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1. Introduction

2. Preliminaries

Consider a system operating in a phase space X. On this phase space
the temporal evolution of a system is described by a dynamical law St
that maps points in the phase space X into new points, i.e., St : X → X,
as time t changes. In general X may be a d-dimensional phase space, either
finite or not, and therefore x is a d-dimensional vector. Time t may be either
continuous (t ∈ R) as, for example, it would be for a system whose dynamics
were governed by a set of differential equations, or discrete (integer valued,
t ∈ Z) if the dynamics are determined by discrete time maps.

I only consider autonomous processes in which the dynamics St are not
an explicit function of the time t so it is always the case that St(St′(x)) =
St+t′(x). Thus, the dynamics governing the evolution of the system are the
same on the intervals [0, t

′
] and [t, t+ t

′
].

Remark 1. This is not a serious restriction since any non-autonomous
system can always be reformulated as an autonomous one by the definition
of new dependent variables.

Two types of dynamics will be important. Consider a phase space X
and a dynamics St : X → X. For every initial point x0, the sequence
of successive points St(x

0), considered as a function of time t, is called a
trajectory.

Definition 1. Time reversal invariant or reversible or invertible dy-
namics.

In the phase space X, if the trajectory St(x
0) is nonintersecting with

itself, or intersecting but periodic, then at any given final time tf such that
xf = Stf (x0) we could change the sign of time by replacing t by −t, and

run the trajectory backward using xf as a new initial point in X. Then
our new trajectory S−t(x

f ) would arrive precisely back at x0 after a time
tf had elapsed: x0 = S−tf (xf ). Thus in this case we have a dynamics
that may be reversed in time completely unambiguously. Dynamics with this
character are known variously as time reversal invariant Sachs (1987) or
reversible Reichenbach (1957) in the physics literature, and as invertible
Lasota and Mackey (1994) in the mathematics literature.

Definition 2. We formalize this by introducing the concept of a dynamical
system {St}t∈R (or, alternately, t ∈ Z for discrete time systems) on a
phase space X, which is simply any group of transformations St : X → X
having the properties:
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1. S0(x) = x; and

2. St(St′(x)) = St+t′(x) for t, t′ ∈ R or Z.

Remark 2. Since, from the definition, for any t ∈ R or Z, we have

St(S−t(x)) = x = S−t(St(x)),

it is clear that dynamical systems are invertible in the sense discussed
above since they may be run either forward or backward in time. Systems
of ordinary differential equations are examples of dynamical systems as are
invertible maps. (See Examples 1 and 2 below). All of the equations of
classical and quantum physics are invertible.

Example 1. Think about a simple discrete time system whose dynamics are
given by

S(x) = 2x,

so Sn(x) = 2nx for n ∈ Z and let the system run until a final time nf so
Snf

(x) = 2nfx and let this be the initial condition. Now reverse the ‘time’
n → −n and run the system backwards so Snf−1(x) = 2nf−1x and finally
Snf−nf

= S0(x) = x, the initial value.
The reversed trajectory has identically traversed (in reverse time) the

initial trajectory that was in forward time.

Example 2. Alternately consider a continuous time system whose dynamics
are described by the simple differential equation

dx

dt
= −γx, x(t = 0) = x0

so
x(t) = x0e

−γt.

At a final time tf we have

x(tf ) = x0e
−γtf .

If we pick this value of x(tf ) as the initial value and ‘reverse the time’ so
now the dynamics are given by

dx

dt
= γx, x0 = x(tf )

then
x(t) = x(tf )eγt,
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and finally
x(t = tf ) = x(tf )eγtf = x0e

−γtf eγtf ≡ x0
and again the reversed trajectory has exactly traversed (in reverse time) the
initial trajectory that was forward in time.

Definition 3. To illustrate the second type of dynamics, consider a trajec-
tory that intersects itself but is not periodic. Now starting from an initial
point x0 we find that the trajectory {St(x0)} eventually has one or more
transversal crossings x⊥ of itself. If we let t⊥ be the time at which the first
one of these crossings occurs, and choose our final time tf > t⊥, then picking
xf = Stf (x0) and reversing the sign of time to run the trajectory backward

from xf poses a dilemma once the reversed trajectory reaches x⊥ because
the dynamics give us no clue about which way to go! Situations like this are
called irreversible in the physics literature, while mathematicians call them
non-invertible.

