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Abstract We consider the dynamics of a population of organisms containing two
mutually inhibitory gene regulatory networks, that can result in a bistable switch-like
behaviour. We completely characterize their local and global dynamics in the absence
of any noise, and then go on to consider the effects of either noise coming frombursting
(transcription or translation), or Gaussian noise in molecular degradation rates when
there is a dominant slow variable in the system. We show analytically how the steady
state distribution in the population can range from a single unimodal distribution
through a bimodal distribution and give the explicit analytic form for the invariant
stationary density which is globally asymptotically stable. Rather remarkably, the
behaviour of the stationary density with respect to the parameters characterizing the
molecular behaviour of the bistable switch is qualitatively identical in the presence
of noise coming from bursting as well as in the presence of Gaussian noise in the
degradation rate. This implies that one cannot distinguish between either the dominant
source or nature of noise based on the stationary molecular distribution in a population
of cells. We finally show that the switch model with bursting but two dominant slow
genes has an asymptotically stable stationary density.
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1 Introduction

In electrical circuits there are only two elementary ways to produce bistable behavior.
Either with positive feedback (e.g. A stimulates B and B stimulates A) or with double
negative feedback (A inhibits B and B inhibits A). This elementary fact, known to all
electrical engineering students, has, in recent years, come to the attention of molecular
biologists who have rushed to implicate one or the other mechanism as the source
of putative or real bistable behavior in a variety of biological systems. (In a gene
regulatory framework wemight term the double positive feedback switch an inducible
switch,while the double negative feedback switch could be called a repressible switch.)
Some laboratories have used this insight to engineer in vitro systems to have bistable
behavior and one of the first was Gardner et al. (2000) who engineered repressible
switch like behavior of the type we study in this paper. Some especially well written
surveys are to be found in Ferrell (2002), Tyson et al. (2003), and Angeli et al. (2004).

Gene regulatory networks are, however, noisy affairs for a variety of reasons and
it is now thought that this noise may actually play a significant role in determining
function (Eldar and Elowitz 2010). In such noisy dynamical systems experimentalists
will often take a populational level approach and infer the existence of underlying
bistable behavior based on the existence of bimodal densities of some molecular
constituent over some range of experimental parameter values.

From a modeling perspective there have been a number of studies attempting to
understand the effects of noise on gene regulatory dynamics. The now classical Kepler
and Elston (2001) really laid much of the ground work for subsequent studies by its
treatment of a variety of noise sources and their effect on dynamics. Mackey et al.
(2011) examined the effects of either bursting or Gaussian noise on both inducible and
repressible operon models, and Waldherr et al. (2010) looked at the role of Gaussian
noise in an inducible switch model for ovarian follicular growth.

One of the most interesting situations is the observation that the presence of noise
may induce bistability in a gene regulatory model when it was absolutely impossi-
ble to have bistable behaviour in the absence of noise. This has been very nicely
explored by Artyomov et al. (2007) (in competing positive/negative feedback motifs),
and Samoilov et al. (2005) (in enzymatic futile cycles), while Qian et al. (2009) and
Bishop and Qian (2010) analytically explored noise induced bistability, the latter in a
phosphorylation–dephosphorylation cycle model. Vellela and Qian (2009) examined
the role of noise in shaping the dynamics of the bistable Schlögl chemical kinetic
model.

For bistable repressible switchmodelsWanget al. (2007) examinedquorum-sensing
with degradation rate noise in phage Λ while Morelli et al. (2008a) examined the role
of noise in protein production rates.Morelli et al. (2008b) carried out numerical studies
of repressible switch slow dynamics in the face of noise. Bokes et al. (2013) gave a
nice overview of the various approaches to the modeling of these systems and then
examined the role of transcriptional/translational bursting in repressible and inducible
systems as well as in a repressible switch. Caravagna et al. (2013) examined the effects
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of bounded Gaussian noise on mRNA production rates in a repressible switch model,
while Strasser et al. (2012) have looked at amodel for the Pu/Gata switch (a repressible
switch implicated in hematopoietic differentiation decision making) with high levels
of protein and low levels of DNA.

In this paper, we extend the work of Mackey et al. (2011) on inducible and repress-
ible systems to an analytic consideration of an inducible switch in the presence of
either bursting transcriptional (or translational) noise or Gaussian noise. The paper is
organized as follows. Section 2 lays the groundwork by developing the deterministic
model based on ordinary differential equations (a generalization of Grigorov et al.
1967, the earliest study we know of, and Cherry and Adler 2000) that we use to
consider the influence of noise. This is followed in Sect. 3 with an analysis of the
deterministic system, including the coexistence of multiple steady states, and their
stability. This section, though superficially similar to the treatment of Mackey et al.
(2011), extends their results to a completely different situation than previously con-
sidered, namely a model for a repressible switch. Section 4 briefly considers how the
existence of fast and slow variables enables the simplification of the dynamics, and
consequently makes computations tractable, while the following Sect. 5 introduces
bursting transcriptional or translational noise and derives the stationary population
density in a variety of situations when there is a single dominant slow variable. We
not only give explicit analytic expressions for these stationary densities, but also show
that they are globally asymptotically stable. Section 6 considers an alternative situa-
tion in which there is Gaussian distributed noise in the degradation rate for a single
slow variable. We again give the analytic form for the stationary densities as well as
demonstrating their stability. Section 7 expands on Sect. 5 by considering bursting
transcription or translation but in the situation where there are two dominant slow
variables. The models in Sects. 5–7 are expressed as stochastic differential equations.
The paper concludes with a short discussion.

2 The bistable genetic switch

2.1 Biological background

The paradigmatic molecular biology example of a bistable switch due to reciprocal
negative feedback is the bacteriophage (or phage) λ, which is a virus capable of
infecting Escherichia coli bacteria. Originally described in Jacob and Monod (1961)
and very nicely treated in Ptashne (1986), it is but one of scores of mutually inhibitory
bistable switches that have been found since.

