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ABSTRACT. Recent results from ergodic theory are used to examine 
the possible dynamical foundations of nonequilibrium thermodynamics. 
Though ergodicity is nece.ssary and sufficient to establish a unique state of 
thermodynamic equilibrium, much stronger dynamical properties ( asymp
totic periodicity and exactness) are needed to ensure that system entropy 
will change from its initial level. Asymptotic periodicity allows system en
tropy to evolve to a relative state of thermodynamic equilibrium in which 
the final entropy depends on system preparation. Exactness, a property 
that only irreversible (noninvertible) systems may have, is both neces
sary and sufficient for entropy to go to zero. Since all physical laws are 
formulated in terms of reversible dynamics, these results present a clear 
problem. Coarse graining, traces, factors, and perturbations are examined 
as possible sources of the experimentally observed behaviour of entropy. 
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0. INTRODUCTION. 

The mathematical discipline of ergodic theory developed in response to 
mathematical questions raised by the seminal work of Boltzmann111 and Gibbsi111 
at the turn of the century. Though the first few decades of this century saw 
extensive interaction between ergodic theorists and statistical mechanicians, the 
fields have diverged somewhat in recent years leaving a number of important 
physical questions unanswered. This paper outlines a reconvergence of these two 
fields. A more extensive discussion of the issues raised here and examples of 
various points, as well as a proof of all results, can be found elsewhere122 •25 •25a]. 

The central goal of this paper is to examine the primary issues that any 
successful statistical mechanics must address in deriving an understanding of the 
origin of the Second Law of thermodynamics. The Second Law of thermodynam
ics comes in so many forms that it is often confusing to understand precisely what 
a given author understands by the use of this term. To make matters explicit, 
we distinguish four versions. Let SrD(t) denote the thermodynamic entropy at 
time t. 

The weakest form of the Second Law is the 

0th order Second Law. SrD(t) = SrD(t') for all times t, t', so the entropy 
difference 6.5' = SrD(t') - SrD(t) satisfies 6.S = 0. 

In this form, the system entropy remains forever fixed at the value with which 
the system is prepared, be it by Nature or by an investigator. 

The next strongest form is called the 

pt order Second Law. SrD(t) 2 SrD(t') for all times t > t' Thus, with this 
form the system entropy may increase and 6.S :S 0. 

Following the 1.st order form we have the stronger assertion 

2nd order Second Law. SrD(t) 2 
one limt----,+= SrD(t) = STD exists. 
limt-+= 6.S(t) :S 0. 

Sr D ( t') for all times t > t' and at least 
Thus 6.S(t) = SrD(t) - STD :S O and 

In this case system entropy converges to a steady state value STD which may not 
be unique. If it is not unique it characterizes a metastable state. 

The final, and strongest, form of the Second Law of thermodynamics is the 
most interesting. 

:3 rd order Second Law. SrD(t) 2 SrD(t') for all times t > t' and there is 
a unique limt_:_.+= SrD = STD for all initial system preparations. Under these 
circumstances, limt----,+= 6.S(t) = 0. 

In this case we know that the system entropy evolves to a unique maximum value 
irrespective of the way in which the system was prepared. 
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1. PRELIMINARIES. 

In this section we introduce some basic concepts. 

1.1. Thermodynamic Systems and Measure Spaces. 

We first start with a set X which is going to be the phase space on which 
all of our dynamics operates. Whatever X is we are going to assume that it does 
not have any pathological properties. We let A denote a IT-algebra on X, and 
µ be a measure defined on the IT-algebra A. 

\Vith the three concepts of a phase space X, a IT-algebra A, and a measure 
µ we call the triple (X, A,µ) a measure space. All of the measure spaces we 
consider will be IT-finite, and we associate a thermodynamic system with a IT-finite 
measure space through the following postulate. 

POSTULATE A. A thermodynamic system is equivalent to a measure 
space. 

1.2. Dynamics. 

Consider a general thermodynamic system operating in a phase space X. 
On this phase space the temporal evolution of our system is described by a 
dynamical law St that maps points in the phase space X into new points, i.e., 
St : X --'> X, as time t changes. In general X may be a d-dimensional phase 
space, either finite or not, and therefore xis ad-dimensional vector. Time t may 
be either continuous (t E R) or discrete (integer valued, t E Z). 

Two types of dynamics will be important in our considerations. First we 
introduce the concept of a dynamical system {SthER (or, alternately, t E Z 
for discrete time systems) on a phase space X, which is simply any group of 
transformations St : X --'> X having the two properties: (1) So(x) = x; and 

(2) S\(St'(x)) = S't+t'(x) for t, t' E R. Dynamical systems are invertible or 
reversible since they may be run either forward or backward in time. All of the 
laws of classical and quantum physics are invertible and describe the behaviour 
of reversible systems. 

The second type of dynamics that is important to distinguish are those of 
semidynamical systems { St}t>O, which is any semigroup of transformations 

St : X --'> X, i.e. (1) So(x) = x; and (2) St(St,(x)) = St+t'(x) for t, t' E R+ 
( or N). In sharp contrast to dynamical systems, semidynamical systems are 
noninvertible or irreversible and may not be run backward in time in an 
unambigious fashion. 

It is important not to confuse the issue of reversibility (or invertibility), 
which is a purely mathematical question, with the issue of dissipativeness, which 
is a physical question. In spite of the enormous significance of distinguishing 
between dynamical and semidynamical systems later, at this point no assumption 
is made concerning the invertibility or noninvertibility of the system dynamics. 
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1.3. Thermodynamic States and Densities. 

In keeping with the ergodic theory approach adopted here we study the way 
in which the system dynamics operate on an infinite number of initial points. 
More specifically, we will examine the way in which the dynamics alter densities. 
If f is an L 1 function in the space X, i.e., if fx lf(x)I dx < oo, then f is a 
density if f E {f E L1 : f 2 0, 11 f 11= 1}. As usual, II f II denotes the L1 

norm of the function f, II f II= fx lf(x)I dx. The examination of the evolution 
of densities by system dynamics is equivalent to examining the behaviour of an 
infinite number of trajectories. This apparently simple assumption concerning 
the way in which systems operate on densities is so fundamental and important 
to the understanding of the foundations of thermodynamics that it is given a 
special status. 

POSTULATE B. A thermodynamic system has, at any given time, a 
state characterized by a density f{x), not necessarily independent of 
time. 

Given a density f then the f-measure µr(A) of the set A in the phase space 
Xis defined by µ1 (A) = JAf(x)dx, and f is called the density of the measure 
µf. The usual Lebesgue measure of a set A is denoted by µL(A), and the density 
of the Lebesgue measure is the uniform density, f(x) = 1/ µL(X) for all points x 
in the phase space X. We always write µL(dx) = dx. 

Both Boltzmann and Gibbs, in their treatments of statistical mechanics, 
assumed they were dealing with systems of dimension d = 2s whose dynamics 
were described bys position variables xi ands momentum variables Pi-

Boltzmann considered the basic phase space to be a 2s dimensional space 
which is usually called µ space. He then considered the evolution of a large 
number N of identical particles, each with the same dynamics, in µ space. N is 
large and typically on the order of Avagadro's number, 6 x 1023 . The limiting 
case of N ---+ oo is the thermodynamic limit in which case the Boltzmann 
approach considers the evolution of a density in µ space. 

Gibbs also considered N identical particles operating with these 2s dimen
sional dynamics in a phase space ( commonly called the r space) of dimension 
2sN. He then considered an infinite number of copies of this original system, 
and gave this construct the name ensemble. Thus Gibbs studies the evolution 
of the ensemble density. 

1.4. Boltzmann-Gibbs Entropy. 

In his work Gibbs, assuming the existence of a system state density f on 
the phase space X, introduced the concept of the index of probability given 
by log f (x) where "log" denotes the natural logarithm. He then introduced a 
quantity H(f) which is the negative of the phase space average of the index of 
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probability weighted by the density f, i.e. 

H(f) = - ix f(x) logf(x) dx. 

This is now known as the Boltzmann-Gibbs entropy of a density f since 
precisely the same expression appears in Boltzmann's work (with the opposite 
sign) but the phase space is different for Boltzmann (µ space) and for Gibbs (f 
space). The Boltzmann Gibbs entropy is just the expectation of the negative of 
the index of probability, and is the only reasonable candidate for a theoretical 
analog of the empirical thermodynamic entropy. This is because the only function 
for the index of probability that gives the requisite additive property to make the 
entropy an extensive quantity is the logarithmic function, and that it is unique 
up to a multiplicative constant. 

2. MAXIMAL ENTROPY PRINCIPLES. 

2.1. Microcanonical Ensembles. 

\,Ve may immediately understand the origin of the classical Gibbs micro
canonical ensemble as reflecting a simple manifestation of extremal properties of 
the entropy. Consider a given space X with finite Lebesgue measure, µL(X) < oo 
(forgo the normalization µL(X) = 1 temporarily), and all possible densities f. 
Then the only density that maximizes the entropy is the (uniform) density of the 
Lebesgue measure of X. More precisely, 

Theorem 2.1. When µL(x) < oo, the density that maximizes the Boltzmann
Gibbs entropy is the uniform density 

1 
f,(x) = µL(X). 

