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� A new model of the genetic and metabolic branches of the GAL network is developed.

� Bistability is shown to be an inherent property of its genetic branch.
� The model is shown to be robust to genetic mutations and molecular instabilities.
� It is shown that the GAL network exhibits partial low pass filtering capacity.
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The galactose network has been extensively studied at the unicellular level to broaden our understanding
of the regulatory mechanisms governing galactose metabolism in multicellular organisms. Although the
key molecular players involved in the metabolic and regulatory processes of this system have been
known for decades, their interactions and chemical kinetics remain incompletely understood. Mathe-
matical models can provide an alternative method to study the dynamics of this network from a
quantitative and a qualitative perspective. Here, we employ this approach to unravel the main properties
of the galactose network, including equilibrium binary and temporal responses, as a way to decipher its
adaptation to actively-changing inputs. We combine its two main components: the genetic branch,
which allows for bistable responses, and a metabolic branch, encompassing the relevant metabolic
processes that can be repressed by glucose. We use both computational tools to estimate model para-
meters based on published experimental data, as well as bifurcation analysis to decipher the properties
of the system in various parameter regimes. Our model analysis reveals that the interplay between the
inducer (galactose) and the repressor (glucose) creates a bistable regime which dictates the temporal
responses of the system. Based on the same bifurcation techniques, we explain why the system is robust
to genetic mutations and molecular instabilities. These findings may provide experimentalists with a
theoretical framework with which they can determine how the galactose network functions under
various conditions.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Experimental studies of genetic regulatory networks in uni-
cellular organisms are based, at least in part, on the premise that
the main regulatory mechanisms are conserved across species
regardless of the complexity of the organism. The galactose net-
work, a typical example of such a network, has been extensively
gy, McGill University, McIn-
Osler, Montreal, Quebec, Ca-

ra).
studied in the budding yeast Saccharomyces cerevisiae. It is com-
prised of metabolic reactions coupled to a set of genetic regulatory
processes and glucose-repressed proteins. This network is typi-
cally activated when galactose, a monosaccharide found in dairy
and vegetables, becomes the only available energy source, trig-
gering a cascade of intracellular processes that can be repressed by
glucose.

The protein machinery of the galactose network comprises ∼5%
of the total cellular mass (Bhat, 2008). Due to this high protein
load, galactose is energetically more expensive to use than glucose.
As a result, cells use glucose as a transcriptional repressor of the
GAL network proteins (labelled Gal proteins) when both
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monosaccharides (glucose and galactose) are present. Although
not an essential nutrient, galactose is a crucial moiety in cellular
membrane glycoproteins (de Jongh et al., 2008). Genetic mutations
in the amino-acid sequence of the galactose metabolic enzymes
lead to the accumulation of galactitol, an alcohol-form of galactose,
to lethal levels if no food restrictions are applied. Such genetic
disorders fall under the pathological condition “galactosemia”,
which currently affects 1 in 600,000 children (Murphy et al., 1999).
Secondary effects of this disease include cataracts and neuronal
degenerative disorders (Timson, 2006). For these health reasons, it
is imperative to obtain a thorough understanding of the processes
and pathways governing galactose regulation.

Interest in the Gal proteins first appeared in the 1940s with
work by Kosterlitz (1943) that focused on galactose fermentation
and metabolism in budding yeast. Mathematical modeling of this
system, however, started appearing in the late 1990s with work by
Venkatesh et al. (1999), focusing on the regulatory GAL network
that consisted of three feedback loops. Since then, several groups
have worked on variations of this study by developing models of
various degrees of complexity to understand the experimental
results (de Atauri et al., 2004, 2005; Ramsey et al., 2006; Acar
et al., 2005, 2010; Apostu and Mackey, 2012; Venturelli et al.,
2012).

For example, de Atauri and colleagues studied the effect of
transcriptional noise on galactose metabolic and gene regulation
by developing dynamics models of these biological systems (de
Atauri et al., 2004). The models were used to explain certain as-
pects of the GAL network including the switch-like phenomenon,
the tight control of metabolic concentrations, particularly ga-
lactose-1-phosphate (Gal1P) associated with galactosemia, and the
control machinery that attenuates high-frequency noise. The
control of metabolic concentrations was further analyzed to show
that positive and negative regulatory feedback loops, mediated
through the Gal3 and the Gal80 proteins respectively, are neces-
sary to avoid large intracellular variations and long initial tran-
sients in the induction phase of the network (Ramsey et al., 2006).
By investigating the effects of glucose oscillations, Bennett et al.
(2008) then concluded that the network behaves as a low pass
filter without offering a complete dynamic analysis of the prop-
erties of the system.

Examining the effect of different feedback loops through mu-
tations in the GAL mRNA strains revealed that bistable induction
curves can appear over a limited range of galactose concentrations
for all yeast strains except for the GAL3 mutant, which encodes for
a regulatory protein of the network (Acar et al., 2005). Interest-
ingly, removing or diminishing various feedback loops within the
system allowed for the quantification of the number of gene copies
and showed the existence of a 1-to-1 stoichiometry between Gal3
and Gal80 proteins in the gene network (Acar et al., 2010).

The bistability property was further analyzed by Venturelli
et al. (2012) using the GAL network model of Acar et al. (2005). The
model was modified by including a simple feedback mechanism in
which GAL3, GAL80 and GAL1 transcription rates depended on the
Gal4 protein in a Michaelis–Menten fashion and Gal3 and Gal1
received a constant input rate upon galactose administration to
the cell. It also included a recently-discovered positive feedback
loop of the galactose network involving Gal1 protein (Abramczyk
et al., 2012). The study demonstrated that bistability occurs due to
pathways involving both Gal3 and Gal1 proteins (labelled Gal3p
and Gal1p, respectively), contradicting previous experimental re-
sults by Acar et al. (2005). Moreover, it concluded that the inter-
play between these two positive feedback loops increases the
bistability range of the system and that connections of this kind
can be beneficial in nature as it may induce a faster response time
to abrupt environmental changes than a single positive loop. In
Apostu and Mackey (2012), the exact sequence of reactions
occurring at the promoter level of GAL genes was further analyzed
mathematically to determine how bistability is affected by model
variations involving Gal3p, and to show that the GAL regulon is
induced at the promoter level by Gal3p activated dimers through a
non-dissociation sequential model.

To characterize the GAL network dynamics and to understand
how various extracellular perturbations affect its memory and
filtering capacity, we apply in this paper a mathematical modeling
approach that extends the study of Apostu and Mackey (2012) by
coupling their model to four different glucose-repression events
and a simplified metabolic pathway. The model takes into account
the major processes responsible for the determination of in-
tracellular galactose dynamics: Gal3 and Gal1 activation, galactose
transport through the Gal2 permease, phosphorylation by Gal1
kinase and dilution due to cell growth. The model reveals that
bistability not only persists in the full GAL metabolic-gene net-
work but is also dynamically robust (i.e., exhibited over a wide
range of parameters), which means that it is adaptable to various
conditions. The model is then examined to determine its sensi-
tivity to different concentrations of the repressor (glucose) and its
adaptability to a repressive oscillatory signal at different
frequencies.
2. Mathematical modeling of the GAL regulon and the Leloir
pathway

When discussing the cellular processes affected by galactose,
we typically focus on two main branches, as shown in Fig. 1(A):
(i) the metabolic branch, or the Leloir pathway that converts ga-
lactose into other forms suitable for energy consumption; and (ii)
the genetic branch that consists of regulatory processes happening
on a slower time scale. Galactose activates several feedback loops
once transported into the cytosol. The other important sugar in
yeast is raffinose, a trisaccharide composed of fructose, glucose
and galactose. With respect to the galactose network, raffinose and
glycerol neither activate, nor inhibit the galactose network, as
galactose and glucose do, respectively. Hence, these sugars are
often called non-inducible, non-repressible media (NINR) (Stock-
well et al., 2015). In their presence, a basal level, or “leakage”, in the
expression of GAL80 and GAL3 mRNA is observed (with only 3–5
fold increase) (Giniger et al., 1985). Their overall effects on the
galactose network are summarized in Table B1 of Appendix B).

In the following model development, proteins of the galactose
network are denoted by small letters (e.g. Gal1p and Gal2p),
whereas capital letters are used for genes (e.g. GAL3 and GAL2).
GAL3, GAL80, GAL2 and GAL1 mRNA expression levels are denoted
by M3, M80, M2 and M1, respectively, whereas their protein con-
centrations are denoted by G3, G80, G2 and G1, respectively.
Throughout our analysis, we will assume that protein translation is
directly proportional to the expression level of mRNA produced.

2.1. GAL regulon

The gene regulation part of our model combines assumptions
from Apostu and Mackey (2012) with recent experimental results
on the existence of a positive feedback loop mediated by Gal1p
(Abramczyk et al., 2012; Venturelli et al., 2012). The kinetic reac-
tions pertaining to the gene regulatory network are shown sche-
matically in Fig. 1(B).

As indicated by panel B1 of Fig. 1, Gal4p dimers (G4d) have a
high affinity for regions of the GAL promoter known as upstream
activating sequences ( [ ]UAS g), which are 17 base-pair sequences.
Depending on the respective mRNA species, these sequences can
occur more than once. It has been shown experimentally that for
the GAL3 and GAL80 genes, there is a single [ ]UAS g , while for the



Fig. 1. (A) Schematic illustration of the full galactose network, containing its genetic and metabolic branches. (B) Schematic illustration of the GAL regulon and the effects of
the proteins on their own transcription: (1) Gal4p dimers ( [ ]G G:4 4 ) bind to the upstream activating sequence ( [ ]UAS g). (2) In the absence of galactose, Gal80p dimers
([ ]G G:80 80 ) bind to Gal4p dimers. (3) In the presence of galactose, activated Gal3 proteins (

⁎
G3) bind to [ ] [ ]G G G G: : :4 4 80 80 complex, inducing network activation. (4) Gal1p

dimers ([ ]
⁎ ⁎

G G:1 1 ) replace Gal3p dimers ([ ]
⁎ ⁎

G G:3 3 ) in the complex. The repeated dots (⋯) in each subpanel represent the series of binding reactions undertaken by each mRNA
species considered. (C) Schematic illustration of the metabolic branch (to be read from top-left corner) showing how via facilitated diffusion, galactose gets transported
across the plasma membrane by the permease Gal2p (G2). (D) Table showing the definition of symbols used in previous panels.
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other GAL mRNAs, there are up to 5 sequences (Ideker et al., 2001;
Sellick et al., 2008; de Atauri et al., 2004). The [ ]G UAS:d g4 complex
has a high affinity to the Gal80 dimer (G80d) when raffinose is
present (panel B2). This dimer acts as an inhibitor and therefore
creates a negative feedback on its own transcription. In the pre-
sence of galactose, transcription is induced via activated Gal3p
dimers ([ ])⋆ ⋆G G:3 3 , which remove the inhibition exerted by Gal80p
dimers (panel B3) by generating the tripartite complex
[ ]G G G: :d d d4 80 3 in high proportion in the nucleus during the first
10 min of galactose induction (Abramczyk et al., 2012). This is then
followed by the substitution of Gal3p by Gal1p dimers to form the
new tripartite complex [ ]G G G: :d d d4 80 1 (panel B4) for more efficient
transcription.