2.2 Model development

Figure 1 gives a cartoon representation of the situation we are modeling here, which
is a generalization of the work of Grigorov et al. (1967) and Cherry and Adler (2000).
The original postulate for the hypothetical regulatory network of Fig. 1 is to be found
in the lovely paper (Monod and Jacob 1961) which treats a number of different mole-
cular control scenarios, and the reader may find reference to that figure helpful while
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Regx Ox SGx
Operon X

Rx + Ey RxEy

SGy Oy Regy
Operon Y

Mx

Ry +ExRyExMy

Fig. 1 A schematic depiction of the elements of a bistable genetic switch, following Monod and Jacob
(1961). There are two operons (X and Y ). For each, the regulatory region (Regx or Regy ) produces a
repressor molecule (Rx or Ry ) that is inactive unless it is combined with the effector produced by the
opposing operon (Ey or Ex respectively). In the combined form (Rx Ey or Ry Ex ) the repressor–effector
complex binds to the operator region (Ox or Oy respectively) and blocks transcription of the corresponding
structural gene (SGx or SGy ). When the operator region is not complexed with the active form of the
repressor, transcription of the structural gene can take place andmRNA (Mx orMy ) is produced. Translation
of the mRNA then produces an effector molecule (Ex or Ey ). These effector molecules then are capable
of interacting with the repressor molecule of the opposing gene. See Monod and Jacob (1961)

following the model development below. It should be noted that with the advent of the
power of synthetic biology it is now possible to construct molecular control circuits
with virtually any desired configuration and thereby experimentally investigate their
dynamics (Hasty et al. 2001).

Polynikis et al. (2009) offers a nice survey of techniques applicable to the approach
we take in this section. We consider two operons X and Y such that the ‘effector’ of
X , denoted by Ex , inhibits the transcriptional production of mRNA from operon Y
and vice versa. We take the approach of Goodwin (1965) as extended and developed
in (Griffith 1968a, b; Othmer 1976; Selgrade 1979). Consider initially a single operon
a where a ∈ {x, y} and denote by ā ∈ {y, x} the opposing operon. For the mutually
repressible systems we consider here, in the presence of the effector molecule Ea

the repressor Rā is active (able to bind to the operator region), and thus block DNA
transcription. The effector binds with the inactive form Rā of the repressor, and when
bound to the effector the repressor becomes active. We take this reaction to be in
equilibrium and of the form

Rā + nā Ea � Rā Eanā . (1)

Here, Rā Eanā is a repressor–effector complex and nā is the number of effector mole-
cules that inactivate the repressor Rā . If we let the mRNA and effector concentrations
be denoted by (Ma, Ea) then we assume that the dynamics for operon a are given by

dMa

dt
= b̄d,a ϕ̄m,a fa(Eā) − γMa Ma, ā ∈ {y, x} (2)
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The limiting dynamics of a bistable molecular switch... 371

dEa

dt
= βEa Ma − γEa Ea . (3)

It is assumed in (2) that the rate of mRNA production is proportional to the fraction of
time the operator region is active and that the maximum level of transcription is b̄d,a ,
and that the effector production rate is proportional to the amount of mRNA. Note
that the production of Mx is regulated by Ey and vice versa, and that the components
(Ma, Ea) are subject to degradation. The function f is calculated next.

To compute f we temporarily suppress the subscript a and then restore it at the
end. Let the corresponding reaction in (1) and the equilibrium constant be

R + nE
K1� REn K1 = REn

R · En
.

There is an interaction between the operator O and repressor R described by

O + REn
K2� OREn K2 = OREn

O · REn
.

The total operator is given by

Otot = O + OREn = O + K1K2O · R · En = O(1 + K1K2R · En),

while the total repressor Rtot is

Rtot = R + K1R · En + K2O · REn,

so the fraction of operators not bound by repressor is given by

f (E) = O

Otot
= 1

1 + K1K2R · En
.

If the amount repressor bound to the operator is small compared to the total amount
of repressor then Rtot � R(1 + K1 · En) and consequently

f (E) = 1 + K1En

1 + (K1 + K1K2Rtot )En
= 1 + K1En

1 + K En
,

where K = K1(1 + K2Rtot ). When E is large there will be maximal repression,
but even then there will still be a basal level of mRNA production proportional to
K1K−1 < 1 (this is known as leakage). The variation of the DNA transcription rate
with effector level is given by ϕ = ϕ̄m f or
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372 M. C. Mackey, M. Tyran-Kamińska

ϕ(E) = ϕ̄m
1 + K1En

1 + K En
= ϕ̄m f (E), (4)

where ϕ̄m is the maximal DNA transcription rate (in units of inverse time).
Now explicitly including the proper subscripts we have

ϕa(Eā) = ϕ̄m,a
1 + K1,a E

na
ā

1 + KaE
na
ā

= ϕ̄m,a fa(Eā),

where Ka = K1,a(1 + K2,a Rtot,a).
We next rewrite Eqs. (2) and (3) by defining dimensionless concentrations. Equation

(4) becomes
ϕa(eā) = ϕm,a fa(eā),

where the dimensionless rate ϕm,a is defined by

ϕm,a = ϕ̄m,aβE,a

γM,aγE,a
and fa(eā) = 1 + enaā

1 + Δae
na
ā

,

Δa = KaK
−1
1,a , and the dimensionless effector concentration (ea) is defined by

Ea = ηaeā with ηa = 1
na
√
K1,a

.

Recall that Δ−1
a denotes the leakage and note that if Δa goes to infinity then the

transcription goes to zero. Similarly using a dimensionless mRNA concentration (ma)
given by

Ma = maηa
γEa

βEa

,

Equations (2) and (3) take the form

dma

dt
= γMa [κd,a fa(eā) − ma],

dea
dt

= γEa (ma − ea),

with

κd,a = bd,aϕm,a, and bd,a = b̄d,a

ηa

which are both dimensionless.
Thus the equations governing the dynamics of this system are given by the four

differential equations

dmx

dt
= γMx [κd,x fx (ey) − mx ],
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dex
dt

= γEx (mx − ex ),

dmy

dt
= γMy [κd,y fy(ex ) − my],

dey
dt

= γEy (my − ey)

where

fx (ey) = 1 + enxy
1 + Δxe

nx
y

and fy(ex ) = 1 + e
ny
x

1 + Δye
ny
x

.

To make the model equations somewhat more straightforward, denote dimension-
less concentrations by (mx , ex ,my, ey) = (x1, x2, y1, y2) (with obvious changes in
the other subscripts) to obtain

dx1
dt

= γx1[κd,x fx (y2) − x1], (5)

dx2
dt

= γx2(x1 − x2), (6)

dy1
dt

= γy1[κd,y fy(x2) − y1], (7)

dy2
dt

= γy2(y1 − y2), (8)

Throughout, γ· is a decay rate (time−1), and so Eqs. (5)–(8) are not dimensionless.
In addition to the loss rates explicitly appearing, we have the parameters κd,x , κd,y .
Since

fx (y2) = 1 + ynx2
1 + Δx y

nx
2

and fy(x2) = 1 + x
ny
2

1 + Δyx
ny
2

, (9)

we have as well the four parameters Δx ,Δy, nx , ny to consider. Note that

fx (0) = 1, lim
y2→∞ fx (y2) = Δ−1

x < 1, fy(0) = 1, lim
x2→∞ fy(x2) = Δ−1

y < 1.

