LOOSELY COUPLED SYSTEMS.

We are now in a position to state our first results concerning the behaviour of the entropy of a discrete time
deterministic system coupled to a heat bath. In investigating the properties of the evolution of densities by the operator
equation (10.4), and the consequent behaviour of the entropy of these densities, some mild restrictions on both the
transformation S and the kernel K are required. First, assume that the deterministic transformation S satisfies

1S (2)| < aolz| + ay (10.7)

throughout the phase space, where ag < 1 and a; are nonnegative constants. Secondly, it will be assumed that with
bo < 1 and b; nonnegative constants,

/ (2] K (2,y) dar < boly| +bi. (108)
X

This condition is automatically satisfied if the phase space X is bounded (finite), but if it is unbounded then (10.8)
prevents divergence of the trajectories to infinity.

The first result guarantees the existence of at least one state of thermodynamic equilibrium and the evolution of
the conditional entropy to a maximum, though not necessarily to zero, in the presence of noise. Thus the following
result is equivalent to the weak form of the Second Law of thermodynamics.
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Theorem 10.1. If S is a nonsingular transformation that satisfies (10.7) and K is a uniformly integrable stochastic
kernel satisfying (10.8), then for 0 < e < 1 the operator P given by (10.4) is asymptotically periodic.

Proof. Using (10.4) and (10.6) in conjunction with the Chebyshev inequality!!, it is moderately straightforward to
find a constant ¢ > 0 such that

limsup/ Plf(z)dx < M,
t—o0 X\A 2
where A = {z € X : |z| < c¢}. Setting k =1 —€(1 —n)/2 gives
/ Pt+1f(x)da:§M+/ P'f(z)dz
BU(X\A) 2 E
< 6(1_77) +(1_ t t
<—— €) | PsP'f(x)dz+e | P fly)dy | K(z,y)dr
2 E e E
<M+(l—e)+en:k<l

- 2

for every density f and set E with uy,(E) < §(n), and sufficiently large ¢t > ¢o(f, E). Thus, by the definition in Chapter
6, P! is smoothing. Application of the Spectral Decomposition Theorem 6.1 finishes the proof. O

Therefore, for any closed system whose dynamics evolve through the action of a nonsingular transformation S
satisfying (10.7), placing it in contact with a second system whose effect on the first is a perturbation characterized
by a kernel K satisfying (10.8) leads automatically to a situation in which the resulting open system is asymptotically
periodic regardless of the nature of the original closed system S. Further, since this procedure induces asymptotic
periodicity we know that at least one state of thermodynamic equilibrium, characterized by a stationary density f.,
exists and the conditional entropy H.(P!f|f.) is an increasing function with a limiting value given by Hpax(f|fs) as
defined in (6.19) of Theorem 6.5.

Under certain circumstances involving loose coupling to a heat bath, there are even stronger results concerning
the behaviour of the entropy, corresponding to the strong form of the Second Law of thermodynamics. One such case
is as follows.

Assume that the value of the perturbation to the system S coming from the heat bath (when it occurs) at
time (¢ + 1) is independent of the value of x;. Then the stochastic kernel K (z,y) is independent of y and simply
becomes K (x,y) = g(x), where g is the density of the perturbations & . In this case, with the external perturbations
independent of the state of the system S, the perturbations & could be interpreted as completely stochastic or as
coming from another deterministic system. They could even be viewed as the trace of some deterministic system
whose Frobenius-Perron operator has g as its unique stationary density. This is a slightly different situation from that
explored in Chapter 9. There we considered the effect on the behaviour of the entropy of only examining the trace
of a system. Now we are considering the situation which could be interpreted as the perturbation of a system by the
trace of another system.

In this case, the operator equation (10.4) takes the form

Pf(x) =(1—¢€)Psf(z) + eg(x). (10.10)
There are some surprising consequences of making the loose coupling independent of the state of the system S. Namely

UIf vV : X — R is an arbitrary nonnegative measurable function, and f is a density, set E(V|f) = [y V(z)f(z)dz. Define a set
A={z € X :|z| <c} withe>0so

BNz [ ver@daze [ j@daze{i- [ j@a)
X\A X\A A
and the Chebyshev inequality

1
/ f(z)ydz >1— —E(V|f) (10.9a)

A c

results. This can be written in the alternate form 1
f(z)dz < —E(V|f). (10.9b)

c

X\A
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Theorem 10.2. If P is the operator defined by (10.10), then {Ptf} is f. ezact.

Proof. Using the lower bound function Theorem 7.6, the proof is short. By the definition of P in equation (10.10) we
have

Pif = P(PI) > g / f(@)de = eg
X

for all densities f. Thus eg is a nontrivial lower bound function for all € > 0, and {P!f} is f. exact. O

Thus, by loosely coupling a system to a heat bath such that the system experiences perturbations that are
independent of the state of the system, there will be a unique state of thermodynamic equilibrium and the conditional
entropy of the coupled system will globally converge to zero regardless of the nature of the original system S. In fact,
it is even possible to write down the unique stationary density f, of the operator P in equation (10.10), characterizing

the thermodynamic equilibrium, as
o0

fo=)_(1—e)FPkg. (10.11)
k=0
To show that this is the unique stationary density, note that since || (1 — €)* P*¥g ||< (1 — €)¥ || g || by the contractive
property of Markov operators, the series in f, is absolutely convergent. Therefore, substitution of the expression for
f« into equation (10.10) gives Pf. = f..

C. STRONGLY COUPLED SYSTEMS.
A much different interpretation of this perturbation at random times of a deterministically operating system is
possible and related to strong coupling (e = 1) between a deterministic system and an external source of noise.
When € = 1 and X = R?, then equation (10.4) takes the form

Pi@)= | Ku)i)dy (1012

In thinking about the interpretation of (10.12), consider the following. Take the quantities &y, &1, . . . to be d-dimensional
random vectors and let the phase space X be R?. Then for a given {¢;} and a dynamics W of two variables,
W : RY x R? - R, we may assume that the system goes from x; = y to x4 = W(y,&). Let K(x,y) be the density
of W(y,&). Then the density will always exist if W (y, z) as a function of z is nonsingular. If this is the case, then
equation (10.12) describes the evolution of the densities corresponding to

Ti41 = W(l‘t,ft). (1013)

We can make this more formal through the following theorem initially formulated and proved by A. Lasota, J. Traple,
and J. Tyrcha.

Theorem 10.3. Let g : R? — R? be a density and K : R? x R — R? be a stochastic kernel. Then the (generally
nonunique) function W : R? x R* — R defined implicitly by

W(yvz) z
/ K(r,y)dr = / g(u) du (10.14)
0 0

defines a dynamical system
Tt = Wiz, &)

where the & are independent random variables with density g. This system has an evolution of densities described by
ft+1 = P f. where the operator P is given by

Pf(z) = . K(z,y)f(y)dy.

Proof. Let W~1(y, z) be the inverse function of z — W (y, 2) at fixed y. [This inverse always exists since with y > 0
we know that foz g(u) du is strictly increasing and thus W (y, z) is also strictly increasing.] Therefore, (10.14) can be

written as
@ W (y,2)
| ko= [ g(w) du,
0 0
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or

oWy, x)

K(z,y) = g(W  (y,0))—-

Next note that

/ox fr1(2) dz = Prob{zy <z}
= Prob{W (z, &) < x}

/ fr(y)g(u) dy du

W(y,u)<z

/ fily dy/ 1(W)Q(U) du
z/Rdft(y)dy/0 K(r,y) dr
-/ Car | K dy

Differentiating both sides of this equality gives

fer(z / K(z,y)fi(y

and the proof is complete. [

The perturbations, appearing through the {&:}, could be entering the system (10.13) in a variety of ways. This
could be additively like x¢11 = S(x;)+& which is the subject of the next section, or through fluctuations in coefficients
in a multiplicative fashion like z;y; = & S(z:), which we treat in Section F below. In actuality, one need not consider
the perturbations £ to be “noise”, for they could also be coming from another system. Traple (1988) has shown, for
example, that if in the system

Tip1 = GS(we) + &

either (; and/or & are the trace of an ergodic (mixing) system, then the sequence {z;} is ergodic (mixing).
Before explicitly considering the effects of additive or multiplicative perturbations, we close this section with
three theorems concerning the eventual behaviour of {P!f} when P is the integral operator (10.12). For the first two

of these we consider the operator
= | K@niway

obtained by 7 applications of (10.12), and call K, the 7t" iterate of the stochastic kernel K.
The first result is

Theorem 10.4. If there exists an integer 7 and a density g such that

K- (z,y) < g(x),

where K, (x,y) is the ' iterate of a stochastic kernel, then {P'f} is asymptotically periodic.
Proof. Since K, (x,y) < g(x) we have

P f( /K (z,y) P f(y) dy < g() for t>rT.