For any other density f fc f,, H(f) < H(f,). 

(1) 

Notice that in this theorem there is no reference to the nature of the dy
namics of the system generating the density. This is in sharp contrast to the 
usual approach in thermodynamics in which the dynamics are quite specifically 
used to argue for the plausibility of the microcanonical density ( 1). The fact that 
a generalization of this density appears in such a natural way merely illustrates 
the generality of both the density and the method used to obtain it, and that 
the existence of the density of the microcanonical ensemble is independent of the 
system dynamics. 

2.2. Canonical Ensembles. 

Even more interesting consequences can emerge from the extremal proper
ties of entropy that offer insight into the basic foundation of thermodynamics of 
both classical and quantum systems. Namely, 
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Theorem 2.2. Assume that a nonnegative measurable function a(x) is given as 
well as the average < a > of that function over the entire space X, weighted by 
the density f: 

< a >= ix a(x)f (x) dx. {2) 

(Note that < cv > is nonnegative and may be time dependent.) Then the maxi
mum of the entropy H(f), subject to the constraint (2), occurs for the density 

{3) 

where Z is denned by 

Z = ix e-vo:(x) dx, (4) 

and vis implicitly determined from <a>= z- 1 J x a(x)e-vo:(x) dx. 

The choice of notation in {3) and ( 4) was intentional to draw the connection 
with the density of the Gibbs canonical ensemble, especially that Z corresponds 
to the partition function. It is quite easy to state and prove an obvious general
ization of Theorem 2.2 that is applicable to systems in which there are multiple 
known aver ages < a; >. 

2.3. The Thermodynamic Connection. 

All of conventional equilibrium thermodynamics can be deduced from the 
density {3), by a proper association with thermodynamic quantities[25,25al, if we 
admit the fundamental assumption of thermodynamics that 

POSTULATE C. There exists a one to one correspondence between 
states of thermodynamic equilibrium and states of maximum entropy. 

If there is but one state of thermodynamic equilibrium that is attained 
regardless of the way in which the system is prepared then this is called a globally 
stable equilibrium and is associated with a globally stable state of maximal 
entropy ( 3rd order form of the Second Law). If, however, there are multiple states 
of thermodynamic equilibrium, each corresponding to a state of locally maximal 
entropy and dependent on the initial preparation of the system, then we say that 
these are local or metastable states of equilibrium (2nd order Second Law). 

3. REVERSIBLE AND IRREVERSIBLE SYSTEMS. 

From the perspective of the previous section, the central problem in ther
modynamics is: "How may one guarantee that the entropy of a system 
will increase to its maximum value regardless of the manner in which 
it was prepared?" In this section we start our investigation of this question. 
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3.1. Markov Operators. 

In every situation considered by theoretical physics, as developed to this 
point in time, the evolution of densities may be studied by the use of either the 
linear Markov or Frobenius-Perron operators. This is in spite of the fact that the 
underlying system dynamics responsible for the evolution of the density may be 
highly nonlinear. 

The Frobenius-Perron operator, introduced in Section 4, is the most useful 
to describe the evolution of densities in systems for which the dynamics are 
totally deterministic, i.e. the dynamics evolve according to a very specific law 
that permits the accurate specification of a system state at any point in time. 

The Frobenius-Perron operator is a special case of the more general Markov 
operator which may be used in the description of both deterministic and stochas
tic systems. Since the first results on reversibility and irreversibility that are of 
importance to an understanding of thermodynamics can be stated for Markov 
operators, we start with them. 

Any linear operator pt : L 1 --+ L1 that satisfies: (1) ptf 2: O; and (2) 
II ptf 11=11 .f II for all t ER and .f 2: 0, .f E L 1 is called a Markov operator. If 
we restrict ourselves to only considering densities f, then any operator P which 
when acting on a density again yields a density is a Markov operator. Any density 
.f, that satisfies pt f * = .f * for all t is said to be a stationary density of the 
Markov operator P. 

In precise analogy with the definitions of dynamical and semi- dynamical 
systems in the last section, we may discuss reversible and irreversible Markov 
operators. Given a Markov operator pt, then pt is a reversible Markov oper-

ator if: (1) po .f = f; and (2) pt(pt' f) = pt+t' .f for all t, t' E R or Z. Clearly, 
allowing t, t' E R or Z is the origin of the reversibility. However, if property 

(2) of a reversible Markov operator is replaced by (2') pt(pt' .f) = pt+t' .f for all 
t, t' E R+ or N, then pt is an irreversible Markov operator. 

3.2. Conditional Entropy. 

If f and g are two densities such that supp .f C supp g [supp f denotes the 
support of .f], then the conditional entropy of the density f with respect to 
the density g is 

Hc(.flg) = - l .f(x) log [~~:;] dx. (5) 

The conditional entropy is always defined, i.e. He is finite or equal to -oo. As is 
evident from the defining equation (5), Hc(.flg) measures the deviation between 
the two densities .f and g. 

There are two important properties of Hc(.flg): (1) Since .f and g are both 
densities, it can be shown that Hc(.flg) :S 0. It is only when .f = g that the 
equality holds; and (2) If g is the constant density of the microcanonical ensemble, 
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i.e. g = 1/ p(X) throughout the phase space X, then Hc(flg) = H(f)-log µ(X). 
If the space X is normalized, then g = 1 and Hc(fll) = H(f). This illustrates 
how the conditional entropy is a generalization of the Boltzmann-Gibbs entropy. 

From the definition it follows that Hc(flg) = H(f) + fx f(x) logg(x) dx. 
An elementary calculation using property (1) of Hc(flg) shows that the second 
term in the rewritten form of Hc(flg), with f = g = f., is just -H(f.) and 
that Hc(.flf,) = 0 when f = J •. These observations, in conjunction with our 
formulations of the 2nd and :3rd order forms of the Second Law, immediately 
suggest that the conditional entropy He can be interpreted as the entropy dif
ference D.S. For example, under the conditions of Theorem 2.2, the Boltzmann
Gibbs entropy H(f) is maximized by the density J. given by equation (3) and 
H(.f,) = log Z + v < a > . Thus, within the context of Theorems 2.1 and 2.2 we 
conclude that the conditional entropy will be zero whenever the Boltzmann-Gibbs 
entropy is at its maximum value. 

With only the few tools developed so far and our identification of He with 
D.S, the behaviour of the entropy of a sequence of densities { pt f} evolving under 
the action of a Markov operator may be examined. The first result is a weak (1 st 

order) form of the Second Law of thermodynamics stating that the conditional 
entropy is never decrea.-.ing. More preciselyi32I, 

Theorem 3.1. If pt is a Markov operator, then Hc(Pt flPtg) 2 Hc(.flg) for and 
all densities f and g. 

Notice in this theorem that if g = J. is a stationary density of pt so pt f. = 
f,, then Hc(Ptflf,) 2 Hc(.flf.). Thus the conditional entropy with respect to a 
stationary density is always a nondecreasing function bounded above by Hmax = 
Hc(.f, If,) = 0. In examining the behaviour of Hc(Pt flf.) we therefore know 
that it has a limit as t -> oo, though more information about pt is required to 
define the limiting value. 

The conclusions of Theorem 3.1 seem to be precisely the same as those 
reached by Boltzmanni1l in his pioneering work on the mechanical foundations of 
thermodynamics. However, things are not quite as transparent as this since to 
this point nothing has been said about the reversibility or irreversibility of the 
Markov operator pt with respect to the behaviour of the entropy. This distinction 
is crucial for the limiting value of Hc(Ptflf.) since the entropy for a reversible 
Markov operator is constant and determined by the way in which the system is 
prepared. 

Theorem 3.2. If pt is a reversible Markov operator, then the conditional en
tropy is constant for all times t, and equal to the value determined by the choice 
of the initial densities f and g. That is, Hc(Pt f!Ptg) = Hc(flg) for all t. 

From this theorem, in any system whose evolution of densities is described 
by a reversible Markov operator the entropy is forever fixed at a value determined 
by the initial state. Or, put another way, the entropy is uniquely determined 
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by the method of preparation of the system. A specialized form of the proof of 
Theorem 3.2 was used by Loschmidti24l in his Umkehreinwand ( objection based on 
time reversal) argument against the Boltzmann approach to statistical mechanics. 

Thus, not too surprisingly, we conclude that irreversibility in system dynam
ics, as reflected in an evolution of densities via an irreversible Markov operator, is 
necessary for the entropy to increase as the system evolves. We cannot, however, 
assert that irreversibility is sufficient to guarantee this, and indeed it is not the 
case. 

Based on much more specific assumptions, this result concerning the neces
sity of irreversibility was well known to Clausiusl3l and Boltzmann11l, two of the 
founders of modern thermodynamic theory. How, then, did Boltzmann arrive at 
his conclnsion that the entropy would increase to a maximum in a collection of 
particles moving under the action of (reversible) Hamiltonian dynamics? Both he 
and Clausius tried to circumvent this clear problem [the use of reversible (Hamil
tonian) dynamics] by the addition of their Stosszahlansatz (molecular chaos) pos
t'U,late. This reduces, quite simply, to a post'U,late of irreversibility. 