3 Steady states and dynamics

The dynamics of this model for a bistable switch can be analyzed as follows. This
section is an elaboration of aspects of the work presented in Cherry and Adler (2000).
Set W = (x1, x2, y1, y2) so the system (5)–(8) generates a flow St (W ). The flow
St (W 0) ∈ R

+
4 for all initial conditions W 0 = (x01 , x

0
2 , , y

0
1 , y

0
2 ) ∈ R

+
4 and t > 0.

The steady states of the system (5)–(8) are given by x∗
1 = x∗

2 = x∗, y∗
1 = y∗

2 = y∗
where (x∗, y∗) is the solution of

x1 = x2 = κd,x fx (y2) (10)
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374 M. C. Mackey, M. Tyran-Kamińska

y1 = y2 = κd,y fy(x2). (11)

For each solution (x∗, y∗) of (10) and (11) there is a steady state W ∗ of the model,
and the parameters (κd,x , κd,y,Δx ,Δy, nx , ny) will determine whether W ∗ is unique
or has multiple values.

3.1 Graphical investigation of the steady states

Figure 2 gives a graphical picture of the five qualitative possibilities for steady state
solutions of the pair of Eqs. (5)–(8).

An alternative, but equivalent, way of examining the steady state of this model is
by examining the solution of either one of the pair of equations

x

κd,x
= fx (κd,y fy(x)) := Fx (x),

y

κd,y
= fy(κd,x fx (y)) := Fy(y).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

ABCDE

x2

y2

Fig. 2 Agraphical representation of the possible steady state solutions ofEqs. (10) and (11).Wehaveplotted
the y1 and x1 isoclines (y2 = κd,y fy(x2) and x2 = κd,x fx (y2) respectively), and assumed that the y1
isocline (the graph of y2 = κd,y fy(x2)) is not changed but that x1 isocline (the graph of x2 = κd,x fx (y2))
is varied as indicated by the labels A to E, e.g. by decreasing κd,x . a There is a single steady state at a large
value of x2 and a correspondingly small value of y2. In this case operon X of the bistable switch is in the
“ON” state while operon Y is in the “OFF” state. This steady state is globally stable. b A decrease in κd,x
now leads to a situation in which there are two steady states, the largest (locally stable one) corresponding
to the intersection of the two graphs, and the second smaller (half stable) one where the two graphs are
tangent. c Further decreases in κd,x now result in three steady states. For the largest (locally stable) one the
operon X is in the on state while Y is in the off state. The smallest one (also locally stable) corresponds
to operon Y in the ON state and X is in the OFF state. The intermediate steady state is unstable. d This
case is like b in that there are two steady states, one (locally stable) defined by the intersection of the two
graphs in which Y is ON and the second at the tangency of the two graphs is again half stable. e Finally,
for sufficiently small κd,x there is a single globally stable steady state in which Y is ON and X is OFF
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Wechoose to dealwith thefirst.Note that since both fx and fy aremonotonedecreasing
functions of their arguments, the composition of the two

Fx (x) = 1 + (κd,y fy(x))nx

1 + Δx (κd,y fy(x))nx
=

1 +
(

κd,y
1 + xny

1 + Δyxny

)nx

1 + Δx

(
κd,y

1 + xny

1 + Δyxny

)nx (12)

is a monotone increasing function of x with

Fx (0) = 1 + κ
nx
d,y

1 + Δxκ
nx
d,y

:= Fx,0

and

lim
x→∞Fx (x) = 1 + (κd,yΔ

−1
y )nx

1 + Δx (κd,yΔ
−1
y )nx

:= Fx,∞ > Fx,0.

In Fig. 3we have showngraphically the same sequence of steady states aswe illustrated
in Fig. 2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

x

ABCDE

Fig. 3 A graphical representation of the possible steady state solutions of the equation x/κd,x =
fx (κd,y fy(x)) := Fx (x). The smooth monotone increasing graph is that of Fx (x) as given in Eq. (12),
while the straight line is that of x/κd,x for different values of κd,x . The five straight lines correspond to
the five possibilities (a–e) in Fig. 2
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3.2 Analytic investigation of the steady states

Single versus multiple steady states This model for a bistable genetic switch may have
one [W ∗

1 (e of Fig. 2 or Fig. 3) orW ∗
3 (A)], two [W ∗

1 ,W ∗
2 = W ∗

3 (D) orW ∗
1 = W ∗

2 ,W ∗
3

(B)], or three [W ∗
1 ,W ∗

2 ,W ∗
3 (C)] steady states,with the ordering0 � W ∗

1 � W ∗
2 � W ∗

3 ,
indicating that W ∗

1 corresponds to operon X in the OFF state and operon Y in the ON
state while at W ∗

3 X is ON and Y is OFF.
Analytic conditions for the existence of one or more steady states can be obtained

by first noting that we must have

x

κd,x
= fx (κd,y fy(x)) := Fx (x) (13)

satisfied. In Fig. 4 we have illustrated Eq. (13) for various values of parameters.
In addition to this criteria,we have a second relation at our disposal at the delineation

points between the existence of two and three steady state. These points are also
determined by a second relation since x/κd is tangent to Fx (x) (see Fig. 3b, d). Thus
we must also have

1

κd,x
= dFx (x)

dx
.

Now the problem is to derive values for x± at which a tangency occurs, as well as to
figure out some way to make a parametric plot of a combination of κd,x , κd,y,Δx ,Δy

for given values of nx , ny .
Indeed, from Eqs. (10) and (11) we have

x = κd,x fx (y) and y = κd,y fy(x). (14)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

κd,x

x

Fig. 4 The plot of κd,x versus x obtained from Eq. (13). The figure was constructed for the following
parameters: nx ∈ {1, 2, 3}, ny ∈ {1, 2, 3, 4, 5}, κy = 2, Δx = 12, Δy = 10. The solid lines correspond
to nx = 1 and we increase ny from 1 (the lowest line) to 5 (the top one). The dashed lines correspond to
nx = 2 and the dotted to nx = 3
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Additionally at a tangency between fx (y) and fy(x) we must have

x = κd,x fx (κd,y fy(x)),

so

1 = κd,xκd,y f
′
x f

′
y .

However,

κd,xκd,y = xy

fx (y) fy(x)

so we have an implicit relationship between x and y given by

fx (y)

y f ′
x (y)

= x f ′
y(x)

fy(x)

that, when written explicitly becomes

L(y) := − (1 + ynx )(1 + Δx ynx )

nx (Δx − 1)ynx
= − ny(Δy − 1)xny

(1 + xny )(1 + Δyxny )
:= R(x). (15)

Now L(y) has a maximum at ymax = Δ
−1/2nx
x and

L(ymax ) := Lmax = − (1 + √
Δx )

2

nx (Δx − 1)
,

while R(x) has a minimum at xmin = Δ
−1/2ny
y given by

R(xmin) := Rmin = − ny(Δy − 1)

(1 + √
Δy)2

.

