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Abstract Delay differential equations can have “chaotic” solutions that can be used
to mimic Brownian motion. Since a Brownian motion is random in its velocity, it is
reasonable to think that a random number generator might be constructed from such a
model. In this preliminary study,we consider one specific example of this and show that
it satisfies criteria commonly employed in the testing of random number generators
(from TestU01’s very stringent “Big Crush” battery of tests). A technique termed
digit discarding, commonly used in both this generator and physical RNGs using
laser feedback systems, is discussed with regard to the maximal Lyapunov exponent.
Also, we benchmark the generator to a contemporary common method: the multiple
recursive generator, MRG32k3a. Although our method is about 7 times slower than
MRG32k3a, there is in principle no apparent limit on the number of possible values
that can be generated from the scheme we present here.
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Deterministic differential delay equations are well known to sometimes have chaotic solutions that are
unpredictable in spite of the fact that they approach either ensemble or trajectory limiting densities that
are independent of initial conditions (functions). We show that this characteristic may be used effectively
for producing a random number generator.

Electronic supplementary material The online version of this article (doi:10.1007/s00332-016-9306-9)
contains supplementary material, which is available to authorized users.

B Julian Self
julian.self@mail.mcgill.ca

1 Departments of Physiology, Physics, and Mathematics, and Centre for Applied Mathematics in
Bioscience and Medicine (CAMBAM), McGill University, 3655 Promenade Sir William Osler,
Montréal, QC H3G 1Y6, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-016-9306-9&domain=pdf
http://dx.doi.org/10.1007/s00332-016-9306-9


J Nonlinear Sci

Keywords Pseudorandom number generator (PRNG) · Random number generator
(RNG) · Differential delay equation (DDE) · Deterministic chaos

Mathematics Subject Classification 65C10 (primary) · 34K99 (secondary)

1 Introduction

From Monte Carlo simulators to student selection in American charter schools to
financial transactions, random number generators (RNG) are widely employed. It is
difficult to articulate what constitutes numbers that are truly random, but often, if
generators pass a defined battery of tests, they are said to be random.

In this paper, we show how a first-order differential equation with a delayed argu-
ment (differential delay equation, DDE) that has been recently studied can be used
as an effective random number generator. In Sect. 2, a very brief history of popular
RNGs is given. In Sect. 3, a previously studied DDE producing a Brownian motion
is introduced. Section 4 introduces a straightforward scheme for generating numbers
from a DDE. Section 5 discusses how to increase generation speed by borrowing a
technique from comparable and experimentally realized feedback laser systems. This
technique, termed digit discarding, and its potential relationship to the Lyapunov expo-
nent are discussed. Section 5 also reports the results of the statistical tests applied to
the RNG. Section 6 discusses the period of the generator and contains a compari-
son of the DDE as a RNG with a standard generator method, the multiple recursive
generator.

This is, as far as the authors know, the first random number generator to employ a
differential delay equation,while producing high-quality randomnumbers. The quality
of the numbers ismatched by but a fewdocumented generators,with a period no shorter
than any other. It is important to remember that when employing random numbers,
one does not a priori know the result of, say, a given simulation, so it is impossible to
say in which way it would be acceptable for a generator to be systematically flawed.
Furthermore, while periods exceeding currently used generators cannot be readily
shown to be needed for a stream, longer periods are typically seen as being tied to
higher-quality generated numbers L’Ecuyer (1999).

2 A Very Short History of RNGs

Although there also exist non-deterministic, physically implemented, RNGs L’Ecuyer
(2012), this section focuses specifically on deterministic software RNGs. Two of the
most currently used general-purpose RNGs have a rich history that can be traced back
to the earlier RNG counterparts from which they were derived. The Mersenne twister
is heavily inspired from the linear feedback shift register (LFSR), while the combined
multiple recursive algorithm (CMRG) has its origins in the linear congruential gener-
ator. A very brief overview is presented here, and both Knuth and L’Ecuyer have given
complete and detailed histories of these generators Knuth (1997), L’Ecuyer (2012).
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2.1 Linear Congruential Generators

The linear congruential generator (LCG) was introduced in 1949 by D.H. Lehmer
Knuth (1997), in which, for integers Xn , the following sequence can be expressed:

Xn = (Xn−1a + c) mod m (2.1)

The modulus is denoted m, the multiplier a, the increment c, and the starting value
X0 Knuth (1997). The random number output Un can be obtained by dividing Xn by
m. Much work has been done on studying what values the multiplier, increment, and
modulus must have for better distributed output sequences and longer periods. For
example, the period length can only be of lengthm if the increment is relatively prime
to the modulus. These generators are still used today, for example they are the default
RNG in Java. The output sequences do possess serious flaws in their structure, and so
are not suggested.