Use Theorem 6.2 with h = g and v = 0 so the sequence {P!f} is asymptotically periodic. [

A slight restriction on K, (z,y) in Theorem 10.4 leads to our second result.
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Theorem 10.5. If there exists an integer 7 and a density g such that
Ko (3,9) < g(),
where K, (z,y) is the 7" iterate of a stochastic kernel, and there is a set S C X with ur(S) > 0 such that
0< K (z,y) for z€8S, yeX,

then the sequence {Ptf} is f. ezact.

Proof. The proof is a direct consequence of the asymptotic periodicity of P from Theorem 10.4, the assumptions, and
Theorem 7.5. O

Before stating our last result, we introduce the notion of a Liapunov function. If G C R? is an unbounded
measurable set and K : G x G — R is a measurable stochastic kernel, then any continuous nonnegative function
V :G = R is a Liapunov function if

lim V(z)=ooc.
|z|—00

Then we have the following theorem, proved in Lasota and Mackey (1991):

Theorem 10.6. Let K : G x G — R be a stochastic kernel and P be the corresponding Markov operator defined by
(10.12). Assume that there is a nonnegative X < 1 such that for every bounded B C G there is a 6 = 6(B) > 0 for
which

/K(w,y)dmg)\ for ur(E)<d, ye€B, ECB.
E

Assume further there exists a Liapunov function V : G — R such that for f € D
/V(:r)Pf(:r)da:Sa/ V(z)f(z)dx + 3 0<a<l, g>0
€ 0

holds. Then {P!f} is asymptotically periodic.

Note that it is sufficient to check the simpler condition

/GK(:U,y)V(a:) dz < aV(y) + 8.
since

/G V(@)Pf(x) dr = /G /X V(@)K (2,y)f(y) dr dy
< / [V () + 81/ (v) dy = o / V@) /() dy + B.
X X

D. ASYMPTOTIC PERIODICITY AND ADDITIVE PERTURBATIONS.
In a commonly considered situation, the perturbations are additive, W (y, z) = S(y) + z, so (10.13) becomes

Ti41 = S(l’t) + Et- (1015)

It is rather surprising that a dynamics of the form described by equation (10.15) may also appear as the consequence
of taking a factor or trace (Lasota and Mackey, 1989).
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Example 10.1. To illustrate this we once again return to the baker transformation introduced in equation (5.2). As
pointed out in Example 9.1, the z portion of the baker transformation has a trajectory determined by x;11 = T'(¢)
where T'(z) = 2z (mod 1). As a consequence, the baker transformation (5.2) can be rewritten in the equivalent form

Tt41 = T(ﬂft)
(10.16)

1
Y1 = Syt + &,

where & = %1[%71] (z¢). From classical results of Borel, the & defined in this way are independent random variables.
As a consequence, if we take only the y factor of the baker transformation we end up with a dynamics described by
an equation that is a special case of (10.15). Thus, taking a trace of a dynamical system in two different ways may
yield results with quite different interpretations. e

If the sequence {&} of random variables in (10.15) has a common density g, then from (10.14) it follows that
K(z,y) = g(xr — S(y)), and equation (10.12) becomes

Pf(zx) = . fy)g(x — S(y)) dy. (10.17)

For the special case of additive noise, a comparison of equations (10.17) and (10.12) shows that (10.17) can be derived
independent of any assumption concerning the nonsingularity of S. Furthermore, in this case the condition given by
equation (10.8) reduces to

m = / |z]g(x) dz < 0. (10.18)
R

Thus we have an immediate corollary to Theorem 10.1 for systems with noise added as in (10.15).

Corollary 10.7. (Lasota and Mackey, 1987). If S (nonsingular or not) is a transformation operating in the phase
space R, satisfies inequality (10.7), and experiences an additive perturbation (as in equation 10.15) with a finite first
moment, then the sequence {P!f}, where P is the Markov operator defined by equation (10.17), is asymptotically
periodic.

A second result for asymptotic periodicity requiring the verification of a Liapunov function condition is contained
in the next theorem.

Theorem 10.8. Let the Markov operator P be defined by (10.17) and let g be a density. If there exists a Liapunov
function V : R* = R such that, with « < 1 and B nonnegative,

/Rd glz — S(y))V(x)dr < aV(y) + B for all ye R?

then the sequence {Ptf} is asymptotically periodic.

Proof. We will use Theorem 10.6 in the proof, noting that the stochastic kernel is explicitly given by K(z,y) =

g9z = 5(y))-
Since g is integrable, for every A > 0 there is a § > 0 such that

/ glz)dr < A for pp(A4) <é.
A

In particular

/EK(:I:,y)da::/Eg(m—S(y))dm:/ g(x)dr < A

E-5S(y)

for pr,(E — S(y)) = pur(E) < 8. Thus the first condition of Theorem 10.6 holds.
Further, from (10.17) and the assumptions of the theorem we have

/ V(@)Pf(x) dr = / Vwyde [ fw)ge—S()) dy
< a/Rd V(y) f(y) dy + B,
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so the second condition also holds. Thus {P?f} is asymptotically periodic. O

As a consequence, for all situations in which perturbations are added to a transformation S, the effect is to induce
asymptotically periodic behaviour regardless of the nature of the original unperturbed dynamics S (remember that S
may even be singular). Because of this, we also know that perturbations induce at least one state of thermodynamic
equilibrium, whose stationary density is given by equation (6.4), and guarantee the approach of the conditional entropy
to o mazimum (Theorem 6.5).

It would be of interest to know how the period of {P!f} depends on the perturbations to the system. Though
this cannot be answered in full generality, for the case of additive perturbations as in (10.15) some insight is possible.
For example, if the sequence {z;} is generated by (10.15) and the space is finite so we may consider the system on the
unit circle T, then

P = [ ota=Sw)P 1) dy

< 7/ P f(y) dy =,
Tl

where v = sup ¢g. In particular, if f = g; where g; is one of the basis densities in the spectral decomposition (5.1), then
Ptf = gut(i) 80 gi < 7y. Furthermore, since the g; have disjoint supports it follows that

[ Sarisy
-

and the asymptotic period of the densities is less than or equal to 4!. If the amplitude of the perturbation is small,
then sup g is large and vice versa so large amplitude perturbations correspond to shorter periods of the asymptotically
periodic sequence of densities. In particular, if v < 2 then since » must be an integer we have r = 1 and the sequence
{Ptf} will be f, exact.

For some transformations, the induction of asymptotic periodicity by the addition of perturbations would not
be at all surprising, e.g. the addition of a stochastic perturbation to a transformation with an exponentially stable
periodic orbit gives asymptotic periodicity.

Example 10.2. This phenomenon is easy to illustrate by considering
Ti41 = S(.Tt) (mod 1), (1019)

where S(z) =az + A, 0 < @ <1 and 0 < A < 1. This map is an example of a class of transformations considered by
Keener (1980). The Keener map (10.19) can be shown to have orbits of period r in the trajectories {z;} whenever

—1
" i 11—«
A= )\per(’f') = (Za ) = m (1020)
=0

Further, Provatas and Mackey (1991b) have proved that the noise perturbed Keener map

Tey1 = (S(z¢) + &) (mod 1)
= (azy + A+ &) (mod 1), (10.21)

where the & are random numbers uniformly distributed on [0, 6], has a sequence of densities {P!f} that is asymptot-
ically periodic with period r whenever A = A\p¢, () and the noise amplitude 6 satisfies

0<8<berit(r) =a" (1 —a)\per(r). (10.22)

This behaviour is illustrated for (o, 7,0crit (1)) = (3,2,0cr:¢(2)) and (3,3,68c,4(3)) in Figure 10.1. As in the case

of the inherent asymptotic periodicity of the hat map illustrated in Chapter 6, the initial density may have a profound
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effect on the eventual limiting behaviour of H.(P!f|fx) given by equation (6.19) , as shown in Figure 10.2 for r = 2
and Figure 10.3 when r = 3. There, as for the hat and quadratic map Examples 6.3 and 6.4, an initial density

@) = glog(@) (10,23
was chosen and Hy,q.(f|f«) is plotted as a function of .