Based on the above discussion, we conclude that the model
should contain the following two reactions: the interactions of
Gal3p (G3) and Gal1p (G1) with intracellular galactose (Gi) as de-
termined by the two transitions

⎯ →⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯ ( )
( ) ⁎ ( ) ⁎G G G G, , 1

F G F G
3 3 1 1

i i3 1

where F3 and F1 are the reaction rates appearing in Table B1, and
⁎G3 and ⁎G1 are the active forms of G3 and G1, respectively. The exact

activation mechanism of these reactions has not been elucidated
so far. Therefore, we assume here that they follow a saturating
function with Michaelis–Menten kinetics
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where κC,1 and κC,3 are the maximal catalytic rates and KS is the
galactose concentration for half-maximal activation. For simplicity,
we will assume that intracellular galactose binds with the same
half-maximal activation to both G3 and G1 proteins.

There are several promoter conformations that play a crucial
role in determining the probability of gene expression. In our
model, we will use ( ) to describe the probability of transcription,
also known as the fractional transcription level, which is similar to
that used in Apostu and Mackey (2012) and Venkatesh et al.
(1999). It represents the fraction of the GAL promoters that is ac-
tive and is expressed by
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whenever the promoter contains one single [ ]UAS g . D1, D2, D3 and
D4 are the four promoter conformations, as described in Fig. 1
(B) and Table B1, and KD i, and KB i, (with ∈ { }i 1, 3, 80 ) are the
dissociation constants obtained using quasi-steady state (QSS)
assumptions on the dimerization and on the binding reactions. A
complete derivation of 1 is provided in Appendix B.

When the promoter, however, contains multiple [ ]UAS g , the
expression for the fractional transcription level becomes
where n is the total number of [ ]UAS g , a quantity that is equivalent
to the number of G4 dimers binding at the GAL promoter site, as
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shown in Fig. 1(B). We assume that the promoter regions act in-
dependently of one another, i.e., G4 dimers binding at one [ ]UAS g

site would not affect subsequent binding reactions.
Assuming that the rates of change for the active proteins Gal3

and Gal1 are at QSS (see Eq. (B.1a)), we can write the fractional
transcription level in Eq. (3) in terms of the inactivate proteins
Gal3 and Gal1 as follows:
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In the previous equations, γG,3 and γG,1 are the degradation rates of
the proteins Gal3 and Gal1, respectively. We assume that the ac-
tivation of these molecules does not effect the degradation pro-
cess, and these parameters will also appear in the rates of change
for the non-activated Gal3 and Gal1. Moreover, μ is another de-
gradation rate, occurring due to cellular growth, which we will use
hereafter to represent the dilution rate of all molecular species.

As in the previous regulon model of Apostu and Mackey (2012),
we do not include Gal4p in our modeling approach, since GAL4
transcription is neither repressed by glucose (Timson, 2007), nor
subject to the bistability property of the other Gal proteins (Acar
et al., 2005). This, as a result, leaves us with three important
regulatory proteins of the gene network; namely, Gal3p, Gal80p
and Gal1p.

As mentioned previously, Gal3p creates a positive feedback
loop within the system. By letting M3 denote the level of GAL3
mRNA, we can express its galactose-driven transcription in terms
of 1, with a maximal transcription rate κtr,3. We assume that GAL3
mRNA level is subject to cellular degradation at a rate γM and di-
lution at a rate μ. Based on this, we have

κ γ μ= ( ) − ( + ) ( )dM
dt

G G G G M, , , . 6tr i M
3

,3 1 80 3 1 3

As described by Abramczyk et al. (2012), Gal3p is a “ligand
sensor”; upon activation, it binds to galactose molecules and
subsequently removes the transcriptional inhibition exerted by
Gal80p. Its mRNA promoter region is characterized by having a
single binding site for the Gal4p dimer. Dynamically, GAL3 mRNA
is translated at a rate κtl,3 and the associated protein (G3) is de-
graded at a rate γG,3. We also use the conversion factor c to account
for the change in units (from mRNA copies to mM of proteins). A
fraction of the Gal3p concentration is also activated by in-
tracellular galactose (Gi), as described by Eq. (2). Thus,
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Gal80p is the inhibitory component of the GAL gene network.
In the model, M80 represents GAL80 mRNA levels and κtr,80 and γM
denote its transcription and degradation rates, respectively. Based
on this, we conclude that
κ γ μ= ( ) − ( + ) ( )dM
dt

G G G G M, , , . 8tr i M
80

,80 1 80 3 1 80

For the dynamic changes of the Gal80 protein, similar processes
as those appearing in Eq. (7) for the Gal3 protein are considered,
except for the activation induced by galactose binding, which is
absent here. Denoting GAL80 translation rate by κtl,80 and Gal80p
degradation rate by γG,80, we obtain
κ
γ μ= − ( + ) ( )

dG
dt c

M G . 9
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The presence of four [ ]UAS g on the GAL1 promoter region im-
plies that its transcription must depend on 4. By letting κtr,1 and
γM denote GAL1 transcription and mRNA degradation rates, re-
spectively, the resulting equation governing M1 dynamics becomes

κ γ μ= ( ) − ( + ) ( )dM
dt

G G G G M, , , . 10tr i M
1
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To describe the dynamic changes in Gal1p concentration, we
will use κtl,1 and γG,1 to denote GAL1 translation and Gal1p de-
gradation rates, and use Michaelis–Menten kinetics of Eq. (2) to
describe its activation by Gi. Based on this, the rate of change of
Gal1p is

κ
γ μ

κ
= − + +

+ ( )

⎛
⎝⎜

⎞
⎠⎟

dG
dt c

M
G

K G
G .

11
tl

G
C i

S i

1 ,1
1 ,1

,1
1

From a metabolic point of view, G1 kinase converts ATP and
galactose into ADP and Gal1P, denoted by Gp. Gal1P is known to
inhibit the kinase, through a mixed inhibition reaction involving
the Gal1P product binding to the G1 enzyme (Timson and Reece,
2002). This process is included in the metabolic reactions de-
scribed in the following section.
2.2. Metabolic network

In our model, we will include the following reaction steps of
the Leloir pathway (see Fig. 1(C)):

← →⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯ ⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
α κ δ( ) ( ) ( )

G G G Glycolysis,e
G

i
G

p
MetabolismGK2 1

where Ge and Gi are the extracellular and intracellular galactose
concentrations. The symbols above the arrows represent the re-
actions of the Leloir pathway, with the specific enzymes involved
(G2 and G1) as well as the reactions rates (shown between par-
entheses) for galactose transport (α), its phosphorylation (κGK) and
Gp consumption (δ). Since Gi is known to be a transcriptional ac-
tivator of the Leloir enzymes downstream from Gp, it is reasonable
to assume that, overall, δ represents these processes in the form of
a negative feedback loop. As a result, Gp is the last metabolite that
we consider in our model.

Gal2p is a transmembrane, symmetric diffusion carrier and the
main galactose transporter. GAL2 mRNA has two [ ]UAS g for acti-
vation, implying that its probability of expression can be described
by 2, with a maximum transcription rate κtr,2. The rates of change
for the GAL2 and Gal2p species are
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where γM and γG,2 are the degradation rates for GAL2 mRNA and
Gal2p, respectively, and κtl,2 is the translation rate.

For the dynamics of the GAL1 mRNA and its associated protein,
the last elements of the metabolic network, they have already
been discussed in the regulatory network of (Eqs. (10) and 11).

Recall that galactose is transported via Gal2p by facilitated
diffusion, with a maximal rate α and half-maximum transport K.
We use the conversion factor cg to convert the units from weight/
volume ([% w/v]) to millimolars ([mM]). The transport of the
molecule (T) across the plasma membrane is completely governed
by the balance between extracellular and intracellular concentra-
tions, as follows:
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This expression stems from a simplification of a carrier-facilitated
diffusion (Ebel, 1985) and is equivalent to the one found in de
Atauri et al. (2005).

Inside the cell, galactose is converted to the phosphorylated
form Gp via the Gal1p kinase. The phosphorylation is inhibited by
the Gp product through a mixed inhibition (Timson and Reece,
2002; Rogers et al., 1970), and is described by a Michaelis–Menten
function, having a maximum rate s and a half-maximum activa-
tion κp, both dependent on the intracellular galactose concentra-
tion, as follows:
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. Galactose also activates Gal3 and Gal1 pro-

teins. Hence, by considering galactose transport, its phosphoryla-
tion, its activation of Gal1p and Gal3p, as well as its dilution (μ),
we can express the rate of change of this monosaccharide by the
equation
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where ( )T G G, i2 , σ ( )Gi and ( )k Gp i are given by (Eqs. (13) and 14a
and b), respectively.

The next metabolite in the Leloir pathway is Gp. Since none of
the compounds downstream of Gal1p in the metabolic pathway
has a feedback on the regulatory processes, the remaining meta-
bolic reactions have been approximated by a single consumption
parameter δ, as follows:
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2.3. Galactose network model under glucose repression

Given that glucose is a repressor of the galactose network, we
will examine how cells respond to an oscillatory glucose signal in
the presence of galactose. Based on experimental evidence, there
are four independent pathways by which glucose can repress the
network.

2.3.1. Cellular growth
As mentioned previously, glucose is the energy source pre-

ferred by organisms, since they grow faster on glucose rather than
on galactose, phenomenon which is reflected in our model in the
dilution rate, μ. Thus, we use an increasing Hill function to express
its dependency on glucose
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where R is the glucose concentration, μ μ+a b is the maximum
dilution rate, μc is the half-maximum dilution and μn is the Hill
coefficient.

2.3.2. Transporter degradation
Experimental data indicates that glucose enhances vesicle de-

gradation of the Gal2p transporter (Horak and Wolf, 1997; Ramos
et al., 1989). To capture this effect, we assume here that the de-
gradation rate of Gal2p (denoted by γ ( )R hereafter) follows a Hill
function in its dependence on external glucose concentration
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where yc is the maximum degradation rate, γc is the half-max-
imum degradation and γn is the Hill coefficient.

2.3.3. Transcriptional regulation
Although the molecules involved in transcription have been

discovered, most of the research in this area focused on presenting
the overall reaction and the main factors without providing the
necessary data for the quantification of the repression induced by
glucose. Therefore, we approximate this process by
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where xC is the half-maximum of this repressive process and nx is
the Hill coefficient. As suggested by Bhat (2008), the inhibitor
molecule Gal80p is not affected by this repression mechanism.

2.3.4. Transporter competition
Gal2p is the main transporter of galactose and is a high-affinity

transporter for glucose (Maier et al., 2002; Reifenberger et al.,
1997), which means that both monosaccharides compete for the
same transporter. To incorporate this competition, we assume that
the rate of galactose transport depends on a scaling factor y(R),
given by
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where yc is the half-maximum transport repression by glucose.

