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ABSTRACT. Here we consider cell population dynamics in
which there is simultaneous proliferation and maturation. The
mathematical model for this process is derived, and results in
a nonlinear first order partial differential equation for the cell
density u(t,z) in which there is retardation in both tempo-
ral (t) and maturation (x) variables. Numerical analysis of a
representative equation indicates that there are two classes of
solution behavior depending on the initial function p(z). If
¢(0) > 0 there is a unique stationary solution. In this case
the net effect of the time delay is to retard the dynamic ap-
proach to the stationary solution, while spatial delays modify
the steady state distributions with respect to the maturation
variable. Alternately, if »(0) = 0, the stationary solutions
display a multistability that depends on the maturation ve-
locity 7. For a critical value » = r., which depends on the
time delay, the stationary solution is nonhomogeneous. For
values of r close to 7, the solution dynamics exhibit critical
slowing down, similar to that seen in the neighborhood of a
phase transition. For 0 < r, < r, the stationary solution is
uniformly zero, while for 0 < r < r¢, the stationary solution
is homogeneous and singular.

1. Introduction. A variety of mathematical models for biological
dynamics are most appropriately framed as differential delay equations
[11]. Many of these problems involve descriptions of cell replication,
and in this circumstance the natural delay is the cell cycle time,

The purpose of this paper is twofold. We first show that, in a simple
model in which cells are both proliferating and maturing, one obtains
a dynamical equation that is a first order partial differential equation
in which there is a retardation in the time variable as well as in a mat-
uration variable. Second, because of the apparently novel nature of
this problem and the paucity of relevant mathematical results, we nu-
merically study the solution behavior of a prototypical system in which
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the analytic solution in the absence of delays is easily constructed. We
then individually examine the effect of the retardation effects on the
time and maturation variables and then the full numerical behavior of
the system.

2. A model for proliferating and maturing cellular popu-
lations. We consider a population of cells that is capable of both
proliferation and maturation. Actively proliferating cells are those ac-
tually in cycle that are committed to the replication of their DNA and
the ultimate passage through mitosis and cytokinesis with the eventual
production of two daughter cells. The position of one of these cells
within the cell cycle is denoted by a (cell age), which is assumed to
range from a = 0 (the point of commitment) to a = ¥ (the point of cy-
tokinesis). In the most general situation in a population of cells, the age
7 at cytokinesis is not identical between cells, but is distributed with
a density f(7) supported on [Tmin, Tmax] 50 0 < Tmin < 7 < Tmax < 00.
In addition, each cell can be characterized by a maturation variable x
whose range can be taken, without loss of generality, from z = 0 to
z = 1. For concreteness, one could think of erythroid precursor cells
and associate the maturation variable with the intracellular hemoglobin
content. We assume that cells die at a rate v > 0 independent of age
or maturation level, and mature with a velocity V(z). For more details
concerning the biology of the cell cycle, consult [2].

If we denote the density of proliferating cells by U(t,x,a), then the
conservation equation for U(t, z,a) is easily shown to be given by

oU , oU , av(@)U] _

(1) 9t ' Ba £ -0,
with the initial condition
(2) U(0,z,a) =I'(z,a) for (z,a) € [0,1] X [0, Tmax]-

The total number u of proliferating cells of a given maturation level is
defined in a natural way as

(3) u(t,z) = /0 " Utt, 3, a) da.
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In completing the formulation of this problem we specify a nonlinear
boundary condition that captures the essence of the biology through

Tmax
@ Va0 =2 fOUET = Flultz).
Tmin

The first part of this boundary condition reflects the fact that the age at
cytokinesis is distributed with density f(7) and that the two daughter
cells produced at the end of the cell division cycle form the input flux
into the cell cycle. The second portion states that the input flux is a
function F of the total number of cells at a given maturation level.