The monotone increasing nature of H,,..(f|f«) with £ indicates that as the initial preparation of the system
includes ever larger portions of the available phase space there is a progressive increase in the eventual maximal
entropy. This contrasts with the behaviour of the limiting entropy of the hat and quadratic maps as a function of &
shown in Figures 6.4 and 6.5.

While this is partially true, e.g. when supp{f} C supp{g;},i = 1,---,r, it need not be true in general. For
example, take r = 2 and assume that given a value of a we pick A = Aper(2) and a noise level 8 < 6..4(2). If
supp{f} C [0, \per(2) + 60 + a — 1] or supp{f} C [Aper(2),1], then P?f will cycle between the g; and g2 of the spectral
decomposition (6.1) as shown in Figure 10.4a. Alternately, if

supp{f} C %71(2)0: Aper(2)|
then regardless of how localized the support of f, P! f will always contain two components, one supported on supp{g: }
and the other on supp{g-}, and the sequence {P?f} will always contain both the g; and g, states (¢f. Figure 10.4b).
As a consequence, with this support for f the sequence {P!f} will have a larger limiting entropy than the situation in
which the supp{f} leads to cycling between two quantized states. This is the origin of the sharp break in the function
H oz (f1f) versus € in Figure 10.3, which occurs precisely when ¢ exceeds the level Ape,(2) + 6 + o — 1 which is the
right hand endpoint of supp{g; }. Similar reasoning explains the sequences of densities shown in Figure 10.5 for o = %
andr=3. e

As an example of perturbation induced asymptotic periodicity, this example is not especially surprising. The
surprising content of Theorem 10.1 (and Corollary 10.7) is that even in a transformation that has aperiodic limiting
behavior, additive perturbations will result in asymptotic periodicity.

Example 10.3. This is again easy to illustrate using the Keener map as has been done by Lasota and Mackey (1987).
From the results for general Keener transformations, there exists an uncountable set A such that for each A € A the
rotation number corresponding to the transformation (10.19) is irrational. For each such A the sequence {z:} is not
periodic and the invariant limiting set

ﬁ Sk(10,1]) (10.24)
k=0

is a Cantor set. The proof of Keener’s general result offers a constructive technique for numerically determining values
of A that approximate elements of the set A.

The transformation (10.19) satisfies the conditions of Corollary 10.7 and is, therefore, an ideal candidate to
illustrate the induction of asymptotic periodicity by noise in a transformation whose limiting behavior is quite erratic
in the absence of noise. Lasota and Mackey (1987) picked o = % and used the results of Keener to show that A = %
is close to a value in the set A for which the invariant limiting set (10.24) should be a Cantor set. They illustrated
asymptotic periodicity by studying the perturbed Keener map (10.21) with noise uniformly distributed on [0, -x] and

115
these values of a and A, and found asymptotic periodicity with period 3. e

E. EXACTNESS AND ADDITIVE PERTURBATIONS.

The fact that additive perturbations in a system strongly coupled to its environment can induce asymptotic
periodicity is important for the understanding of how coupling a system to a heat bath may cause the entropy to
become an increasing function of time. Under certain circumstances there are even stronger results concerning the
effects of additive perturbations. Namely, additive perturbations may induce exactness with a consequent increase
in the conditional entropy to its maximal value of zero corresponding to the strong form of the Second Law of
thermodynamics.

Theorem 10.8 also implies that P has a stationary density f. since this is a consequence of the Spectral Decom-
position Theorem 6.1. This does not, of course, guarantee the uniqueness of f,, but a simple assumption concerning
the positivity of g will not only ensure uniqueness of f. but also the exactness of {P?f}. More specifically we have
the following result.
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Theorem 10.9. If P given by (10.17) satisfies the conditions of Theorem 10.8, and g(x) > 0 then {P!f} is exact.

Proof. Note first that for every fixed z the product g(z —S(y)) P!~ f(y), considered as a function of y, does not vanish
everywhere. As a consequence

Pif(x) = / gz = SH)P f(y)dy > 0 forall ze€ RLt>1,feD
Rd

The f. exactness of {P!f} is proved by applying Theorem 7.5. O

Example 10.4. We can use this theorem to show that the stochastically perturbed Keener map (10.21) is exact
whenever A = Aper(r) and 6gpi(r) < 6 < 1. This was proved using different techniques in Provatas and Mackey
(1991b). Noise induced exactness is illustrated in Figure 10.6 for » = 2 and Figure 10.7 when r = 3.

F. PARAMETRIC PERTURBATIONS.
As a second example of the situation described by (10.13), consider the case when W (y,z) = 2S(y) and S > 0,

SO
Ti41 = gtS(.’IJt) (1025)

Once again, using the form for K (x,y) derived from (10.14), it is straightforward to show that the operator (10.12)
takes the explicit form

_ T\ dy
Pf(z) = Rdf(y)g (S(y)> SW) (10.26)

Horbacz (1989a,b) has considered the behaviour of the system (10.25) when S : RT — RT. The flavor of her
results are summarized in the following two theorems.

Theorem 10.10. Let the Markov operator P be defined by (10.26). Assume that g is a density,
0< S(z) <azx+p, (10.27)

and -
am <1 with m = / zg(z) dx, (10.28)
0

where o and B are nonnegative constants. Then the sequence {Ptf} is asymptotically periodic.

Proof. Once again we employ Theorem 10.6 in the proof.
We first show that with the Liapunov function V(z) = = the second condition of Theorem 10.6 is satisfied. We

have
/Oooa:Pf(a:)da: = /Ooo:rd:r/ooog (ﬁ) %f(y)dy
= [ (55) sie
Using the change of variables z = 2/S(y) and then (10.27) we obtain
/OOO ePf(z)dr = /000 F()S(y) dy /OOO 2g(2) dz
—m [ S dy < am [ s dy -+ om.

Thus the second condition of Theorem 10.6 is satisfied.
We next show that the kernel K given by (10.26) satisfies the first criteria of Theorem 10.6. Fix an arbitrary
positive A < 1 and choose a bounded set B C R™. Since g is uniformly integrable there must be a §; > 0 such that

/g(m)dmg)\ for pr(F) < 01.
F
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Define

Then for pur(E) < 6 we have pr(S(y)E) < 6; and

x 1
K(z,y)de = )4
fyxenas= [Lo(55) s
:/ g(x)dr < A for ye B and prn(E) <4,
Sy e

and all of the conditions of Theorem 10.6 are satisfied. Thus {P!f} is asymptotically periodic. O
We close with a second theorem concerning f, exactness induced by multiplicative perturbations.

Theorem 10.11. If the Markov operator P defined by (10.26) satisfies the conditions of Theorem 10.10 and, in
addition, g(x) > 0 then {P'f} is f. ezact.

Proof. Note that, for fixed x, the quantity

g <$> ﬁpt_lf(y),

as a function of y, does not vanish everywhere. Consequently,

[T (A e :
Ptf(ac)—/0 g<5(y)> S(y)Pt fly)dy >0 forall z€ RT,t>1,f€D,

and Theorem 7.5 finishes the proof of the f, exactness of {P!f}. O

Theorems 10.10 and 10.11 illustrate the behaviors that may be induced by multiplicative perturbations in discrete
time systems. A number of other results concerning asymptotic periodicity and exactness induced by multiplicative
perturbations may be proved, but the reader is referred to Horbacz (1989a,b).

G. MARKOV OPERATORS AND DETERMINISTIC PROCESSES.

On several occasions we have emphasized that the interpretation of a given dynamics is not necessarily clear cut,
e.g. in Examples 9.1 and 10.1 where the baker transformation was considered. Furthermore, we have also seen how
one can construct any transformation with the property of f. exactness by the use of Theorem 7.3.