A necessary condition for there to be a solution to Eq. (15), and thus a necessary
condition for bistability, is that Lmax ≥ Rmin or

nxny ≥ (1 + √
Δx )

2(1 + √
Δy)

2

(Δx − 1)(Δy − 1)
≥ 1.

This is interesting in the sense that if either nx OR ny is one but the other is larger
than one then the possibility of bistability behavior still persists, while in the situation
of Mackey et al. (2011) this is impossible (the same observation has been made by
Cherry and Adler 2000 in a somewhat simpler model). However, note from Fig. 4 that
this necessary condition is far from what is sufficient since it would appear from Eq.
(13) that a necessary and sufficient condition is more like nxny � 4.
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378 M. C. Mackey, M. Tyran-Kamińska

Going back to Eq. (15), we can write

Δx y
2nx + [nx (Δx − 1)R(x) + (Δx + 1)]ynx + 1 = 0,

which has two positive solutions y± given by

y± = nx

√√
√
√Δx − 1

2Δx

{

−nx R(x) − Δx + 1

Δx − 1
±

√

[nx R(x)]2 + 2nx R(x)
Δx + 1

Δx − 1
+ 1

}

,

(16)
provided that

[nx R(x)]2 + 2nx R(x)
Δx + 1

Δx − 1
+ 1 ≥ 0

and

−nx R(x) − Δx + 1

Δx − 1
−

√

[nx R(x)]2 + 2nx R(x)
Δx + 1

Δx − 1
+ 1 ≥ 0.

Substitution of the result into Eq. (14) gives explicitly

κd,x (x) = x

fx (y(x))
and κd,y(x) = y(x)

fy(x)
, (17)

where y(x) is either y+ or y− as given by (16).
In Fig. 5 we have plotted κd,x (x) versus κd,y(x) with x as the parametric variable.

Inside the region bounded by the blue line (below) and green line (above) we are
assured of the existence of bistable behaviour while outside this region there will be
only a single globally stable steady state. Thus, for example, for a constant value of
κd,y such that bistability is possible, then increasing κd,x from0 therewill be aminimal
value κd,x− at which bistability is first seen and this will persist as κd,x is increased
until a second value κd,x− < κd,x+ is reached where the bistable behaviour once again
disappears. In Fig. 6 we have shown how the change of the parameter Δy influences
the shape and position of the region of parameters κd,y and κd,x where a bistable
behaviour is possible. It is clear that an increase inΔy corresponds to a decrease in the
leakage, and our results show a clear expansion in the size of the region of bistability
as well as a shift in (κd,y, κd,x ) space. This is the same observation made in Mackey
et al. (2011).

3.3 Local and global stability

Whether or not a steady state W ∗ is locally stable is completely determined by the
eigenvalues that solve the equation

2∏

i=1

(λ + γxi )(λ + γyi ) −
2∏

i=1

γxi γyi κd,xκd,y f
′
x∗ f ′

y∗ = 0, (18)
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0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

κd,x

κd,y

Fig. 5 The parametric plot of κd,x versus κd,y obtained from Eq. (17) where we used the following
parameters: nx = 2, ny = 3, Δx = 12, Δy = 10. The blue line is for y(x) = y− and the green for
y(x) = y+
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Fig. 6 As in Fig. 5 but with varying parameter Δy ∈ {5, 10, 15}, from left to right

where f ′
x∗ = f ′

x (x
∗), f ′

y∗ = f ′
y(y

∗). Equation (18) can be rewritten in the form

4∑

i=1

aiλ
i + a0 = 0 (19)

where the ai , i > 0 are positive and a0 = (1 − κd,xκd,y f ′
x∗ f ′

y∗)
∏2

i=1 γxi γyi . By
Descartes’s rule of signs, (19) has no positive roots for f ′

x∗ f ′
y∗ ∈ [0, (κd,xκd,y)

−1)

or one positive root otherwise. Denote a locally stable steady state by S, a half or

123

Author's personal copy



380 M. C. Mackey, M. Tyran-Kamińska

neutrally stable steady state by HS, and unstable steady state by US. Then we know
that there will be:

– A single steady state W ∗
1 (S), for κd,x ∈ [0, κd,x−)

– Two steady states W ∗
1 (S) and W ∗

2 = W ∗
3 (HS) for κd,x = κd,x−

– Three steady states W ∗
1 (S), W ∗

2 (US), W ∗
3 (S) for κd,x ∈ (κd,x−, κd,x+)

– Two steady states W ∗
1 = W ∗

2 (HS) and W ∗
3 (S) for κd,x = κd,x+

– One steady state W ∗
3 (S) for κd,x+ < κd,x .

Global stability results of others complement this classification.

Theorem 1 (Othmer 1976; Smith 1995, Proposition 2.1, Chapter 4) For the bistable
switch given by Eqs. (5)–(9), define Ix = [κd,xΔ

−1
x , 1] and Iy = [κd,yΔ

−1
y , 1]. There

is an attracting box B ⊂ R
+
4 , where

B = {(xi , yi ) : x1,2 ∈ Ix , y1,2 ∈ Iy},

for which the flow St is directed inward on the surface of B. All W ∗ ∈ B and

1. If there is a single steady state, then it is globally stable.
2. If there are two locally stable steady states, then all flows St (W 0) are attracted to

one of them.

4 Fast and slow variables

Identification of fast and slow variables in systems can often be used to achieve simpli-
fications that allow quantitative examination of the relevant dynamics, and particularly
to examine the approach to a steady state and the nature of that steady state. A fast
variable is one that relaxes much more rapidly to an equilibrium than does a slow
variable (Haken 1983). In chemical systems this separation is often a consequence
of differences in degradation rates, and the fastest variable is the one with the largest
degradation rate. In recent years, with the advent of synthetic biology, investigators
have engineered a variety of gene regulatory circuits, including bistable switches of the
type consideredhere, seeHasty et al. (2001) andHuanget al. (2012), inwhich theywere
able to experimentally control the speed with which particular variables approached a
quasi-equilibrium state. Thus this experimental technique offers an experimental way
to actually achieve the simplification of causing particular variables to become fast
variables. We will use this technique analytically in examining the effects of noise,
which has the added advantage of allowing us to derive analytic insights from the
simplified model that seem to be impossible in the full model.