4. ERGODICITY. 

In the last section we asserted the necessity of irreversibility for increases 
in entropy to take place. However, the two interrelated questions of the exis
tence of a unique state of thermodynamic equilibrium, and the global approach 
of the entropy to an absolute maximum, were not addressed. This section pro
vides a necessary and sufficient criterion for the existence of a unique state of 
thermodynamic equilibrium as characterized by a unique stationary density J •. 
4.1. The Frobenius Perron Operator. 

A transformation St is said to be measurable if s; 1 (A) C X for all AC 
X. Furthermore, given a density J. and associated measureµ,, a measurable 
transformation St is nonsingular if µ.(st- 1 (A)) = 0 for all sets A such that 
p,(A)=O. 

If St is a nonsingular transformation, then the unique operator pt : L 1 ---+ L 1 

defined by 

j P 1 f(x) dx = f f(x) dx 
A Js;'(A) 

(6) 

is called the Frobenius-Perron operator corresponding to S. 
If f is a density, then equation (6) defining the Frobenius-Perron operator 

has a simple intuitive interpretation. Start with an initial density f and inte
grate this over a set B that will evolve into the set A under the action of the 
transformation S1• However, the set Bis s; 1 (A). This integrated quantity must 
be equal, since 81 is nonsingular, to the integral over the set A of the density 
obtained after one application of St to J. This final density is Pt_{. 

Given a density f and associated measure µ f, then a measurable transfor
mation S1 is said to be f measure preserving if µ1(S; 1 (A)) = J.lt(A) for all 
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sets A. Measure preserving transformations are necessarily nonsingular. Since 
the concept of measure preservation is not only dependent on the transformation 
but also on the measure, we alternately say that the measure µf is invariant 
with respect to the transformation St if St is f measure preserving. 

It is possible to draw a connection between states of thermodynamic equi
librimn, invariant measures and stationary densities of the Frobenius-Perron op
erator through the following theorem. 

Theorem 4.1. Let St be a nonsingula.r transformation and pt the Frobenius
Perron operator associated with St. Then there exists a state of thermodynamic 
equilibrium whose density J. is a stationary density of pt if and only if the 
measure p,(A) = J~ f,(x)dx is invariant with respect to St. 

In particular the density f • = 1 of the microcanonical ensemble corresponds 
to a state of thermodynamic equilibrium if and only if the system dynamics pre-
serve the Lebesgue measure. That is, systems preserving the Lebesgue measure 
may be appropriately described by the microcanonical ensemble. Of course it is 
important to realize that this theorem says nothing about either the uniqueness 
of this state of thermodynamic equilibrium or of the invariant measure corre
sponding to it. 

4.2. Ergodicity. 

\Ve are ready to begin consideration of the characteristics St must have 
to guarantee the existence of a unique state of thermodynamic equilibrium that 
maximizes the entropy. The density maximizing the entropy should also be an 
equilibrium density, so our search is really one for the properties of St necessary 
to guarantee that a density f, is a stationary density of the Frobenius-Perron 
operator corresponding to St, i.e. pt f, = f,, and that f, is unique. 

\Ve start by defining a few new terms, given, as usual, dynamics described 
by a transformation St. First, any set A such that s; 1 (A) = A is called an 
invariant set. Given a density J. on a space X, any invariant set A such that 
p. (A) = 0 or p, (X \ A) = 0 is called trivial. 

A nonsingular transformation St is said to be f, ergodic if every invariant 
set A is a trivial subset of the phase space X, i.e. either µ,(A)= 0 or p.,(X\A) = 
0. If the phase space is finite and f,is the uniform density of the microcanonical 
ensemble, then we say that St is uniformly ergodic instead of J. ergodic. In 
the older physics and mathematics literature, ergodic systems were often called 
metrically transitive or metrically indecomposable. 

The following result establishes a one to one correspondence between the 
uniqueness of a state of thermodynamic equilibrium and ergodicity. 

Theorem 4.2. Let St be a nonsingula.r transformation and pt the corresponding 
Frobenius Perron operator. There is a unique state of thermodynamic equilibrium 
with associated stationary density J., pt J. = J. if and only if St is J. ergodic. 
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What does this result, in conjunction with Theorem 4.1, tell us? First 
consider the microc-anonical ensemble with its uniform density. Then a given 
dynamics St will be measure preserving with respect to the Lebesgue measure 
if and only if the uniform density of the microcanonical ensemble is a station
ary density of the Frobenius-Perron operator corresponding to St. Furthermore, 
from Theorem 4. 2 the uniform density of the microcanonical ensemble will be the 
unique stationary density of pt if and only if the system St is uniformly ergodic. 
Hence, the existence of a unique state of thermodynamic equilibrium, charac
terized by the uniform density of the microcanonical ensemble which maximizes 
the Boltzmann-Gibbs entropy to zero, is totally dependent on the operation of a 
uniformly ergodic dynamics that preserves the Lebesgue measure! 

In the more general case, the nonuniform density f, of the canonical en
semble which maximizes the conditional entropy will be the unique density cor
responding to a state of thermodynamic equilibrium if and only if it is the sta
tionary density of the Frobenius-Perron operator corresponding to an f, ergodic 
system St with respect to which the measure µ,(A)= JA f,(x) dx is invariant. 

Thus in complete generality ergodicity i,s necessary and sufficient to guar
antee the e:ristence of a ·unique state of thermodynamic equilibrium characterized 
by ma:rimal entropy. That this unique state exists is, of course, only half of the 
picture for wc must also understand what kind of systems can evolve to that 
state. 

To conclude we state one last theorem concerning conditions for the .f, 
ergodicity of a transformation St and thus, by our comments following Theorem 
4.2, for the existence of a unique state of thermodynamic equilibrium. 

Theorem 4.3. Let St be a nonsingular transformation and pt the corresponding 
Frobenius Perron operator with stationary density f. > 0 far all points in the 
phase space X. Then St is f, ergodic if and only if { pt f} is Cesa.ro convergent to 
f. for all densities f, i.e., iflimt--+= ½I:!~~< pk f,g >=< f,,g > in the discrete 

time case, or iflimr-= i' f0T < ptf,g > dt =< J.,g > in the continuous time 
case, for all bounded measurable functions g. 

Since Frobenius-Perron operators are specialized Markov operators, we ex
tend the concept of ergodicity to Markov operators. Thus let pt be a Markov 
operator and assume that pt has a stationary density f,. We will say that pt is 
f. ergodic if {Ptf} is Cesaro convergent to J. for all initial densities .f. 

5. ASYMPTOTIC PERIODICITY. 

In this section we turn to an investigation of the fascinating property of 
asymptotic periodicity in the evolution of densities. This behaviour is the sta
tistical analog for densities of the more common periodicity found in some time 
series. The existence of asymptotic periodicity implies a 2nd order form of the 
Second Law. 
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5.1. Asymptotic Periodicity. 

A Markov operator pt is said to be smoothing if there exists a set A of 
finite measure, and two positive constants k < l and 6 > 0 such that for every 
set E with µ.L(E) < 8 and every density f there is some integer to(!, E) for 
which J~u(X\A) pt f(x) dx::; k fort 2 to(!, E). This definition of smoothing just 
means that any initial density, no matter how small a region of the phase space 
X it is concentrated on, will eventually be smoothed out by pt. 

Smoothing operators are important because of the following resultl19l_ 

Theorem 5.1. Let pt be a. smoothing Markov operator. Then there is a.n 
integer r > 0, a sequence of nonnegative densities gi a.nd a. sequence of bounded 
linear functionals>..;, i = 1, ... , r, a.nd a.n opera.tor Q: £ 1 -> £ 1 such that for a.ll 
densities J, Pf ha.s the form 

r 

Pf(x) = L >..i(f)gi(x) + Qf(x). (7) 
i=l 

The densities g; a.nd the operator Q have the following properties: (1) The g; 
have disjoint support (i.e. a.re mutually orthogonal), so gi(x)gj(x) = 0 for all 
i /- _j; (2) For each integer i there is a. unique integer a( i) such that Pgi = .9a(i). 
Furthermore, a( i) /- a(_j) for i /- _j. Thus the operator P permutes the densities 
g;; and (8) II ptQf II-> 0 as t-> oo, t E N, so Q ca.n be viewed a.s a. transient 
opera.tor. 

Notice from equation (7) that pt+l f may be immediately written in the 
form 

r 

pt-,- 1 f(x) = L >..i(f)ga'(i)(x) + Qt.f(x), t EN (8) 
i=l 

where Q1 = ptQ, II Qt.f II-> 0 as t -> oo, and at(i) = a(al- 1 (i)) 
The terms in the summation of (8) are just permuted by each application of 
P. Since r is finite, the sum I:;;=l >..;(f)ga'(i)(x) must be periodic with a period 
T :=; r!. Further, as {a/(1), ... ,at(r)} is just a permutation of 1, ... ,r this 
summation takes the alternative form I:;;=l Aa-'(i) (f)gi(x), where a-t(i) is the 
inverse permutation of at ( i). 