Definition 4. Therefore, the second type of dynamics that is important to
distinguish are those of semi-dynamical systems {St}t>0, which is any
semigroup of transformations St : X → X, i.e.

1. S0(x) = x; and

2. St(St′(x)) = St+t′(x) for t, t′ ∈ R+ (or Z).

Remark 3. The difference between the definition of dynamical and semi-
dynamical systems lies solely in the restriction of t and t

′
to values drawn

from the positive real numbers, or the positive integers, for the semi-dynamical
systems. Thus, in contrast to dynamical systems, semi-dynamical systems
are non-invertible and may not be run backward in time in an unambigu-
ous fashion. Examples of semi-dynamical systems are given by non-invertible
maps, delay differential equations, and some partial differential equations.

Example 3. Now consider a slightly more complicated discrete time system
with dynamics given by

S(x) = 2x mod 1.

Again it is quite easy to iterate this forward in time since Sn(x) = 2nx
mod 1 for n ∈ Z. Again let the system run until a final time nf so Snf

(x) =
2nfx mod 1 and let this be the initial condition.

Now reverse the ‘time’ n → −n and try to run the system backwards.
One immediately comes to an impasse since Snf−1(x) is not unique and in-
deed there are two possible choices for the first backwards (in time) iteration.
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This means that for a given Snf
(x) there are 2nf possible values of x that

could have yielded the same value.
This is an example of a non-invertible system.

Remark 4. Often there is a certain confusion in the literature when the
terms reversible and irreversible are used, and to avoid this we will always
use the adjectives invertible and non-invertible. In spite of the enor-
mous significance of distinguishing between dynamical and semi-dynamical
systems later, at this point no assumption is made concerning the invertibil-
ity or non-invertibility of the system dynamics.
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3. Background for standard stuff: Setting the scene

Consider the stochastic perturbed differential equation

dxi
dt

= Fi(x) +

d∑
j=1

σij(x)ξj , i = 1, . . . , d (1)

with the initial conditions xi(0) = xi,0, where σij(x) is the amplitude of the

stochastic perturbation and ξj =
dwj
dt

is a “white noise” term that is the

derivative of a Wiener process w(t). In matrix notation we can rewrite Eq. 1
as

dx(t) = F (x(t))dt+ Σ(x(t)) dw(t), (2)

where Σ(x) = [σij(x)]i,j=1,...,d.

Remark 5. Here it is always assumed that the Itô, rather that the Stratonovich,
calculus, is used. For a discussion of the differences see Horsthemke and
Lefever (1984), Lasota and Mackey (1994) and Risken (1984). In particular,
if the σij are independent of x then the Itô and the Stratonovich approaches
yield identical results.

The Fokker-Planck equation that governs the evolution of the density
function f(t, x) of the process x(t) generated by the solution to the stochastic
differential equation (2) is given by

∂f

∂t
= −

d∑
i=1

∂[Fi(x)f ]

∂xi
+

1

2

d∑
i,j=1

∂2[aij(x)f ]

∂xi∂xj
(3)

where

aij(x) =

d∑
k=1

σik(x)σjk(x).

If k(t, x, x0) is the fundamental solution of the Fokker-Planck equation, i.e.
for every x0 the function (t, x) 7→ k(t, x, x0) is a solution of the Fokker-Planck
equation with the initial condition δ(x−x0), then the general solution f(t, x)
of the Fokker-Planck equation (3) with the initial condition

f(x, 0) = f0(x)

is given by

f(t, x) =

∫
k(t, x, x0)f0(x0) dx0. (4)
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From a probabilistic point of view k(t, x, x0) is a stochastic kernel (tran-
sition density) and describes the probability of passing from the state x0 at
time t = 0 to the state x at a time t. Define the Markov operators P t by

P tf0(x) =

∫
k(t, x, x0)f0(x0) dx0, f0 ∈ L1. (5)

Then P tf0 is the density of the solution x(t) of Eq. 2 provided that f0 is the
density of x(0).

The steady state density f∗(x) is the stationary solution of the Fokker
Planck Eq. 3:

−
d∑
i=1

∂[Fi(x)f ]

∂xi
+

1

2

d∑
i,j=1

∂2[aij(x)f ]

∂xi∂xj
= 0. (6)

If the coefficients aij and Fi are sufficiently regular so that a fundamen-
tal solution k exists, and

∫
X k(t, x, y) dx = 1, then the unique generalized

solution (4) to the Fokker-Planck equation (3) is given by Eq. 5.
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4. The one-dimensional case

Now since what I want to do requires that I have an analytic expression
for the evolution of densities in both forward and reversed time, I need to
get away from the really general stuff to something where I can write down
closed form expressions. That means pretty low-dimensional stuff.