If it is the case that there is a single dominant slow variable in the system (5)–(8)
relative to all of the other three (and here we assume without loss of generality that it
is in the X gene) then the four variable system describing the full switch reduces to a
single equation

dx

dt
= γ [κd,xF(x) − x], (20)
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and γ is the dominant (smallest) degradation rate. (Here, and subsequently, to simplify
the notation we will drop the subscript x whenever there will not be any confusion
when treating the situation with a single dominant slow variable.)

5 Transcriptional and translational bursting

It has been quite clearly shown (Cai et al. 2006; Chubb et al. 2006; Golding et al. 2005;
Raj et al. 2006; Sigal et al. 2006; Yu et al. 2006) that in a number of experimental
situations some organisms transcribe mRNA discontinuously and as a consequence
there is a discontinuous production of the corresponding effector proteins (i.e. protein
is produced in bursts). Experimentally, the amplitude of protein production through
bursting translation of mRNA is exponentially distributed at the single cell level with
density

h(y) = 1

b̄
e−y/b̄, (21)

where b̄ is the average burst size, and the frequency of bursting ϕ is dependent on the
level of the effector. Writing Eq. (21) in terms of our dimensionless variables we have

h(x) = 1

b
e−x/b. (22)

When bursting is present, the analog of the deterministic single slow variable
dynamics discussed above is

dx

dt
= −γ x + Ξ(h, ϕ(x)), with ϕ(x) = γ ϕmF(x), (23)

whereΞ(h, ϕ) denotes a jumpMarkov process, occurring at a rate ϕ, whose amplitude
is distributed with density h as given in (22). Set κb = ϕm , so F has the same form as
(12) but with κd,y replaced by κb,y . When we have bursting dynamics described by the
stochastic differential equation (23), it has been shown (Mackey and Tyran-Kamińska
2008) that the evolution of the density u(t, x) is governed by the integro-differential
equation

∂u(t, x)

∂t
− γ

∂(xu(t, x))

∂x
= −γ κb,xF(x)u(t, x)

+ γ κb,x

∫ x

0
F(z)u(t, z)h(x − z)dz. (24)

In a steady state the (stationary) solution u∗(x) of (24) is found by solving

−d(xu∗(x))
dx

= −κb,xF(x)u∗(x) + κb,x

∫ x

0
F(z)u∗(z)hx (x − z)dz.
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382 M. C. Mackey, M. Tyran-Kamińska

If u∗(x) is unique, then the solution u(t, x) of Eq. (24) is said to be asymptotically
stable (Lasota and Mackey 1994) in that

lim
t→∞

∫ ∞

0
|u(t, x) − u∗(x)|dx = 0

for all initial densities u(0, x). Somewhat surprisingly, it is possible to actually obtain
a closed form solution for u∗(x) as given in the following

Theorem 2 (Mackey and Tyran-Kamińska 2008, Theorem 7) The unique stationary
density of Eq. (24), with F given by Eq. 12 and h given by (22), is

u∗(x) = C
x
e−x/b exp

[
κb,x

∫ x F(z)

z
dz

]
, (25)

C is a normalization constant such that
∫ ∞
0 u∗(x)dx = 1, and u(t, x) is asymptotically

stable.

Note that u∗ can be written as

u∗(x) = C exp
∫ x (

κb,xF(z)

z
− 1

b
− 1

z

)
dz. (26)

Thus from (26) we can write

u′∗(x) = u∗(x)
(

κb,xF(x)

x
− 1

b
− 1

x

)
, (27)

so for x > 0 we have u′∗(x) = 0 if and only if

1

κb,x

( x
b

+ 1
)

= F(x). (28)

An easy graphical argument shows there may be zero to three positive roots of Eq.
(28), and if there are three roots we denote them by x̄1 < x̄2 < x̄3. The graphical
arguments in conjunction with (27) show that two general cases must be distinguished,
exactly as was found in Mackey et al. (2011). (In what follows, κb,x , κb,x−, and κb,x+
play exactly the same role as do κd,x , κd,x−, and κd,x+ in the discussion around
Fig. 5.)
Case 1 0 < κb,x < F−1

0 . In this case, u∗(0) = ∞. If κb,x < κb,x−, there are no
positive solutions, and u∗ will be amonotone decreasing function of x . If κb,x > κb,x−,
there are two positive solutions (x̃2 and x̃3), and amaximum in u∗ at x̃3 with aminimum
in u∗ at x̃2.

Case 2 0 < F−1
0 < κb,x . Now, u∗(0) = 0 and either there are one, two, or three

positive roots of Eq. (28). When there are three, x̃1, x̃3 will correspond to the location
of maxima in u∗ and x̃2 will be the location of the minimum between them. The
condition for the existence of three roots is κb,x− < κb,x < κb,x+.
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Thus we can classify the stationary density u∗ for a bistable switch as:

1. Unimodal type 1 u∗(0) = ∞ and u∗ is monotone decreasing for 0 < κb,x < κb,x−
and 0 < κb,x < F−1

0
2. Unimodal type 2 u∗(0) = 0 and u∗ has a single maximum at

(a) x̃1 > 0 for F−1
0 < κb,x < κb,x− or

(b) x̃3 > 0 for κb,x+ < κb,x and F−1
0 < κb,x

3. Bimodal type 1 u∗(0) = ∞ and u∗ has a single maximum at x̃3 > 0 for κb,x− <

κb,x < F−1
0

4. Bimodal type 2 u∗(0) = 0 and u∗ has two maxima at x̃1, x̃3, 0 < x̃1 < x̃3 for
κb,x− < κb,x < κb,x+ and F−1

0 < κb,x

Note in particular from (28) that a decrease in the leakage (equivalent to an increase
inF−1

0 ) facilitates a transition between unimodal and bimodal stationary distributions
and that this is counterbalanced by a increases in the bursting parameters κb and b. Pre-
cisely the same conclusion was obtained by Huang et al. (2015) and Ochab-Marcinek
and Tabaka (2015) on analytic and numerical grounds. The exact determination of
these three roots is difficult in general because of the complexity of F , but we can
derive implicit criteria for when there are exactly two roots (x̄1 and x̄3) by determining
when the graph of the left hand side of (28) is tangent to F . Using this tangency
condition, differentiation of (28) yields

1

κb,xb
= F ′(x). (29)

Although Eqs. (28) and (29) offer conceptually simple conditions for delineating
when there are exactly two roots (and thus to find boundaries between monostable
and bistable stationary densities u∗), a moments reflection after looking at (12) for F
reveals that it is algebraically quite difficult to obtain quantitative conditions in general.
However, (28) and (29) are easily used in determining numerically boundaries between
monostable and bistable stationary densities.