2.4. Complete mathematical model of the galactose network in the
presence of glucose

2.4.1. Nine dimensional (9D) GAL model
In the galactose network, metabolic reactions occur on a faster

time scale than the rates of change of the proteins (Reznik et al.,
2013). For example, transcription and translation occur with a time
scale on the order of minutes, whereas transport via facilitated
diffusion and phosphorylation occur at a rate greater than 500
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times per minute (de Atauri et al., 2005). This implies that we can
use a QSS approximation on Eq. (16) depicting the dynamics of the
phosphorylated form of galactose (Gp). By solving for the equili-
brium concentration of this compound ( ( )Gp ss, ) (as shown in Ap-
pendix B), we can then replace Gp in Eq. (15) by its steady state.
This produces a nine dimensional model (9D) for the galactose
network, given by
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where ( ) G G G G, , ,n i80 3 1 is defined in Eq. (3) and the functions
σ ( )Gi and ( )k Gp i in Eqs. (14a–b). Notice that, in the absence of
glucose, we have, according to (Eqs. (17)–20), ( ) = ( ) =x R y R 1,
γ γ( ) =R G,2 and μ μ( ) =R a.

2.4.2. Five dimensional (5D) GAL model
The 9D model can be further reduced to a five dimensional (5D)

model by applying QSS approximation to the variables representing
the various mRNA species of Eqs. (21a–d), based on the fact that
their degradation rates are one order of magnitude larger than
those of their corresponding proteins. This 5D model is given by
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As before, the functions ( ) G G G G, , ,n i80 3 1 , σ ( )Gi , ( )k Gp i , μ ( )R , γ ( )R2 ,
( )x R and ( )y R are defined by Eqs. (3), (14a), (14b), (17), (18), (19)

and (20), respectively. It was previously mentioned that glucose (R)
induces repression of the GAL network. In its absence (i.e., when

=R 0), the model will be called hereafter “reduced 5D model”,
whereas in the presence of glucose-repression, it will be called the
“extended 5D model”.

All model variations of the GAL network presented above have
been implemented in XPPAUT and MATLAB, for further analysis
and numerical simulations. Readers can refer to Appendix A for
more information on the software techniques employed.

2.5. Model parameters

Parameter values of the models listed above have been mostly
estimated using experimental data obtained from the same yeast
strain under similar laboratory conditions.

2.5.1. Galactose parameters
The rates contained in Table 1 are: (a) transcription and

translation rates for all the four GAL mRNAs; (b) degradation and
dilution rates for all intracellular species; (c) dissociation constants
of compounds involved in the genetic regulation, and
(d) metabolic rates including transport and phosphorylation.
Whenever possible, these values are chosen to fit experimental
and/or literature data. Calculations and detailed derivations of
these results can be found in the following subsection. As for the
parameters involved in galactose-induced activation, they are es-
timated using numerical simulations under the assumption that
the dynamics of the model must exhibit bistability. Parameter
values listed in Table 1 are representative of a wild-type cell.

2.5.2. Glucose parameters
The parameters used in modeling repression are obtained by

fitting the mathematical expression of these repressive processes
to experimental data using the “Cftool” toolbox and the Genetic
Algorithm (see Table 2). These data fitting techniques were pre-
sented in Appendix A. Since glucose administered in experiments
is usually expressed in units of [% w/v], the fitted parameters re-
presenting half-maximum activations have the same units. The
Hill coefficients μn and γn are set to 1, to provide an ideal Mi-
chaelis–Menten relation representing the effect of glucose on



Table 1
Values of the model parameters of the galactose network. References are provided
when the exact values of these parameters have been measured or estimated from
experimental data.

Sym-
bol

Model
value

Definition [units] References

κr3 0.329 M3 transcription rate
×

⎡
⎣⎢

⎤
⎦⎥

copies
cell min

Estimated (see
Appendix A)

κr80 0.147 M80 transcription rate
×

⎡
⎣⎢

⎤
⎦⎥

copies
cell min

κr2 0.678 M2 transcription rate
×

⎡
⎣⎢

copies
cell min

]

κr1 1.042 M1 transcription rate
×

⎡
⎣⎢

copies
cell min

]

κl3 645
G3 translation rate

×
⎡
⎣⎢

⎤
⎦⎥

molecules
copies min

Estimated (see
Appendix A)

κl80 210
G80 translation rate

×
⎡
⎣⎢

⎤
⎦⎥

molecules
copies min

κl2 800
G2 translation rate

×
⎡
⎣⎢

⎤
⎦⎥

molecules
copies min

κl1 187
G1 translation rate

×
⎡
⎣⎢

⎤
⎦⎥

molecules
copies min

c 4.215 ×107
Conversion factor

×
⎡
⎣⎢

⎤
⎦⎥

molecules
cell mM

Estimated (see
Appendix A)

cg 55.38
Conversion factor for Ge

⎡
⎣⎢

⎤
⎦⎥

mM
% w /v

Estimated (see
Appendix A)

μa 4.438 × −10 3 Dilution rate [min�1] Tyson et al. (1979)

γM 4.332 × −10 2 M3 degradation rate [min�1] Holstege et al.
(1998),
Bennett et al.
(2008)

γG,3 7.112 × −10 3 G3 degradation rate [min�1] Ramsey et al.
(2006)

γG,80 2.493 × −10 3 G80 degradation rate [min�1]

γG,2 0 G2 degradation rate [min�1]

γG,1 0 G1 degradation rate [min�1]

KD,80 3 × −10 7 G d80 dissociation constant [mM] Melcher and Xu
(2001)

KB,80 5 × −10 6 D2 dissociation constant [mM] Lohr et al. (1995)

KB,3 6 × −10 8 D3 dissociation constant [mM] Acar et al. (2005)

KB,1 6 × −10 8 D4 dissociation constant [mM] Bistabilitya

KD,3 × −1.25 10 2 ⁎G
d3 dissociation constant [mM]

KD,1 1 ⁎G
d1 dissociation constant [mM]

KS 4000 G3 and G1 half-maximum activa-
tion [mM]

κC,3 0.5 G3 activation rate
×

⎡⎣⎢ ⎤⎦⎥1
mM min

Bistabilitya

κC,1 × −8 10 5
G1 activation rate

×
⎡⎣⎢ ⎤⎦⎥1

mM min

α 4350 Maximum rate of symmetric fa-
cilitated diffusion [min�1]

de Atauri et al.
(2005)

κGK 702 Experimentally measured phos-
phorylation rate of Gi [min�1]

van den Brink
et al. (2009)

δ 59,200 Rate of Gal1p metabolism [min�1] de Atauri et al.
(2005)

K 1 Half-maximum concentration for
the transport process [mM]

de Atauri et al.
(2005)

Km 1.2 Half-maximum concentration for
phosphorylation [mM]

Timson and Reece
(2002)

KIC 160 Competitive inhibition constant
[mM]

Timson and Reece
(2002)

KIU 19.1 Uncompetitive inhibition constant
[mM]

Timson and Reece
(2002)

a Determined based on guaranteed existence of bistability.

Table 2
Kinetic parameters of glucose repression in the extended 5D model. Half-maximum
activations are in units of weight/volume ([% w/v]). “Cftool” was used to fit the
functions describing dilution and G2 transporter degradation, whereas the Genetic
Algorithm was used to fit the parameters involved in the last two processes of
glucose repression.

Sym-
bol

Model
value

Definition [units]

μb 0.00512 Dilution rate in glucose [min�1]
μc 0.3611 Half-maximum activation for dilution [% w/v]
nμ 1 Hill coefficient for dilution [unitless]

γb 0.001416 Gal2p degradation rate [min�1]
γc 0.8592 Half-maximum activation for degradation [% w/v]
nγ 1 Hill coefficient for Gal2p degradation [unitless]

xc 0.2443 Half-maximum activation for transcriptional regulation
[% w/v]

nx 1 Hill coefficient for transcriptional regulation [unitless]

yb 0.0003 Increase in the competition rate due to repression
[min�1]

yc 2.9989 Half-maximum activation for repressive competition
[% w/v]

ny 1 Hill coefficient for the competition between glucose
and galactose for the Gal2p transporter [unitless]
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cellular growth and degradation of the Gal2p transporter. The
parameters describing these two processes were estimated using
“Cftool” (see Table A1). The other two glucose-induced repressive
processes (i.e., transcriptional repression and transporter compe-
tition), require more complex fitting procedures. The Hill
coefficients nx and ny are chosen to be 1, because it minimizes the
error produced by the Genetic Algorithm (see Table A2).
3. Results

Given the complexity of the 9D model, we first focus on the
dynamics of the reduced and extended 5D models. We begin by
examining how the bifurcation structure of these models is altered
in response to biological changes. By doing so, we can draw close
connections between predicted model behaviours and observed
experimental results. We will then examine the temporal response
of the extended 5D model to periodic forcing by extracellular
glucose to elucidate the low-pass filtering nature of the GAL net-
work as suggested by Bennett et al. (2008).

3.1. Bistability with respect to galactose

3.1.1. Steady state behaviour of metabolic proteins
To examine how the model depends on extracellular galactose

and glucose, we study the steady state behaviour of the (reduced and
extended) 5D models. The 5D model described by Eqs. (22a–e) is
used for this purpose, since the QSS approximation assumed for the
mRNA level in this model will not alter its steady state properties.

To conduct this analysis, a physiological range for extracellular
galactose Ge is specified. This can be done by using galactose in-
duction curves obtained under various experimental conditions
(such as the type of strain and growth conditions used). Given the
extensive data available, we focus our analysis only on the wild type
strain K699 and choose, as a result, the initial range of 0–0.08% w/v
for Ge to plot the one-parameter bifurcation of various metabolites
of the reduced 5D model with respect to Ge within this range.

Fig. 2 shows model outcomes of the equilibrium concentrations
associated with the four main Gal proteins: G3 (panel A), G80

(panel B), G2 (panel C) and G1 (panel D) with respect to Ge. In all
cases, bistability is exhibited by the four variables in the form of
two branches of attracting equilibria (solid lines), an upper branch
that corresponds to the induced state and a lower branch that
corresponds to the uninduced state. These branches overlap over a
wide range of values for Ge, separated by a branch of unstable
equilibria (dashed line), i.e., a branch of physiologically unattain-
able steady states. The right saddle node at the intersection of the



Fig. 2. One-parameter bifurcation of various proteins as a function of the extracellular galactose concentration (Ge), measured in units of [% w/v]. The four panels show the
steady state values of (A) the regulatory protein Gal3 (G3); (B) the inhibitory regulatory protein Gal80 (G80); (C) the permease Gal2 (G2); and (D) the regulatory and enzymatic
protein Gal1 (G1). Solid lines refer to the stable branches of attracting equilibria, whereas dashed lines represent the unstable branches of equilibria, separating the two stable
branches within the bistable regime. This initial range of 0–0.8% w/v for Ge was chosen to make the bistability regime distinguishable between the bifurcation diagrams.

Table 3
Comparison between the fold difference calculated from induced versus uninduced
states of the Gal proteins, from experimental and modelling results. The bimodality
observed in the fluorescence histograms of different studies gives the calculated
folds in the “Experimental values” column. “Model results” are the fold differences
calculated from the upper and the lower branches of stable equilibria in the bis-
table switches of Fig. 2. Although it is not present in our 9D model, Gal10 protein
(G10) is shown here as a reference of the ratio induced-to-uninduced states for the
metabolic GAL proteins.