To proceed beyond this point, for concreteness we assume that the
maturation velocity V has the form

(5) V(z) = rz, r >0,
though this is by no means necessary. Thus equation (1) becomes

ou  oU ou
(6) o T g T, = U

with the same initial and boundary conditions stated before. The
general solution of equation (6) is

D(ze~",a—t)e~(*t  0<t<a
U(t —a,ze"",0)elrtMe g < ¢,

(7) Ut,z,a) = {

Integrating equation (6) over the age variable a gives

ou du
(8) 5 +ra:£ = —|y+rju—{U(t,z,Tmax) — U(t,z,0)}.
Utilizing the general solution (7) in conjunction with the boundary

condition (4) gives

(9a) %-{—m% =—[y+rjut+y
where
[2 i f(F)T(ze™, 7 — t) dF
(0b) = D@ T = )] 0 <t < Tmax

2 fOT"‘” FA)F(ult — 7,2ze"7))er*+7)7 d7

_f(u(t — Trax xe_rrmnx))e(7+r)7mnx Tmax < t.
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Equations (9a) and (9b) are the fundamental result of this section and
clearly demonstrate the time retardation (¢t — 7) as well as the spatial
retardation (ze~"7) that makes this particular problem so interesting.

In the event that the distribution of ages at cytokinesis is sharply
peaked so the density is approximated by a delta function, f(7) =
6(1 — 7) with Tmax = 7 > 0, then this temporal and spatial retardation
is even more clearly evident since (9a,b) become

(10)
Ou ou T(ze ", 7 — t)e~(r+mt 0<t<,
ot oz by +rlust { Flult — r,ze~"))e 7 1 < t.

In this paper we focus on the solution properties of equation (10).

Though the assumption that f(7) can be approximated by a delta
function may seem extreme, there are several reasons to make it.
First, given the fact that nothing is known about the general solution
properties of equations (9a) and (9b), it is reasonable to first explore the
behavior of (10) obtained by assuming f(7) = (7 — 7). Secondly, from
the work of Anderson [1], we know that as long as the variance o2 of T
relative to its mean value squared (7)? remains small, the qualitative
features of the solutions of (9a), (9b), and (10) should be the same.
Finally, in a model [10] for the regulation of cellular numbers within
the mammalian pluripotential stem cell population that is quite similar
to the one developed here except that maturation is not included, it was
found that: (1) The model quantitatively accounts for a wide variety
of dynamic data in humans and dogs displaying periodic hematopoiesis
or aplastic anemia; and (2) The model offers quantitative predictions
concerning stability and instability of cellular populations that have
been experimentally verified in mice [6, 7).

3. A particular example. In studying the behavior of equation

(10), we take the function F to be given by
Fu) = u(l —u),
set
b=v+r, a=e", and A=ertn7
and take an initial function u(t’,2') = ¢{(2') for 0 < t' < 7 and
0 <z’ €1 s0 (10) becomes
Ju du
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A number of authors [8, 3, 4, 12, 13, 14, 9] have studied the
global stability properties of a class of partial differential equations
that includes equation (11) when 7 = 0. These results indicate that
when ¢(0) > 0 the solutions of (11) (with 7 = 0) will be globally
asymptotically stable. However, when ¢(0) = 0 the solutions are
chaotic on a function space in the sense that lim; ., u(t, z) is sensitively
dependent on (z). There are no analytic results to give insight into
solution behavior when 7 > 0. In the remainder of this paper we
study the solutions of (11) and variants of its to obtain insight into the
modes of dynamic behavior that are possible, their dependence on the
initial function ¢, and how these are separately influenced by the time
retardation and the spatial retardation.

4. Numerical methods. Equation (11), with the appropriate
initial and boundary conditions, is solved using the Galerkin Finite
Elements method [5]. Briefly, given a partial nonlinear differential
equation L{u) = 0 in a domain D, with the appropriate initial and
boundary conditions in D, the method assumes that u is accurately
represented by an approximate solution ug:

N
(12) Uua(t,z) = Y _uj(t)g;(z)

Jj=1

where the ¢;’s are the known basis functions and the u;’s are the un-
known coefficients. N is the number of nodes in the spatial discretiza-
tion. Since the basis functions are chosen to be equal to one at the
nodes, the unknown coeflicients u; are equal to the approximate solu-
tion u, at the nodes. Substitution of (12) into the equation L(u) = 0
gives the nonzero residual R:

(13) R=L(u,) = L(éum).