LCGswere later generalized tomultiple recursive generators (MRG), where Xn is a
function of not only Xn−1, but of linear combinations of (Xn−1, . . . , Xn−k). So-called
lagged Fibonacci generators are of this type.

TheMRGalgorithmwas further improved by employing differentMRGs in parallel
to form the input of a new modular recurrence relation for the aptly called combined
multiple recursive generator (CMRG). This latter generator provides sequences much
better distributed than its antecedent, theMRG. The details of the CMRG can be found
in L’Ecuyer, and one widely used implementation is the MRG3k32a L’Ecuyer (1999).

2.2 Linear Feedback Shift Registers

In 1965, Tausworthe introduced a binary representation RNG utilizing a recurrence
relation modulo 2 Tausworthe (1965). It can be expressed by the following relation
L’Ecuyer (2012):

Xi = (c1Xi−1 + · · · + ck Xi−k) mod 2

Ui =
w∑

l=1

Xis+l−12
−l (2.2)

In this equation, c and s are characteristic for a given generator, w is the size of
the output vector, and Ui is a final output of this generator which is called the linear
feedback shift register (LFSR).

Xl+n = Xl+m xor Xl A (l = 0, 1, ...) (2.3)

ForA as the identity matrix, the above equation describes the generalized feedback
shift register (GFSR). Lewis and Payne (1973), Matsumoto and Kurita (1992). In this
case, Xl is a word of size w with components 0 or 1 while xor refers to the bitwise
exclusive or operation. The word, considered as real number between 0 and 1 in binary
representation, is the pseudorandomoutput of theGFSRMatsumoto andKurita (1992).
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The GFSR was further generalized, or twisted, by picking a non-identity matrix A.
This finally gives rise to the twisted generalized feedback shift register (TGFSR). A
variation in the TGFSR is the Mersenne twister, one implementation being MT19937
Matsumoto and Nishimura (1998), which is perhaps the most widely used generator
today. For example, it is the default generator in the applied mathematics software
package MATLAB.

2.3 Other Generators

There are a wide variety of other RNG algorithms that have been suggested. For
example, the LCG can be generalized to a nonlinear recurrence relation Knuth (1997),
Eichenauer-Herrmann (1995). Some cryptographic cyphersmay also be used as RNGs
and in some cases have been thoroughly tested L’Ecuyer and Simard (2007). However,
the tests commonly applied to pass cryptographic standards, e.g., the NIST tests, are
weak L’Ecuyer and Simard (2007) and so each algorithm would have to be tested and
considered separately before it could be recommended as a robust “general-purpose”
RNG.

3 Chaotic Solutions to a Delay Differential Equation

Several investigators Beck (1991), Chew and Ting (2002), Mackey and Tyran-
Kamińska (2006) have shown that a Brownian-like motion can arise when a particle
is subjected to impulsive kicks f (t) derived from a discrete time dynamical system,
and whose dynamics are modeled by the following equations where x is the position,
v is the velocity, m is the mass, and γ is the friction coefficient:

⎧
⎪⎨

⎪⎩

dx

dt
= v

m
dv

dt
= −γ v + f (t).

Lei and Mackey (2011) sought an alternative continuous time description of the
“random force” f (t), whichwas assumed to depend on the state (velocity) of a particle,
but with a lag time τ , i.e.,

f (t) = F(v(t − τ)),

where F has the appropriate properties to generate chaotic solutions. They considered
the following differential delay equation

⎧
⎪⎨

⎪⎩

dx

dt
= v

m
dv

dt
= −γ v + F(v(t − τ)),

v(t) = φ(t), −τ ≤ t ≤ 0, (3.1)
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where φ(t) denotes the initial (or history) function which must always be specified
for a differential delay equation.