This rewriting of the summation portion of (8) makes the effect of successive 
applications of P completely transparent. Each operation of P permutes the set 
of scaling coefficients associated with the densities gi(x) [remember that these 
densities have disjoint support]. Since the summation portion of (8) is periodic 
(with a period bounded above by r!), and II Qt.f II-> 0 as t -> oo, we say 
that for any smoothing Markov operator the sequence { pt f} is asymptotically 
periodic. 

One of the interesting interpretations of equation (8) is that any asymp
totically periodic systern is quantized from a statistical point of view. Thus if t 
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is large enough, which simply means that we have observed the system longer 
that its relaxation time so II Qtf 11::::: 0, then pt+l f(x) '.:::'. I::=l >..i(f)ga'(i)(x). 
Asymptotically, pt .f is either equal to one of the basis densities gi of the i th pure 
state, or to a mixture of the densities of these states, each weighted by >..Jf). 
It is important to also realize that the limiting sequence { pt f} is, in general, 
dependent on the choice of the initial density f. 

Asymptotically periodic Markov operators always have at least one station
ary density given by 

1 r 

f,(x) =-;: Lgi(x), (9) 
i=l 

where rand the g;(x) are as in the Komornik-Lasota Theorem 5.1. It is easy to 
see that .f,(x) is a stationary density, since by Property (2) of Theorem 5.1 we 
also have P.f,(x) = ¾I::=iga(i)(x), and thus f, is a stationary density of pt_ 
Hence, for any smoothing Markov operator the stationary density (9) is just the 
average of the densities g;. 

We close with a necessary and sufficient condition for the f. ergodicity of a 
smoothing Markov operator. 

Theorem 5.2. Let P be a smoothing, and thus asymptotically periodic, Markov 
operator working in a normalized measure space. Then P is ergodic if and only 
if the permutation a( i) of the Spectral Decomposition Theorem 5.1 is cyclical. 

Thus, cyclicity of the permutation a(i) is necessary and sufficient for the 
existence of a unique state of thermodynamic equilibrium characterized by the 
stationary density J •. 

5.2. Local Evolution of Entropy. 

The fact that asymptotically periodic Markov operators have a stationary 
density given by (9) does not guarantee the uniqueness of this stationary density. 
Regardless of whether or not asymptotically periodic systems have unique sta
tionary densities, they have the important property that their conditional entropy 
is an increasing function that approaches a maximum. 

Theorem 5.3. Let P be an asymptotically periodic Markov operator with sta
tionary density f •. Then the conditional entropy Hc(Pt flf,) of pt f with respect 
to f. approaches a. limiting value Hmax (f, f,) ::; 0, where 

HmaxU, .f,) = - ~ L >..i(f)gi(x) log { f,~x) ~ >..i(f)gi(x)} dx. (10) 

Note that if the stationary density .f, of P is given by (9), then the ex
pression for HmaxU, .f,) becomes even simpler. Namely, HmaxU, f,) = - logr
I::=l A;(.f)log,\(.f) when we use the orthogonality of the densities gi(x). Since 
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0::; /\;(.{)::; 1 for all i, we may also place a lower bound on HmaxU,f,) with 
- logr :s; Hma:r:U, f.) :s; 0. 

This 2nd order form of the Second Law of thermodynamics is the strongest 
result that we have yet encountered. It demonstrates that as long as the density 
in a discrete time system evolves under the operation of a Markov operator that 
is smoothing, the conditional entropy of that density converges to a maximum. 
However, there are two important facets of this evolution that should be recog
nized: (1) The convergence of the entropy is due to the fact that II Qt.f 11- 0 as 
t -too in the representation (8) of Theorem 5.1; and (2) The maximum value of 
the entropy, Hmax(.f, J.), as made explicit by the notation, is generally depen
dent on the choice of the initial density f and, thus, the method of preparation 
of the system. 

6. MIXING. 

In this section, we consider systems with irregular dynamical behaviors that 
are stronger than ergodic. Namely, we consider with dynamics described by J, 
measme preserving transformations that have the property of strong, or Hopf, 
mixing. Systems with reversible mixing dynamics have entropies that are forever 
fixed by their mode of preparation. However, it is important to discuss mixing 
for two reasons. First there is a general misconception that mixing is sufficient 
to allow the evolution of entropy to a maximum. This is most certainly not 
the case in spite of the fact that mixing is necessary for the evolution of system 
entropy to a maximum. Secondly, as we will show in Section 8, if there is a 
certain imprecision in our knowledge of the values of the state variables in a 
mixing system then this is sufficient to cause the system entropy to evolve to its 
maximal value. 

6.1. Mixing. 

Gibbsi11I realized that ergodicity was inadequate to guarantee the approach 
of system entropy to equilibrium. As a consequence he qualitatively discussed a 
property stronger than ergodicity which is now called (strong) mixing. This 
was subsequently developed mathematically by Hopfl141, Koopman120I, and von 
Ncumannl3:3]. 

Let St be an J. measure preserving transformation operating on a finite 
normalized space. Then St is called f, mixing if limt__,= µ,(An Si;' 1 (B)) = 
µ .• (A)µ.,(B) for all sets A and B. If J. is the uniform density of the microcanon
ical ensemble, then we say that St is uniformly mixing. The defining relation 
for J, mixing could equally well be written limt__,= µ,(AnSt(B)) =µ.(A)µ., (B), 
whenever St is reversible (invertible). 

It is a straightforward consequence of the definition that J. mixing implies 
ergodicity. Furthermore, an J. measure preserving transformation St, with as
sociated Frobenius-Perron operator pt and stationary density J., is J, mixing 
if and only if the sequence { pt f} is weakly convergent to the density J, for all 
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initial densities .f. If f, = l, then St is uniformly mixing if and only if { pt f} 
is weakly convergent to the density of the microcanonical ensemble for all initial 
densities f. This is expressed more formally in: 

Theorem 6.1. Let St be an ergodic transformation, with stationary density f, 
of the a,ssociated Frobenius- Perron operator, operating in a phase space of finite 
f, measure. Then St is f, mixing if and only if { pt f} is weakly convergent to f,, 
i:.e., limt-oo < ptj, g >=< J., g >. 

In our subsequent discussion, we will call a Markov operator pt with sta
tionary density f, mixing if { pt f} is weakly convergent to f,. 

Gibbsi11I, Krylovi21 I, and many others have emphasized the importance of 
mixing for the understanding of thermodynamic behaviour. Indeed, at first one 
might think that this weak convergence of the sequence { pt f} to the density 
f, of the canonical ensemble, or to the density J. = l of the microcanonical 
ensemble, no matter what initial density f was chosen, would be exactly what is 
required to guarantee the approach of the entropy to its maximum. Such is not 
the case. It is most certainly true that mixing is necessary for this convergence 
of the entropy, but it is not sufficient as we show in Section 7. 

6.2. Kolmogorov Automorphisms. 

In this section, a concept that will be used later is briefly introduced, namely 
that of Kolmogorov automorphisms, or K automorphisms. We use the notation 
St(A) = {S't(A): A EA} , t = 0, ±1, ±2, ... , where A is a sigma algebra. Then 
if St is an invertible transformation operating on a normalized space, and both 
St and S_t are f, measure preserving, St is said to be a K-automorphism if 
there is a sigma algebra Ao E A such that: (1) S_t(Ao) E Ao; (2) The sigma 
algebra defined by n~0 S-t(Ao) is trivial in the sense that it only contains sets 
off, measure O or 1; and (3) The smallest sigma algebra containing U~0 St(Ao) 
is identical to A . 

Kolmogorov automorphisms have behaviors stronger than mixing in that 
if a transformation is a K-automorphism then this also implie..s that it is f, 
mixingi4 ,34I. The other property of K-automorphisms that is important for ther
modynamic considerations is that since they are J. measure preserving they have 
a unique stationary density J •. However, since they are invertible,by Theorem 
:t2 the entropy of a K-automorphism is identically equal to the initial entropy 
determined by the initial density with which the system is prepared. 

7. ENTROPY EVOLUTION TO ITS MAXIMUM. 

The results of the previous sections indicate that attention should be focused 
on extensions of the concepts of ergodicity, asymptotic periodicity, and mixing 
that may only occur in irreversible systems. Since we also know that increases in 
entropy need not culminate in the maximum value of the entropy ( e.g. asymp
totically periodic systems, Section 5), the essential question we must now face is: 
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Under what circumstances will the entropy of an irreversible system 
approach its maximum value of zero? This section provides a complete 
answer to this question. 

7.1. Exactness. 

If S't is an .f * measure preserving transformation operating on a normalized 
phase space X, then St is said to be f, exact if limt-oo µ,(S't(A)) = 1 for all 
sets A of nonzero measure. If J. is the uniform density, J. = 1, then we say that 
St is uniformly exact. The f, exactness of a transformation implies that it is 
.f, mixing. 

To understand the nature of exactness, it is first important to realize that 
reversible systems can never be exact. To see this, note that for a reversible .f, 
measure preserving transformation S't we have µ,(S't(A)) = µ,(S't- 1 (S't(A))) = 
µ,(A). Thus the definition of exactness is violated. 