To obtain the unknown coefficients, the residual R is forced to zero in
the following integral sense:

(14) Fk = (R, ¢k) = /1; R(bk dx
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where the ¢;’s are the weighting functions. In the Galerkin method
these are equal to the basis functions. If L is a nonlinear differential
operator, the spatial discretization leads to a set of nonlinear ordinary
differential equations Fy = 0, k = 1,... ,N. The time derivatives can
now be discretized and the resulting set of nonlinear equations is solved
by using, for example, a Newton-Raphson scheme.

In this paper we use linear basis and weighting functions. The
spatial domain consists of thirty elements (N = 31). A uniform
node distribution is used except for the cases where a boundary layer
develops. The time integration scheme is a first order predictor-
corrector method (Forward Euler-Backward Euler) with a fixed time
step h = 7/100. The resulting implicit set of nonlinear algebraic
equations for the unknown coefficients u; are solved using the Newton-
Raphson iteration scheme.

5. Numerical results. In discussing the solution properties of
equation (11) and variants of it, we first consider the situation in which
the initial function satisfies ¢(0) > 0 in Case A, followed by ¢(0) =0
as Case B. Throughout, we fix the parameters § = 1, A = 2, and when
T # 0 we take 7 = 1.

Case A. p(0) > 0.

In the event that 7 = 0, equation (11) is easily solved by the method
of characteristics to give

(A = 8)p(ze™)e 0

(15) u(t,z) = O—-68+ ,\<p(ze—”)[e(’\‘5)‘ —1] :

It is clear from (15) that when ©(0) > 0 we have the long time limit of
u(t, z) approaching a spatially uniform steady state

. A—6
(16) Ugs = tl_lng u(t,z) = —
that, by the results of [8], is globally asymptotically stable. For the
parameter values we have chosen, this steady state is u,, = 1/2.

This behavior is illustrated in Figure 1 where we show the numerically
computed time (Figure 1a) and spatial (Figure 1b) behavior of the
solution of (11) with 7 = 0 and an initial condition ¢(z) = 0.1 + .
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FIGURE 1la. Cell density behavior in the absence of any retardation with p(z) =
0.1 4z. a. Top £ = 0.2, middle z = 0.6, bottom z = 1.0. r=01,—-—-—r=
1.0, —---— r=15. Time : 0,~—— 2, —--— 10.

(This is the same initial condition we use throughout this section.) The
computed behavior is in strict accord with the analytic solution (15).

To investigate the effect of including the time retardation and ne-
glecting the spatial retardation, in (11) we took o = 1 and computed
the numerical solutions of

Ou Ou
17 5 T, = —du+ du(t — 7,z)[1 — u(t — 7,2)], T <t

In studying this case numerically, any solution vector u;(t', z;) is stored
for a time ¢ and used in u,; = u;(t — 7,z;) when t' =¢ — 7.

As in the case when 7 = 0, we know that one steady state should
be given by equation (16) since, in the long time limit, the time delay
should play no role. However, in contrast to the case with 7 = 0, we
do not know if these solutions are globally asymptotically stable. The
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FIGURE 1b. Top » = 0.1, middle » = 1.0, bottom r = 1.5.

results shown in Figure 2a indicate that the homogeneous steady state
of uss = 1/2 is stable since we found u(t,z) evolving to 1/2 for all
values of z and the parameter r. However, the effect of the time delay
is to slow the approach of u(t,z) to the homogeneous solution relative
to the case when 7 = 0 (compare with Figure 1b). Further, at early
times (t = 2), it is found that the profiles exhibit a spatial maximum
whose location increases with increasing r. This is in contrast to the
situation without delay (Figure 1b) in which the profiles are always
monotone.

We next considered the effect of the spatial retardation in the absence
of the temporal delay by numerically solving the equation
(18) % + 'rxg—z = —du + Au(t,az)[1 — u(t, az)).
Numerically, the solution vector u;(t,z) is used to obtain u;(t, ;™)
by a linear interpolation scheme. Since an iteration scheme is used to
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FIGURE 2a. Cell density profiles with ¢(z) = 0.1+ z. Top r = 0.1, middle r = 1.0,
bottom r = 1.5. Time ¢: 0,——— 2, —---— 10. Temporal retardation only.

solve for the solution vector u;, the linear interpolation is done for each
Newton-Raphson iteration.

