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1. What does probability mean in physics?

This is something that HB is concerned about, specifically questions
about the validity of equating probability with frequencies.

MCM doe not understand exactly what he means, nor what is concerning
him.

2. Which entropy? Boltzmann, Gibbs, or other?

3. The issue of temporal change: Why does it happen?

Added is the issue of why there seems to be a universally preferred
direction.

HB cites the case of the Boltzmann equation in which apparently fully
time symmetric invariant laws give rise to temporally changing behaviours.

MCM says that this is because of the fact that in the derivation of the
Boltzmann equation from the Liouville equation an irreversible assumption
was snuck in when the collision integral is written. I maintain that this is the
case in the “molecular chaos” assumption because in writing the two particle
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distributions f2(x, v, t) for the pre-collisional and post-collisional situation,
call them f2pre(x, v, t) and f2post(x, v, t) the molecular chaos assumption is
invoked (Chapman and Cowling, 1970; Cercignani, 1975) stating that

f2pre(x, v, t) = f1,apre(x, v, t)f
1,b
pre(x, v, t) (1)

and
f2post(x, v, t) = f1,apost(x, v, t)f

1,b
post(x, v, t). (2)

4. Is the direction of time an issue (except for aging questioners)?

5. The issue of reversibility for Markov operators

Consider the stochastic perturbed differential equation

dxi
dt

= Fi(x) +

d∑
j=1

σij(x)ξj , i = 1, . . . , d (3)

with the initial conditions xi(0) = xi,0, where σij(x) is the amplitude of the

stochastic perturbation and ξj =
dwj

dt
is a “white noise” term that is the

derivative of a Wiener process. In matrix notation we can rewrite Eq. 3 as

dx(t) = F (x(t))dt+ Σ(x(t)) dw(t), (4)

where Σ(x) = [σij(x)]i,j=1,...,d. Here it is always assumed that the Itô, rather
that the Stratonovich, calculus, is used. For a discussion of the differences
see Horsthemke and Lefever (1984), Lasota and Mackey (1994) and Risken
(1984). In particular, if the σij are independent of x then the Itô and the
Stratonovich approaches yield identical results.

The Fokker-Planck equation that governs the evolution of the density
function f(t, x) of the process x(t) generated by the solution to the stochastic
differential equation (4) is given by

∂f

∂t
= −

d∑
i=1

∂[Fi(x)f ]

∂xi
+

1

2

d∑
i,j=1

∂2[aij(x)f ]

∂xi∂xj
(5)

where

aij(x) =
d∑

k=1

σik(x)σjk(x).
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If k(t, x, x0) is the fundamental solution of the Fokker-Planck equation, i.e.
for every x0 the function (t, x) 7→ k(t, x, x0) is a solution of the Fokker-Planck
equation with the initial condition δ(x−x0), then the general solution f(t, x)
of the Fokker-Planck equation (5) with the initial condition

f(x, 0) = f0(x)

is given by

f(t, x) =

∫
k(t, x, x0)f0(x0) dx0. (6)

From a probabilistic point of view k(t, x, x0) is a stochastic kernel (tran-
sition density) and describes the probability of passing from the state x0 at
time t = 0 to the state x at a time t. Define the Markov operators P t by

P tf0(x) =

∫
k(t, x, x0)f0(x0) dx0, f0 ∈ L1. (7)

Then P tf0 is the density of the solution x(t) of Eq. 4 provided that f0 is the
density of x(0).

The steady state density f∗(x) is the stationary solution of the Fokker
Planck Eq. (5):

−
d∑

i=1

∂[Fi(x)f ]

∂xi
+

1

2

d∑
i,j=1

∂2[aij(x)f ]

∂xi∂xj
= 0. (8)

If the coefficients aij and Fi are sufficiently regular so that a fundamen-
tal solution k exists, and

∫
X k(t, x, y) dx = 1, then the unique generalized

solution (6) to the Fokker-Planck equation (5) is given by Eq. 7.
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