In fact, given any Markov operator P it is always possible to construct a sequence of deterministic transformations
{Sn} such that the limiting value of {P% f} approximates {P’f} as closely as one likes. Results along this line have
been published by Brown (1966) and Kim (1968, 1972a,b), but we state and prove our main result of this section in
the spirit of an unpublished result of Lasota.

Theorem 10.12. Let P be a given Markov operator operating in a finite normalized space X = [0,1). Then there is
a sequence of transformations Sy, : X — X with corresponding Frobenius-Perron operators Ps, such that

lim ||Ps,f— Pf|| =0. (10.29)
n— 00
Proof. The proof divides naturally into two parts. We first construct the transformations S, and then prove that Pg_

satisfies (10.29).
For any integer n > 1 we make a partition of [0,1) and define

1—1 ¢ .
An,i: |:—2n ’2_n> 7

qn,i,j = / PlAn,i(l‘) dx
A

n,j

I
—

2m,

We further set
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and
i—1 <
Tnij = o + Z Qn,ik
k=1

for 1 <i,j < 2", with the convention that r, ;0 = (i — 1)/2™.
Since P is a Markov operator, it is contractive so we always have

[Pryii—15Tn,ij) C Anie

Furthermore, if ¢,,;,; = 0 then
[rig—1:Tn,ig) = 0.

As a consequence, the function

1
pule) = oo for € [rnij-1,mn,,)
Qn,i,j
is defined on the set
on
Ap = [rnij1,mmig) C [0, 1.
ij=1

We now define the transformations S,, by

S, = / pn(s)ds for ze A,;NA,.

Tn,i,0

(10.30)

(10.31)

Having constructed the sequence {S,} of transformations given a Markov operator P, we now show that the

corresponding Pg, satisfies (10.29). First define an operator @, by

Quf@) =2 Yl @) [ s

It is easy to show that @, is a Markov operator with at least n stationary densities fip, m=1,---

on
fom(z) =Y aila, . (x), 1<m<n,
i=1
where the a;’s are nonnegative coefficients. Also, from (10.32) if 2 € A,, ; then
Qufe) =200, @) [ 1w

If we restrict f to be given by f(z) = Pla, (), then for z € A, ;

Qunf(z) =2"qn,i ;-

Next, note that by definition the Frobenius-Perron operator Ps, corresponding to S,, is given by

d
Peg@ =g [ s

so using (10.31) and, again, taking f(z) = Pla, ,(x) we have

Ps, f(x) = Ps, Pla, () =2"qpn,i; = QnPla, ;(x) for

T € An,j-

(10.32)

,n, of the form
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For any density f and € > 0 we can always find a stationary density fi, such that ||f — fem|| < €. From the
above,

|Qnf = FIl NQnf = Qnfemll + |Qnfum = faml| + [|fem = fl|
< (1@nll + D | fem — fII < 2¢

for n > m, so Q. f is strongly convergent to f. By (10.30) it follows that

IPs, f = PfIl < |[|Ps, f = Ps, fem|l + ||Ps, fem = P faml|l + [|P fum — Pf]|
< 2||f_f*m|| + ||P5nf*m _Pf*m”
S 2||f_f*m|| + ||anf*m _Pf*m”

for any density f and stationary density f., with n > m. Since QP f.n, converges to P fu, and ||f — fim|| may be
made arbitrarily small, we have shown that Pg_ f convergesto Pf. O

The consequences of this theorem are extremely far reaching, for it tells us that any Markov operator, whether
it arises from the influence of random or deterministic perturbations on a totally deterministic system or through the
action of a completely unperturbed deterministic system, can always be approzimated by a totally deterministic system
to any degree of accuracy. In fact, the proof of the theorem offers a constructive way of finding this approximating
system.

H. SUMMARY.

In this chapter we have explored the effects of outside perturbations acting on a deterministic system with discrete
time dynamics, and we have interpreted this as the coupling of the system to a “heat bath”.

These outside perturbations can be viewed as perturbations coming from another deterministic system, from the
trace of a deterministic system, or as stochastic perturbations. Whatever their source, we have shown in a variety of
situations that the effect of these perturbations is to either induce asymptotic periodicity or exactness. It is significant
that asymptotic periodicity or exactness may be induced in systems that had absolutely no remarkable behaviour,
including statistical behaviour, before they experienced the outside influences. Under certain circumstances it is not
even necessary that the original system be nonsingular.

Thus, the effect of perturbing systems in this way has a very powerful influence on the behaviour of their entropy.
If the perturbation induces asymptotic periodicity, then the entropy will increase to a local maximum whose value
depends in a complicated way on the initial preparation of the system (Theorem 6.5). If, on the other hand, exactness
is induced, then the entropy will increase to its absolute maximal value of zero (Theorem 7.7).

In the next chapter we turn our attention to the effects of perturbations on continuous time dynamics.
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Figure 10.1. Noise induced asymptotic periodicity in the Keener map. In (a), 8 = 0.,.::(2), a = % and § = %H
A transient of 30 densities has been discarded, and P3'f, P32f P33f are shown. Since P3'f = P33f the
sequence {P!f} repeats with period 2. The initial density, shown in the inset, was uniform over [0.4,0.7]. For
(b), 8 = 6.t (3), @ = 3 and B = m A transient of 80 densities has been discarded and P8 f, P382f P83 f

and P¥ f are shown. Since P8'f = P84 f the sequence {P!f} repeats with period 3. The initial density, shown
in the inset, is uniform on [0.3,0.9].
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Figure 10.2. The limiting conditional entropy H ... (f|f«) versus the spreading parameter £ (see equation 10.23)
for the noise perturbed Keener system with a = 1, 3 = -

37 and 0 = 0crit(2). Note the sudden increase in
H,o (f|f+) when £ increases past the top boundary of g;.
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Figure 10.3. A graph of H,,q. (f]f«) versus £, where £ is as in Figure 10.2. a = %, 8= m, and 6 = 0.,.:(3).
Although for period 3 asymptotic periodicity Hy,aq(f]f«) still is uniformly increasing with &, note the plateau
that develops in the region of £ = 0.5.
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Figure 10.4. A numerical simulation of a period 2 cycle of noise induced asymptotic periodicity of {P?f} showing

the effect of the initial density f. /= —t5, a = § and § = 0.14 < 0.4(2). The initial density f, shown in the

inset, is uniform over [0,0.2] in (a), and over [0.2,0.6] in (b). In (c), f(z) = 12.5(z — .2) for = € [.2, .6].
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Figure 10.5. Numerical simulation of period 3 noise induced asymptotic periodicity of { Pt f}. 8 = m, a= %

and 6 = 0.068 < 6.,(3). f was uniform over [0.6,0.7] for (a), over [0.2,0.6] in (b), and f(z) = 2 (z — .2) over
[0.2,0.8] for (c). Note how a slight change in f changes the number of components in the decomposition of P! f.
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Figure 10.6. Numerical illustration of the strong convergence of P!f to a stationary density f,. a = %, 8=
and 6 = 0.24 > 0.,..1(2).
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Figure 10.7. Another numerical illustration of the strong convergence of P!f to a stationary density f,. a =
B = m and 6 =0.14 > chit(fﬁ).

L
27
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CHAPTER 11.
OPEN CONTINUOUS TIME SYSTEMS.

In the previous chapter we have shown how the perturbation of systems with discrete time dynamics may lead
the entropy to increase to either a relative or absolute maximum. This behaviour may occur even in systems which
have no exceptional behaviour in the absence of these perturbations, and has been likened to placing the system in
contact with a heat bath.

Given these results for discrete time dynamics, it is natural to wonder if the perturbation of systems with
continuous time dynamics will yield analogous results concerning the entropy. Though we do not treat this problem
in its most general possible form, the effect of perturbations on the entropy of systems with dynamics described by
sets of ordinary differential equations forms the heart of this chapter.

We start by first defining a Wiener process in Section A, and then consider the perturbation of a flow defined by
a system of ordinary differential equations by a white noise term that is the derivative of a Wiener process. This leads
naturally to the introduction of stochastic differential equations. We then consider the existence and uniqueness of
solutions of stochastic differential equations, and demonstrate how approximating sums (the Euler—Bernstein relations)
may be used to construct these solutions.