First, some observations about the second equation in 3.1, which determines the
dynamics of the velocity. A simple form of the “random” force is binary and fluctuates
between ± f0, for instance given by

F(v) = 2 f0

[
H(sin(2πβv)) − 1

2

]
, (3.2)

where H is the Heavyside step function

H(v) =
{
0 for v < 0
1 for v ≥ 0.

Then, we have the following equation

dv

dt
= −γ v + 2

[
H

(
sin(2πβv(t − 1)) − 1

2

)]
. (3.3)

(Here and later, we always assume the massm = 1 and f0 = 1 which can be achieved
through the appropriate scaling.) The delay differential Eq. 3.3 with a binary “random
force” can be solved iteratively by the method of steps1. Despite its simplicity, it can
display behaviors similar to a randomprocess. An example solution of Eq. 3.3 is shown
in Fig. 1. The “random force” in Eq. 3.3 is discontinuous and gives a continuous zigzag
velocity curve (c.f. Fig. 1b)

3.1 Deterministic Brownian Motion

Lei and Mackey (2011) focused on an analogous differential delay equation

dv

dt
= −γ v + sin(2πβv(t − 1)),

v(t) = φ(t), −1 ≤ t ≤ 0.
(3.4)

In Eq. 3.4, β measures the “frequency” of the dependence of the nonlinear function on
v(t−1), and this turned out to be an essential parameter in their study. Thus, they stud-
ied the dynamical properties of the solutions of Eq. 3.4, both analytically and numer-
ically, but really focused on the probabilistic properties of the chaotic solutions of

1 A solution of Eq. 3.3 is associated with a time sequence t0 < t1 < · · · < tn < · · · , which is defined such
that sin(2πβv(t)) ≥ 0 when t ∈ [t2k , t2k+1), and sin(2πβv(t)) < 0 when t ∈ [t2k−1, t2k ). Furthermore, if
the sequence (t0, · · · , tn) is known, then the solution v(t) when t ∈ (tn , tn + 1) can be obtained explicitly,
and therefore, tn+1, which is defined as sin(2βv(tn+1)) = 0, is determined by (t0, · · · , tn). Once we obtain
the entire sequence {tn}, the solution of Eq. 3.3 consists of exponentially increasing or decreasing segments
on each interval [tn , tn+1]. Nevertheless, the nature and properties of the map tn+1 = Fn(t0, t1, · · · , tn) is
still not characterized and has defied analysis to date.
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Fig. 1 a A sample solution of Eq. 3.3 with β = 10, γ = 1, f0 = 1, and an initial function φ(t) ≡
−0.1, t ∈ [−1, 0]. b the solution segment for 98 ≤ t ≤ 100

⎧
⎪⎨

⎪⎩

dx

dt
= v

dv

dt
= −γ v + sin(2πβv(t − 1)),

v(t) = φ(t), −1 ≤ t ≤ 0,

(3.5)

and characterized the statistical solution properties. Their main result was to show that
Eq. 3.5 can reproduce experimentally observed Brownian motion data over a wide
range of timescales, in spite of the fact that the evolution equation is deterministic.
Therefore, the chaotic solutions of 3.5 are a deterministic Brownian motion.

Throughout Lei and Mackey (2011), the probabilistic properties of solutions of
Eqs. 3.3 and 3.4 were studied numerically. In their simulations, for a given set of
parameters, they solved one of the equations with a randomly selected constant initial
function

v(t) = v0 ∈ (−1, 1), (−1 ≤ t ≤ 0),

where v0 is drawn from a uniformly distributed density. The solution v(t)was obtained
using Euler’s method (with a time step �t = 0.001) up to t = 105, and was sampled
every 103 steps to generate a time series {vn}, where vn = v(n × 103�t), and n =
1, 2, · · · . The resulting time series of values {vn}was used to characterize the statistical
properties of the solution.