The effect of this nonlocal effect on the dynamics is illustrated in
Figure 2b, in which it appears that once again the solutions are
approaching a homogeneous steady state uss = 1/2. A comparison
of these solutions with those shown in Figure 1b indicates that the
nonlocal effects do not slow the approach of u(¢,z) to a homogeneous
solution and, in fact, tend to make the spatial variation of u less than
when the nonlocal effects are absent.

Finally, we numerically explored the behavior of the full equation
(11) with the parameter values indicated above and ¢(z) = 0.1+ z. To
numerically solve the equation in this case, the two previous schemes
used to shift the independent variables are used, but now the spatial
shifting is done once at time ¢’ and stored as u;(t’,z;¢™"") and used in
Urj = uj(t — 7,z;) when t' =t — 7.
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FIGURE 2b. Spatial retardation only.

From the previous results with either the temporal retardation or the
spatial retardation, one would expect that the only stationary solution
of equation (11) should be the homogeneous solution u,, = 1/2. It is
expected that the delay effect will slow the dynamics of approach to
the stationary state. At early times the spatial dependence of the cell
density will be affected by two competing effects: the time delay tends
to produce profiles exhibiting a maximum while the nonlocal effects
produce monotonically increasing profiles.

The cell density profiles are shown in Figure 2c. For any r, the
solutions always appear to evolve toward the homogeneous state, u,, =
1/2.

r = 0.1. Comparing Figures 2c and 1b shows that the solution
approaches the homogeneous solution but at a slower rate due to the
delay effect. Comparing Figures 2c and 2a shows that both solutions
approach the homogeneous solution with the same time scales. At
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t = 2, nonlocal effects tend to reduce the curvature by increasing
u(2,z = 1). Comparison of Figures 2c and 2b shows that the dynamics
are slower and that the profile at early times (t = 2) exhibits a
maximum due to the time delay effect.

r = 1. Comparison of Figures 2¢ and 1b shows the slower dynamics
due to the time delay effect. Comparison of Figures 2¢ and 2a shows
that the solutions approach u,, = 1/2 with the same time scale since
both solutions are retarded by the same delay. The nonlocal effects
at early times (¢ = 2) produce a monotonically increasing cell density.
Comparison of Figures 2c and 2b shows a slower dynamics due to the
delay effect. At early times (t = 2) both profiles are monotonic due to
nonlocal effects.

r = 1.5. Same trends as with r = 1.

Thus, in conclusion, it seems that when ¢(0) > 0 there is a unique
stationary solution to (11) given by equation (16). The net effect of
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FIGURE 3. Stationary solutions without temporal or spatial retardation when
¢(z) = = as predicted by equation (19). r>l,———r=1,—---— r<1.

the time delay is to retard the dynamics, while nonlocal effects tend
to modify the cell density distribution. The strength of the two effects
depends on position, time, and the magnitude of r.

Case B. ¢(0) = 0 Induces multistability and boundary layer forma-
tion.

When ¢(0) = 0, the case in which Lasota [8] has shown that
the solutions of (11) with 7 = 0 are chaotic in a function space,
the behaviors of (11) with 7 > 0 are quite interesting from several
perspectives. In this section we present aspects of these as determined
numerically with ¢(z) = z throughout.

First note that if 7 = 0 and ¢(z) = z then the analytic solution (15)
no longer has a unique globally asymptotically stable uniform steady
state given by (16). Rather, it is trivial to show that

0 0<A-6<r
A—6
(19) Use(z) = lim u(t,z) = ﬁ:m% r=A-6
A6 r<\—86,

thus illustrating the loss of stability of the solutions u(t,z) when
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FIGURE 4. Spatial dependence of cell density profiles for ¢(z) = x. Top r = 0.1,
middle r = 1.0, bottom r = 1.5. Time ¢: 0,——— 2,—-.-.— 10.

©(0) = 0. The steady state solutions of equation (19) are plotted
in Figure 3 for the parameter values used here.

