DERIVING THE SOLUTIONS
 OF
 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS
 27 OCTOBER, 1992
 FILE:SOLNSPDE.TEX

Michael C. Mackey
Centre for Nonlinear Dynamics in Physiology and Medicine and
Departments of Physiology and Physics
McGill University
Montreal, Quebec, Canada

Using the techniques outlined in Kamke (Differentialgleichungen Lösungsmethoden und Lösungen, Chelsa Publishing Company, New York, 1974) it is easy to find the solutions to first order partial differential equations.

Homogeneous Equations. Consider the homogeneous equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(t, x_{1}, \ldots, x_{n}\right) \frac{\partial u}{\partial x_{k}}=0 \tag{1}
\end{equation*}
$$

with the associated initial function

$$
\begin{equation*}
u\left(0, x_{1}, \ldots, x_{k}\right)=v\left(x_{1}, \ldots, x_{k}\right) \tag{2}
\end{equation*}
$$

so we have a Cauchy problem. Associated with this equation we have n characteristic equations

$$
\begin{equation*}
\frac{d \bar{x}_{k}}{d t}=a_{k}\left(t, \bar{x}_{1}, \ldots, \bar{x}_{n}\right) \tag{3}
\end{equation*}
$$

Then $u\left(t, x_{1}, \ldots, x_{n}\right)$ is a solution of equation 1 if and only if it is possible for the relation

$$
\begin{equation*}
u\left(t, \bar{x}_{1}, \ldots, \bar{x}_{n}\right)=\text { Constant } \tag{4}
\end{equation*}
$$

to be satisfied for some time t.
Example 1. Consider the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=0 \tag{5}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, x)=v(x) \tag{6}
\end{equation*}
$$

so $n=1$ in equation 1 .
The single characteristic equation is

$$
\begin{equation*}
\frac{d x}{d t}=x \tag{7}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
x(t)=C_{x} e^{t} \tag{8}
\end{equation*}
$$

Applying condition 4 we must have

$$
\begin{equation*}
u(t, x)=\text { Constant } \tag{9}
\end{equation*}
$$

for some time t. Since we have information about the situation at $t=0$ from the initial condition, pick $t=0$ so

$$
\begin{equation*}
u(t=0, x)=u\left(0, C_{x}\right) \equiv v\left(C_{x}\right)=u(t, x) \tag{10}
\end{equation*}
$$

so our Constant in condition 4 is simply $v\left(C_{x}\right)$. However, note that we can rewrite C_{x} as

$$
\begin{equation*}
C_{x}=x e^{-t} \tag{11}
\end{equation*}
$$

so the general solution of equations 1 and 2 is simply

$$
\begin{equation*}
u(t, x)=v\left(x e^{-t}\right) \tag{12}
\end{equation*}
$$

It is easy to verify that this is a solution by differentiating with respect to both t and x and substituting back into equation 5 .
Nonhomogeneous Equations. Now consider the nonhomogeneous equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(t, x_{1}, \ldots, x_{n}, u\right) \frac{\partial u}{\partial x_{k}}=f\left(t, x_{1}, \ldots, x_{n}, u\right) \tag{13}
\end{equation*}
$$

with the associated initial function

$$
\begin{equation*}
u\left(0, x_{1}, \ldots, x_{k}\right)=v\left(x_{1}, \ldots, x_{k}\right) \tag{14}
\end{equation*}
$$

Associated with this problem we have the $n+1$ dimensional set of characteristic equations

$$
\begin{align*}
\frac{d x_{k}}{d t} & =a_{k}\left(t, x_{1}, \ldots, x_{n}, z\right) \quad k=1, \ldots, n \\
\frac{d z}{d t} & =f\left(t, x_{1}, \ldots, x_{n}, z\right) \tag{15}
\end{align*}
$$

Now, $u\left(t, x_{1}, \ldots, x_{n}\right)$ is a solution of equation 13 if and only if

$$
\begin{equation*}
u\left(t, x_{1}, \ldots, x_{n}\right)=z(t) \tag{16}
\end{equation*}
$$

is satisfied for some time t.
Example 2. Consider the system

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=\lambda u \tag{17}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, x)=v(x) \tag{18}
\end{equation*}
$$

and the associated characteristic equations

$$
\begin{align*}
& \frac{d x}{d t}=1 \\
& \frac{d z}{d t}=\lambda z \tag{19}
\end{align*}
$$

The solutions to the characteristic equations are

$$
\begin{equation*}
x=t+C_{x} \tag{20a}
\end{equation*}
$$

and

$$
\begin{equation*}
z(t)=C_{z} e^{\lambda t} \tag{20b}
\end{equation*}
$$

so condition (16) becomes

$$
\begin{equation*}
u(t, x) \equiv u\left(t, t+C_{x}\right)=C_{z} e^{\lambda t} \tag{21}
\end{equation*}
$$

Now from the initial condition we have, at $t=0$, that

$$
\begin{equation*}
u\left(0, C_{x}\right)=C_{z}=v\left(C_{x}\right) \tag{22}
\end{equation*}
$$

so it is immediate that

$$
\begin{equation*}
u(t, x)=v\left(C_{x}\right) e^{\lambda t} \tag{23}
\end{equation*}
$$

However, from (20a) we have also that $C_{x}=x-t$ so the general solution of equation 17 is given by

$$
\begin{equation*}
u(t, x)=v(x-t) e^{\lambda t} \tag{24}
\end{equation*}
$$