In particular, Lei andMackey (2011) focused on the mean valueμ, the upper bound
K , the standard deviation σ , and the excess kurtosis γ2 of the time series, defined by

μ = 1

N

N∑

n=1

vn, K = max
n

|vn|, σ 2 = 1

N

N∑

n=1

(vn − μ)2,

γ2 = μ4

σ 4 − 3, where μ4 = 1

N

N∑

n=1

(vn − μ)4.
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The excess kurtosis γ2 measures the sharpness of the density of the sequence, and a
value of γ2 = 0 is characteristic of a normal Gaussian distribution.

Lei and Mackey (2011) found that for Eq. 3.4, their numerical results could be
approximately fit by the functions

K (β, γ ) = 1√
γ (0.68

√
β + 0.60

√
γ )

(3.6)

σ(β, γ ) = 0.32√
βγ

(3.7)

γ2(β, γ ) = −γ

β
. (3.8)

Additionally, they examined the behavior of the normalized correlation function of
a solution defined as

C(r) = lim
T→∞

∫ T
0 v(t)v(t + r)dt

∫ T
0 v(t)2dt

.

Figure 2a showsC(r) for different values of β (with γ = 1) for Eq. (3.4). From Figure
2, the correlation function can be approximated as an exponential function of the form

C(r) 	 e−r/t0 , (3.9)

where t0 is the correlation time. Figure 2b–c shows that the correlation time is largely
independent of β, and that it is approximately given by 1/γ . Identical results were
found for Eq. 3.3, but they did not show these results.

From their numerical results, it was clear that the excess kurtosis γ2 of the irregular
solutions of 3.3 and 3.4 varied with β and γ according to γ2 	 −γ /β. Thus, the corre-
sponding distributions approached Gaussian-like distributions when β is large (and γ
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Fig. 2 a Correlation function C(r) computed for the solutions of Eq. 3.4. Here, γ = 1, and β = 5 (blue
circles), 10 (red up triangles), 15 (black down triangles), 20 (green squares), respectively. b Correlation
time as a function of β (with γ = 1). c Correlation time as a function of γ (with β = 20), solid curve is
the fit with t0 = 1/γ (Color figure online)
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is fixed), but one with a truncated tail so that it is supported on a set of finite measure.
They called such truncated Gaussian distributions quasi-Gaussian distributions.

Let μ and σ be the mean and standard deviation of a quasi-Gaussian noise, and
assume that the noise signal is supported on an interval [μ − K , μ + K ]. Then, the
density function is given by

p(v;μ, σ, K ) =
{
C0e− (v−μ)2

2σ2 if |v − μ| ≤ K
0 other wise,

(3.10)

where

C0 = 1

(	(K/σ) − 	(−K/σ))

and

	(z) =
∫ z

−∞
e−s2/2ds =

√
π

2

[
1 + erf

(
z√
2

)]
.

4 DDE-RNG

4.1 Mapping to Random Numbers

Knowing the density, or distribution, of solutions fromEq. 3.4, it is possible to generate
random numbers. One way to do this is the following. First, γ can be scaled to 1, while
the parameter β should be chosen to be larger than 20 to assure a non-periodic time
series solution Lei and Mackey (2011). The history function φ can be taken as any
constant in the interval (−1, 1), as it was in Lei and Mackey (2011). Finally, the Euler
method can be used with a time step of �t = 0.001, and the time series can be
sampled with an appropriate interval for a sufficiently small correlation coefficient.
The sampled time series can be mapped to a uniform distribution the interval [0, 1)
by using Eq. 3.4 with Eq. 3.10 where μ = 0:

ζ(v) =
erf

( |v|√
2σ

)

erf
(

K√
2σ

) (4.1)

ζ(v), defined in Eq. 4.1, produces a set of random numbers between 0 and 1 when
applied to a finite set of v(t)’s chosen at equally spaced times and solving Eq. 3.4.