Gal
protein

Ratios of the induced-to-uninduced states

Experimental values Model results

G3 33–37.5,a 40–330b 65
G80 100
G2 144–4320
G1 144–6852
G10 30–100c

a Acar et al. (2005).
b Acar et al. (2010).
c Venturelli et al. (2012).
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unstable and stable branches of Fig. 2 has a numerical value of
0.05% w/v. It represents the concentration of Ge that produces full
induction of the network, consistent with that of K699 yeast strain
determined by Bennett et al. (2008).

Next, we compare the ratios of the induced-to-uninduced states
of the Gal1 and Gal10 mRNA within the bistable regime to those
observed experimentally (Acar et al., 2005, 2010; Venturelli et al.,
2012). The apparent discrepancies (see Table 3) may be due to the
experimental data used to estimate the transcriptional and trans-
lational rates in our reduced 5D model, which is not derived from
the same yeast strain (see Appendix A for the detailed estimation).
It could be also due to the stochastic nature of the data acquired
using cultures that contained many cells, unlike our numerical re-
sults that are generated using deterministic single-cell models.

Overall, these results reveal that the bistability studied in
Apostu and Mackey (2012) is not only conserved in our GAL
network, but is also an inherent property of the GAL regulon ra-
ther than the metabolic subnetwork. The induced-to-uninduced
ratios are in agreement with certain experimental studies (Acar
et al., 2005, 2010; Venturelli et al., 2012) and show that this ratio is
most sensitive to perturbations in the transcriptional and trans-
lational rates. The analysis of the steady state behaviour of Gi with
respect to Ge is left for Appendix B.

3.1.2. Two-parameter bifurcations as a measure of sensitivity
To assess the sensitivity of the bistable regime to parameter

perturbations that are representative of variations in yeast strains, we
study here how the two saddle nodes of Figs. 2 and B1 of Appendix B
are affected by changes in the other rates of the system and how they
alter the range of the bistable regime. These changes could reflect
yeast strain variability due to genetic mutations which can create
different functional properties or different growth rates and can ei-
ther hinder or induce reactions by varying external factors.

We begin first by considering the two-parameter bifurcations
that uncover how transcriptional repression of the Gal proteins
affects the bistability regime. Fig. 3(A)–(D) displays in grey
(white) the regimes of bistability (monostability) enclosed by
black lines that determine the location of the left and right limit
points (or saddle nodes) of Fig. 2. The monostable (white) re-
gimes could either correspond to the induced state (to the right
of the grey regimes) or uninduced state (to the left of the grey
regimes). As shown, a decrease in the transcriptional rates of
Gal3 and Gal2 proteins, involved in positive feedbacks, can ex-
tend this regime (panels A and C, respectively) by shifting the
right limit point further to the right. A major decrease in the
transcription rate of Gal2, however, can eventually shift the
system into the uninduced monostable regime, provided that Ge

is small enough. The transcription rates of Gal80 and Gal1, on
the other hand, act in an opposite fashion (panels B and D, re-
spectively). These results suggest that different mutants can
have different dynamic properties. This may explain why



Fig. 3. Two-parameter bifurcations in the reduced 5D model with respect to extracellular galactose (Ge) and other kinetics parameters of the model. These include (A) Gal3
transcription rate (κr,3); (B) Gal80 transcription rate (κr,80); (C) Gal2 transcription rate (κr,2); (D) Gal1 transcription rate (κr,1); (E) Gal2-dependent galactose transport rate (α);
(F) half-maximum transport (K); (G) dilution rate (μ), due to cellular growth; and (H) Gal2 degradation rate (γG,2). Each panel depicts the limit points (black lines), along with the
bistable (grey) and the monostable (white) regimes. The dashed lines in these panels represent the default parameter values. Notice the presence of the cusp in panels A and B,
the dependence of the left limit point on Ge in panel F, and the absence of the right limit point for high values of the parameter along the vertical axis, in panels B, D, G and H.

Fig. 4. Two parameter bifurcations with respect to extracellular galactose (Ge) and
glucose (R), for a yeast strain which shows the bistable regime (in grey) bounded by
the limit points as defined in (Fig. 3). The vertical dashed line represents the default
parameter values of R.
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bistability was not observed by all research groups. Since yeast
cultures are heterogenous, each cell culture can be described by
a parameter set belonging to a particular stability regime of the
two-parameter bifurcation.

We investigate the dynamics of the reduced 5D model in re-
sponse to other parameter variations representing potential muta-
tions, in Fig. 3(E)–(H). Our results in Fig. 3(E) reveal that when the
rate of transport, α, is higher than its default value for wild type,
little effect on bistability is observed. However, once the transport is
impeded, the bistability regime broadens and the fully induced
state may become unattainable (depending on initial conditions).

The bistability regime of the GAL network is also dependent on
how rapidly yeast cells grow. Indeed, Fig. 3(G) shows that a lower
growth rate (i.e. higher dilution rate μa than its default value) leads
to a wider bistable regime. Similar results are observed in Fig. 3
(H) when increasing the degradation rate of the transporter. In this
case, we see an increase in the bistability regime of the GAL system
subsequent to a decrease in the capacity of the cells to be fully
induced, which is equivalent to an increase in the effect of the
inhibitory proteins.

In all of these cases discussed above, the two limit points of the
two-parameter bifurcations (i.e., the boundaries of the bistable
grey regimes) are present, with the left one mostly remaining
stationary at one specific concentration of extracellular galactose
Ge. The two-parameter bifurcation associated with the half-max-
imum transport K is the only one that does not follow the same
pattern. Indeed, Fig. 3(F) shows that increasing K causes the left
limit point to shift to the right, increasing the width of the
monostable regime associated with the uninduced steady state.
This could be beneficial for the cell as it may allow it to com-
pensate for problems in the galactose induction, not only of yeast
strains, but potentially of other eukaryotic cells as well.
The bistability regime with respect to the inducer (galactose) is
also sensitive to the repressor (glucose). Fig. 4 portrays this sen-
sitivity as a two-parameter bifurcation, with respect to Ge and
glucose (R), which is qualitatively similar to the one seen in Ven-
turelli et al. (2015) and to the landscape diagram of Stockwell et al.
(2015). With the parameter combinations shown in Tables 1 and 2,
we predict that the bistability property will persist even when no
repressor (R) is present, a feature not mentioned in Venturelli et al.
(2015). In an experimental setting, we expect the system to exhibit
bistability (in the form of binary response) if the administered
glucose concentration is less than 0.2% w/v and Ge is higher than
0.01% w/v.



Fig. 5. Model response to oscillatory glucose input signal, generated using the 5D and 9D models for wild-type cells. (A) Extracellular glucose forcing with a period of 4.5, 3.0,
2.25, 1.5, 1.125 and 0.75 h is applied on the GAL network. (B) Gal1 output signal (G1), generated from the extended 5D model, showing adaptation after a transient period of
5 h. (C) GAL1 mRNA output signal (M1), generated from the 9D model, showing adaptation after only one hour.
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3.2. Temporal response to an oscillatory glucose input

One important aspect of the GAL network established experi-
mentally is its low-pass filtering capacity when wild-type and
GAL2 mutant yeast cells, grown on a background medium of 0.2%
w/v galactose, are subjected to a periodic glucose forcing of am-
plitude 0.125% w/v and a baseline of 0.125% w/v (Bennett et al.,
2008), identical to that shown in Fig. 5(A). The two main features
associated with this filtering capacity is the decline in the ampli-
tude and phase of the output response (both determined experi-
mentally by measuring GAL1 mRNA expression level). Here, we
analyze this phenomenon using the extended 5D and 9D GAL
models, to determine whether this behaviour is captured by both.

3.2.1. Dynamics of wild-type cells
Using the extended 5D model, the output of the GAL network

for the wild-type strain (corresponding to the default parameter
values) in response to glucose oscillations is shown in Fig. 5(B). As
shown, the amplitude of the G1 output signal decreases when the
frequency of the glucose input signal increases. This behaviour is
accompanied by a transient period of 5 h in which the output
signal gradually ascents to an elevated baseline while oscillating.
Our numerical results reveal that bistability and the phase of the
glucose oscillatory input signal are the two key factors causing the
elevation in the baseline, whereas the presence of various time
scales within the model is responsible for creating the inverse
correlation between the amplitude of output signal and the fre-
quency of the input signal. Furthermore, akin to the experimental
recordings of Bennett et al. (2008) showing the GAL1 mRNA out-
put signal (upstream from G1), our numerical results also display
ascent in the baseline, but with a shorter transient of around 1 h.
This suggests that although the reduced model possesses the core
structure of the GAL network, the QSS assumptions may under-
mine the ability of the model to capture the proper length of the
transient.

Due to the presence of discrepancy in the transients between
experimental and numerical results (obtained from the extended
5D model), we turn our attention now to the 9D model to analyze
the effects of QSS assumption on its response to oscillatory glucose
input signal. We do so by plotting the GAL1 mRNA expression level
as an output signal of the model when the oscillatory glucose in-
put signal of Fig. 5(A) is applied. Fig. 5(C) shows that the inverse
correlation between amplitude and frequency is preserved by the
9D model, and that the oscillations in the output signal exhibit
higher peaks and more pronounced mRNA production during
glucose decline in each cycle of the input signal. The figure also
shows that the transient occurring before the oscillations in GAL1
mRNA reach a baseline lasts about 1 h, which is consistent with
the value observed experimentally (Bennett et al., 2008). These
results indicate that the 9D model is necessary when analyzing the
temporal and transient dynamics of the system.

3.2.2. Modelling the GAL2Δ strain
As a test to validate the model against experimental data, we

examine the predicted response of a GAL2 mutant strain (GAL2Δ)
to periodic external glucose forcing. Bennett et al. (2008) de-
scribed such a mutant as requiring ten times more galactose for
full induction than the wild-type strain. To capture this effect in
our simulations, the mutant is modelled by decreasing the trans-
port rate α from 4350 to 702 min�1. As demonstrated in Fig. 3(E),
such small value of the parameter broadens the bistability regime
of the galactose network, causing the right limit point to occur at
higher Gi and making the monostable regime of the induced state
less attainable.



Table 4
The four measures used to characterize the output signals of the 5D and 9D models.

Measures Notation and definitions

Normalized
mean

=
¯

= ⋯ ( ¯ )
i

Si

i N Simax 1
, where ∫=S dtoutputi L

L1
0

, L¼20 min

and N¼6 is the total number of input signals tested.
Normalized

amplitude { }
( )

( )= [ ]( ) − [ ]( )

[ ]( ) − [ ]( )
Ai

L Si L Si

i L Si L Si

max 0, min 0, /2

max max 0, min 0, /2
, where Si is the output

signal for all = …i 1, , 6.
Upstroke phase Ui: The duration of the upstroke between a maximum and a

preceding minimum averaged over the period T of the
output signal Si, = …i 1, , 6.

Phase shift ϕ ϕ ϕ= −i i iinput output : The difference between the phase of

the input signal (ϕ
iinput ) and the output signal

ϕ( ) = …i, 1, , 6
ioutput , as determined by the Hilbert trans-

form defined in Appendix A.
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As in the previous computational setting, the GAL2-mutant
model is again subjected to a background medium of 0.2% w/v
galactose and 0.125% w/v glucose for 24 h (to allow for the system
to reach equilibrium), followed by the addition of an oscillatory
glucose input signal of increasing frequencies. The responses of the
mutant strain according to the 5D and 9D models are shown in Fig.
B2 of Appendix B. Qualitatively, the output signals G1 and M1 for
the 5D and 9D models, respectively, show an adaptation behaviour
similar to the numerical results seen for the wild-type strain
models of panels B and C in Fig. 5. At low frequencies, however, the
mutant model shows no elevation in baseline, unlike the wild-
type model.

