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Using the techniques outlined in Kamke (Differentialgleichungen Lösungsmethoden und Lösungen, Chelsa Pub-
lishing Company, New York, 1974) it is easy to find the solutions to first order partial differential equations.

Homogeneous Equations. Consider the homogeneous equation

∂u

∂t
+

n∑

k=1

ak(t, x1, . . . , xn)
∂u

∂xk
= 0 (1)

with the associated initial function
u(0, x1, . . . , xk) = v(x1, . . . , xk), (2)

so we have a Cauchy problem. Associated with this equation we have n characteristic equations

dx̄k

dt
= ak(t, x̄1, . . . , x̄n). (3)

Then u(t, x1, . . . , xn) is a solution of equation 1 if and only if it is possible for the relation

u(t, x̄1, . . . , x̄n) = Constant (4)

to be satisfied for some time t.

Example 1. Consider the equation
∂u

∂t
+ x

∂u

∂x
= 0 (5)

with the initial condition
u(0, x) = v(x) (6)

so n = 1 in equation 1.
The single characteristic equation is

dx

dt
= x, (7)

with the solution
x(t) = Cxet. (8)

Applying condition 4 we must have
u(t, x) = Constant (9)
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for some time t. Since we have information about the situation at t = 0 from the initial condition, pick t = 0 so

u(t = 0, x) = u(0, Cx) ≡ v(Cx) = u(t, x) (10)

so our Constant in condition 4 is simply v(Cx). However, note that we can rewrite Cx as

Cx = xe−t (11)

so the general solution of equations 1 and 2 is simply

u(t, x) = v(xe−t). (12)

It is easy to verify that this is a solution by differentiating with respect to both t and x and substituting back into
equation 5.

Nonhomogeneous Equations. Now consider the nonhomogeneous equation

∂u

∂t
+

n∑

k=1

ak(t, x1, . . . , xn, u)
∂u

∂xk
= f(t, x1, . . . , xn, u) (13)

with the associated initial function
u(0, x1, . . . , xk) = v(x1, . . . , xk). (14)

Associated with this problem we have the n + 1 dimensional set of characteristic equations

dxk

dt
= ak(t, x1, . . . , xn, z) k = 1, . . . , n

dz

dt
= f(t, x1, . . . , xn, z).

(15)

Now, u(t, x1, . . . , xn) is a solution of equation 13 if and only if

u(t, x1, . . . , xn) = z(t) (16)

is satisfied for some time t.

Example 2. Consider the system
∂u

∂t
+

∂u

∂x
= λu (17)

with the initial condition
u(0, x) = v(x) (18)

and the associated characteristic equations
dx

dt
= 1

dz

dt
= λz.

(19)

The solutions to the characteristic equations are

x = t + Cx (20a)

and
z(t) = Cze

λt (20b)

so condition (16) becomes
u(t, x) ≡ u(t, t + Cx) = Cze

λt. (21)

Now from the initial condition we have, at t = 0, that

u(0, Cx) = Cz = v(Cx) (22)

so it is immediate that
u(t, x) = v(Cx)eλt (23)

However, from (20a) we have also that Cx = x− t so the general solution of equation 17 is given by

u(t, x) = v(x− t)eλt (24)