4.1. Generalities

If we are dealing with a one dimensional system, d = 1, then the stochas-
tic differential Eq. 1 simply becomes

dx

dt
= F (x) + σ(x)ξ, (7)

where again ξ is a (Gaussian distributed) perturbation with zero mean and
unit variance, and σ(x) is the amplitude of the perturbation. The corre-
sponding Fokker-Planck equation (3) becomes

∂f

∂t
= −∂[F (x)f ]

∂x
+

1

2

∂2[σ2(x)f ]

∂x2
. (8)

The Fokker-Planck equation can also be written in the equivalent form

∂f

∂t
= −∂S

∂x
(9)

where

S = −1

2

∂[σ2(x)f ]

∂x
+ F (x)f (10)

is called the probability current.
When stationary solutions of (8), denoted by f∗(x) and defined by Ptf∗ =

f∗ for all t, exist they are given as the generally unique (up to a multiplicative
constant) solution of (6). In the case d = 1:

−∂[F (x)f∗]

∂x
+

1

2

∂2[σ2(x)f∗]

∂x2
= 0. (11)

Integration of Eq. 11 by parts with the assumption that the probability
current S vanishes at the integration limits, followed by a second integration,
yields the solution

f∗(x) =
K

σ2(x)
exp

[∫ x

x0

2F (z)

σ2(z)
dz

]
. (12)

This stationary solution f∗ will be a density if and only if there exists a
positive constant K > 0 such that f∗ can be normalized.
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4.2. An Ornstein-Uhlenbeck process

Examples of σ(x) and F (x) for which one can determine the time depen-
dent solution f(t, x) of Eq. 8 are few and far between. One solution that is
known is for an Ornstein-Uhlenbeck process.

Since it is an Ornstein-Uhlenbeck process, which was historically devel-
oped in thinking about perturbations to the velocity of a Brownian particle,
we denote the dependent variable by v so we have σ(v) ≡ σ > 0 a constant,
and F (v) = −γv with γ ≥ 0.

In this case, Eq. 7 becomes

dv

dt
= −γv + σξ, (13)

or
dv(t) = −γv(t)dt+ σdw(t), (14)

with the corresponding Fokker-Planck equation

∂f

∂t
=
∂[γvf ]

∂v
+
σ2

2

∂2f

∂v2
. (15)

The unique stationary solution is

f∗(v) =
e−γv

2/σ2∫ +∞
−∞ e−γv2/σ2dv

=

√
γ

πσ2
e−γv

2/σ2
. (16)

Further, from Risken (1984, Eq. 5.28) the fundamental solution k(t, v, v0)
is given by

k(t, v, v0) =
1√

2πb(t)
exp

{
−(v − exp(−γt)v0)2

2b(t)

}
, (17)

where

b(t) =
σ2

2γ

[
1− e−2γt

]
≥ 0 ∀γ. (18)

Remark 6. Note that for a given y and t the function k(t, ·, y) is a Gaussian
density with mean v0 exp(−γt) and variance b(t). b is always non-negative
regardless of the sign of γ

Now let f0 be an initial Gaussian density of the form

f0(v) =
1√

2πb0
exp

{
−(v −m0)

2

2b0

}
, (19)

9



where the initial variance b0 > 0 and mean m0 ∈ R. Since

P tf0(v) =

∫
R
k(t, v, v0)f0(v0) dv0,

we obtain by direct calculation using Eq. 17

P tf0(v) =
1√

2π(b0e−2γt + b(t))
exp

{
−
(
v −m0e

−γt)2
2(b0e−2γt + b(t))

}
. (20)

Alternately we write

P tf0(v) =
1√

2πVar(t)
exp

{
−
(
v −m0e

−γt)2
2Var(t)

}
(21)

where

Var(t) = (b0e
−2γt + b(t)) =

σ2

2γ
+

(
b0 −

σ2

2γ

)
e−2γt. (22)

