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A. A Linear Chain of Neurons 

1. Consider a linear chain of neurons, show that as one proceeds 
along the chain the firing frequency continually drops until it is 
no longer possible to sustain activity. Each neuron is assumed to 
have both an absolute and a relative refractory time. 

2. The case when the input is an excitatory spike train (i.e. com­
posed of only EPSP's) which is periodic is developed in John's 
book, Chapter 2 [39], and early computations of Mike in note­
books from the middle 1970's. 

3. Lasota and Mackey notes calculate the output density of inter­
spike intervals off o to an input spike train of EPSP's with an 
arbitrary interspike density fI. We need to see if these results 
can be extended to show that the mean frequency of the output 
is less that the mean frequency of the input, or alternately if the 
mean output interspike interval is greater than the mean input 
interspike interval: 

j xfo(x)dx > j xfI(x)dx. (1) 

4. To obtain an analogous result when both excitatory and inhibitory 
inputs are present we make the following simplification. Namely, 
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we assume that the main effect of the inhibitory synapses is to 
shunt the excitatory synaptic currents, and not to add hyperpo­
larization to the somatic membrane potential. This assumption 
is physiologically realistic as has been discussed by Abeles [1] 
and Kandel and Schwartz [20], and all it does it to decrease the 
magnitude of the maximal EPSP and consequently increase the 
difference between the input and output spike train frequencies. 

B. The Convergence Problem 

1. To overcome the frequency dilemma of the previous section, we 
assume that there is a convergence of many presynaptic spike 
trains to a single postsynaptic cell. The frequency of the spike 
train obtained by superimposing all of the individual spike trains 
is higher than that of an individual presynaptic train. 

If the presynaptic spike trains are each distributed with a given 
density, what is the density of the summated signal going to the 
postsynaptic cell? We know the answer to this, since the density 
of the summated signal is just the multiple convolution of the 
various input densities. 

2. Geisler and Goldberg [13] developed a model of this type. They 
assumed that because a cortical neuron received so many inputs 
(both excitatory and inhibitory), the membrane potential could 
be represented as a random variable: an output (postsynaptic) 
spike occurs when the membrane potential exceeds the threshold. 
They suggested that under these conditions the statistical prop­
erties of the output spike train are determined exclusively by the 
dynamics of the threshold ( e.g. the relative refractory dynamics). 

3. Extend the Geisler and Goldberg [13] model for the generation 
of the density of the distribution of interspike intervals in single 
neurons. 
Do this by utilizing a version of the patient survival paper of [23, 
33] wherein an asymptotically stable map generates a chaotic time 
series ( corresponding to the fluctuating input of the presynaptic 
inputs) and thus a stable density f*(x). 
However, in this heuristic model, the dynamics of the interspike 
interval histogram will be controlled entirely by the dynamics of 
the "hole", which really means that these density dynamics are 
the sole consequence of the threshold behaviour when faced with 
a train of spikes. 

2 



We will assume that after a spike is generated: 

(a) The hole first closes for a period of time equal to the abso­
lute refractory time ta, and then slowly opens to mimic the 
decreasing threshold, finally approaching a maximum of 00 ; 

and 

(b) The initial condition of the map is reset to an arbitrary value 
to destroy correlations between successive interspike inter­
vals. 

(c) To mimic the effects of recurrent inhibition we could have 
the threshold go to zero initially for a period of time ta, then 
rise to a maximum, and then decrease again. 

C. The Convergence-Divergence Problem 

1. Consider (discuss, extend) the Abeles argument [1] related to the 
convergence and divergence effects. 

2. Consider a situation in which N neurons each receive two types 
of inputs: 

(a) an identical temporally patterned spike train; and 

(b) a noisy input ~(t) which is temporally uncorrelated between 
neurons so< ~j~k >= 0 for all i,j = 1, · · ·, N and i -=J j. 

The effect of this noisy input is to convert each neuron into a weak 
signal detector, i.e. there is a finite probability ( albeit small) that 
the neuron will fire in response to a single spike though normally 
(without noise) this is not possible. 

It is straightforward to see that if the outputs of the N neurons are 
summed at a common point we will recover the initial temporal 
patterned spike train. This is the essence of a model recently 
proposed by Collins et al. [8] and extended by John Hunter. 

D. Distribution/Temporal Coding in the Nervous System 

Here we summarize some of the results of the older and more recent 
papers that suggest a temporal and/or distribution coding within the 
nervous system. In particular, these results include those of Werner 
and Montcastle [49], and others [44, 50, 9, 46, 37, 48, 34, 11, 38, 35]. 