4.2 Sampling Interval

Assuming the correlation function expressed in Eq. 3.9 holds for large enough time
series, picking a sampling interval of 
t = 10 allows sampling for a series up to
t = 1010, or equivalently, 109 generated random values. However, for a larger time
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series and number of generated values N , the following requirement can be derived
Knuth (1997):

1

2
ln(N ) < 
t (4.2)

4.3 History Function Restriction

Using the map appearing in Eq. 4.1, negative and positive history functions φ will
generate the same numbers. Although the mapped time series is itself random, it
would be useful from a RNG perspective to know that two different φs produce a
different set of random numbers. Thus, φ can be picked as either always positive or
always negative to avoid two same sets of generated numbers for two different φs.
Furthermore, the sine function symmetry and shift properties also restrict φ, since
| sin(v)| = | sin(nπ ± v)| for any integer n. Thus, sets of numbers generated from
different time series with different φ’s should satisfy the following restriction:

φi = (0, 1) \
(

φ j =
(

φi ± n

2β

)
∪

(
−φi ± n

2β

) )
,

n ∈ [1, 2, 3, ...), j �= i (4.3)

4.4 Problems with Generation

Generating random numbers with the scheme presented in this section is problematic
for two reasons.

1. Generating numbers this way is slow. Sampling at every 
t = 10 requires on the
order 104 computations for a single randomly generated number.

2. The map 4.1 is hard to apply for random number generation because v(t) may
take the value of the maximum K . More precisely, when a truncated Gaussian is
mappedwith the ζ(v)map appearing in Eq. 4.1, if a valuewhere v(t) = K happens
to be sampled, it is mapped to exactly 1, which is not in the desired interval [0,1).
This value can be individually removed from the set of generated random numbers,
but such a procedure may be inconvenient.

5 LSF-DDE-RNG

5.1 LSF Scheme

Although Eq. 3.4 used as explained in Section 4 has no theoretical limit on the number
of possible generated values, it is slow. In the last 10 years, different schemes have been
presented to generate random numbers that use feedback laser mechanisms Reidler
et al. (2009), Hirano et al. (2010), Oliver et al. (2013). In such work, the measurements
taken from a laser system yield Gaussian-distributed values which are used to generate
random numbers. Two steps are employed: digit discarding and post-processing. The
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digit discarding involves only considering a certain amount of least significant bits (or
digits) while completely discarding the others. The reasoning of Reidler et al. states
that this allows fast randomnumber generation, provided that the sampling rate ismuch
slower than the chaos affecting the given least significant bits Reidler et al. (2009).
Also, Oliver et al. (2013) state that “the autocorrelation function of the captured time
series data is also affected by bit truncation, in such a way that residual correlations
in the original dynamics are destroyed, and thus allowing for an increase in the rate
of random bit generation.”

For the post-processing, different schemes have been employed. Reidler et al. sug-
gest taking differences between measured values to generate each random number as
well as using an xor operation on the least significant bits Reidler et al. (2009). Oliver
et al. suggest using an appropriate sampling rate after digit discarding Oliver et al.
(2013).

Since the solution to Eq. 3.4 is analogous to the measurement from these systems as
the time series yieldsGaussian-distributedvalues, a similar schemecanbe appliedhere,
which will henceforth be referred to as LSF-DDE-RNG (Least Significant Figures).

Although bit truncation can flatten a Gaussian distribution into an approximately
uniformdistributionOliver et al. (2013), this approximationbreaks downas the number
of generated values goes to infinity. This can be shown by calculating the expected
probability for each set of possible bits resulting from the Gaussian distribution after
digits (or bits) are discarded. Thus, the two-step digit discarding scheme can be applied
with Eq. 3.4, but a mapping function, equivalent to Eq. 4.1, which maps values to a
uniform distribution, should be used before discarding digits. The post-processing for
the LSF-DDE-RNG, presented here, is the use of a sufficient sampling rate.

5.2 Revised Mapping Interval

Discarding a certain number of decimal digits from samples of numbers taken from
a uniform distribution in [0,1) also yields a uniform distribution in the interval [0,1).
A similar map to 4.1 can be used to map samples from the solution to Eq. 3.4 to a
uniform interval, which does not involve the maximum K :

ξ(v) = er f

( |v|√
2σ

)
(5.1)

This equation allowsmapping the solution from Eq. 3.4 to a uniform distribution in
the interval [0,er f ( K√

2σ
)] where er f ( K√

2σ
) is close to one. If more than zero decimal

digits are discarded from samples taken from this interval, the samples will then be
uniformly distributed in the interval (0,1]. The value for σ computed as from equation
3.7 has been revised and better follows the following relationship:

σ = 1√
(12.62677β − 11.00613)

(5.2)
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Equation 5.2 has negligible error ifβ is pickedbetween20 and50 and if digit discarding
is used. In other words, Eqs. 3.4 and 5.1 with 5.2 can be used together for random
number generation employing digit discarding.