Following this, in Section B we derive the (parabolic) partial differential equation that describes the evolution of
a density under the action of a stochastically perturbed flow. This equation, known as the Fokker—Planck equation,
has a solution that is a Markov operator. This solution defines the evolution of densities and may, under certain
circumstances, correspond to an evolution toward a unique state of thermodynamic equilibrium (Section C). It is
possible to define sufficient conditions for a unique state of thermodynamic equilibrium to exist, characterized by a
unique stationary density f.

In Section D we give sufficient conditions for stochastically perturbed continuous time systems to be f. exact.
Under these conditions we know, from the considerations of Chapter 7, that the conditional entropy will approach its
maximal value of zero.

Sections E and F illustrate, through a series of examples, how additive and parametric perturbations can lead to
bifurcations reminiscent of 1* and 2”7 order phase transitions.

A. WIENER PROCESSES AND STOCHASTIC DIFFERENTIAL EQUATIONS.
In Chapter 3, Section B, we showed that there is no change in the entropy of densities evolving under the action
of flows governed by the system of ordinary differential equations

dz i
dt

=Fi(x) i=1,...,d (3.1)

operating in a region of R? with initial conditions z;(0) = ;9. Here we examine the behaviour of the stochastically
perturbed analog

d
dx; .
dt’ =Fi(x)+ Y _oi(®)&, i=1,...,d (11.1)
i=1
with the same initial conditions, where o;;(z) is the amplitude of the stochastic perturbation and &; = d;‘;j is a “white

noise” term that is the derivative of a Wiener process. Without going into the details, the reader is cautioned that in
this chapter it is always assumed that the It6 calculus, rather that the Stratonovich calculus, is used. For a discussion of
the differences see Lasota and Mackey (1994), Horsthemke and Lefever (1984), and van Kampen (1981). In particular,
if the 0;; are independent of x then the two approaches yield identical results.
To fully interpret (11.1), we must carefully define what the properties of the £ are when they are derived from a

Wiener process. We say that a continuous process {w(t)}+>o is a one dimensional Wiener process if:

(1) w(0) =0; and

(2) For all values of s and ¢, 0 < s < ¢ the random variable w(t) — w(s) has the Gaussian density

1 2

g(t—s,x) = m exp {—ﬁ} . (11.2)
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In a completely natural manner this definition can be extended to say that the d dimensional vector

w(t) = {wi(t),- -, wa(t)}i>o

is a d-dimensional Wiener process if its components are one dimensional Wiener processes. Because of the
independence of the increments, it is elementary that the joint density of w(t) is

g(t, 1, wa) = g(t,21) -+ g(t, za) (11.3)
and thus
/ g(t,z)dx =1, (11.4)
R
that
/ z;g(t,z)dx = 0, i=1,---,d (11.5)
R
and
/dmixjg(t,m) dz = 6;;t i,j=1,---,d. (11.6)
R
In (11.6),

1 i=j
0ij = { ) J
0 i#J
is the Kronecker delta. Therefore the average of a Wiener variable is zero by equation (11.5), while the variance
increases linearly with time according to (11.6).

Equation (11.1) is a stochastic differential equation. As in the case of a nonperturbed system of ordinary
differential equations, if the functions Fj(z) and o;;(x) satisfy Lipschitz conditions

|a”(a:)—al](y)|§7|a:—y|, 1‘,y€Rd, i)j:]-)"':d:

where v > 0, then (11.1) has a unique solution (Gikhman and Skorokhod, 1969).

Approximating solutions to equation (11.1) can be generated in several ways, but for our purposes in the following
section the most useful is based on a linear Euler extrapolation formula. Suppose that the solution z(t) to equation
(11.1) is given on some interval [0, ¢p]. Then for small values of A¢, we may approximate x at time to + At using z at
time tg with

x(to + At) ~ x(tg) + F(z(to)) At + o(x(to)) Aw (11.7)

where we have written Aw for w(ty + At) — w(tp). We can use this same approach for any interval [0, 7] on which we
have constructed a partition
O=to<t1 < - <tph1<t,=T.

To do this we define
Aw(tl) = F(Cﬂ(ti_l))Ati + U(x(ti_l))Awi, (118)

where Az(t;) = z(t;) — z(ti—1), At; = t; — ti—1, Aw; = w(t;) — w(ti—1), and x(tp) = o, the initial vector. The two
formulae (11.7) and (11.8) are known as the Euler-Bernstein equations because of the use of the Euler approximation
by Bernstein in his original work on stochastic differential equations.

B. THE FOKKER PLANCK EQUATION.

The previous section defined a Wiener process and introduced the stochastic differential equation (11.1) that
results when an ordinary differential equation is perturbed by the derivative of a Wiener process. Now we turn to a
consideration of the equation that governs the evolution of the density function of the process z(t) generated as the
solution to the stochastic differential equation (11.1).

This density, denoted by f(¢,x), is defined by

prob (x(t)eB):/Bf(t,s)ds. (11.9)
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To guarantee the existence and differentiability of f(¢, ), first note that if we set

d
a;j(z) = Zai,k(w)aj,k(w), (11.10)
k=1

then it is obvious that a;; = a;; and thus the quadratic form

d
Zaij(a:)/\i)\j (11].].)
k=1

is symmetric and nonnegative. We will assume a stronger condition, known as the uniform parabolicity condition:

d d

i,j=1 i=1

where p > 0. If the a;;(z) satisfy the uniform parabolicity condition (11.12) and if they and the Fj(z) are continuous
and C?, then u(t,z) exists and is differentiable.

In deriving the evolution equation for f(t,z) it is technically required that o;; and b; are C?, they and their
derivatives up to second order are continuous for ¢ > 0 and all z € R?, and that they and their first derivatives
are bounded. We only sketch the derivation of the evolution equation here, and Lasota and Mackey (1994) can be
consulted for the full derivation.

We start with the Euler-Bernstein equation (11.7), letting to > 0 be arbitrary and assuming that z(¢) is the
solution of equation (11.1) between 0 and 5. Pick an € > 0 and define z(t) on the interval [to, o + €] by

2(to + At) = 2(to) + F(a(to)) At + o (z(to)) Aw(to), (11.13)

where 0 < At < e and Aw(ty) = w(to + At) — w(to).

Consider a function h : R — R? that, aside from being C® and having compact support, is arbitrary. We are
going to calculate the expected value of h(xz(ty + At)). To do this, make the assumption that z(t) has a density
f(t,x) for 0 <t < to+ At and that f(t,x) exists at t = to. Then by (11.13) we know that z(tg + At) has a density
f(to + At, z) and the expected value of h(z(tg + At)) is

E(h(z(to + At))) = / h(z)f(to + At,z) dx. (11.14)
R
Note, however, that the Euler-Bernstein equation (11.7) allows us to write

B (to + At) = h(Q(x(to)), Aw(to))) (11.15)

where
Q(z,y) =z + F(z)At + o(x)y.
Since the two random variables z(to) and Aw(ty) are independent for all At satisfying 0 < At < ¢, the random pair
(z(to), Aw(tp)) has the density
f(t07 .’I})g(At, y):

where ¢ is the density (11.3) of a d-dimensional Wiener process. Thus we may once again calculate the expected value
of h(z(to + At)) from (11.15) to yield

h(z)f(to + At,z) dz = / hiz + F(x)At + o(x)y) f(to, x)g(At,y) dx dy.

Expanding h in a Taylor series, using equations (11.4) through (11.6), dividing throughout by At and then taking the
limit as At — 0 allows us to rewrite the last expression as

d

af 1 <& 9% oh
/Rd h(l’)a dl‘—/Rd iijzl mal]<x)+26_a:,F’(x) f(to,l’) dz.

i=1
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Since h was assumed to have compact support, the right hand side of this last expression may be integrated by parts
and the result rewritten as

1 [aij
/Rd z) Z 2 Z (93:1]83:] dz = 0.