5.1 Monomeric repression of one of the genes with bursting (nx = 1)

Evaluation of the integral appearing in Eq. (25) can be carried out for all (positive)
integer values of (nx , ny) in theory, but the calculations become algebraically com-
plicated. However, if we consider the situation when a single molecule of the protein
from the y gene is capable of repressing the x gene, so nx = 1, then the results become
more tractable and allow us to examine the role of different parameters in determining
the nature of u∗.

Thus, for nx = 1, F takes the simpler form

F(x) = (1 + κb,y) + (Δy + κb,y)xny

Λ + Γ xny
,

where

Λ = 1 + Δxκb,y > 0, Γ = Δy + Δxκb,y > 0.
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Fig. 7 In this figure we illustrate stationary densities given by Eq. (30) where the parameter values in each
panel are taken to be κb,y = 1, Δx = 12, Δy = 10, κb,x ∈ [25, 37] changes by 2, where the graph with
highest maximum corresponds to κb,x = 25 and the maxima are decreasing when κb,x is increased. The
parameter ny is taken in an increasing order to be 2, 3, 4, 6, so that we start with ny = 2 in a and have
ny = 6 in d

Evaluating (25) we have the explicit representation

u∗(x) = Ce−x/bx A−1[Λ + Γ xny ]θ (30)

with

A = κb,x (1 + κb,y)

Λ
> 0, θ = κb,xκb,y(Δx − 1)(Δy − 1))

nyΛΓ
> 0.

In Fig. 7 we have illustrated the form of u∗(x) in four different situations. Figure
7a and b show a smooth variation in a Unimodal Type 2 density as κb,x ∈ [25, 37] is
varied by steps of 2 for ny = 2 and ny = 3 respectively. The behavior is quite different
in Fig. 7c and d however for there, with ny = 4 and ny = 6, the form of u∗(x) varies
from a Unimodal Type 2 to a Bimodal Type 2 and back again as κb,x is varied.
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5.2 ‘Bang-bang’ repression with bursting

We can partially circumvent the algebraic difficulties of the previous sections by
considering a limiting case. Consider the situation in which ny becomes large so
fy(x) approaches the simpler form

fy(x) →
{
1, 0 ≤ x < θ,

Δ−1
y , θ ≤ x,

where

θ � 1
ny
√

Δy

ny

√
ny − 1

ny + 1
→ 1

ny
√

Δy
→ 1,

so we have

F(x) →

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F0 = 1 + κ
ny
b,y

1 + Δxκ
nx
b,y

, 0 ≤ x < 1,

F∞ = 1 + (κb,y/Δy)
ny

1 + Δx (κb,y/Δy)nx
, 1 ≤ x .

(31)

The evaluation of (25) is simple and yields a stationary density which is (piecewise)
that of the gamma distribution:

u∗(x) = Ce−x/bx A(x)−1

where

A(x) =
{
A0 ≡ κb,xF0, 0 ≤ x < 1,
A∞ ≡ κb,xF∞, 1 ≤ x .

Note that u∗(x) is continuous but not differentiable at x = 1, and C is given explicitly
by

C = 1

bA0 [Γ (A0) − Γ (A0, 1/b)] + bA∞Γ (A∞)
,

where Γ (α) is the gamma function and Γ (α, β) is the incomplete gamma function.
In this limiting case the stationary density may display one of three general forms

as we have classified the densities earlier. Namely:

1. If κb,x < F−1
0 and κb,x < F−1∞ then u∗(x) will be of Unimodal type 1;

2. If κb,x < F−1
0 and κb,x > F−1∞ then u∗(x) will be Bimodal type 1;

3. If κb,x > F−1
0 (which implies κb,x > F−1∞ ) then u∗(x) will be Bimodal type 2.
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6 Gaussian distributed noise in the molecular degradation rate

For a generic one dimensional stochastic differential equation of the form

dx(t) = α(x)dt + σ(x)dw(t),

where w is a standard Brownian motion, the corresponding Fokker Planck equation

∂u

∂t
= −∂(αu)

∂x
+ 1

2

∂2(σ 2u)

∂x2
(32)

can be written in the form of a conservation equation

∂u

∂t
+ ∂ J

∂x
= 0,

where

J = αu − 1

2

∂(σ 2u)

∂x

is the probability current. In a steady state when ∂t u ≡ 0, the current must satisfy
J = constant throughout the domain of the problem. In the particular case when
J = 0 at one of the boundaries (a reflecting boundary) then J = 0 for all x in the
domain and the steady state solution u∗ of Eq. (32) is easily obtained with a single
quadrature as

u∗(x) = C
σ 2(x)

exp

{
2

∫ x α(y)

σ 2(y)
dy

}
,

where C is a normalizing constant as before.
In our considerations of the effects of continuous fluctuations, we examine the

situation inwhichGaussian fluctuations appear in the degradation rate γx of the generic
Eq. (20). Gillespie (2000) has shown that in this situation we need to consider what
he calls the chemical Langevin equation, so (20) takes the form

dx = γ [κd,xF(x) − x]dt + √
γ xdw.

(In the situation we consider here, α(x) = γ [κd,xF(x) − x] and σ(x) = σγ

√
x .)

Within the Ito interpretation of stochastic integration, this equation has a corresponding
Fokker Planck equation for the evolution of the ensemble density u(t, x) given by

∂u

∂t
= −∂[γ (κd,xF(x) − x)u]

∂x
+ γ

2

∂2(xu)

∂x2
. (33)

Since concentrations of molecules cannot become negative the boundary at x = 0 is
reflecting and the stationary solution of Eq. (33) is given by

u∗(x) = C
x
e−2x exp

[
2κd,x

∫ x F(z)

z
dz

]
. (34)

123

Author's personal copy



The limiting dynamics of a bistable molecular switch... 387

We have also the following result.

Theorem 3 (Pichór and Rudnicki 2000, Theorem 2) The unique stationary density of
Eq. (33) is given by Eq. (34). Further u(t, x) is asymptotically stable.

Remark 1 Note that the stationary solution for the density u∗(x) given by Eq. (34) in
the presence of noise in the protein degradation rate is identical to the solution in Eq.
(25), when transcriptional and/or translational noise in present in the system, as long
as we make the identification of κb,x with 2κd,x and b with 1/2. As a consequence, all
of the results of the analysis in Sect. 5 are applicable in this section. The implication
is, of course, that one cannot distinguish between the location of the noise simply
based on the nature of the stationary density.

7 Two dominant slow genes with bursting

In this last section we turn our attention to the situation in which we have two slow
variables, one in each gene. If there are two slow variables with one in each of the X
and Y genes, then we obtain a two dimensional system that is significantly different
and more difficult to deal with from what we have encountered so far, and we wish
to examine the existence of the stationary density u∗(x, y) in the presence of bursting
production.