5.3 Digits Discarded

After mapping to a uniform distribution in the interval [0, 1) and discarding digits,
the values produced are strictly positive. The appropriate empirical autocorrelation
function can be expressed as

ρ = 1

N − 1

N−1∑

n=1

(vnvn+1 − 0.25) (5.3)

Using the theoretical distribution of ρ L’Ecuyer and Simard (2007), it is possible
to test whether values behave as they should if they were truly drawn from a random
sequence. This can be done by calculating the p values from the autocorrelation for
samples generated after discarding m decimal digits. This also indicates whether or
not there is correlation between successive values.

The p values are shown in Table 1. P values are rounded to 10−2. Values between
0.01 and 0.99 are considered here to indicate negligible correlation between successive
values. Here, the number of generated values tested was N = 108, and the values were
sampled at every 
t = 0.001. The time series solution was obtained as described
in Sect. 3. The tabulated p values suggest that discarding between 4 to 12 digits
destroys correlation between successive values in the time series. Furthermore, digits
14 and above should not be used in random number generation. Double float data type
precision was used.

Table 1 Autocorrelation p
value after discarding m decimal
digits for N = 107

m no. of discarded digits pvalue

1 0

2 0

3 1.00

4 0.22

5 0.10

6 0.54

7 0.32

8 0.71

9 0.06

10 0.86

11 0.38

12 0.87

13 1.00
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Formally, digit discarding for a sample point v(t) can be written as the function
DD(v) where

DD(v) = 10mv − f loor(10mv)

10m
(5.4)

In the above equation, DD is the digit discarding function, v(t) is a sample point
from the time series, m is the number of discarded digits, and f loor represents the
integer floor function.

5.4 Lyapunov Exponent

Wolf et al. describe Lyapunov exponents as “the average exponential rates of diver-
gence or convergence of nearby orbits in phase space Wolf et al. (1984).” In the case
of chaotic trajectories, if initially separated (e.g., with a small difference in the initial
function), the orbits diverge on average exponentially, at least until the limit provided
by the volume of the phase space. And so, chaotic dynamical systems are characterized
by positive Lyapunov exponents (LE’s) Hand and Finch (1998). Using the methods
provided by Breda and Van Vleck (2013), it was found that the maximal Lyapunov
exponent λ was 2.4496, as averaged over t = 100 for Eq. 3.4 and β=32.1357941. The
computed λ is shown in Fig. 3. Reidler et al. stipulate that a requirement for random
number generation should be that the “sampling rate (clock period), is slow enough
in comparison with the strength of the chaos, controlled by the spectrum of the Lya-
punov exponents Reidler et al. (2009).” It remains an open question as to the direct
relationship between the so-called clock period and the Lyapunov exponent, as implied
by Reidler et al. However, we here speculate on a possible requirement between the
amount of digits discarded m and the maximal Lyapunov exponent λ:

eλ
t − 1 > 10−m (5.5)

Equation 5.5 holds in the case studied here, where Eq. 3.4 is used with digit discard-
ing, −12 ≤ m ≤ −4 and 
t=0.001. It is intuitive that if λ were larger, less discarding
of digitsmay be required (i.e., smallerm), and conversely, if λwas negative, no random
number generation could be achieved. The exponential functional form is intuitively

t
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Fig. 3 Maximal and averaged Lyapunov exponent for Eq. 3.4 as computed by the methods of Breda and
Van Vleck (2013)
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suggested as it can quantify the divergence of initially separated trajectories. Anyhow,
further work should clarify whether Eq. 5.5 holds for other systems (e.g., different
β, the experimentally realized laser systems, different DDE’s). Also, besides Eq. 5.5,
it remains unknown whether there exists a quantitative statement of the claim from
Reidler et al. quoted above. Although outside the scope of this paper, further study
could determine to what extent the RNG laser feedback systems Reidler et al. (2009),
Hirano et al. (2010), Oliver et al. (2013) are analogous to RNGgenerators usingDDEs,
such as the one presented in this work.