3.2.3. Quantification of model responses
For a thorough understanding of the results presented in

Figs. 5 and B.2, we use several measures to characterize the os-
cillatory output signal Si (where = …i 1, , 6 is the total number of
input signals of various frequencies, as shown in Fig. 5(A)) gen-
erated numerically at steady state when both the input and output
signals are oscillating in tandem with each other. Four measures,
defined in Table 4, have been used; these include the normalized
mean (i), the normalized amplitude (Ai) and the upstroke phase
(Ui) of the signal as well as the phase difference, or phase shift (ϕi)
between the phase of the input and output signals, as defined by
the Hilbert transform. Given that Bennett et al. (2008) varied the
frequency of the glucose input signal, we apply here a similar
strategy, by calculating these measures across a whole range of
frequencies.
Table 5
The properties of the 5D and the 9D models (with n¼1), for both the wild type (WT) an
oscillations are the same within the first two decimal places. The phase difference betwee
model) also showed a striking similarity between the two types of strain. The upstroke p
decreasing with increasing frequency for both strains.

Measures Model Yeast type Pe

4.

Normalized baseline 5D WT/GAL2Δ 1.0
9D WT/GAL2Δ 1.0

Normalized amplitude 5D WT/GAL2Δ 1.0
9D WT/GAL2Δ 1.0

Phase difference (ϕi) [rad] 5D WT/GAL2Δ �
9D WT/GAL2Δ �

Upstroke percentage of oscillations [%] 5D WT 45
5D GAL2Δ 45
9D WT 49
9D GAL2Δ 49
The numerical results associated with these four measures are
plotted in Fig. B3 of Appendix B, and explicitly listed in Table 5 for
wild-type and GAL2 mutant, as defined by the 5D and 9D models.
Fig. B3 shows that an increase in the frequency leads to a low
decrease in the baseline and to a prominent decrease in the am-
plitude of the output signals G1 and M1. The figure also shows that
there is little variation between the reported results for the two
model strains, on the order of 10�5 for the baseline and the phase
difference and 10�6 for the normalized amplitude (see Table 5).
One of these results is qualitatively consistent with that of Bennett
et al. (2008) showing that the GAL network can low-pass filter
glucose, the repressor of the network, by decreasing both the
amplitude and the phase of the output signal when increasing the
frequency of the glucose input signal. Although the models pre-
sented here can produce one aspect of this low-pass filtering ca-
pacity (namely, the decrease in amplitude), they cannot reproduce
the decrease in the phase shift at high frequencies (see Fig. B3
(B) of Appendix B). Indeed, our simulations show that at high
frequencies, the system responds rapidly to glucose and peaks
earlier when responding to low frequencies.

A possible source for this discrepancy between our results and
the reported experimental data is the method employed for cal-
culating the phase difference; Bennett et al. (2008) used recorded
inputs to calculate phase shifts, which often appear to drift up-
ward and exhibit a decrease in amplitude. These two issues may,
as a result, affect the peaks of the input and the overall phase shift
values (reported to vary between 0 and π−3 /2 in experimental
settings). For our simulation, we used a pure sinusoidal for the
glucose oscillatory signal and calculated the input and output
phases using the Hilbert transform (as shown in Table 4). For such
an input signal, the phase shift occurs between [�π, �π/2] (see
Table 5), and no decrease in the phase difference is observed, as
stated earlier. We do observe, however, similar results when using
the same pure sinusoidal input signal applied to the model of
Bennett et al. (2008). These results suggest that the galactose
network does not filter out repressor fluctuations of high fre-
quencies but rather adapts by oscillating with a low amplitude.

To assess the similarity of the output signal to the pure sinu-
soidal input signal used in our simulation, we measure the up-
stroke and the downstroke fractions of the cycle, as defined in
Table 4. Table 5 and Fig. B3(C) (in Appendix B) show that although
the wild-type and the GAL2 mutant strains, defined by the 5D and
9D models, exhibit similar characteristics, the 5D model produces
a stable 55:45 ratio between the downstroke and the upstroke
phases of the cycle for all frequencies, but the 9D model gradually
shifts this ratio from 1:1 to 55:45 as the frequency is increased.
d the GAL2 mutant yeast strains. The values for the baselines and amplitudes of the
n the input–output signals (glucose-G1 for the 5D model, and glucose-M1 for the 9D
hase of the oscillations occupied a smaller percentage than the downstroke phase,

riod of the input signal (bold) [h]

5 3.0 2.25 1.5 1.125 0.75

0 1.00 0.99 0.99 0.99 0.99
0 0.99 0.98 0.97 0.97 0.96

0 0.68 0.51 0.34 0.26 0.17
0 0.90 0.80 0.63 0.51 0.36

1.80 �1.74 �1.68 �1.65 �1.64 �1.62
2.69 �2.53 �2.38 �2.17 �2.05 � 1.90

.01 44.83 44.818 44.778 44.74 44.73

.02 44.83 44.81 44.67 44.74 44.67

.07 48.06 47.26 46.22 45.63 45.33

.07 48.06 47.33 46.33 45.63 45.33



Fig. 6. One-parameter bifurcation of GAL proteins as a function of glucose (R), measured in units of [% w/v]. The four panels show the steady state values of (A) the regulatory
protein Gal3 (G3); (B) the inhibitory regulatory protein Gal80 (G80); (C) the permease Gal2 (G2); and (D) the regulatory and enzymatic protein Gal1 (G1). Solid lines represent
the stable branches of attracting equilibria, whereas dashed lines represent the unstable branches of equilibria, for both wild-type (black) and GAL2 mutant (grey) yeast
strains.

Fig. 7. One-parameter bifurcation of intracellular galactose concentration (Gi) with
respect to glucose (R), for both wild-type (black) and GAL2 mutant (grey) yeast
strains. As before, solid and dashed lines define the stable and unstable branches,
respectively.
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Although the two models eventually reach the same ratio at high
frequencies, the adaptive behaviour of the 9D model at low fre-
quency is likely to be due to the presence of slow rates in the
model providing it with more time to adapt to an idealized sinu-
soidal signal.

In the simulations above, the amplitude of the input signal is
kept fixed. To investigate how altering the amplitude of glucose
oscillatory signal affect the response of the GAL network, we plot
in Fig. B4 of Appendix B, the amplitude of the output signal M1

with respect to the amplitude of R. Our results reveal that these
two amplitudes are positively correlated, and that their correlation
can be best fit by a quadratic polynomial (a prediction that can be
verified experimentally).

3.2.4. Bistability with respect to glucose
As suggested in Section 2.3, glucose acts as a repressor of the

GAL network through four independent processes: (i) by increas-
ing the dilution rate μ, (ii) by enhancing vesicle degradation of the
G2 transporter, (iii) by repressing the transcription of GAL3, GAL1
and GAL4, and (iv) by competing with galactose to bind with G2.
These processes have been all included in the 9D model described
by Eqs. (21a–i). To analyze the relation between the dynamical
properties of the model and the oscillatory input signals, we plot
the bifurcation diagrams of the various Gal proteins with respect
to glucose for both the wild-type and the GAL2 mutant strains
(Fig. 6). Bistability in the expression level of G3 (panel A), G80

(panel B), G2 (panel C) and G1 (panel D) is observed in all cases at
low values of glucose, whereas monostability (determined by the
uninduced state) is only observed in one regime at intermediate to
high values of glucose. Interestingly, these panels show that al-
though a decrease in the induced (upper) stable branch is ob-
served during an increase in glucose, they remain slightly more
elevated than the non-induced (lower) branch at the limit point.
The switch from the non-induced to the induced stable branch at
the limit point is consistent with that seen experimentally in the
level of GAL1 induction (Bennett et al., 2008).

Plotting the bifurcation diagram of intracellular galactose (Gi)
with respect to glucose in Fig. 7, we observe a fold around the
right limit point situated at about 1.8% w/v glucose. This feature is
likely due to the multidimensionality of the system. Unlike the
bistability of Fig. B1, Fig. 7 shows a large difference between the
induced state and the uninduced state inside the bistable regime,
an outcome that should be testable experimentally. The steep in-
crease in Gi seen in the uninduced state inside the bistable regime
is analogous to the sharp increase in the Gal protein expression,
especially G2, seen in the induced states of Fig. 6.

Recall that the GAL2 mutant strain is simulated by decreasing



T.M. Mitre et al. / Journal of Theoretical Biology 407 (2016) 238–258250
the transport rate α. This causes the induced stable branch to shift
downward for all GAL components, as seen in Fig. 6. The shape of
the bifurcation diagram in Fig. 7 can be used to explain how nar-
rowing down of the bistability regime affects the output response
to glucose periodic forcing. Given that the uninduced stable
branches are similar for both strains, we expect the system in both
cases to tend to the noninduced stable branch, if the initial con-
ditions are low. Therefore, narrowing down the bistability regime
by decreasing α does not affect the properties of the oscillations
during glucose periodic forcing because of the presence of peaks in
the input signal (causing significant repression in the expression
level of the GAL proteins) and the ability of the network to adapt
quickly. An additional prediction from our model is that if the
glucose oscillatory input signal is varied between 0 and 3% w/v, the
galactose network would cross the right limit point of the bi-
furcation diagrams shown in Figs. 6 and 7 and as a result shift back
and forth between the bistable and monostable regimes.
4. Discussion

In this study, we have shown that the bistability property of the
GAL regulon, originally seen in a model of Apostu and Mackey
(2012) is still preserved in improved models of the galactose
network. These new models consider additional regulatory and
metabolic processes not previously accounted for, including (i) the
dimerization of regulatory proteins, (ii) the existence of multiple
upstream activating sequences at the level of the promoter and
(iii) the metabolic reactions involving galactose and glucose re-
pression processes. The results produced by the models were
qualitatively in agreement with those seen in Apostu and Mackey
(2012), and quantitatively in agreement with those seen in Ideker
et al. (2001) and Sellick et al. (2008).

In this study, we combined various features of previous studies
in our modeling approach and used the in vivo results of
Abramczyk et al. (2012), that showed the localization, outside and
inside the nucleus, of the tripartite complexes G G G: :4 80 3 and
G G G: :4 80 1, acting as transcription factors. Our goal was to decipher
the dynamics of the GAL network, by including both the short and
the long-term complexes in our modeling construct.

The models developed here contain a minimalistic metabolic
branch interacting with a regulatory gene network. Using these
models, we were able to explain the response of the system to
periodic forcing by glucose, and show that this network is robust
to changing environments and nonhomeostatic conditions. The
models also revealed that large discrepancies between responses
of different strains or cells can be generated by decreasing the
transport rate α or by drastically altering the external glucose and
galactose conditions.