For two dominant slow variables in different genes with bursting, the stochastic
analogs of the deterministic equations are

dx

dt
= −γx x + Ξ(h1, ϕ1(y)) with ϕ1(y) = γxκb,x fx (y),

dy

dt
= −γy y + Ξ(h2, ϕ2(x)) with ϕ2(x) = γyκb,y fy(x).

To be more specific, let x(t) and y(t) denote the amount of protein in a cell at time
t , t ≥ 0, produced by gene X and Y , respectively. If only degradation were present,
then (x(t), y(t)) would satisfy the equation

x ′(t) = −γx x(t), y′(t) = −γy y(t), t ≥ 0. (35)

The solution of (35) starting at time t0 = 0 from (x0, y0) ∈ R
2+ is of the form

πt (x0, y0) = (e−γx t x0, e
−γy t y0), t ≥ 0.

But, we interrupt the degradation at random times

0 = t0 < t1 < t2 < · · ·
when, independently of everything else, a random amount of protein x or y is produced
according to an exponential distributionwithmeanbx orby , respectively,with densities

h1(x) = 1

bx
e−x/bx , h2(y) = 1

by
e−y/by .
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The rate of production of protein x (protein y) depends on the level of protein y (protein
x) and is ϕ1(y) (ϕ2(x)). Consequently, at each tk if x(tk) = x and y(tk) = y then one
of the genes X or Y can be chosen at random with probabilities p1 or p2, respectively,
given by

p1(x, y) = ϕ1(y)

ϕ(x, y)
, p2(x, y) = ϕ2(x)

ϕ(x, y)
,

and we have

Pr(tk+1 − tk > t |x(tk) = x, y(tk) = y) = e− ∫ t
0 ϕ(πs (x,y))ds, t > 0,

where the function ϕ is of the form

ϕ(x, y) = ϕ1(y) + ϕ2(x) = γxκb,x fx (y) + γyκb,y fy(x).

The process Z(t) = (x(t), y(t)) is aMarkov process with values in E = [0,∞)2 =
R
2+ given by

Z(t) =
{

πt−tk−1(Z(tk−1)), tk−1 ≤ t < tk,
Z(tk−) + ξk, t = tk, k = 1, 2, . . .

where

Z(tk−) = πtk−tk−1(Z(tk−1))

and (ξk)k≥1 is a sequence of random variables such that

Pr(Z(tk−) + ξk ∈ B|Z(tk−) = z) = P(z, B)

with

P(z, B) = p1(z)
∫ ∞

0
1B(z + θe1)h1(θ)dθ

+p2(z)
∫ ∞

0
1B(z + θe2)h2(θ)dθ.

Here e1 and e2 are the unit vectors from R
2

e1 =
(
1
0

)
, e2 =

(
0
1

)
.

Let Pz be the distribution of the process Z = {Z(t)}t≥0 starting at Z(0) = z and Ez

the corresponding expectation operator. For any z and any Borel subset ofR2+ we have
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Pz(Z(t) ∈ B) =
∞∑

n=0

Pz(Z(t) ∈ B, tn ≤ t < tn+1).

If the distribution of Z(0) has a probability density u0 with respect to the Lebesgue
measure m on R

2+ then Z(t) has the distribution with density P(t)u0, i.e.,

∫

E
Pz(Z(t) ∈ B)u0(z)m(dz) =

∫

B
P(t)u0(z)m(dz), B ∈ B(R2+). (36)

The evolution equation for the density u(t, x, y) = P(t)u0(x, y) is

∂u

∂t
− γx

∂(xu)

∂x
− γy

∂(yu)

∂y
= −ϕ(x, y)u(t, x, y)

+ϕ1(y)
∫ x

0
h1(x − zx )u(t, zx , y)dzx

+ϕ2(x)
∫ y

0
h2(y − zy)u(t, x, zy)dzy, (37)

with initial condition u(0, x, y) = u0(x, y), x, y ∈ [0,∞).

Theorem 4 There is a unique density u∗(x, y) which is a stationary solution of (37)
and u(t, x, y) is asymptotically stable.

Proof We use the notation of Rudnicki et al. (2002) and apply (Rudnicki et al.
2002, Theorem 5) together with (Pichór and Rudnicki 2000, Theorem 1). Let E = R

2+
and m be the Lebesgue measure on E . The evolution equation (37) induces a strongly
continuous semigroup {P(t)}t≥0 of Markov operators on the space of Lebesgue inte-
grable functions L1 = L1(E,B(E),m) (see e.g. Tyran-Kamińska 2009). Recall that
a function f : E → R+ is called lower semicontinuous, if

lim inf
w→z

f (w) ≥ f (z)

for every z ∈ E . We show that there exists a nonnegative Borel function q defined on
(0,∞) × E × E with the following properties

1. for each t > 0 and each Borel set B

Pz(Z(t) ∈ B) ≥
∫

B
q(t, w, z)m(dw) for all z ∈ E,

2. for each t > 0 the function (w, z) �→ q(t, w, z) is lower semicontinuous,
3. for each z there exists t > 0 such that

∫

E
q(t, w, z)m(dw) > 0,
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4. for m-a.e. z ∈ E and every Borel set B with m(B) > 0

∫ ∞

0

∫

B
q(t, w, z)m(dw)dt > 0.

Then it follows from (Rudnicki et al. 2002, Theorem 5) and (Pichór and Rudnicki
2000, Theorem 1) that either u(t, x, y) is asymptotically stable or the process Z is
sweeping from compact subsets of E , i.e.,

lim
t→∞

∫

E
Pz(Z(t) ∈ F)u0(z)m(dz) = 0 (38)

for all compact sets F ⊂ E and all densities u0. We have

Pz(Z(t) ∈ B) =
∞∑

n=0

Pz(πt−tn Z(tn) ∈ B, tn ≤ t < tn+1).

The discrete time process (Z(tn), tn)n≥0 is Markov with transition probability
P((z, s), B × I ) = Qz(B × ((I − s) ∩ R+)) for Borel subsets B of R2+ and Borel
subsets I of R+, where Q is given by

Qz(B × I ) = Pz(Z(t1) ∈ B, t1 ∈ I )

=
2∑

i=1

∫

I

∫ ∞

0
1B(πs1 z + θei )ϕ(πs1 z)e

−φz(s1) pi (πs1 z)hi (θ)dθds1.

We have

Pz(πt−t1(Z(t1)) ∈ B, t1 ≤ t < t2) =
∫

E×[0,t]
1B(πt−s1 z1)e

−φz1 (t−s1)Qz(dz1, ds1)

and for k = 2 we obtain

Pz(πt−t2(Z(t2)) ∈ B, t2 ≤ t < t3)

=
∫

E×[0,t]

∫

E×[0,t−s1]
1B(πt−(s2+s1)z2)e

−φz2 (t−(s2+s1))Qz1(dz2, ds2)Qz(dz1, ds1).