Exact systems are important for an understanding of how convergence to a 
stationary density .f, of the canonical ensemble may be reached in a way that is 
an extension of mixing. Specifically, 

Theorem 7.1. If S't is an J. measure preserving transformation operating on 
a finite normalized phase space X and pt is the associated Frobenius-Perron 
operator. then St is .f, exact if and only iflimhoo II pt f - f, II= 0, i.e., {Pt f} 
is strongly convergent to f,, for all initial densities f. 

This theorem offers a necessary and sufficient condition for the exactness 
of St in complete analogy with the previously presented necessary and sufficient 
ergodicity and mixing conditions. 

As with ergodicity and mixing, we extend the definition of exactness to 
Markov operators pt with a stationary density J •. Then we say pt is f, exact 
if { pt f} is strongly convergent to J. for all initial densities f. 1 For Markov 
operators, .f, exactness implies f. mixing implies J. ergodicity. We close with a 
simple sufficient condition for the f, exactness of asymptotically periodic Markov 
operators. 

Theorem 7.2. Let P be a smoothing, and therefore asymptotically periodic, 
Markov operator. If r = 1 in the spectral decomposition (7) of pt f, then P is f. 
exact. 

7 .2. The Second Law of Thermodynamics. 

The main result of this section is a condition for the Second Law of ther
modynamics to operate in its strongest possible (3rd order) form. We consider 
a Markov operator P that has a stationary density f, which is not necessarily 
constant, thus corresponding to the density of the canonical ensemble. Namely 
we have: 

1 Operators P 1 that are J. exact have been called strong Markov operatorsl271 and mono
tonic Markov operatorsl131. 
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Theorem 7.3. Let pt be a Markov operator operating in a phase space X. Then 
the conditional entropy of pt[ with respect to a density f. goes to its maximal 
wihic of zero as t ------+ oo, 

lim Hc(Pt flf,) = 0, 
t-------,. OCI 

if and only if pt is f. exact. 

Theorem 7.:3 is remarkable in that it sets forth necessary and sufficient crite
ria for the operation of the strongest form of the Second Law of thermodynamics, 
namely for the entropy of a system to globally converge to its maximal value 
regardless of the way in which the system was prepared. The only requirement 
that the system must satisfy is that the density must evolve under the action of 
on e:ract Markov opera.tor. If this operator is a Frobenius Perron operator then 
the dynamics must be f, exact. Since f * exactness implies f, ergodicity, the 
state of thermodynamic equilibrium characterized by the density f, is unique 

Thus, the Boltzmann-Gibbs entropy will converge to its maximal value of 
zero if and only if the density of the microcanonical ensemble is a stationary 
density and the system evolves under the action of a uniformly exact Markov 
operator P! As before, ergodicity of P guarantees that the uni.form density of 
the microcanonical ensemhle is the unique state of thermodynamic equilibrium, 
while the uni.form exactness of P guarantees that the entropy will approach its 
11wxinium value of zero regardless of the way in which the system is prepared. 
Hence, in general 

pt is f, exact¢;, lim Hc(Ptfjf.) = 0. 
t-->CXJ 

These results point out a very interesting property of the entropy vis /'a 
vis the common notion that maximal entropy should be associated with maximal 
disorder, or minimal structure. Experimentally, what we measure is that the 
entropy of a system evolving in time goes to a maximum. Further, in the course 
of any experiment the dynamics are the ultimate selector of the proper f, with 
respect to which the conditional entropy is "computed" by the system evolution. 
This state of maximal entropy, in turn, corresponds to a state of thermodynamic 
equilibrium, and in no way makes a judgment about whether this state is totally 
structureless (.f, = 1) or highly ordered. Any apparent inconsistency between 
a state of maximal entropy and a nonuniform J. comes exclusively from the 
erroneous identification off. = l as the preferred state of thermodynamic equi
librium. This partially stems from the long historical preoccupation of trying 
to find a rational foundation for thermodynamics in the statistical mechanics of 
Hamiltonian systems which do preserve the Lebesgue measure and for which the 
attendant density f * = l is a stationary density. 

\Vith the results of this section giving necessary and sufficient conditions 
for the approach of system entropy to a maximum, one might think that our 
quest for the dynamical foundations of thermodynamics and the functioning of 



the second law was at an end. However, this is far from the reality of the situation 
as a moments reflection reveals. 

Here it has been demonstrated that it is only through the operation of ir
reversible .f, exact systems that the entropy will increase to its maximal value 
(Theorem 7.:3). Further, given the observation that dynamics are the ultimate 
determinant of the stationary density .f,, that this corresponds to a state of ther
modynamic equilibrium, and that since states of thermodynamic equilibrium 
depend on a variety of parameters (temperature, pressure, etc.), we must con
dude that the corresponding .f, must also depend on these parameters as must 
the underlying dynamics. 

Given these results we are now faced with another problem since all of 
the laws of physics are framed in terms of reversible or invertible dynamical 
(as opposed to irreversible or noninvertible semidynamical) systems which are 
independent of these external parameters. 

This dilemma seems to have at least two solutions. Either: (1) The laws 
of physics are at present incorrectly formulated. [Penrosei281 has argued quite 
lucidly and simply for this point of view, basing his thesis on CPT violation 
in K 0 meson decay. Fer181 makes a similar point, basing his argument on the 
neglect of time delays in the usual formulations of physical laws. Gal-Orl9 ,io] 

and Daviesi51 have extensively examined possible sources of time asymmetry in 
physics, primarily from a cosmological and electromagnetic perspective]; or (2) 
There is some effect, neglected to this point in our considerations, which alters 
the behaviour of a dynamical system to give rise to the observed behaviour. 

The following sections are devoted to an exploration of the second of these 
possibilities, as the first involves a drastic restructuring of the entire formulation 
of classical and quantum physics. 

8. COARSE GRAINING. 

To this point, in calculating the entropy from the defining equations it has 
been assumed that the dynamical variables were known with infinite precision. 
As a consequence, the density .f corresponding to a given thermodynamic state 
would also be known precisely. While this is the situation when an analytic form 
for the density is available, in the world of experiment the reality is that the 
density .f (or, more usually, some functional of .f) is either measured or estimated. 
Several consequences may ensue from this. The first and perhaps most obvious 
is that due to errors (arising, for example, from measurement impreciseness or 
numerical roundoff in computer experiments), .f will not be known exactly but 
will be known only to some level of accuracy. 

Alternately, it is entirely possible that Nature herself may have introduced 
an inherent graininess to phase space, rendering the absolute determination of 
dynamical variables, and thus densities, impossible. Many have suggested that 
there is an elementary fundamental volume in position-momentum space whose 
measure corresponds to Planck's constant. This would be entirely in keeping with 
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other apparently fundamental indivisible units in the real world. In this section 
we examine the consequences of imprecision in the measurement of dynamical 
variables by studying the properties of the coarse grained entropy. 

8.1. Coarse Grained Entropy. 

To examine the effect of imprecision in the measurement of dynamical vari
ables on entropy calculations, we introduce the concept of the entropy of a coarse 
grained density, or more briefly, the coarse grained entropy. This concept 
seems to have been first qualitatively discussed by Gibbslll], and quantified by 
Ehrenfest and Ehrenfestl71. Denbigh and Denbighi61 have considered aspects of 
the effects of coarse graining on the behaviour of entropy. 

Coarse graining is carried out by first partitioning the phase space X (finite 
and normalized) into discrete cells Ai that satisfy UiAi = X and Ai ni#j A.i = 0. 
Obviously, there is no unique way in which such a partition {Ai} may be formed, 
but we require that the partition is nontrivial with respect to the Lebesgue 
measure µL so O < µL(Ai) S: µL(X) = 1 for all values of i. For every density 
.f, within each cell Ai of this partition we denote the average of .f over A; by 
< .f >;, 

< f >i= (Al ·) { f(x) dx, 
µ i }Ai 

(11) 

so the density .f coarse grained with respect to the partition Ai is given by 

(12) 

[Here, lA(x) = 1 for x E A and lA(x) = 0 when x (/. A.] Clearly I:i < f >i 
µ.L(A;) = 1, and it is important to realize that fcg is constant within each cell 
A;, having the value given by (11). 

Therefore, given a nontrivial partition Ai, a density f, and a coarse grained 
density ,tcg defined by (11)-(12), then the Boltzmann-Gibbs entropy of the coarse 
grained density .fcg is given by 

It is noteworthy that for any density J, the Boltzmann-Gibbs entropy of 
the coarse grained density fcg may be greater than the entropy off, or more 
specifically: 

Theorem 8.1. For any density f and any nontrivial partition Ai of the phase 
space X, H(f) s; H(fcg). 

Thus, the effect of any imprecision in the estimation of a density f char
acterizing a system, no matter what the origin, will be to either increase the 
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entropy of the estimated (coarse grained) density H(r9 ) above its actual value 
H(.f), or leave it unchanged. 

Precisely analogously to the way in which the entropy of the coarse grained 
density was derived, it is easy to show that the conditional entropy of r9 with 
respect to a second density g, also coarse grained with respect to the partition 
A;, is given by Hc(.fc9 lgc9 ) = - Li < .f >i µL(Ai) log[< .f >i / < g >i]. It is 
equally easy to show that H(.flg) s; Hc(_fC9 lgc9 ) for all densities .f and g, and 
nontrivial partitions Ai of the phase space X. 