5.5 Sampling Rate

Although the autocorrelation function indicates no correlation between successive
outputted values in the time series at every 
t = 0.001 with m = 4 to m = 12
discardeddigits, values generatedwith thisminimal sampling rate fail certain statistical
tests of randomness. The values of the sampling rate had to be increased to
t = 0.002
for the values to pass all required statistical tests. Figure 4 shows all the steps needed to
produce random numbers for the LSF-DDE-RNG. First, in Fig. 4 (a), Eq. 3.4 is solved
with the Euler method as explained in Sect. 4. (b), the mapping function 5.1 is used,
as explained in Sect. 5.2. It is used for every other (discrete) time series point, since

t = 0.002 was picked. (c), Every two successive values from the mapped time series
(red circles) yield a random number (black ×) as shown in d), after m=8 digits are
discarded. In this case, two mapped values (red circles) must be used for one 10-digit
random number (231 bits of resolution is standard), since keeping more than 9 digits
from one number has been shown in Table 1 to be undesirable (i.e., digits above the
4th and below the 14th are preferred). In other words, in this scheme, exactly four time
series points yield one random number.

5.6 Statistical Tests of Randomness

Testing randomness of sets of numbers is quite involved. It requires checking both
global randomness and local randomness. While testing these generated numbers, the
null hypothesis is that all the generated numbers are truly random.Many different tests
have been proposed, for which, incidentally, the question of interdependency remains
an open problem Soto (1999). L’Ecuyer and Simard L’Ecuyer and Simard (2007) have
compiled batteries of tests judged to be adequate in the testing of randomness. Themost
stringent of these batteries is TestU01’s “BigCrush.” The tests involved, among others,
the collision test, run test. and the poker test. For example, the run test checks whether
there are too few or too many monotonically increasing and decreasing subsequences.
In the collision test, equally spaced intervals and the number of repeated values for
a same bin, or collisions, are compared to the expected amount. In the poker test,
subsequences of values are treated as poker hands and are studied against expected
hands.

Here, battery BigCrush is used from the TestU01 library, which tests random num-
bers with up to 231 bits of resolution. This means a 10 decimal random number is
sufficient. Here, the digits from 9 to 13 are used from sampled points in the time
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Fig. 4 Time series solution for Eq. 3.4 is shown in blue, where β = 32.1357941 and φ = 0.8876641. b
Equation 5.1 used on time series values (solid blue) to yield mapped values (solid red). c Same as b, but
with a shorter timescale. The first four time series values (red circles) to be used in d as random numbers
(black ×), after m = 8 digits are discarded, are explicitly shown in red boxes. The digit discarding is shown
with a black strikethrough (Color figure online)

series, as shown in Fig. 4. In other words, m = 8 digits are discarded from every
sampled point. A set of two values from the time series is needed for each 10-digit
random number as using digits 9 to 13 yields five decimal digits. The sampling interval
is picked to be 
t = 0.002.

All tests from the BigCrush battery were passed when applied. 2.7×1011 numbers
generated from a single time series were verified for randomness using 160 statistical
tests, including collision tests, run tests, and poker tests. The parameters used were
β = 32.1357941 and φ = 0.8876641, and the results of BigCrush have here been
omitted due to their length. The criteria and specificity of the tests can be found in
L’Ecuyer and Simard (2007). 108 numbers generated from the LSF-DDE-RNG are
illustrated in Fig. 5a by employing two consecutive numbers as x- and y-coordinates
for 104 points.

The same battery of stringent tests has not been applied for different β and φ,
but from Lei and Mackey it is expected that other values of (β, φ), following the
prescriptions of Sects. 4.1 and4.3, could provide different, but also sufficiently random,
sets. The highest precision for which β and φ yield significantly different time series
is unknown.

Finally, we note that though some of the proposed feedback laser RNGs use the
DIEHARD or NIST tests, Reidler et al. (2009), Hirano et al. (2010) the LSF-DDE-
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Fig. 5 a 10000 × 10000 points
for which each two successive
random numbers generated by
the LSF-DDE-RNG are assigned
to a set of (x, y)-coordinates. b
10000 × 10000 points for which
each two successive random
numbers generated by MT19937
are assigned to a set of (x, y)
coordinates
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RNGwith the above parameterβ and initial functionφ is likely at least as random since
the tests that were passed were much more stringent L’Ecuyer and Simard (2007).