Suppose that we now let the Ornstein-Uhlenbeck process (14) be started
off with an initial density f0(v) given by (19) and let it run for a period of
time tf > 0 until the density f(tf , v) = P tf f0(v) is given by

f(tf , v) = P tf f0(v) =
1√

2πVar(tf )
exp

{
−

(v −mf )2

2Var(tf )

}
, (23)

where

Var(tf ) = (b0e
−2γtf + b(tf )) =

σ2

2γ
+

(
b0 −

σ2

2γ

)
e−2γtf (24)

and
mf = m0e

−γtf . (25)
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4.3. Reversing the time in an Ornstein-Uhlenbeck process: Doing it rather
blindly

Now, playing God (or something like that), we magically reverse time
t→ τ = (−t) so the dynamics (14) are now transformed to

dv(t) = γv(t)dt+ σdw(t), (26)

with the corresponding Fokker-Planck equation

∂f

∂t
= −∂[γvf ]

∂v
+
σ2

2

∂2f

∂v2
. (27)

Remark 7. Note that the effect of the change in time t→ −t is to change
the sign of γ which is not reflected in a change of sign of σ in (26).

Remark 8. I am not really sure that w(−t) = w(t) which was assumed in
arriving at (26).

Remark 9. Is Equation 27 really the correct evolution equation for the
density f(t, v) in the case that the time is reversed?

The reason that I wonder is the following. If we change t → −t in
the Fokker Planck equation (15) then we end up with something different.
Namely we have

∂f

∂t
= −∂[γvf ]

∂v
− σ2

2

∂2f

∂v2
, (28)

so we have a reversal of the sign of γ but also a reversal of the sign of σ2!
Note that the stationary solution of (28) is exactly the same as the sta-

tionary solution (16)! Interesting, and certainly different from what follows
below.

WHAT IS GOING ON HERE?

The stationary solution of (27) is

f∗(v) = Ceγv2/σ2
(29)

but it is not a density since it is not integrable. But that minor problem is
not the point here.

Remark 10. The solution trajectory for v(t) given by (26) is not time
reversal invariant in the sense defined earlier in Definition 1 because of the
presence of the Wiener process w(t).

However, the question that we want to answer is whether or not the
densities P tf0(x) are.

That is, if we
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1. start off the Ornstein-Uhlenbeck process at time t = 0 with density
f0(v)

2. let the density evolve until a time tf when the density has become
ftf (v) = P tf f0(v)

3. now reverse the time t→ −t which is equivalent to γ → −γ and keep
ftf (v) as the initial condition and

4. let the density evolve (effectively backwards) until a time tf when the
density has become P tf ftf (v)

5. then ask the question of whether f0(v) = P tf ftf (v)?

Eq. (17) holds for both positive and negative γ (Risken, 1984, page 100),
so rewriting explicitly for the case of negative γ we have

k̄(t, v, v0) =
1√

2πb̄(t)
exp

{
−(v − exp(γt)v0)

2

2b̄(t)

}
, (30)

where now

b̄(t) =
σ2

2γ

[
e2γt − 1

]
. (31)

Further, the initial density is now given by (23) so the solution of the time
reversed Ornstein-Uhlenbeck process is given by

P tftf (v) =

∫
R
k̄(t, v, v0)ftf (v0) dv0.

By direct calculation we obtain

P tftf (v) =
1√

2π(Var(tf )e2γt + b̄(t))
exp

{
−

(
v −mfe

γt
)2

2(Var(tf )e2γt + b̄(t))

}
(32)

so

P tf ftf (v) =
1√

2π(Var(tf )e2γtf + b̄(tf ))
exp

{
−

(
v −mfe

γtf
)2

2(Var(tf )e2γtf + b̄(tf ))

}
.

(33)
with

b̄(tf ) =
σ2

2γ

[
e2γtf − 1

]
. (34)

Now if you make the appropriate substitutions to figure out what P tf ftf (v)
really looks like you end up with

P tf ftf (v) =
1√

2πVar−(tf )
exp

{
− (v −m0)

2

2Var−(tf )

}
(35)
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with

Var−(tf ) = Var(tf )e2γtf + b̄(tf ) = b0 + 2 · σ
2

2γ
[e2γtf − 1]. (36)

Remark 11. So what is the bottom line?

1. Now it is clear from (35) that P tf ftf (v) 6= f0(v) as given in (19).

2. P tf ftf (v) has the same mean value (m0) as f0(v) but the variance is
greater.

3. If you keep repeating (iterating) this procedure, then the variance will
just keep increasing with each successive reversal of time.