Therefore, in general, coarse graining of the phase space, and the consequent 
coarse graining of a density, will either increase the entropy or leave it equal to 
its vaiu.e before coarse graining. 

In analogy with (12), the coarse grained ptf is given by (Pt.f(x))c9 = L; 
< pt_r >; lA,(x) where < pt_r >i= [µL(Ai)J- 1 JA, pt .f(x) dx. It is important 
to realize that we are assuming that the Markov operator operates without any 
error on the density .f, and that the coarse graining arises because of our in
ability to precisely measure dynamical variables, and consequently densities, for 
whatever reason. The converse situation in which we may measure densities with 
infinite precision, but the dynamics always work with some error are considered 
in Sections 10 and 11 where we consider system interactions with a heat bath. 

Simple examples show that, for reversible systems, coarse graining: (1) 
Induces the entropy of the coarse grained density to approach the equilibrium 
entropy for both positive and negative times; (2) This approach may not be 
monotone: (~) The approach is not necessarily symmetric with respect to a 
reversal of time; and ( 4) The approach may be dependent on the partition chosen. 

8.2. Coarse Graining of Mixing Systems. 

Coarse graining has interested numerous authors since the concept was first 
introduced by Gibbsi 11: with the observation that coarse graining of a mixing 
system should lead to an increase in the entropy to its maximal value. More 
specifically, 

Theorem 8.2. If pt is a reversible .f, mixing Markov operator with a unique 
stationary density .f., and {A;} is a nontrivial partition of the phase space X, 
then limt ~" ,x, ( pt .f)c9 = .f;9 for all initial densities .f. 

As a consequence of this result and Theorem 7.3, we have 

Theorem 8.3. If pt is a reversible .f, mixing Markov operator with a unique 
stationary density .f, and { Ai} is a nontrivial partition of the phase space X, 
then limt-±coo Hc((Pt.fY9 lf';9 ) = 0 for all initial densities f. {Notice that the 
entropy approa.ch to zero is independent of the direction of time!] 

For uniformly mixing systems operating in a normalized finite space, it is 
an easy consequence of these results that after coarse graining of the phase space, 
{ pt .f} will approach the density of the microcanonical ensemble, and that the 
Boltzmann-Gibbs entropy will approach its maximum value of zero. 
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8.3. Summary. 

Even setting aside the lack of irreversibility in the behaviour of the coarse 
grained entropy, it is important to realize that the rate of convergence of the 
entropy of the coarse grained densities that Theorem 8.3 guarantees will, in gen
eral, depend on the way in which the coarse graining of the phase space is car
ried out. Experimentally, if entropy increases to a maximum only because we 
have reversible mixing dynamics but there is coarse graining due to measure
ment imprecision, then the rate of convergence of the entropy ( and all other 
thermodynamic variables) to equilibrium should become slower as measurement 
techniques improve. Such phenomena have not been observed. Thus, it seems 
likely that nontrivial coarse graining plays no role in determining thermodynamic 
behaviour, even if the coarse graining is externally imposed by Nature in the form 
of an inherent graininess or unitary cellularity of phase space. 

9. TRACES AND FACTORS. 

As an alternative to the coarse graining of the previous section, we now 
explore the consequences of a reversible dynamics in which not all dynamical 
variables are observable. Essentially this means that we have a dynamical system 
operating in an m-dimensional space, but are able to observe only n < m of these 
variables. That is, we observe only a trace of its operation in an n-dimensional 
space because (m - n) of the variables are hidden to us, e.g. because either we 
do not know about them, or do not have the technology to measure them. 

9.1. Traces. 

Let X and Y be two ( topological Hausdorff) phase spaces, F : Y --, X a 
given continuous function, and St : Y --, Y a dynamical system operating in the 
phase space Y. A function h : R--, X is the trace of the dynamical system if 
there is a pointy in the space Y such that h(t) = F(St(Y)) for all times t. 

One is naturally led to wonder under what circumstances a trajectory can be 
viewed as the trace of a higher dimensional dynamical system. It is actually easy 
to give a surprising answer to a much more general question. Every continuous 
trajectory (function) in a space X is the trace of a single dynamical system 
opera.ting in a higher dimensional phase space Y! More precisely, we have the 
following result. 

Theorem 9.1 ("God" Theorem). Let the phase space X be arbitrary. Then 
there is a second phase space Y, a dynamical system St operating in Y, and a 
continuous function F : Y --, X such that every continuous trajectory h : R--, X 
is the trace of St. 

There are important consequences for the behaviour of the entropy when 
one is considering the trace of a dynamical system. If we have a dynamical system 
St operating on Y, then the entropy is always identically equal to the entropy 
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of the initial density since it is impossible for the entropy of a reversible system 
to change (Theorem 3.2.). However, this may not be the case for the entropy 
of the density of a trace of a dynamical system, since the simple act of taking a 
trace of a dynamical system with time independent entropy may be sufficient to 
generate a system in which the entropy is increasing. Of course, in general we do 
not know what the limit of this increase may be, and the entropy may certainly 
approach a limit considerably less than its maximal value if, for example, the 
trace is asymptotically periodic. 

9.2. Factors. 

This leads us to discuss specific types of traces for which much more can 
be said about the behaviour of the entropy. To see how this works, we introduce 
the notion of a factor of a transformation with the aid of the following diagram. 

x--x 
T, 

Let X and Y be two different phase spaces with normalized measures µf. and 
µ9 , and associated densities J. and g, respectively, and Tt : X ---. X and St : 
Y ---. Y be two measure preserving transformations. If there is a transformation 
F : Y ---. X that is also measure preserving, i.e., if µ 9• (F- 1 (A)) = µ f * (A) for all 
subsets A of the phase space Y, and such that Tt o F = F o St (so the diagram 
commutes), then Tt is called a factor of St. From this definition the trajectory 
of the factor Tt is a trace of the system St. 

The formal connection between these concepts and the behaviour of the 
entropy is furnished by the following theorem due to Rochlin [30]. 

Theorem 9.2. Every f * exact transformation is the factor of a K-automorphism. 

The transformation F involved in our discussion of factors and traces is 
precisely what Misra et al. l271 and Prigoginel291 refer to as a projection operator 
in their work on the generation of irreversible behaviour from reversible dynam
ics. Theorem 9.2 serves as the analytic link in their work between reversible 
K-automorphisms and J. exact transformations (or strong or monotonic Markov 
opera tors). 

As noted in Section 6, since K-automorphisms are invertible their entropy 
is forever fixed at its initial value by Theorem 3.2. On the other hand, by The
orem 7.3 we know that the entropy of an J. exact transformation, which by the 
above theorem is the factor of a K- automorphism, increases smoothly to its 
maximum value of zero irrespective of the initial density with which the system 
was prepared. 
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9.3. Coarse Graining and Traces. 

There is a connection between the effects of coarse graining the phase space 
and taking the trace of a dynamical system. In nontrivial coarse graining, we 
lose some information about the exact values of the dynamical variables. One 
could easily imagine the situation in which we have m variables, of which n 
were measured with infinite precision, and (m - n) of them were measured with 
some error. Thus the act of taking a trace is just a more extreme case of coarse 
graining in which we are not able to measure any of the ( m - n) variables, i.e. 
the partition is trivial. 

Viewed from this perspective, it is surprising that there is such a difference 
between the results of a nontrivial coarse graining of the phase space (no induction 
of irreversible thermodynamic behaviour), and examining only the trace of a 
dynamical system operating in a higher dimensional space than our observations 
permit. However, it is precisely trivial coarse graining of a phase space in which 
the evolution of densities is governed by the Liouville equation that leads to 
the Boltzmann equation and its successful predictions of the behaviour of dilute 
gases. The Boltzmann equation describes the behaviour of a density evolving 
under the action of a factor of the original dynamics. 

9.4. Summary. 

Here we have introduced the concept of a trace, and shown that when a 
trace is a factor of a dynamical system, the entropy may increase. Even stronger 
results are available in some circumstances when the trace is taken from a K
automorphism, for then the trace may be J. exact with an entropy that increases 
to its maximal value of zero. This and the previous section have presented two 
possible ways out of the clear problems associated with the necessity of an irre
versible system for entropy to increase, and the fact that all of the laws of physics 
are formulated as reversible dynamical systems. 

10. OPEN DISCRETE TIME SYSTEMS. 

This section examines the consequences of having a discrete time determin
istic transformation experience a perturbation from an outside source. Thus we 
are starting to consider open systems, the mathematical analogue of the interac
tion between a system and a "heat bath". Stochastically perturbed continuous 
time systems with dynamics described by ordinary differential equations are con
sidered in the Section 11. 

10.1. An Operator Equation. 

Assume that, in general, a system evolves according to a given transfor
mation S'(x1 ). The qualifying phrase 'in general' means that the transition 
x 1 ......., x1-;- 1 = S'(xt) occurs with probability (1 - E). In addition, with proba
bility f, the value of x 1+1 is uncertain. If Xt = y is given, then, in this case, x1+ 1 
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may be considered as a random variable distributed with a density K(x, y) which 
depends on y. 