6 Discussion and Benchmarking

In 2005, Falcioni et al. discussed three requirements for using a deterministic chaotic
system as a RNG: a sufficiently high Kolmogorov–Sinai (KS) entropy, small time
correlation, and large period Falcioni et al. (2005). Although a discussion of the KS
entropy is outside the scope of this paper, it is notable that a sufficiently large maximal
Lyapunov exponent, as discussed in Sect. 5.4, is a different but comparable metric
Falcioni et al. (2005) to use for RNG suitability. The sufficient weakness of the time
correlation for the LSF-DDE-RNG was studied in Sect. 5.3. What remains to discuss
is the question of the period length, which here cannot be feasibly solved numeri-
cally. However, previous scholarship has argued statistically that the period length for
randomly evolving discrete dynamical systems should be on the order of the square
root of the number of discrete states of the given system Falcioni et al. (2005), Coste
and Henon (1986). Thus, since for the LSF-DDE the initial function and subsequent
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states involve up to 1016000 discrete states, the period is likely on the order of 108000.
Furthermore, increasing the precision (e.g., long float instead of double float) should
allow even longer periods and prevent breakdown from computer precision should it
ever be necessary to reach sequences of 108000 random numbers or more.

For benchmarking, a MRGwas considered L’Ecuyer (1999). A specific implemen-
tation already tested for good speed and randomness was used, MRG32k3a L’Ecuyer
(1999). Using C, N = 108 numbers were generated with the LSF-DDE-RNG and
MRG32k3a. MRG32k3a took about 4 seconds for 108 values. The LSF-DDE-RNG
generated 108 random numbers in 26 seconds, using a computer running Linux with
a 2.50 GHz Intel i5-2520M CPU. The LSF-DDE-RNG’s generation time scales as N.

Although theLSF-DDE-RNGgenerator is about 7 times slower thanMRG32k3a, its
period is likely on the order of 108000, significantlymore thanMRG32k3a, which has a
period of 2191. Even though both these are very high, it is advisable to use many fewer
than all the possible numbers generated from a given generator with a period, so the
number of usable numbers is much less L’Ecuyer (1999).Also, L’Ecuyer and Simard,
in 2007, showed that many widely employed RNGs failed their “Big Crush” battery
of tests, and the generation time for 108 random numbers for different generators was
also reported, including MRG32k3a L’Ecuyer and Simard (2007).

Figure 5b shows 108 numbers generated by the very widely used MT19937
“Mersenne twister” (using MATLAB software). Two successive numbers are used
for a set of x and y coordinates of 104 ×104 points. One may look at the random num-
bers produced by LSF-DDE-RNG in Fig. 5a and compare them to Fig. 5b. Although
the Mersenne twister failed two tests from “Big Crush,” L’Ecuyer and Simard (2007),
it is impossible to tell the quality of random number generators from visual inspection
alone.

7 Conclusion and Further Work

It is intuitive that chaotic time series from a DDE could produce random numbers,
and the work detailed here proposes one such method. The digit discarding technique
borrowed from feedback laser systems raises questions about the technique’s relation-
ship to the maximal Lyapunov exponent λ, for which a possible relation is speculated
in Eq. 5.5.

Although it is the first of its kind, our proposed RNG, the LSF-DDE, produces
random numbers on the same scale of quality, albeit slower, than its currently widely
used counterparts MT19937 and MRG32k3a. It is not unimaginable that, like MRGs
with LCGs, the ratio of speed to quality of our presented algorithm can be, in the future,
dramatically increased due to improvements, perhaps in the underlying algorithm.
It does nonetheless feature a fundamental difference from other popular software
generators as it does not have a practical period.

Equation 3.4 seems to be able to serve as a RNG, and similar equations may also
be useful for RNGs. Equations 3.1 and 3.2 have solutions with similar behavior to
solutions from Eq. 3.4. And so, tests could be carried out to examine their usefulness
asRNGs. Finally, the output quality of the proposed generator could be further checked
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by running tests for larger sequences of numbers. Different values of β and φ could
also be used to verify for similar randomness as these quantities are varied.
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