Zq

The term within the braces must be identically zero (h was assumed to be C?), and thus the evolution equation for
the density f(¢, ) is given by
d

of O[F;(z) 1 al]

- = = . 11.16

ot ; T; 2 Z 8:1:@63:] ( )
This evolution equation is known variously as the Fokker-Planck equation or the forward Kolmogorov equation,
and will be the foundation for our investigations into the effects of perturbations on the evolution of densities in systems
whose dynamics are described by ordinary differential equations. The first term on the right hand side is usually called

a drift term, while the second is known as a diffusion term. Had the Stratonovich calculus been used in deriving
(11.16) rather than the Ito calculus, the result would have been

of OFE@f] 1 8 [ day(x)f]
o2 o +§Za—{ Tt

Equation (11.16) can also be written in the equivalent form

of
=Lt 11.17
A=y (11.17)
where the operator LT is given by
d d
0 1 0?
Lt =— —F; - —F—a;;i(T). 11.18
Y a0+ 5 2 G0 (11.18)
The backward Kolmogorov equation is
of
or _ - 11.19
=7 (11.19)
where the operator
d 9 1< 02
L =S"F - i () ——— . 11.20
; (z) T +5 igl aij(z) B0 ( )

is adjoint to Lt.!2

C. SOLUTIONS OF THE FOKKER PLANCK EQUATION.

If the stochastic differential equation (11.1) has an initial condition z(0) and an an associated initial density
f, then the solution f(¢,z) of the Fokker-Planck equation satisfies f(0,z) = f(x). Further, if the solution of the
Fokker-Planck equation (11.16) can be written in the form

ft,z) = /R Tt 2, 5) f(s) ds (11.21)

12Remember that for any two L' functions u and v, if the operators Lt and L~ are adjoint to one another they satisfy

/Rd v(L V) de = /Rd u(L~v) dz.
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where the kernel I is independent of the initial density f(0,z) = f(z) and lim; ¢ f(t,z) = f(0,z) = f(z), then f(¢,x)
is said to be a generalized solution of the Fokker-Planck equation.

Under some standard regularity conditions on the coefficients of the Fokker-Planck equation the generalized
solution is unique. Since f is a density, the generalized solution corresponds to the evolution of the system to a unique
thermodynamic state. To develop this, rewrite the Fokker—Planck equation in the form

d

of 82f
5= ; + ; 6@@93}_ +c(x)f (11.22)
where
b Oa;j(z)
i(@) )+ Z 63:] ’
and

8%a;; (z)
Z Ox; (']33:] Z: 8a:l '

3,j=1

We now state, without proof, a condition for the solution f(¢,z) of the Fokker—Planck equation to be unique, corre-
sponding to the evolution to a unique state of thermodynamic equilibrium. See Lasota and Mackey (1994) for the
proof.

Theorem 11.1. If a;j(z), bi(z), and c(z) are all C*, the a;; satisfy the uniform parabolicity condition (11.12), and
if there exists a positive constant M such that

laij(@)] < M, |bi(2)] < M1+ a]), e(2)] < M1+ [a]?),

then there ezists a unique generalized solution f(t,x) (11.21) to (11.22) for every initial density f(x) that satisfies
|f(z) < cexp (a|z|?) with ¢ >0 and a > 0. Furthermore, the kernel T is strictly positive and satisfies the inequalities

ITe| < otz —y) (11.23)
|Fﬂvi| S(p(t,a:—y) -
|F$z$]| S (p(tvx - y):
where
(4.5) = ——exp [
P, 2) = $3(n+2) exp t

and k and R are constants.

These properties of the kernel I' are useful in proving properties of functionals of f(¢,z). To see why, let g be
a continuous function with bounded support in some ball B, = {z : |z| < r} and f(¢,z) the unique solution of the
Fokker—Planck equation. Then from (11.21) and (11.23) we have

|mmmégmmm@w3ML¢wh@m

r

x? —r? for |s| < r we have

where M = max, |g|. Moreover, with |z — s|? > %

k —R (%]z> — r?)
/BT o(t,z —s)ds < T exp | ——————
s0 . Rl
x
|f(t,2)] < PEYPE) €xp {—T]
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with K = kM |B,|exp(Rr?). Analogous inequalities given by

|f|’ |ft|7 |f$l )

322] (11.24)

k
|fﬂvzw]| S t%(n+2) exp [_ t

may also be derived. These are of use in that they allow us to multiply the Fokker—Planck equation by any function
that increases more slowly than exp(—R|z|?) decreases, and then integrate to calculate various moments of the density
f(t,x).

From the expression (11.21) for the generalized solution, a family {P*},., of integral operators can be defined by

Pf(2) = f(z),  P'f(z) = /R It 2, 5)f(s) ds, (11.25)

where f(0,z) = f(x). If the generalized solution is unique, i.e. if it satisfies all of the conditions of Theorem 11.1,
then the operator P is a Markov operator.

To show this, first realize that the linearity of P is immediate since P is defined as a linear integral operator.
Further, we also have that Pff > 0 for f > 0 because of the positivity of the kernel I". To show that P? preserves the
norm, i.e. |[|Ptf|| = ||f]| for f > 0, is slightly more difficult. Multiply the Fokker—Planck equation by a continuous
bounded C? function h(x) with compact support, integrate over R%, and then integrate a second time by parts to give

d

of 1 8h ¢ on
h( )6t d = /Rd 5 ijzil i &rlaa:] + ;bl% fdﬂ?

(2

Picking h = 1 then gives % =0 for t > 0 since P!f > 0 for f > 0. Also, inequality (11.16) in conjunction with the
continuity of f(t,z) as t — 0 imply that ||P?f|| is continuous at ¢ = 0 and therefore that ||P!f|| is constant for all
t > 0.

Thus the operator P! defined by equation (11.25) is a Markov operator. It is instructive to compare the dynamical
equations for densities evolving under the action of continuous flows in the perturbed and unperturbed situations. For
the continuous time closed system in Chapter 4, the evolution of the Frobenius-Perron operator P¢ is determined by
the partial differential equation (4.14), the generalized Liouville equation. When the system is subject to external
white noise perturbations, then the evolution of the Markov operator P! f is governed by the Fokker-Planck equation
(11.16) which is just equation (4.14) with the addition of the diffusion term.

D. THE BEHAVIOUR OF ENTROPY.

In Example 3.8 we showed directly that the entropy of a closed continuous time system with dynamics described
by ordinary differential equations was absolutely constant and equal to the entropy of the initial density with which
the system was prepared. As pointed out, this result is not surprising since dynamics described by ordinary differential
equations are invertible, and Theorem 3.2 shows that the entropy is constant for all reversible systems.

With the material of the previous sections, we are now in a position to examine the effects of perturbations on
the entropy behaviour of these continuous time invertible systems.

In presenting our first result, we extend the concept of a Liapunov function, introduced in the previous chapter,
by requiring that a Liapunov function V' have the following properties:

(1) V(z) > 0 for all x;
(3) Vi, and V;,,, are continuous for 4,j =1,... ,d; and
(4) The growth conditions
V@), Ve @l [Vaes ()] < KeMl7, (11.26)
where K and M are positive constants, hold.
The existence of a Liapunov function V which satisfies the differential inequality

d

Z (9 856] ;F

i,j=1

(z) + B, (11.27)

where a and f are positive constants, is involved with a sufficient condition stating that the evolution of densities by
the Fokker-Planck equation is described by an f, exact Markov operator. Specifically we have the strong form of the
Second Law:
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Theorem 11.2. Assume that there is a unique generalized solution of the Fokker-Planck equation and that there exists
a Liapunov function V satisfying (11.27). Then the Markov operator Pt (11.25) defined by the generalized solution of
the Fokker-Planck equation is f. exact and the conditional entropy H.(P!f|f.) approaches its mazimal value of zero
as t — 0o.

Proof. Pick a continuous initial density f with compact support and consider the expectation of V' with respect to the
generalized solution (11.21) of the Fokker—Planck equation with initial condition f(0,z) = f(z). We have

E(V|f) = /R V(@) f(t o) da. (11.28)

From inequalities (11.24) and (11.26), V' f and V f; are both integrable, so differentiation of (11.28) with respect to ¢,
use of the Fokker—Planck equation, integration by parts, using the fact that fV, f., V, and fV, all vanish exponentially
as |z| — oo, and then using the differential inequality (11.27), we finally obtain

B < —apwif) +5.
This differential inequality is easily solved by multiplying by e*?, integrating, and then using the fact that at ¢ = 0,
E(V|f) = E(V|f) to give
EWV|f) <e ™E(V|f) + g [1—e].
Since E(V|f) is finite, there will always exist a time ¢y = to(f) such that

E(V|f)§1+§ for > to.