4. Is this because Uffink is wrong? He (Uffink, 2007, page 1062) states
without equivocation that:

“I conclude that irreversible behaviour is not built into
the Markov property, or in the non-invertibility of the tran-
sition probabilities, (or in the repeated randomness assump-
tion, or in the Master equation or in the semigroup prop-
erty). Rather the appearance of irreversible behaviour is due
to the choice to rely on the forward transition probabilities,
and not the backward.”

5. Or because I misinterpreted what he was saying?

6. Or because there is an approximation in the derivation of the Fokker
Planck equation that introduces irreversibility that is not really there
(i.e. irreversibility is a mathematical artifact)?

7. The reason that it is important to understand the source of (my) confu-
sion is because of the results that are contained in Mackey and Tyran-
Kamińska (2006a,b) on the evolution of the conditional entropy in
systems with noise.
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4.4. Reversing the time in an Ornstein-Uhlenbeck process: Doing it via mo-
ments from the stochastic equation

Going back to (13), remember that we had

dv

dt
= −γv + σξ, v(0) = v0,

where v is a scalar and the coefficients γ and σ are constant. Let’s try to
consider this in a different light to see if the results are different.

By definition, the solution of (13) satisfies

v(t) = −γ
∫ t

0
v(s) ds+ σ

∫ t

0
dw(s) + v0

or, using the fact (Lasota and Mackey, 1994, Example 11.3.1) that∫ T

0
dw(t) = w(T ),

we have instead

v(t) = −γ
∫ t

0
v(s) ds+ σw(t) + v0. (37)

Equation 37 is easy to deal with since it does not contain an Itô integral, and,
since the one integral that does appear exists for almost ω taken separately,
we may use the usual rules of calculus.

Setting

z(t) =

∫ t

0
v(s) ds, (38)

(37) becomes, for almost all ω,

dz

dt
= −γz(t) + σw(t) + v0.

For fixed ω, this is an ordinary differential equation and, thus,

z(t) =

∫ t

0
e−γ(t−s)(σw(s) + v0) ds. (39)

Combining equations 37 through (39) after some manipulation, yields

v(t) = v0e
−γt − γσ

∫ t

0
e−γ(t−s)w(s) ds+ σw(t).
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Using the integration by parts formula (Lasota and Mackey, 1994, Equation
11.4.8),∫ β

α
f(t) dw(t) = −

∫ β

α
f ′(t)w(t) dt+ f(β)w(β)− f(α)w(α), (40)

f : [α, β]→ R differentiable with a continuous derivative f ′, this becomes

v(t) = v0e
−γt + σ

∫ t

0
e−γ(t−s)dw(s). (41)

From (Lasota and Mackey, 1994, Proposition 11.4.1), if f : [α, β]→ R is
a continuous function, then we have

E

(∫ β

α
f(t) dw(t)

)
= 0 (42)

and

D2

(∫ β

α
f(t) dw(t)

)
=

∫ β

α
[f(t)]2 dt. (43)

From (42) and (43), it follows that

E(v(t)) = e−γtE(v0) (44)

and, taking note of the independence of v0 and w(t),

D2(v(t)) = e−2γtD2(v0) + σ2D2

(∫ t

0
e−γ(t−s)dw(s)

)
.

With (43), this finally reduces to

D2(v(t)) = e−2γtD2(v0) + σ2
∫ t

0
e−2γ(t−s)ds

= e−2γtD2(v0) +
σ2

2γ
[1− e−2γt] (45)

Remark 12. What I want to do now is:

1. Start the system off with an initial mean value of m0 at t = 0 and
variance b0 = D2(v0)

2. let the system run for a period of time tf until it has a mean value
from (44)

E(v(t)) = e−γtfE(v0) = m0e
−γtf

and a variance

D2(v(tf )) = e−2γtfD2(v0) +
σ2

2γ
[1− e−2γtf ].
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3. and then reverse the time t → −t (which is equivalent to γ → −γ) to
see what the mean and variance are after a period of time tf

OK so with this as a programme we first of all have for the reversed
process that

E−(v(t)) = eγtE(v(tf )) (46)

and

D2
−(v(t)) = e2γtD2(v(tf )) +

σ2

2γ
[e2γt − 1]. (47)

Inserting the appropriate initial conditions into these expressions we have
at a time tf

E−(v(tf )) = E(v(t0)) (48)

and

D2
−(v(tf )) = D2(v0)) + 2

σ2

2γ
[e2γtf − 1], (49)

which is precisely the same result that I obtained in the previous section by
looking at the solutions of the Fokker-Planck equation.
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4.5. Reversing the time in an Ornstein-Uhlenbeck process: The view from
electrical engineering

Realizing that I was totally lost I started to search the literature and
discovered that there is quite a bit about time reversed diffusions. A lot of it
is from finance, and I really do not understand what motivates it–something
to do with a bridge. Also people are interested in Brownian motions with a
fixed start and end point.