Since ϕ is bounded from above by a constant ϕ and ϕpi = ϕi is bounded from below
by a constant ci > 0, we obtain that

Qz(B × I ) ≥
∫

I

∫ ∞

0

2∑

i=1

1B(πs1 z + θei )e
−ϕs1ci hi (θ)dθds1

for all z. Now, if z1 = πs1 z + θ1e1 and z2 = πs2 z1 + θ2e2, then

πt−(s2+s1)z2 = πt z + πt−s1(θ1e1) + πt−(s2+s1)(θ2e2)
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= πt z + T(s1,s2)(θ1, θ2),

where

T(s1,s2)(θ1, θ2) = (θ1e
−γ1(t−s1), θ2e

−γ2(t−(s2+s1))).

Consequently, we obtain

Pz(Z(t) ∈ B) ≥
∫ t

0

∫ t−s1

0

∫ ∞

0

∫ ∞

0
1B(πt z + T(s1,s2)(θ1, θ2))

×e−ϕt c1c2h1(θ1)h2(θ2)dθ2dθ1ds2ds1.

The transformation (θ1, θ2) �→ T(s1,s2)(θ1, θ2) is invertible on (0,∞)2, thus we can
make a change of variables under the integral to conclude that

Pz(Z(t) ∈ B) ≥
∫

(0,∞)2
1B(πt z + w)e−(ϕ+γ1+γ2)t q̃(t, w)dw,

where

q̃(t, (w1, w2))

=
∫ t

0

∫ t−s1

0
eγ1s1+γ2(s1+s2)c1c2h1(e

γ1(t−s1)w1)h2(e
γ2(t−s1−s2)w2)ds2ds1.

Consequently, we obtain

Pz(Z(t) ∈ B) ≥
∫

B
q(t, w, z)dw,

where

q(t, w, z) = e−(ϕ+γ1+γ2)t q̃(t, w − πt z)1(0,∞)2(w − πt z), w, z ∈ E .

For each t > 0 the function (w, z) �→ q(t, w, z) is lower semicontinuous and

∫

E
q(t, w, z)dw > 0

for every z. Finally, to check the last condition note that πt z converges to zero as
t → ∞ for every z. Thus, for every z ∈ E and w ∈ (0,∞)2 we can find t0 > 0 such
that w − πt z ∈ (0,∞)2 for every t ≥ t0, which implies that

∫ ∞

0
q(t, w, z)dt > 0

for all z ∈ E and w ∈ (0,∞)2.

123

Author's personal copy



392 M. C. Mackey, M. Tyran-Kamińska

Next, we show that the process is not sweeping from compact subsets. Suppose,
contrary to our claim, that the process is sweeping. It follows from (38) that for every
compact set F and every density u0 we have

lim
t→∞

1

t

∫ t

0

∫

E
Pz(Z(s) ∈ F)u0(z)m(dz) = 0.

Chebyshev inequality implies that

Pz(Z(t) ∈ Fa) ≥ 1 − 1

a
EzV (Z(t))

for all t > 0, z ∈ E , and a > 0, where V is a nonnegative measurable function and
Fa = {z ∈ E : V (z) ≤ a}. To get a contradiction it is enough to show that

lim sup
t→∞

1

t

∫ t

0

∫

E
EzV (Z(s))u0(z)m(dz)ds < ∞

for a density u0 and a continuous function V such that each Fa is a compact subset
of E . Recall that an operator L is the extended generator of the Markov process Z ,
if its domain D(L) consists of those measurable V : E → R for which there exists a
measurable U : E → R such that for each z ∈ E , t > 0,

Ez(V (Z(t))) = V (z) + Ez

(∫ t

0
U (Z(s)) ds

)

and

∫ t

0
Ez(|U (Z(s))|)ds < ∞,

inwhich casewedefineLV =U . From(Davis 1993,Theorem26.14 andRemark26.16)
it follows that

LV (z) = L0V (z) + ϕ(z)
∫

E
(V (w) − V (z))P(z, dw),

where for z = (x, y) we have

L0V (x, y) = −γ1x
∂V

∂x
(x, y) − γ2y

∂V

∂y
(x, y)

and that V belongs to the domain of L if the function t �→ V (πt (x, y)) is absolutely
continuous and for each t

E

(
∑

n:tn≤t

|V (Z(tn)) − V (Z(tn−))|
)

< ∞.
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Observe that for V (x, y) = x + y this condition holds and we obtain

LV (x, y) = −(γx + γy)V (x, y) + ϕ(x, y)(bx p1(x, y) + by p2(x, y)).

Consequently, there are positive constants c1 and c2 such that for all z = (x, y) we
have

LV (z) ≤ −c1V (z) + c2,

which implies that

Ez(V (Z(t))) ≤ V (z) − c1

∫ t

0
EzV (Z(s)) ds + c2t.

Hence, for each t > 0 and z ∈ E we have

1

t

∫ t

0
EzV (Z(s)) ds ≤ c2

c1
+ 1

c1t
V (z).

Taking a density u0 with
∫
E V (z)u0(z)m(dz) < ∞ completes the proof. ��

Remark 2 Observe that

∂

∂x

∫ x

0
h1(x − zx )u∗(zx , y)dzx = 1

bx

(
u∗(x, y) −

∫ x

0
h1(x − zx )u∗(zx , y)dzx

)
.

Thus the equation for the stationary density u∗(x, y) can be rewritten as

∂

∂x

(
γx xu∗(x, y) − ϕ1(y)e

−x/bx

∫ x

0
ezx/bx u∗(zx , y)dzx

)

+ ∂

∂y

(
γy yu∗(x, y) − ϕ2(x)e

−y/by

∫ y

0
ezy/by u∗(x, zy)dzy

)
= 0.

However, we have been unable to find an analytic solution to this equation.

8 Discussion and conclusions

Here we have considered the behavior of a bistable molecular switch in both its deter-
ministic version as well as what happens in the presence of two different kinds of
noise. The results that we have obtained in the presence of noise are, unfortunately,
only partial due to the analytic difficulties in solving for the stationary density but
we have been able to offer analytic expressions for u∗(x) either in the presence of
transcriptional and/or translational bursting (Sect. 5) or in the presence of Gaussian
noise on the degradation rate (Sect. 6) when there is a single dominant slow variable.
We have shown that in both cases one cannot distinguish between the source of the
noise based on the nature of the stationary density. In the situation where there are
two dominant slow variables (Sect. 7) we have established the asymptotic stability of
u(t, x, y), and thus the uniqueness of the stationary density u∗(x, y).
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