Now let G, = {z : V(z) < ¢}. Using the Chebyshev inequality (10.9a) we obtain
1
| ftardoz1- CEVI)
Gy q

so pick ¢ > 1+ 3/« to give
1
/ f(t,a:)da:Zl——[l—l—é] =e>0
Gy q @

for t > to. Now since, by definition, V(z) — oo as |z| — oo, there must be a positive constant r such that V(z) > ¢
for |&| > r so the set G is entirely contained in the ball B, defined in the derivation of the inequalities (11.24). As a
result we may write

ft) = [ D)= 1) dy > inf T(1,2,0) / f(t-1y)d
Rd
> e‘l?f I'(1,z,y) = h(x). (11.29)
y|<

Since the kernel I is positive, the function h(z) defined above is also positive and in fact we have shown that
P'f(x) = f(t,x) > h(z) for t>ty+1,

so that the sequence {P!f} has a nontrivial lower bound function. Thus by Theorem 7.6 we know that the Markov
operator P! is f, exact. An application of Theorem 7.7 completes the proof that the conditional entropy increases to
its maximal value of zero. [

The unique stationary density f. defined by
. + _
Jim P'f(z) = f.(x)
that this theorem guarantees the existence of is given by the solution of the elliptic equation

d

O[F;(2) f.] *laij (@) fe] _
; am 2 8%8% =0. (11.30)

It may not be the case that the solution of equation 11.30 is a density, even though it may be a unique solution
(see Examples 11.3 and 11.4 below). When the solution is normalizable so it is a density, then another result giving a
strong version of the Second Law may be established. This is given in
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Theorem 11.3. Assume that there is a unique generalized solution (11.21) to the Fokker-Planck equation (11.16),
and that there is a unique stationary density

lim f(t,z) = lim P'f(z) = fu(x),

t—+00

that satisfies (11.80). Then
lim H.(P'f|f.) = 0.
t—+4o00

Proof. From equations (3.14) and (11.17), and the adjointness of L* and L~ we may write

dH. _ f
— = - L1 = || dz.
i = f e ()] o
It is easy to show that

_ IN fe o (F\ 1[N\ < o (f\ 0 [F
Lloe <ﬁ>—7L (z>‘5<7> 2_ (), (ﬁ)a@(ﬁ)‘

ij=1

Again using the adjointness of L™ and L~, and the fact that since f, is a stationary density it satisfies (11.30), or

Lt f, =0, we finally have
dH, 1 2\ < o (f\ o (f
i =1/, (5) X (£)a; (7) »

ij=1

Since the a;; satisfy the uniform parabolicity condition (11.12), we have

dH,
— >0
dt —
with the equality holding if and only if f = f..
If we write a;; = 0?h(z) where 0 < h(z) < 1, then
dH, 5
=01
a7

where I > 0, indicating that the rate of convergence of the conditional entropy to zero is proportional to the square
0?2 of the noise amplitude.

E. PHASE TRANSITIONS AND ADDITIVE PERTURBATIONS.

In this section we first make some general observations concerning the case when d = 1 and give a necessary and
sufficient condition for the f, exactness of the Markov operator (11.25) in this case. This, of course, is directly related
to the behaviour of the entropy. We then illustrate this behaviour through two examples that show how additive white
noise perturbations can lead to behaviour similar to that noted in 1% and 2"? order phase transitions.

If we are dealing with a one dimensional system, d = 1, then the stochastic differential equation (11.1) becomes

dz
i F(z) + o(2)¢, (11.31)

where again ¢ is a (Gaussian distributed) perturbation with zero mean and unit variance, and o(z) is the amplitude
of the perturbation. The corresponding Fokker-Planck equation (11.16) becomes

of _ OF@)) | 100*@)f]

- _ 11.32
ot Ox 2 0z ( )
The Fokker-Planck equation can also be written in the equivalent form
0 oS
S 95 (11.33)

ot Ox
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where
_19[0*(x)f]

5= 2 Ox

+Ff (11.34)

is called the probability current.
When stationary solutions of (11.32), denoted by f.(z) and defined by P, f. = f. for all ¢, exist they are given as
the generally unique (up to a multiplicative constant) solution of (11.30) in the case d = 1:

_AF@L] | 107150
ox 2 02

= 0. (11.35)

Integration of equation (11.35) by parts with the assumption that the probability current S vanishes at the integration
limits, followed by a second integration yields the solution

fulz) = L) exp U g—((j)) dz] . (11.36)

o?(x

This stationary solution f, will be a density if and only if there exists a positive constant K > 0 such that f, can be
normalized.

Rudnicki (1991) has recently proved a necessary and sufficient condition for exactness, and consequent existence
of Second Law behaviour in its strong form. We extend his result to the behaviour of the conditional entropy without
proof.

Theorem 11.4. Assume that Theorem 11.1 holds so (11.32) has a unique generalized solution. Then the Markov
operator Pt whose evolution is governed by equation (11.32) is f. ewact, and the corresponding conditional entropy
H.(P'f|f.) approaches its mazimal value of zero as t — oo, if and only if

[l [ 2] oo

Systems like (11.31) may have behaviour reminiscent of 1°¢ and 2"? order phase transitions as a parameter is
varied [Mackey et al. (1990)].

Example 11.1. As an example of how 2"¢ order phase transition behaviour may occur, consider the two dimensional

oscillator system
dr

— =r(c—r?)

dt (11.37)
@ _,

it~ "

in (r,0) space. The system (11.37) is an example of a system with a supercritical Hopf bifurcation. For ¢ < 0 the
origin r. = 0 is the globally stable steady state, while for ¢ > 0 all solutions are attracted to the limit cycle defined
by r = y/c. Following Mackey et al. (1990) we consider the effects of perturbations in the analogous one dimensional
system

d

d—j = z(c — z?), (11.38)
obtained by ignoring the angular coordinate 6 in equations (11.37). For equation (11.38), sometimes known as the
Landau equation, when ¢ < 0 all solutions are attracted to the single steady state z, = 0. Further, when ¢ > 0 the
steady state z. = 0 is unstable and z(t)—+/c if £(0) = zo > 0, while z(t)——+/c for ¢ < 0.

In the presence of additive perturbations, the stochastic differential equation corresponding to (11.38) is

Z—j = z(c — 2°%) + 0§, (11.39)

so there is always a positive probability that z(t) may take on negative values starting from a positive position and
vice versa. Therefore it is natural to consider this problem for z € R.
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The Fokker-Planck equation corresponding to (11.39) is

of Olz(c—2*)f] 1 ,0°f
9 _ _ g2 L 114
ot gz 27 3> (11.40)
and has a stationary solution
2 2
ful(z) = Kb (2ema)/de. (11.41)

where 8 = 2¢/0?. The normalization constant K always exists and thus the f.(z) defined by (11.41) is a stationary
density.
To examine the question of exactness for this system, we use Theorem 11.2. Let V(z) = 2% so V is a Liapunov
function. Inequality (11.27) becomes
20 + (2¢ + a)x? — 221 < B.

This is clearly satisfied for all ¢ with arbitrary fixed @ > 0 and sufficiently large 8 > 0, thus proving the exactness
of the generalized solution of the Fokker-Planck equation (11.40) corresponding to (11.39) for additive perturbations
applied to the system (11.38). As a consequence of this we also know that the effect of the additive perturbations has
been to induce the conditional entropy to approach its maximal value of zero.

In Figure 11.1 we graph the location of the maxima of the stationary density given in equation (11.41) as a
function of the parameter ¢. As might be expected on intuitive grounds, for ¢ < 0 the stationary density fi(z) has
a single maximum centered at z = 0, the location of the globally stable steady state of the unperturbed system
(11.38). Once ¢ > 0, the stationary density f.(z) shows two maxima centered at = +./¢, the locally stable steady
states of (11.38), and a local minimum at the unstable steady state x = 0. Thus, if we were to calculate various
system averages and plot them as a function of the parameter ¢ a qualitatively similar pattern would emerge. If, for
example, the parameter ¢ were to be viewed as related to system temperature or pressure, the resulting graph has the
characteristics of a 2"¢ order phase transition (Horsthemke and Lefever, 1984). It is important to realize that this
appearance is exclusively due to the presence of the additive noise in the system. e

Perturbations to continuous time systems may result in different types of behaviour similar to those found in 1%¢
order phase transitions. This is illustrated by the next example.