However I seemed to have a bit more luck in the electrical engineering
literature, specifically with some papers from Ljung and Kailath (1976),
Lindquist and Picci (1979), and Anderson and Kailath (1979) and Anderson
(1982). As with finance I am still not totally sure what motivates them, but
the following quote from Ljung and Kailath (1976) starts to give some of
the flavor for what is going on.

“Now it is clear that by choosing the representation (1) a cer-
tain asymmetry in the direction of time is introduced which is
not present in the basic problem. While the covariance function
R(·, ·) gives no preference to any direction of time, the model
(1) is constructed as a state-space (or Markovian, as it is often
called) representation only for increasing t (hence the subscript
f), because of the condition that uf (s) be uncorrelated with
xf (r). Although this asymmetry can be (partially) overcome by
solving (1) backwards from t = T , the corresponding model is no
longer suitable to use in estimation problems. The reason is that
uf (s) is now correlated with the initial condition xf (T ). There-
fore, even though the process xf (·) indeed has the Markovian
property in either time-direction, the representation (1) cannot
be used directly in estimation formulas evolving backwards in
time, and hence we have essentially fixed the direction of time in
(1).” (Ljung and Kailath, 1976, page 488, RH column, bottom)

I can go a bit further by showing an example drawn from Anderson
(1982) that illustrated his main result, (Anderson, 1982, Theorem, page
317).

Example 4. Namely if you look at (Anderson, 1982, Section 6.3) he con-
siders, for scalar x

dx = f(x)dt+ g(x)dw. (50)

Here, f(·) and g(·) are smooth and confined to the second and fourth quad-
rants, each lying in a cone whose boundaries are strictly within the quad-
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rants. It follows easily that from his main theorem that

π(x) =
k

g2(x)
exp

{∫ x

0

2f(σ)

g2(σ)
dσ

}
, (51)

and then

dw̄ = dw +

[
2f(x)

g(x)
− g′(x)

]
dt, (52)

and the reverse-time equation becomes

dx = −f(x)dt+ g(x)dw̄. (53)

Remark 13. First note that (53) is identical to my equation 26 which I got
by proceeding rather blindly in the Ornstein-Uhlenbeck case that g = σ is a
constant.

However, if g is not a constant then the results are NOT the same.

Remark 14. The mystery starts to become somewhat clearer/murkier if we
write (53) in the form

dx = −f(x)dt+ g(x)dw̄ (54)

= −[f(x) +
1

2
(g2(x))′]dt+ g(x)dw (55)

and the Fokker Planck equation corresponding to (53), which is explicitly

∂p

∂t
=

∂

∂x

[(
f(x) +

1

2
(g2(x))′

)
p

]
+
g2(x)

2

∂2p

∂x2
(56)

The terms on the RHS of (56) is vaguely like the term that would be obtained
in going from an Ito to a Stratonovich calculus in dealing with these problems
(remember that I started off assuming an Ito calculus), but it is not quite
right since there is a difference in sign in front of that first term.

Remark 15. So to conclude it looks like the Anderson (1982) time-reversal
treatment proscribes the following:

1. In dx = f(x)dt+ g(x)dw

2. Change the time t→ −t to give dx = −f(x)dt+ g(x)dw̄

3. Where w̄(t) = w(−t) is given by

dw̄(t) = dw(−t) = dw(t) +

[
2f(x)

g(x)
− g′(x)

]
dt
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4. To finally give

dx = −[f(x) +
1

2
(g2(x))′]dt+ g(x)dw

5. With a corresponding Fokker Planck equation

∂p

∂t
=

∂

∂x

[(
f(x) +

1

2
(g2(x))′

)
p

]
+
g2(x)

2

∂2p

∂x2
.

6. Frankly, at the moment this does not make sense to me.
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