In the models developed here, we did not include the reg-
ulatory protein Gal4 and the metabolic enzymes Gal7p and Gal10p
for various reasons. First, as it has been already mentioned in
Apostu and Mackey (2012), the expression level of Gal4 protein is
not affected when cells are transferred from raffinose to galactose
medium (Sellick et al., 2008). As for the metabolites generated due
to the downstream enzymes Gal7p and Gal10p, they do not
feedback into the gene network and their respective negative
feedback processes are represented in our model through the
phosphorylation rate of galactose by the Gal1p kinase. Limiting the
number of dynamical equations to the ones involving the key
proteins has allowed us to gain a better understanding of how the
different molecular constituents interact at the level of the
regulon.

The main goal of this study is to determine how the feedback
loops of the whole network interact together to form emergent
behaviour under various experimental conditions. Using
bifurcation analysis, we demonstrated that bistability persists in
the full model and plays an integral part in the dynamics of the
network. It is affected by most variables (except for intracellular
galactose) and underlies many of the features observed experi-
mentally (including the binary response). We also showed that
galactose transport into the cell is the main rate limiting step in
the Gal network induction.

A natural question is whether bistability could play a role in
galactosemia. Potential causes for this disease have already been
found, mostly in association with genetic mutations that cause
accumulation of galactitol in various tissues. From a mathematical
point of view, one can study this disease via parameter pertur-
bations that can lead to an increase in the activation of some re-
verse rates and a decrease in the accumulation of harmful meta-
bolites. One interesting prediction of our model is that the half-
maximum activation of the transport (K) is the main parameter
that controls the minimal galactose concentration required for
bistability (see Fig. 3(F)). By translating the bistable regime to
larger concentrations of extracellular galactose (i.e., to the right of
the current bifurcation diagram), greater values of K would reduce
the likelihood of the organism to be fully induced at small ga-
lactose concentrations. Altering this constant experimentally,
perhaps by blocking or modifying the transporter, would decrease
the amount of galactitol, the toxic metabolite. A natural con-
tinuation of the present work would be to try to describe a
threshold for the toxic levels of galactose and its other metabolites,
in the context of this disease, particularly during accumulation of
Gal1P (Gitzelmann, 1995).

Another property of the system deduced from our mathema-
tical models is the interplay between the repressor and the in-
ducer of the galactose network. The bifurcation diagrams plotted
with respect to glucose (Figs. 6(A)–(D) and 7) show that a high
glucose level impedes galactose accumulation, which in turn de-
creases Gal1P level. An experimental protocol similar to the ones
employed in van den Brink et al. (2009) or Acar et al. (2005) can
verify our predictions, by measuring the levels of Gal1P for dif-
ferent combinations of galactose and glucose concentrations. Al-
though the two monosaccharides (glucose and galactose) are
processed differently, a combination of the two pathways can be
beneficial for the yeast cells whose metabolic machinery is not
properly functional.

The lack of experimental data has made our modeling effort a
challenging one, relying mostly on estimation techniques. To fur-
ther validate the models against experimental data, our assump-
tions on transcriptional repression and competition for the Gal2p
transporter due to glucose concentration should be tested ex-
perimentally. In the models, we have described the effects of the
repressor by Michaelis–Menten type functions whose parameters
were estimated using the Genetic Algorithm (see Appendix A). To
assess our predictions, experiments can follow the procedures of
Barros (1999), to measure sugar transport, and of Lashkari et al.
(1997), to obtain mRNA fold-difference values in cells grown in
different galactose and glucose mixtures.

The complexity of this network makes the use of mathematical
models an alternative and a promising tool to decipher its kinetics.
The rapid discovery of new pathways adds more emphasis on the
importance of using such modeling approaches to accomplish this
goal. The incorporation of new pathways into the models will al-
low us to study their effects, including their role in stabilizing/
destabilizing the steady states of the model and in defining
adaptability to environmental perturbations. It will also allow us
to predict emergent behaviour exhibited by the model and de-
termine their effects on the physiology of the network.
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Appendix A. Parameter estimation and software

A.1. Measured parameters

� Conversion factor (c): Although there is a large variation in the
shape of yeast cells and their volume we consider the generic
yeast cell to be spherical, haploid cell, of volume 70 μm3. This
value has been published in Sherman (2002) and has been used
in other computational models (Ramsey et al., 2006; Apostu and
Mackey, 2012).
The cellular volume and Avogadro's number are two constants
required for estimating c, defined to be the conversion constant
in Table 1. This parameter is included to maintain the consistency
of units between [mM] and [molecules/cell], and is given by

= = × ×
( )

= ×
( μ )

× μ

= × =

− −

−

c

1 mM
10 mol

1 L
6.02214129 10 10 molecules

1 dm

6.02214129 10 molecules
10 m

70 m
cell

4.2154989 10 molecules/cell .

3 23 3

3

20

5 3

3

7

� Conversion factor (cg): Sugars are usually administered in con-
centrations of [% w/v], whereas the half-maximum activation
constant for the galactose transport (K) is given in mM. There-
fore, we use the conversion factor cg, given by

= = =
·

= = ( )c

1%w/v
1 g

100 mL
1 g

0.1 L
1 mol

180.56 g
10 mmol g

180.56 g 0.1 L

10
180.56

mM A.2g

3

4

to maintain consistency with Eq. (13).
� Dilution rate (μ): The dilution rate is often calculated by using

the doubling time of the cells. Ramsey et al. (2006) and Apostu
and Mackey (2012) used a doubling time of 180 mins in their
models, which is equivalent to × − −3.85 10 min3 1. However, to
obtain consistency between our parameter choices for model-
ling glucose repression, we averaged of the doubling rates
reported by Tyson et al. (1979), to obtain 156 min in galactose
and 79 min in glucose. Based on the above, we conclude that

μ

μ μ μ

= ≈ ×

( ) = + = ≈ ×

− −

− −R

ln 2
156 min

4.438 10 min ,

ln 2
79 min

5.12 10 min .

a

max a b

3 1

3 1

� mRNA degradation rate γ( )M : This parameter has been measured
experimentally as the half life-time of the mRNA strands. Wang
et al. (2002) measured this quantity for an average strand,
whereas Bennett et al. (2008) measured it for GAL3 and GAL1.
We have approximated the half-life time at 16 min, which is
equivalent to

γ = ≈ × − −ln 2
16 min

43.32 10 min .M
3 1

� Protein degradation rates γ( ∈ { })i, 3, 80, 2, 1G i, : The values were
initially measured in Holstege et al. (1998) and Wang et al.
(2002) and used in the model developed by Ramsey et al.
(2006). Here, we use the same parameters as in Ramsey et al.
(2006), except that the protein degradation in our model does
not represent the degradation arising from cellular growth, but
rather from protein processing only. This implies that

γ

γ

γ γ

= × − ×

= ×
= × − ×

= ×
≈ ≈

− − − −

− −

− − − −

− −

− −

11.55 10 min 4.438 10 min

7.112 10 min ,

6.931 10 min 4.438 10 min

2.493 10 min ,

0 min , 0 min .

G

G

G G

,3
3 1 3 1

3 1

,80
3 1 3 1

3 1

,2
1

,1
1

� Transcription rates (κr,3, κr,80, κr,2, and κr,1): Transcription rates are
estimated using similar approach to that presented by Apostu
and Mackey (2012). More specifically, they are approximated by
using mRNA steady state ratios, measured in cells grown in
induced versus repressed extracellular media. In other words,
their numerical values κ( = )i, 3, 80, 2, 1r i, are calculated by
setting Eqs. (6), (8), (10) and (12a), describing the dynamics of
mRNA, to 0, and solving for κr i, in terms of the steady state
values ( )Mi ss, as follows:

{ }κ
γ μ

=
+

∈( )M i
100%

, 3, 80, 2, 1 .r i i ss
M a

, ,

The mRNA steady state levels in glucose were estimated in
Arava et al. (2003) to be 0.8, 1.1 and 1.0 molecules/cell for GAL3,
GAL80 and GAL1, respectively. Since there are no estimates
available for the steady state level of Gal2p, we used instead the
steady states of mRNAs for all hexose transporters reported by
Arava and colleagues. Table 3 in the appendix of Arava et al.
(2003) contains the copy numbers for 17 hexose transporters.
We use all these values, except for one that is particularly high
(5 compared to a range of [0.2, 2.6] for the other hexose copy
numbers values) to calculate the median, which gives the
approximate value of 0.598 mRNA copies/cell.
To calculate the transcription rates in galactose, we also con-
sider the fold difference between mRNA values in galactose-
grown compared to glucose-grown cells, as reported by Lash-
kari et al. (1997). Based on this premise, we have

κ γ μ

κ

κ

κ

κ

κ

= × × ( + )

= × × ( × )

= ( × )

= × × ( × )

= ( × )

= × × ( × )

= ( × )

= × ×

( × ) = ( × )

= × ×

( × ) = ( × )

− −

− −

− −

− −

− −

mRNA Fold number

0.8 molecules/cell 8.6 4.78 10 min

0.329 molecules/ cell min

0.598 molecules/cell 23.7 4.78 10 min

0.678 molecules/ cell min

1.0 molecules/cell 21.8 4.78 10 min

1.042 molecules/ cell min

Upper bound of 1.1 molecules/cell 3.0

4.78 10 min 0.158 molecules/ cell min

Lower bound of 1.1 molecules/cell 2.8

4.78 10 min 0.147 molecules/ cell min .

r i M a

r

r

r

r

r

, level in glucose

,3
2 1

,2
2 1

,1
2 1

,80

2 1

,80

2 1

� Translation rates ( κ ,l,3 κ ,l,80 κ ,l,2 and κl,1): The four parameters
associated with the transcription rates of GAL3, GAL80, GAL2
and GAL1 are not measured experimentally using the desired
units and the sugar medium that we require for the model.
Arava et al. (2003) presented in Table 3 of their supplementary
information the protein synthesis rates in glucose media for an
extensive list of mRNA strands, in units of [proteins/s]. Since we
are interested purely in the translation rates κl i, ( =i 3, 80, 2, 1),
in units of [proteins/mRNA copies × cell], we estimate these
parameters based on the following equation:

κ = ×

× ( )

Fraction of translated mRNA Elongation rate
Protein length

Number of proteins
mRNA

, A.6

l i,
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where the “fraction of translated mRNA” is assumed here to be
equivalent to the “relative translation rate”, defined in Arava
et al. (2003) to be

= ×Relative translation rate Ribosome occupancy Ribosome density.

For this relation, the ribosome occupancy is approximated by
the ribosomal mRNA level divided by the total mRNA level of
that species available in the cell, and the ribosome density is
given by the number of ribosomes per length of unit of the open
reading frame. The relative translation rate, calculated in this
manner in Arava et al. (2003), is therefore dimensionless and is
given by 0.143, 0.039 and 0.042 for GAL3, GAL80 and GAL1,
respectively. For GAL2, the lack of experimental data constrains
us to use the median relative translation rates of all associated
GAL mRNAs reported, which is given by 0.145.
As for value of the mRNA elongation rate, it was reported in
Arava et al. (2003) to be 10 amino acids (a.a.) per second, for the
yeast cells grown in YPD medium (i.e., 1% yeast extract, 2%
peptone and 2% dextrose). This rate is similar to that obtained
by Bonven and Dullov (1979), who found that is about 9.3 a.a
per second for budding yeast grown in glucose instead of a mix
of peptone and dextrose.
To calculate the translation rates of Eq. (A.6), we still need the
length of the protein, measured in number of amino acids, and
the ratio of proteins to mRNA. We already know that Gal
proteins measure: 520, 435, 528, and 574 amino acids (for
Gal3p, Gal80p, Gal1p and Gal2p, respectively). Furthermore,
Ideker et al. (2001) found that the ratios of proteins to mRNA
lies between 4200 and 4800. Based on the above observations,
we can now calculate the translation rates of Eq. (A.6) as
follows:
Lower bounds:

κ

κ

κ

κ

= × × ×

=
×

= × × ×

=
×

= × × ×

=
×

= × × ×

=
×

0.143 9.3 60 a. a ./ min
520 a. a

4200
Proteins
mRNA

644.49
Proteins

mRNA min
.