Example 11.2. Consider a system

% =r(c+2r* —rh)
(11.42)
ﬁ =27
dt
which has a subcritical Hopf bifurcation at ¢ = —1. Asin the previous example, we examine the effects of perturbations
on the one dimensional system
Z—j = xz(c+22° — 2*). (11.43)

The solutions of equation (11.43) have the following behaviour. For ¢ < —1 all solutions z(t)—0 regardless of the
initial condition zy. However, for —1 < ¢ < 0 there is a tristability in that

—V14++V1+¢, formy<—zF
z(t)—< 0, for —z; <z < xy
1++v1+e,  for zf < zp.

where z7 = \/1++V1+cand z7 = v/1—+1+c. For ¢ > 0, the steady state z, = 0 becomes unstable and this
tristable behaviour gives way to a bistability such that

—V1++1+4¢ forzy <0

z(t)—
VvV1++v1l+e, for g > 0.

With additive perturbations, the stochastic differential equation corresponding to (11.43) is

dx

i z(c+ 22? — z*) + ot (11.44)
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As before, we consider this problem for € R. The Fokker-Planck equation corresponding to the stochastic differential
equation (11.44) is
of Olz(c+22% —2)f] 1 ,0°f
9 _ _ g2l L 11.45
ot Bz 37 5 (11.45)

and has the corresponding stationary solution

fu(z) = KePr"(Betse®—a™)/6c (11.46)

where 3 = 2¢/0? and K always exists. Therefore, f.(z) is a stationary density. Furthermore, the use of either Theorem
11.2 or Theorem 11.4 proves the convergence of the conditional entropy to zero for all values of the parameters.

The differences between the behaviour of the systems (11.39) and (11.44) immediately become apparent in Figure
11.2, which again shows the location of the maxima of the stationary density (11.46). For ¢ < —1, the stationary density
f+«(z) has a single maximum located at z = 0, the globally stable steady state of the unperturbed system (11.43). For
—1 < ¢ < 0, where the tristable behaviour occurs, the stationary densities still have an absolute maximum at z = 0 but
also display maxima at x = +4/1 + /1 + ¢ that become progressively more prominent as ¢ increases. Finally, for ¢ > 0
the stationary density has absolute maxima located at x = £4/1 + /1 + ¢ and a local minimum at = 0. Translated
into the language of a phase diagram, this behaviour is precisely what is found in 1% order phase transitions.e

F. PARAMETRIC PERTURBATIONS AND PHASE TRANSITIONS.
Both systems (11.38) and (11.43) of the previous section contain a single parameter c. In this section we investigate
the effects of perturbations to this parameter by replacing ¢ with

¢+ o,

where o > 0 is a constant.

Example 11.3. With parametric noise of this type in (11.38), the stochastic differential equation (11.39) is replaced
by
dx

dt
The Fokker-Planck equation corresponding to (11.47) is given by

=xz(c — %) + oxt. (11.47)

of _ Oz(c—a)u] 1
ot~ or 27

262[m2f]

Ox?2 ’

(11.48)

and has a stationary solution f.(z) given by
fulz) = Kave /7", (11.49)

where v = (2¢/0?) — 2.

To determine the normalization coefficient K in (11.49), we must specify the space on which we are working.
From equation (11.47) it is clear that x(¢) = 0 is always a solution. Therefore, for any zy > 0 the solution x(t) will
always be positive. For zo < 0 we will have z(¢) < 0. Therefore, no trajectory can cross the z = 0 boundary.

We thus consider the situation in which z € R*. In this case, a stationary density will not exist for some
parameter values. In order that f, is a density, it must be integrable on R™, and from (11.49) this is only possible if
v > -1, or

¢> =0 (11.50)

Thus, in contrast to the results for additive noise, for parametric noise a stationary density f.(x) in the supercritical
case exists for only a limited range of values of the parameter ¢ as defined by inequality (11.50).

For (0%/2) < ¢ < o2 the stationary density f.(z) given by equation (11.49) has a single maximum at x = 0.
Once ¢ > 02, the stationary density f.(x) has a local minimum at # = 0 and a maximum at z = v/¢ — 02. Thus, with
parametric perturbations there is not only a shift in the value of the parameter ¢ at which there is a transition between
the stationary density having a maximum at x = 0 and a nonzero value of z, but there is also a shift in the nonzero
location of the maximum in the stationary density below that of the globally stable steady state in the absence of noise
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(x = /c) toward zero. It is only as ¢ becomes large that the location of the density maximum starts to approximate
v/c. This is once again similar to the behaviour seen in 1%¢ order phase transitions, with the added crucial difference
of the dependence (shift) of the bifurcation point on both ¢ and 2.

In trying to prove that the Markov operator for this problem is exact, we no longer have available the Liapunov
function technique that we were able to apply so easily with additive perturbations. This is because the coefficient
(0222 /2) in (11.48) vanishes at z = 0 and the uniform parabolicity condition (11.12) is violated at x = 0. This fact is
crucial.

However, by a straightforward change of variables, we may transform the Fokker-Planck equation (11.48) to
circumvent this problem, and then again apply the Liapunov function argument. (This procedure may always be
carried out.) Define a new variable y = In z and a new density f by

f(t,y) = e f(t,e"). (11.51)
With these changes, the Fokker-Planck equation (11.43) takes the form

of I(c— 307 — e fl 1
A + o
ot Jy 2

20
Y2

!

(11.52)

QD

As in the previous case, the uniform parabolicity condition is now satisfied and further y(c — 0% — €%¥) < 0 for
sufficiently large y whenever ¢ > ¢2/2, which is the range of concern here. Thus if we are able to find a Liapunov
function V' which satisfies (11.27), the exactness of the Markov operator whose evolution is described by (11.52) will
be demonstrated.

Set ¢ = 2a/(c — 0?/2), where a > 0 is the same as in inequality (11.27). Clearly ¢ > 0?/2 whenever a stationary
density of (11.52) exists, so take ¢ > 0. It is evident that

V(y) = cosh (qy)

is a Liapunov function. It is easy to show by a straightforward calculation that there are a > 0 and § > 0 such that
(11.27) is satisfied in the new variable y. Thus by Theorem 11.2 we know the stationary solution of (11.52) is f, exact
which, by the change of variables (11.51), in turn implies the f, exactness of (11.43).e

Example 11.4. If we consider the effect of perturbations on the parameter ¢ in equation (11.43), then it is straight-
forward to show that the corresponding Fokker Planck equation has a stationary density given by

fulz) = Kare @ 4=a?)/o® (11.53)
where v is as before. As in the previous example, f, is a stationary density if and only if

1
c > 50’2.

Using the same Liapunov function of Example 11.3, we can also prove the f, exactness of the parametrically perturbed
system whenever ¢ > 02/2. e

G. SUMMARY.

Here we have continued our investigations of the previous chapter into the effects of outside perturbations on
system entropy by considering systems with continuous time dynamics that are perturbed by an (idealized) Wiener
process. We have given several criteria that allows one to determine when perturbation by a Wiener process will lead
to exactness and the consequent increase of system entropy to zero which is characteristic of the strong form of the
Second Law. Furthermore, we have shown how the addition of noise in continuous time systems can lead to parametric
dependence of the system stationary density like that observed in 1% and 2" order phase transitions.
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Figure 11.1. The stationary density (11.41) and (insert) locations in the (¢, z) plane of the maxima (solid lines)
and minima (dashed lines) in this density for the system (11.39). The behaviour as a function of the parameter
c is analogous to that in 2"¢ order phase transitions.
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Figure 11.2. The stationary density (11.46) and (insert) locations of the maxima (solid lines) and minima (dashed
lines) in this density for the system (11.44). The behaviour as a function of the parameter ¢ is like that seen in
1%t order phase transitions.
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