The cell density u(t,z) profiles are shown in Figure 4. Depending
on the value of r, numerically the solution evolves towards the steady
states detailed in (19). In the case of r = 1, which is the critical value
for the parameters we have chosen, the nonhomogeneous steady state
is .
1+2z

Ugs =

For r = 0.1 a boundary layer develops in the neighborhood of 0. Since
there is no diffusive mechanism, the layer thickness decreases with
increasing times and the solution is singular as ¢ — oo. For r = 1.5,
the profiles remain linear and the cell density tends to an extinguished
(uss = 0) state at large times.

The boundary layer behavior is present whenever » < 1, and the
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FIGURE 5. Dynamics of boundary layer thickness defined by equation 20.
r=00l,-~--r=01~---— r=0.15.

solution evolves to the homogeneous profile u,s = 1/2 for £ > 0. The
boundary layer thickness £ is defined as:

{e()\—ﬁ—r)t
1+ A{[e(/\—é—r)t — e—rt]

(20) e =3 —ult,€) =

where € < 1. In what follows, we take € = 10~3. The dynamics of the
boundary layer is illustrated in Figure 5. At any given time £ decreases
with increasing r. The figure demonstrates the singular behavior of the
solutions since lim; o0 & = 0.

Drawing an analogy between bifurcations and phase transition, the
nonuniform cell density that exists for r = 1 [cf. Equation (19)] can be
thought of as representing a critical point separating the two spatially
homogeneous solutions us; = 1/2 for 7 < 1 and u,s = 0 for » > 1.
Extending this further, one would expect that the phenomenon of
critical slowing down should be present for 1 — ¢ < r < 1+ ¢. This
expectation is borne out in the plots of Figure 6 where we show the
cell density u(t,z) as a function of time at different locations. For
r = 1, the solution quickly converges to the nonuniform steady state
uss = /(1 + 2z) of equation (19), but for the other two cases the
solutions first evolve to the corresponding nonhomogeneous steady
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FIGURE 6. Critical slowing down of cell density dynamics in the absence of
temporal and spatial retardation when ¢(z) = z. Top z = 0.2, middle z = 0.6,
bottom z = 1.0. r=099, -—-—- r=10,—--+— r =101

states and later slowly diverge towards their corresponding steady
states.

We next examined the effect of having only a temporal retardation
with an initial condition ¢(z) = z by numerically studying equation
(17). The results are summarized in Figure 7a where the same r values
as in Figure 4 are used. The steady state solutions of equation (17)
are once again given by equation (19) since the time delay will have no
effect on the long time behavior, and are thus those of Figure 3. For
r = 0.1, the effect of the time delay is to slow the evolution towards
the singular steady state uss = 1/2, with an initially strong effect in
the neighborhood of z = 1. For r = 1, there is once again a slower
approach to the nonhomogeneous profile uy, = z/(1+2z). For r = 1.5,
the time delay slows the approach to the extinguished solution ug, = 0.

The effect of the spatial delay alone was examined by solving equa-
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FIGURE 7a. Cell density profiles for ¢(z) = z. Top r = 0.1, middle » = 1.0,
bottom r = 1.5. Time ¢: 0,——— 2,—.--— 10. Temporal retardation only.

tion (18), and the results are shown in Figure 7b for the same values of
the parameter r as before. In addition to different times of approach
to the corresponding steady states, the solution evolves towards the
extinguished solution uyzs, = 0 for r = 1 instead of the nonhomogeneous
state. For r = 0.1, the cell density approaches the singular solution
ugs = 1/2. For r = 1.5, the solution rapidly approaches the extin-
guished state uz, = 0.

A numerical parametric study of equation (18) shows that a non-
homogeneous stationary cell density does exist at a critical r given by
. = 0.234655. This shift in 7. from 1 is due to the presence of nonlocal
effects. Increasing 7 in the spatial retardation factor e™"" will cause
the critical value of r to decrease. Recalling that, in general, the closer
T is to its critical value 7., the slower the approach to the equilibrium,
we expect that the shifting of r. from 1 to r. = 0.234655 will slow the
dynamic approach of u(t, z) to uys for » = 0.1 but hasten the approach
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FIGURE 7b. Spatial retardation only.

for r = 1 and 1.5. This effect is quite obvious in comparing Figures 7b
and 4.