One interpretation of this process is that E corresponds to the degree of 
coupling between the system under study and the heat bath. If this is the case, 
then the parameter E can be thought of as a number related to the ratio of 
the fundamental frequency of operation of the basic deterministic system, Fv, 
to the frequency of the outside perturbation coming from the heat bath, F p. 

Thus when Fv « Fp, E '.:::'. 1 and the system operates almost like a random 
walk, while with Fv » Fp, we have E '.:::'. 0 and the system evolves almost 
completely deterministically. We will refer to the situation when O < E < 1 as 
'loose coupling', while for E = 1, in which the influence of the external system is 
always experienced, we will speak of strong (or continuous) coupling. However, 
as will become clear in Section 10.3, precisely the same formulation may be 
interpreted in a totally different fashion. 

Assume that the dynamics of our system operate in a phase space X (with 
positive measure, of course) which is some measurable subset of Rd, and that the 
dynamics S are nonsingular and have an associated Frobenius Perron operator 
Ps. Then the operator P describing the evolution of densities in this mixed 
system operating with both deterministic and perturbed elements is 

Pf(x) = (1- E)Psf(x) + E Ix K(x, y)f(y) dy. (13) 

It is straightforward to show that (13) is a Markov operator. 
Since for fixed y, K(x, y) is a density it clearly satisfies K(x, y) 2 0 and 

J x K(x, y) dx = l. This condition, in conjunction with the requirement that K 
is measurable means that K is a stochastic kernel. Further, we will always 
assume that for every 'T) > 0 there is a 6(ry) > 0 such that JE K(x, y) dx S 'TJ, for 
every yin X and subset E of X with µL(E) S 6. 

10.2. Loosely Coupled Systems. 

We are now in a position to state our main results concerning the behaviour 
of the entropy of a discrete time deterministic system coupled to a heat bath. In 
investigating the properties of the evolution of densities by the operator equation 
(13), and the consequent behaviour of the entropy of these densities, some mild 
restrictions on both the transformation S and the kernel K are required. First, 
assume that the deterministic transformation S satisfies 

(14) 

throughout the phase space, where ao < l and a 1 are nonnegative constants. 
Secondly, it will be assumed that with bo < l and b1 nonnegative constants, 

Ix lxlK(x, y) dx S bolYI + b1 . (15) 
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This condition is automatically satisfied if the phase space X is finite, but if it 
is unbounded then (15) prevents divergence of the trajectories to infinity. 

The first result guarantees the existence of at least one state of thermody
namic equilibrium and the evolution of the conditional entropy to a maximum, 
though not necessarily to zero, in the presence of noise. Thus this following result 
is equivalent to the 2nd order formulation of the Second Law of thermodynamics. 

Theorem 10.1. If Sis a nonsingular transformation that satisfies {14) and K 
is a uniformly integrable stochastic kernel satisfying {15), then for O < ES: 1 the 
operator P given by (13) is smoothing, and thus asymptotically periodic. 

Therefore, for any closed system whose dynamics evolve through the action 
of a nonsingular transformation S satisfying (14), placing it in contact with a 
second system whose effect on the first is a perturbation characterized by a 
kernel K satisfying (15) leads automatically to a situation in which the resulting 
open system is asymptotically periodic regardless of the nature of the original 
closed system S. Further, since this procedure induces asymptotic periodicity we 
know that at least one state of thermodynamic equilibrium, characterized by a 
stationary density J., exists and that the conditional entropy H(Pt flf.) is an 
increasing function with a limiting value given by HmaxU, J.) as defined in (10). 

Under certain circumstances involving loose coupling to a heat bath, there 
are even stronger results concerning the behaviour of the entropy, corresponding 
to the 3rd order formulation of the Second Law of thermodynamics. One such 
case is as follows. 

Assume that the value of the perturbation to the system S coming from 
the heat bath (when it occurs) at time (t + 1) is independent of the value of 
Xt- Then the stochastic kernel K(x, y) is independent of y and simply becomes 
K(x, y) = g(x), where g is the density of the perturbations {t- In this case, 
with the external perturbations independent of the state of the system S, the 
perturbations {t could be interpreted as completely stochastic or as coming from 
another deterministic system. They could even be viewed as the trace of some 
deterministic system whose Frobenius-Perron operator has g as its unique sta
tionary density. This is a slightly different situation from that explored in Section 
9. There we considered the effect on the behaviour of the entropy of only exam
ining the trace of a system. Now we are considering the situation which could be 
interpreted as the perturbation of a system by the trace of another system. 

In this case, the operator equation (13) takes the simple form 

Pf(x) = (1- E)Psf(x) + Eg(x). (16) 

There are some surprising consequences of making the loose coupling independent 
of the state of the system S. Namely 

Theorem 10.2. If Pis the operator defined by (16), then {Pt!} is J. exact. 

Thus, by the simple expedient of loosely coupling a system to a heat bath 
such that the system experiences perturbations that are independent of the state 
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of the system, there will be a unique state of thermodynamic equilibrium and the 
conditional entropy of the coupled system will globally converge to zero regardless 
of the nature of the original system S! 

10.3. Strongly Coupled Systems. 

A much different interpretation of this perturbation at random times of 
a deterministically operating system is possible and related to strong coupling 
between a deterministic system and an external source of noise. When E = 1 and 
X = Rd, then equation (13) takes the form 

P f(x) = { K(x, y)f(y) dy. 
}Rd 

(17) 

In thinking about the interpretation of (17), consider the following. Take the 
quantities fo, (i, ... to bed-dimensional random vectors and let the phase space 
X be Rd. Then for a given { (t} and a dynamics W of two variables, W : Rd x 
Rd-+ R, we may assume that the system goes from Xt = y to Xt+l = W(y, (t). 
Let K(x, y) be the density of W(y, (t)- Then the density will always exist if 
W (y, z) as a function of z is nonsingular. If this is the case, then equation (17) 
describes the evolution of the densities corresponding to Xt+l = W(xt, (t)- We 
can make this more formal through the following unpublished theorem initially 
formulated and proved by A. Lasota, J. Traple, and J. Tyrcha. 

Theorem 10.3. Let g : Rd -, Rd be a density and K : Rd x Rd -+ Rd be a 
stochastic kernel. Then the (generally nonunique) function W : Rd x Rd -+ Rd 

defined implicitly by Jt(y,z) K(r, y) dr = f0z g(u) du defines a dynamical system 
Xt-t-1 = TV(xt, (t) where the (t are independent random variables with density 
g. This system has an evolution of densities described by ft+1 = P ft where the 
operator P is given by Pf(x) = f Rd K(x, y)f(y) dy. 

10.4. Asymptotic Periodicity and Additive Perturbations. 

Often the perturbations are additive, W(y, z) = S(y)+z, so we have Xt+1 = 
S(xt) + (t- It is rather surprising that a dynamics of this form may also appear 
as the consequence of taking a factor or tracel25,25a]. 

If the sequence {(t} of random variables has a common density g, then it 
follows that K(x, y) = g(x - S(y)), and equation (17) becomes 

Pf(x)= { f(y)g(x-S(y))dy. 
}Rd 

(18) 

For the special case of additive noise, (18) can be derived independent of any 
assumption concerning the nonsingularity of S. Furthermore, in this case the 
condition given by equation (15) reduces to m = j~d lxlg(x) dx < oo. Thus we 
have an immediate corollary to Theorem 10.1 for systems with added noisel2:3]. 
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Corollary 10.4. If S (nonsingular or not) is a transformation operating in the 
phase space Rd, satisfies inequality (14), and experiences an additive perturbation 
whose density has a finite first moment, then the sequence { pt f}, where P is the 
Markov operator defined by equation (18), is asymptotically periodic. 

Hence for all situations in which perturbations are added to a transformation 
S, the effect is to induce asymptotically periodic behaviour regardless of the 
nature of the original unperturbed dynamics S (remember that S may even 
be singular!). Because of this, we also know that perturbations induce at least 
one state of thermodynamic equilibrium, whose stationary density is given by 
equation (9), and guarantee the approach of the conditional entropy to a maximum 
(Theorem -5.:3). 

For some transformations, the induction of asymptotic periodicity by the 
addition of perturbations would not be at all surprising, e.g. the addition of a 
stochastic perturbation to a transformation with an exponentially stable peri
odic orbit gives asymptotic periodicity. The surprising content of Theorem 10.1 
(and Corollary 10.4) is that even in a transformation that has aperiodic limiting 
behavior, additive perturbations will result in asymptotic periodicity. 

10.5. f. Exactness and Additive Perturbations. 

Under certain circumstances there are even stronger results concerning the 
effects of additive perturbations. Namely, additive perturbations may induce .f, 
exactness with a consequent increase in the conditional entropy to its maximal 
value of zero corresponding to the strongest (3rd order) form of the Second Law 
of thermodynamics. 

10.6. Parametric Perturbations. 

As another specific example, consider the case when W(y, z) = zS(y) and 
S > 0, so Xt+l = ~tS(xt)- Using Theorem 10.3, it is straightforward to show that 
the operator (17) takes the explicit form 

(19) 

HorbaczllS,lfl] has considered the behaviour of this system when S : R+ --+ 

R+-. The flavor of her results are summarized in the following two theorems. 