0.039 9.3 60 a. a ./ min
435 a. a

4200
Proteins
mRNA

210.12
Proteins

mRNA min
.

0.042 9.3 60 a. a ./ min
528 a. a

4200
Proteins
mRNA

186.42
Proteins

mRNA min
.

0.145 9.3 60 a. a ./ min
574 a. a

4200
Proteins
mRNA

592.02
Proteins

mRNA min
.

l

l

l

l

,3

,80

,1

,2

We have used these lower bounds for the translation rates, as
shown in Table 1.

� Dimerization constants: Melcher and Xu (2001) reported that the
dimerization constant for G d80, (KD,80) is 1 to × −3 10 mM7 . In our
model simulations, we used the upper bound.

� Dissociation constants (KB,80 and KB,3): The dissociation constant
of the Gal80p dimer from the promoter conformation D2 is
measured to be × −3 10 mM8 , in Melcher and Xu (2001), and

× −5 10 mM6 , in Lohr et al. (1995). The dissociation constant of
the activated Gal3p from the Gal80p molecule was numerically
estimated by Venkatesh et al. (1999) to be × −6 10 mM8 . We use
this latter value to estimate the dissociation constant KB,3. This
value represents the rate of a single G80 binding to an activated
G3 molecule in the cytoplasm, in the context of a different kind
of GAL model (i.e., based on nucleo-cytoplasmic shuttling of
G80). In our model, however, we consider the reaction between
dimers of each of these species, not single molecules. Due to the
lack of relevant data we still use these values as an approxima-
tion and set

= × = ×− −K K5 10 mM, 6 10 mM.B B,80
6

,3
8

� Transport rate (α): For the transport rate, we use, as a reference,
the value 4350 min�1 provided in de Atauri et al. (2005). The
authors of this latter study mention that the rate was adjusted
in order to obtain a Vmax consistent with that observed experi-
mentally in Reifenberger et al. (1997).

� Parameters involved in galactose phosphorylation (κ K K K, , ,GK m IC IU):
The rate parameters associated with phosphorylation have been
previously estimated in the experimental paper of Timson and
Reece (2002). No other manipulations and calculations are
necessary, since the units and the definitions of all rate
constants are in agreement with the ones used in our models
(see Table 1).

� Metabolic rate (δ): A suitable candidate for estimating this
parameter is the rate of the reaction catalyzed by the Gal7p
transferase enzyme, which ensures that Gal-1-Phosphate is
metabolized and incorporated into the glycolytic pathway. This
catabolic rate of the transferase (kcat GT, ) has been measured as
59,200 min�1 and used in the study of de Atauri et al. (2005).
Thus we set

δ ≈ = −k 59, 200 min .cat GT,
1

A.2. Parameters estimated through the model

� Half-maximum activation of G3 and G1 (KS): It has been known
for some time that galactose induces the entire regulatory
system via the activation of Gal3p molecule, but the actual re-
actions involved in this induction process remain incompletely
understood. Several modelling papers focusing on this topic
have assumed that this process follows either Michaelis–Men-
ten activation kinetics (Venkatesh et al., 1999), similar to the
formalism used here, or linear kinetics (Acar et al., 2005; de
Atauri et al., 2005). This process is also modelled in terms of a
positive constant added to the rates of change of the different
proteins induced by galactose (Venturelli et al., 2012).
Given that a Michaelis–Menten formalism has been used to
describe activation, the value of half-maximum activation of
these reactions is assumed to be identical to the estimated
numerical value of 4000 mM, given in Apostu and Mackey
(2012). By having a very large half-maximum activation, we are
assuming an almost-linear relationship between the concentra-
tions of activated Gal3 and Gal1 proteins and the intracellular
galactose, which would be in agreement with other modelling
papers that have used a direct proportional (or linear)
relationship.

� Parameters of the regulatory pathways involving Gal3p and
Gal1p (kcat,3, KD,3, kcat,1, KD,1 and KB,1): As indicated earlier, the
process of Gal3p and Gal1p activation is not fully understood. By
using QSS assumption on the model, we can derive relations
between the different parameters of the model based on its
steady states.
According to Eq. (5), we have

γ μ
κ

γ μ
κ

=
( + )

=
( + )

K
K K

K
K K K

.

D B G

C

D B B G

C

3
,3 ,3 ,3

,3

1
,1 ,3 ,1 ,1

,1

Due to the fact that bistability is one of the main properties of



Table A1
Parameter values associated with dilution and GAL2 degradation obtained using a
combination of parameter estimation and “Cftool” fitting.

Processes Expression Para-
meters

Value Reference

Dilution μ μ( ) = +
μ

μ +
R a

bR

c R
μa × −4.44 10 3 Tyson et al.

(1979)
μ μ+a b × −8.78 10 3 Tyson et al.

(1979)
μc × −5.12 10 3 Fitted with

“Cftool”

G2 Degradation γ γ( ) = +
γ

γ +
R G

bR

c R,2
γG,2 × −3.98 10 3 Horak and

Wolf (1997)
γ γ+G b,2 × −7.66 10 3 Horak and

Wolf (1997)
γc × −1.416 10 3 Fitted with

“Cftool”
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the GAL network (observed within a given physiological range
of galactose concentration), one can use this property to
numerically estimate the two parameters K3 and K1. In other
words, the values of these parameters can be determined by
ensuring that the model can produce bistability. Based on this,
we find that = × −K 1.729 10 mM3

6 2 and = × −K 3.329 10 mM1
6 2.

Since we already know the degradation rates, the dilution rates
for these proteins as well as the activation rate KB,3 , we can
solve for the following ratios in term of the parameters KD i, , KB,1,
κC i, :

κ γ μ

κ γ μ

=
( + )

= ×

=
( + )

=

−K K
K

K K K
K

4.363 10 mM min

3.062 mM min.

D

C B G

D B

C B G

,3

,3

3

,3 ,3

3 1.5

,1 ,1

,1

1

,3 ,1

1.5

These ratios are used in the functions K3 and K1

γ μ

γ μ

= ( + ) × ×

= ( + ) ×

−K K

K K

4.363 10 mM min

3.062 mM min.

B G

B G

3 ,3 ,3
3 1.5

1 ,3 ,1
1.5

A.3. Numerical estimation of parameters

� Software
The numerical results that we have presented in the main text
were obtained using two main software packages: XPPAUT

(written by Bard Ermentrout and freely available online), used
for numerical bifurcation analysis, and MATLAB (MathWorks
Inc., 2014, Natick, Massachusetts), used for simulating the dif-
ferential equation models. “cftool” and “ga” toolboxes available
in MATLAB were used to fit various expressions to experimental
data as explained below.

� Data fitting
○ Parameter estimation using “Cftool”: As shown in Fig. A1 and

Table A1, the half-maximum activation for the repressive
functions characterizing the dilution and Gal2p degradation
rates are estimated using Michaelis–Menten functions in the
“Cftool” toolbox (with R¼1, = × −SSE 5.5 10 14 for the dilution
rate, and R¼1, = × −SSE 1.12 10 14 for the degradation rate).
Fig. A1. Cellular processes affected by glucose. (A) An increase in glucose concentration
induces an increase in the degradation rate of the transporter protein G2 (γ2). Black aste
Wolf (1997), whereas dashed grey lines represent the fitted Michaelis–Menten function
This toolbox is also used to estimate the phase of the glucose
oscillatory inputs administered in the experiments of Bennett
et al. (2008). This was done by digitizing the data presented in
the first rows of panels A and B in Figure Fig. 3 of that paper
and fitting each outcome to a sinusoidal signal with a given
period. The baseline was allowed to vary during this process.

○ Parameter estimation using the Genetic Algorithm: The para-
meters associated with the transcriptional repression and
competition for the G2 transporter ( x y y, ,b b c) are estimated
using the Genetic Algorithm. This was done by minimizing
the error between the experimental data and the steady state
values of the extended 5D and 9D models. Rates of tran-
scriptional repression and galactose transport are both mod-
elled as Hill functions with negative coefficients and fitted to
data from Bennett et al. (2008) (see Fig. A2). Since the type of
inhibition in these processes is unknown, the Hill coefficients
are left undetermined and allowed to assume only two
values: either 1 or 2. The latter follows from the fact that
trimer complexes are far less likely to form than monomers
and dimers. The results from this optimization technique,
along with the error estimate, are presented in Table A2
shown below.
leads to an increase in the dilution rate (μ). (B) An increase in extracellular glucose
risks represent experimental data obtained from Tyson et al. (1979) and Horak and
s using the “Cftool” toolbox in MATLAB.
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Fig. A2. Data fitting of glucose-induced repression. (A) Experimental data published by Bennett et al. (2008) for the normalized G1 concentration, shown in asterisks, was
used to estimate the parameters of the Hill functions for the repressor processes in the extended 5D and 9D models (black and grey lines, respectively). These Hill functions
were allowed to have a coefficient of 1 and 2 (solid and dashed lines). (B) The half-maximum deactivation is similar for the four fitted models. (C) Transport of galactose
through the G2 permease is also decreased due to the presence of the repressor. The four models behave differently here, with large variations in the half-maximum
deactivation and the asymptotic minimum.

Table A2
Parameter values associated with the two processes transcriptional repression (by
glucose) and competition for the transporter, as determined by the Genetic Algo-
rithm. Parameter combinations that were used in Section 3 are shown in bold.

Value of n 5D 9D

1 2 1 2

Half-maximum transcriptional
repression

xc 0.2443 2.4107 0.2657 0.0650

Transport competition rate yb 0.0003 0.5639 0.4950 0.4950
Half-maximum transport competition yc 2.9989 0.0052 2.3142 2.3142
Error estimation 0.0387 0.0300 0.0876 0.1402

Fig. A3. Hilbert transform of the oscillatory glucose input and the G1 output signals, sho
(grey lines) and the galactokinase G1 (black lines) oscillatory signals at steady state (i.e.,
very closely and adapts to its periodicity given by (A) 4.5, (B) 3, (C) 2.25, (D) 1.5, (E) 1.1
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� Hilbert transform: The Hilbert transform allows one to calculate
the phase and the amplitude of an oscillatory signal, u(t). In
theory, it convolves the signal with the Cauchy kernel, also
known as Cauchy Principal value (p.v.), given by

∫( ( )) = ( )
→∞ −

p v f x f x dx. . lim ,
a a

a

where f(x) is a function with the properties

∫ ∫( ) = ± ∞ ( ) = ∓ ∞
−∞

∞
f x dx f x dxand .