Nonlocal effects not only shift the critical value of r. but also the
stationary nonhomogeneous cell density itself. The three steady state
solutions to equation (18) are shown in Figure 8. For r < 0.234655,
the stationary state is the singular solution u,s = 1/2 for z > 0. For
r = 0.234655, the stationary state monotonically increases from 0 to
0.432 and is larger than the uss = /(1 + 2z) found in the absence of
the spatial retardation. For r > 0.234655, the stationary state is the
extinguished state u,; = 0.

Based on the results presented to this point, we would expect that
the inclusion of both temporal and spatial retardation in equation (11)
will result in different dynamics of approach to stationary states, in the
presence of a different nonhomogeneous steady state, and in a shifting
of the critical value r.. The critical value of r should coincide with



78 A. REY AND M. MACKEY

os .
06 | 1

[T i 3

02 |/ J

08 | 1

04 b
02 | 1

o | _

06 1
04
02 .

FIGURE 7c. Both.

that obtained for equation (18). Also, the presence of a critical slowing
down in the proximity of the cross over region from the extinguished
to the singular should be present.

Figure 7c shows the computed behavior of the cell density profiles
u(t,z). We discuss the solution behavior as a function of r.

r = 0.1. Comparing Figures 4 and 7c, we note that the solution
again approaches the singular solution but at a slower rate due to
the delay effect and also due to the fact that r = 0.1 is closer to its
critical value. Comparing Figures 7a and 7c shows that the solutions
with time delay only approach the singular solution somewhat faster
since nonlocal effects slow down the dynamics due to the shifting of r..
Comparison of Figures 7b and 7c shows that the dynamics are slower
due to the time delay effect.

r = 1. Comparing Figures 4 and 7c shows that the solution ap-
proaches the extinguished solution due to the shifting of the critical
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FIGURE 8. Stationary solutions of equation (11) with ¢(z) = z. —— r >
0.234655, — — — r = 0.234655, —--- — r < 0.234655.

parameter r.. Comparing Figures 7b and 7c¢ illustrates that the dy-
namics are slower due to the time delay effect.

r = 1.5. The results are qualitatively identical with those of r = 1.

As before, the three steady state solutions of equation (11) are those
of equation (18) as illustrated in Figure 8.

The critical slowing down in the proximity of r, = 0.234655 is shown
in Figure 9 where the cell density is plotted for £ = 0.2, 0.6 and 1 with
r = 0.23, 0.234655, and 0.24. For r < r., the solutions slowly evolve
towards the singular solution, for r = r. the solutions quickly converge
to the nonhomogeneous steady state, and for r > r., the cell density
slowly evolves towards the extinguished solution.

6. Summary. Here we have shown that a mathematical model for
cell population dynamics, in which there is simultaneous proliferation
and maturation, naturally results in a nonlinear first order partial
differential equation in which there is retardation in both temporal and
maturation variables. Numerical analysis of a representative equation
indicates that there are two classes of solution behavior depending on
the initial function ¢(z) of the population maturation variable z. If
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FIGURE 9. Critical slowing down of cell density dynamics with both spatial and
temporal retardation and ¢(z) = =. Top z = 0.2, middle z = 0.6, bottom z= = 1.0.
=023, — — — r=0234655 —--- — r=0.24.

©(0) > 0 there is a unique stationary solution. In this case the net effect
of the time delay is to retard the dynamic approach to the stationary
solution, while spatial delays modify the steady state distributions
with respect to the maturation variable. Alternately, if (0) = 0
the stationary solutions display a multistability that depends on the
maturation velocity r. For a critical value r = r., which depends on the
time delay, the stationary solution is nonhomogeneous. For values of r
close to 7., the solution dynamics exhibit critical slowing down, similar
to that seen in the neighborhood of a phase transition. For 0 < r, < 7,
the stationary solution is uniformly zero, while for 0 < r < 7., the
stationary solution is homogeneous and singular.
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