Theorem 10.5. Let the Markov operator P be defined by (19). Assume that 
g is a density, 0 < S(x) :S ax+ /3, and am < 1 with m = fa°° xg(x) dx, where 
a and /3 are nonnegative constants. Then the sequence {Pt .f} is asymptotically 
periodic. 

We close with a second theorem concerning .f, exactness induced by multi
plicative perturbations. 
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Theorem 10.6. If the Markov operator P defined by (19) satisfies the conditions 
of Theorem 10.5 and, in addition, g(x) > 0 then {Ptf} is f, exact. 

Theorems 10.Ei and 10.6 illustrate the behaviors that may be induced by 
multiplicative perturbations in discrete time systems. A number of other results 
concerning asymptotic periodicity and f, exactness induced by multiplicative 
perturbi:itions may be proved, but rather than giving these the reader is referred 
to Horbi:iczi15·16l. 

10. 7. Markov Operators and Deterministic Processes. 

On several occasions we have emphasized that the interpretation of a given 
dynamics is not necessarily clear cut. In fact, given any Markov operator P it 
is always possible to construct a sequence of deterministic transformations { Sn} 
such that the limiting value of { Pt f} approximates { pt f} as closely as one 

likes. Results along this line have been published by Brown[21 and Kim[IS], but 
we sti:ite this in the spirit of an unpublished result of Lasota. 

Theorem 10.7. Let P be a given Markov operator operating in a finite normal
ized space X = [O, 1). Then there is a sequence of transformations Sn : X -> X 
with Frobenius-Perron operators Psn such that limn-->oo IIPsnf - Pfll = 0. 

The consequences of this theorem are extremely far reaching, for it tells us 
that any Markov operator, whether it arises from the influence of random or de
terministic perturbations on a totally deterministic system or through the action 
of a completely unperturbed deterministic system, can always be approximated 
by a totally deterministic system to any degree of accuracy. 

10.8. Summary. 

In this section we have explored the effects of outside perturbations acting 
on a deterministic system with discrete time dynamics, and we have interpreted 
this as the coupling of the system to a "heat bath". These outside perturbations 
can be viewed i:iS perturbations coming from another deterministic system, from 
the trace of a deterministic system, or as stochastic perturbations. Whatever 
their source, we lmve shown in a variety of situations that the effect of these 
perturbations may be to either induce asymptotic periodicity or f, exactness. It is 
interesting that asymptotic periodicity or f, exactness may be induced in systems 
that had absolutely no remarkable behaviour, including statistical behaviour, 
before they experienced the outside influences. Under certain circumstances it is 
not even necessary that the original system be nonsingular. 

Thus, the effect of perturbing systems in this way has a very powerful influ
ence on the behaviour of their entropy. If the perturbation induces asymptotic 
periodicity, then the entropy will increase to a local maximum whose value de
pends in i:i complicated way on the initial preparation of the system (Theorem 
Ei.:3). If, on the other hand, f, exactness is induced, then the entropy will increase 
to its absolute maximal value of zero (Theorem 7.3). 
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11. OPEN CONTINUOUS TIME SYSTEMS. 

Given the results for discrete time dynamics, it is natural to wonder if the 
perturbation of systems with continuous time dynamics (that is, placing them 
in contact with a heat bath) will yield analogous results concerning the entropy. 
The effects of perturbation on the entropy of systems with dynamics described 
by sets of ordinary differential equations is briefly considered in this section. 

11.1. Stochastic Differential Equations. 

Often, the dynamics of physical processes are formulated by a system of 
ordinary differential equations dx;/dt = Fi(x), i = 1, ... , d operating in some 
region of Rd with initial conditions xi(0) = Xi,O- Here we examine the behaviour 
of the stochastically perturbed analog 

d 
dx; ( ) ~ ( -d =Fix + ~aij x)lj, 

.t 
j=l 

i = 1, ... ,d (20) 

with the same initial conditions, where aij(x) is the amplitude of the stochastic 
perturbation and (i = dwj / dt is a "white noise" term that is the derivative of a 
Wiener process. [A continuous process { w(t) h>o is a one dimensional Wiener 
process if: (1) w(0) = 0; and (2) For all values of s and t, 0 ::; s ::; t the 
random variable w(t) - w(s) has the Gaussian density g(t - s, x) = [21r(t -
s)J- 112 exp[-x2 /2(t-s)]. In a completely natural manner this definition can be 
extended to say that the d-dimensional vector w(t) = {w1(t), • • • , wd(t)}t>O is a 
d-dimensional Wiener process if its components are one dimensional Wiener 
processes.] 

Equation (20) is a stochastic differential equation. As in the case of a 
nonperturbed system of ordinary differential equations, if the functions Fi(x) 
and a;j(x) satisfy Lipschitz conditions, then (20) has a unique solution1121. 

11.2. The Fokker Planck Equation. 

The density function f(t, x) of the process x(t) generated as the solution 
to the stochastic differential equation (20) is defined by prob(x(t) E B) = 
j~ f (t, 8) d.s. To guarantee the existence and differentiability of f(t, x), we will 

assume the uniform parabolicity condition: I:-1,j=l aij (x))..i)..j 2 p I:-1=l >,.; 
where p > 0. If the aij(x) satisfy the uniform parabolicity condition and if they 
and the F; (x) are continuous and C3 , then f ( t, x) exists and is differentiable. 

Under the a._-;sumption that aij and bi are C 2, they and their derivatives 
up to second order are continuous for t > 0 and all x E Rd, and that they and 
their first derivatives are bounded, the evolution equation for the density f(t, x) 
is given by 

r:f = _ t a[F;(x)fl + ! t 82 [aij(x)f] 
at . oxi 2. . OX;OXj i=l i,.7=1 

(21) 
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in the Ito interpretation of (20). This evolution equation is known as the Fokker
Planck equation. In the absence of the diffusion term ( aij = 0) it reduces to 
the generalized Liouville equation. 

If the stochastic differential equation (20) has an initial condition x(0) and 
an an associated initial density fo, then the solution f(t,x) of the Fokker-Planck 
equation satisfies f(0, x) = fo(x). Further, if the solution of the Fokker-Planck 
equation can be written in the form f(t,x) = JRdr(t,x,s)fog(s)ds, where the 
kernel r is independent of the initial density f(0, x) = fo(x) and limt~o f(t, x) = 
f(0, x) = .fo(x), then f(t, x) is said to be a generalized solution of the Fokker
Planck equation. Under some standard regularity conditions on the coefficients 
of the Fokker-Planck equation the generalized solution is unique. Since f is a 
density, the generalized solution corresponds to the evolution of the system to a 
unique thermodynamic state. 

From the expression for the generalized solution, a family { pt} t>o of integral 

operators can be defined by P0 fo(x) = fo(x), ptfo(x) = JRdr(t,;,s)f0 (s)ds, 
where f(0, x) = fo(x). If the generalized solution is unique, then the operator Pis 
a Markov operator. It is a rather simple demonstration that the unique stationary 
density f, defined by limboo pt f(x) = f,(x) is given by the (unique) solution 

of the elliptic equation - "£f=1 8[Fi(x)f]/8xi + ½ "£tj=l 82 [aij(x)f]/8xi8xj = 0 
For the continuous time closed system without noise, the evolution of the 

Frobenius-Perron operator pt is determined by the the generalized Liouville equa
tion. When the very same system is subject to external white noise perturbations, 
then the evolution of the Markov operator pt f is governed by the Fokker-Planck 
equation (20) which is just the same as the generalized Liouville equation with 
the addition of the diffusion term. 

11.3. The Behaviour of Entropy. 

A dosed continuous time system with dynamics described by ordinary dif
ferential equations (reversible) has an entropy that is absolutely constant and 
equal to the entropy of the initial density with which the system was prepared 
(Theorem :3.2). 

We now examine the effects of perturbations on the entropy of these contin
uous time reversible systems. For one dimensional systems (d = 1), Rudnicki[31l 
( 1991) has recently proved a very interesting necessary and sufficient condition for 
the f * exactness, and consequent existence of 2nd Law behaviour in its strongest 
form. vVe extend his result to the behaviour of the conditional entropy. 

Theorem 11.3. Assume that d = I and (21) has a unique generalized solution. 
Then the Markov operator pt whose evolution is governed by equation (21) is 
J. exact and the corresponding conditional entropy Hc(Ptflf,) approaches its 

maximal value of zero as t ......, oo if and only if J~: exp [- r !{( :? dz] dx = oo. 

11.4. Phase Transitions and Perturbations. 
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A variety of studiesl17l have shown that in systems of differential equations 
that display a Hopf bifurcation as a parameter is varied, when noise is added as in 
(20) the stationary density of the Fokker Planck equation has behavior like that 
encountered in phase transitions. Though general results are not available at this 
time, it appears that if, in the absence of noise the system has a supercritical Hopf 
bifurcation, then when noise is added the stationary density has behaviour like 
that seen in 2nd order phase transitions. Alternately, if the unperturbed system 
has a subcritical Hopf bifurcation then the density of the perturbed system has 
pt order phase transition like behaviourl261. 
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