0

0

This type of improper integral is used in the calculation of the
wing the periodicity of both signals and their phase characteristics. (A)–(F) Glucose
after 20 h) exhibiting at least one cycle. The output signal follows the input signal
25 and (F) 0.75 h.
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Hilbert transform defined by

∫π
τ

τ
τ( ( )) = ( )

( − )−∞

∞
H u t p v

u
t

d
1

. . .

One of the properties of this transform is that it shifts the signal
within the integral by π/2, i.e. ( ( ))( ) = − ( )H H u t u t . It is also
related to the Fourier transform by the relation

π
( ( )) = ( ( ))

⎛
⎝⎜

⎞
⎠⎟F H t F

t
F u t

1
.

In discrete form, the Hilbert transform can be calculated in
MATLAB, using the function ‘Hilbert’. This function computes
the transform by generating a complex signal

( ( )) = ( ) ϕ ( )H u t A t ei t from the original signal u(t). The complex
signal is then used to evaluate its amplitude (A) and phase (φ)
based on the equations

φ

( ) = ( ( ( )))

( ) = ( ( ( )))

A t e H u t

t angle H u t ,

where e is the real part of the Hilbert transform and angle is
a predefined MATLAB function for the instantaneous phase of
the transform within ( π π− , ). This method was also used in
Khadra (2009) to analyze synchrony in a population of
synchronized neurons.
As an example of the Hilbert transform technique of calcu-
lating the phase of a signal, we will refer to Fig. A3 shown
below, containing the estimated phase difference between
the oscillatory glucose input signal and G1 output response
for the wild-type strain, using the GAL extended 5D model,
with n¼1. This calculation involves applying the Hilbert
Transform on both the glucose input and the Gal1p output
signals. Notice how the output signal (black lines) follows
the input (grey lines), but the lines are not always straight,
due to the fact that the output is not purely sinusoidal.
Appendix B. Additional derivations and results

B.1. Analytical derivations

� Rates of change for the activated proteins ⁎G3 and ⁎G1: The activated
forms of the Gal3 and Gal1 proteins are produced based on Eq.
(1), and subject to protein degradation, similar to the species G3,
G80, G2 and G1 (see (Eqs. (7), (9), 12b) and (11)). Thus, we can
Fig. B1. One-parameter bifurcation with respect to the extracellular galactose concentra
Gi within the range (A) [0,0.08]% w/v, and (B) [0,0.6]% w/v of galactose (Ge) as defined in
closeness of the two stable branches (in panel A), and (2) Gi levels with Ge saturation (in
and the slow GAL regulon, the bistability is within a very narrow Gi range, compared to
write

( )γ μ= ( ) − + ( )

⁎
⁎dG

dt
G F G G B.1ai G

3
3 3 ,3 3

( )γ μ= ( ) − + ( )

⁎
⁎dG

dt
G F G G , B.1bi G

1
1 1 ,1 1

where ( )F Gi3 and ( )F Gi1 are given in Eq. (2). We also assume the
same dilution and degradation rates for the activated forms of
the proteins as for the inactive forms.

� Fractional transcriptional level: Here, we describe the complete
derivation of the function n presented in Eq. (4). Assuming that
the dimerization reactions presented in Table B1 are at equili-
brium, we can conclude that the dissociation constants of all

relevant molecular species are given by the ratio Reactants
Products

. Based

on this, we can derive the following expressions for the dimer
molecules G d80, , ⁎G d3, and ⁎G d1, :

= ⇒ =
( )

K
G

G
G

G
K B.2a

D
d

d
D

,80
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2

80,
80,
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⁎
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⁎

K
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G
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G
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D
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1

2

1,
1,

1
2

,1

It is also mentioned in Table B1 that the three dimers G d80, , ⁎G3

and ⁎G1 have high affinities for the three promoter conforma-
tions, D2, D3 and D4, respectively. Assuming that these quan-
tities reach equilibrium quickly, we can write the reactions in
terms of their dissociation constants. Using this result and Eqs.
(B.2a–c), we can express the promoter conformations D1, D3 and
D4 in terms of D2 as follows:

= ⇒ = =
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G D
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tion (Ge). The stable (solid) and unstable (dashed) branches of steady-state values of
Fig. 2. The choices in the Ge range were to focus on two important aspects: (1) the
panel B). Due to the difference in time scales between the fast metabolic subsystem
that of Fig. 2.



Fig. B2. Model response to oscillatory glucose input signal, generated using a GAL2 mutant cell. (A) The oscillatory glucose input signal applied with a period defined on top
of each panel. (B) Gal1 output signal, generated from the extended 5D model, showing a similar 5 h period as that seen in Fig. 5(B). (C) GAL1 mRNA output signal, generated
from the 9D model, showing a slightly lower baseline when compared to the wild-type strain of Fig. 5(C).

Fig. B3. Comparison between the properties of the G1 oscillatory output signal in wild-type and GAL2 mutant strains, as determined by the numerical simulations of the 5D
and 9D models in Figs. 5 and B2. The four characteristic measures defined in Table 4 are used; namely, the (A) baseline, (B) amplitude, (C) percentage of the upstroke, and
(D) phase shift. Notice the minimal change in the phase shift.
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These expressions are then used to formulate 1, the fractional
transcriptional level for mRNA strains containing a single [UAS]g,

= + +
+ + +

= −
+ + +

 D D D
D D D D

D
D D D D

1 ,1
1 3 4

1 2 3 4

2

1 2 3 4

or equivalently
( ) = −
+ + ( ) + ( )

⁎ ⁎
⁎ ⁎ G G G

K K
G

G
K K

G
K K K

, , 1
1

1
.

D B

D B D B B

1 80 3 1
,80 ,80

80
2

3
2

,3 ,3

1
2

,1 ,1 ,3

As mentioned, GAL2 and GAL1 mRNAs contain 2 and 5 [UAS]g,
respectively, therefore the promoter can exist in more conforma-
tions than the four terms presented above. In this context, we
simply need to multiply the kinetic reactions shown in Table B1



Fig. B4. The amplitude of the output signal M1, generated by the 9D model, is
plotted (as asterisks) against the amplitude of the glucose oscillatory input signal.
The period of the glucose signal used here was 4.5 h. A quadratic polynomial (solid
line) generated the best fit to numerical data, probably since the Gal regulatory
proteins affecting the genetic branch of the network always appear in dimerized
form.

T.M. Mitre et al. / Journal of Theoretical Biology 407 (2016) 238–258 257
below by the number of existing [UAS]g (n). This means that n is
given by
( ) = −

+ ∑ + ∑ + ∑

⁎ ⁎

= =

⁎

=

⁎⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 G G G
K K

G
G

K K

G

K K K

, , 1
1

1

.n

k
n D B

k

k
n

D B

k

k
n

D B B

k80 3 1

1
,80 ,80

80

2

1
3

,3 ,3

2

1
1

,1 ,1 ,3

2

� Quasi steady state of the Galactose-1-Phosphate: Here, we pre-
sent the derivation of the rate of change for intracellular ga-
lactose levels (Gi). This is done by applying QSS assumption on
the rate of change of Gp (given by Eq. (16)) to obtain

δ μ δ μ σ( + ) + ( + ) ( ) − ( ) =( ) ( )G k G G G G G 0,p ss p i p ss i i
2

1

where Gp ss, represents the steady state value of Gal1P (Gp).
Solving for Gp ss, gives one single positive solution
Table B1
Schematic representation of the kinetic reactions occurring at the level of the GA

= [ ]D UAS G:g d1 4, , = [ ]D UAS G G: :g d d2 4, 80, , = [ ]
⁎

D UAS G G G: : :g d d d3 4, 80, 3, and = [ ]D UAS :g4

monomers, whereas KB i, , ∈ { }i 8, 3, 1 are the dissociation constants of the promoter co
presence of galactose.

Energy
source

Effect on the GAL
network

Description Process

Glucose Repression [ ] → [ ]UAS UAS M:g g p1 Mig1p protein binds to th

the RNA polymerase from
Raffinose Induction leakage [ ] →UAS Dg 1 G4 dimers ([ ]G d4 ) bind to
Raffinose,
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Induction leakage

+ ⎯ →⎯⎯⎯⎯⎯⎯⎯G G G
KD

d80 80
,80

80,
G80 dimers ([ ]G d80 ) bind t
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The expression for ( )Gp ss can be substituted into Eq. (15) for the
intracellular galactose.

B.2. Schematic representation of the kinetic reactions occurring at
the level of the GAL mRNA promoter

See Table B1.
B.3. Additional results

� Steady state behaviour of intracellular galactose: We study the
bifurcation behaviour of the system with respect to intracellular
galactose (Gi). The goal is to determine how the steady state
behaviour of Gi in the reduced 5D model depends on Ge and if
bistability is maintained. Fig. B1(A) shows that the bifurcation
diagram of Gi with respect to Ge, using the same range of [0,
0.08]% w/v of galactose as that used in Fig. 2, also exhibits
bistability in the form of a switch. Indeed, the two stable
branches of this bifurcation diagram are so close, they appear
as one curve possessing a Hill-like profile that eventually
plateaus at high values of Ge. The rate of change of Gi, according
to the reduced model, depends on reactions that possess both
slow and fast time scales. Due to the fast reactions taking place
in the metabolic system (when compared to those in the GAL
regulon), such as transport and phosphorylation, the bistable
switch associated with Gi is not as pronounced as that for the
proteins of Fig. 2. Thus verifying this switching behaviour at the
L mRNA promoter. The promoter conformations used in the “Description” are
⁎

G G G: :d d d4, 80, 1, . KDi, ∈ { }i 80, 3, 1 are the dissociation constants of the dimers into

nformations. ( )F Gi3 and ( )F Gi1 are activation rates for G3 and G1 molecules in the

Figure

e upstream activating sequence ([ ]UAS g ) on the GAL genes and refrains

transcription
[ ]UAS g and allow transcription to occur 1(B)1

o the previously formed complex. They inhibit Gal protein transcription,
and G80

1(B)2

lecules, which dimerize. Upon dimerization, these molecules bind to the
transcription of Gal proteins

1(B)3

ce G3 dimers and transcription continues

1(B)4
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level of intracellular galactose could be experimentally challen-
ging.
Nonetheless, it is important to point out that the switching
behaviour in Fig. B1 can occur for various reasons. The promi-
nent change in stability occurring in the GAL network destabi-
lizes the positive and the negative feedback elements of the
system. Moreover, a change in the ratio between the transporter
Gal2 and the enzyme Gal1, or a change in the concentration of
the two activators, Gal1 and Gal3, could underlie this behaviour.
As a result, we believe that bistability in the metabolic pathways
of the GAL network occurs due to the inherent properties of the
system at the gene regulation level. Based on the discussion
above, the equilibrium concentration of Gi appears to reach a
saturating level of 12 mM for high extracellular galactose levels
(≥0.6% w/v of Ge).

� Dynamics of the model simulation depicting the response of
GAL2Δ strain to glucose oscillations.

� Quantification of the four measures defining the output re-
sponse of the GAL network.

� Relation between the amplitude of the glucose input signal and
the amplitude of the GAL network output signal.
Appendix C. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2016.07.004.
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