1. Temporal coding Recently the old idea that the neural code was 
simply a rate code, i.e. that neural stimuli are encoded as an 
average firing rate along neurons, has been embellished by ex­
tending it to the notion that the actual timing or sequence 
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of action potentials, and therefore the sequence of in­
terspike intervals, might indeed be the vehicle by which 
information is transmitted in the nervous system. 

( a) In a recent study Middlebrooks et al. [38] examined the firing 
patterns of single neurons in the auditory cortex of cat in re­
sponse to different spatial location of auditory stimuli. They 
discovered that these single neurons can respond to sound lo­
cations throughout 360 degrees, and even more interestingly 
that these individual units responded with patterns of action 
potentials that varied systematically with the location of the 
auditory stimulus. They speculated that, in contrast to a 
place code, an auditory stimulus at nearly any location acti­
vates a diffuse populations of neurons, and that each of the 
active neurons in this population signals, with its temporal 
firing pattern, the approximate location of the auditory stim­
ulus and that the precise location is signaled by the concerted 
activity of many such neurons. 

(b) A speculative, but informative, article by Ferster and Sprus­
ton [11] considers alternative candidates for the neural code­
including a temporal coding process-and is well worth read­
ing for its discussion of the relevant issues and pointing to 
some of the important literature. 

2. Distributional (Ensemble) Coding [JGM-Where does the Opti­
cian and Richmond [40] reference go here?] 

(a) One observation leading to the supposition that there is widespread 
distributional neural patterning is that of Penfield Ligm­
?ref] who showed that even though there are clear sensory 
and motor areas in the cortex, sufficiently strong stimula-
tion of virtually any area of the cortex is capable of eliciting 
sensory and/ or motor responses. 

(b) To this we should add the old observations of Lashley [mcm­
?ref] who showed that ablation of large areas of the cortex 
in the rat could take place without any eventual loss of the 
ability to solve maze problems. 

(c) To our knowledge, one of the first published experimental 
studies suggesting that neural information might be encoded 
in a distributional, or density manner, is that of Werner and 
Montcastle [49]. 
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In their study of the firing of thalamic neurons in monkeys 
in response to sensory stimuli they found clear evidence of 
a strict causal relationship between the mean interspike in­
terval '5.t and the standard deviation a of the instantaneous 
firing rate. Namely, they found that to a good approximation 

1 -
a= -ll.t 2 ' (2) 

which is quite similar to a relationship first pointed 
out to me by John Tyson that holds for the statistics 
of the cell division process in a number of cell lines 
and which should be followed up. Werner and Montcastle 
[49] speculated that this relationship might be indicative of 
the utilization of interspike interval density information to 
transmit information in the nervous system. 
In addition, Werner and Montcastle [49] found that in both 
spontaneous firing and firing in response to a constant stim­
ulus the resulting records of firing rate (impulses/second) 
showed a clear and statistically significant "periodicity" with 
period ranging from 0.09 to 1.4 hertz. One might wonder 
if this is experimental evidence for the statistical periodicity 
that we discuss in two sections below. 

(d) The next work to suggest the potential role of densities in 
transmitting information in the nervous system was that of 
Sanderson et al. [44] working in the retinal ganglion cells of 
cats. They presented data indicating that there was a clear 
change in the density of the distribution of the interspike 
interval histograms between light and dark, and speculated 
that it was in fact the density that was carrying the neural 
code in the visual system. 

(e) Wu et al. [50] studied two different behaviours (gill with­
drawal and respiratory pumping) in Aplysia while recording 
from about 70 neurons. They discovered that the populations 
of neurons that were active during the two behaviours were 
highly overlapping, but that the pattern of activity across the 
populations was quite different during the two behaviours. 
These results were interpreted by them as indicating a dis­
tributed neuronal organization in which virtually the entire 
population of neurons participated in the two responses, but 
with totally different patterns (densities of activity). 
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(f) As a more modern extension to the work of Penfield, Unger­
leider has recently shown [48] that both learning and memory 
involve many of the same areas in which motor and sensory 
processing primarily takes place. 

(g) Deadwyler and Hampson [9] have recently given an inter­
esting and clearly written exposition of the hypothesis that 
there is an association between sensory inputs, ensemble en­
coding of the sensory information, and ensemble processing 
leading to behaviour. 

E. Multistability and Why We Should be Interested In It 

1. One need go not very far up in the nervous system before en­
countering recurrent loops, both inhibitory as well as excitatory. 
These loops form local neural circuits as well as long range con­
nections involving, for example, descending cortical influences. 
As a consequence of these interactions, autonomous dynamics 
such as limit cycles may become important. The occurrence of 
an autonomous limit cycle would obscure input output relations. 

2. We attach particular importance to the possible occurrence of 
multistability in networks of interacting neurons. 
What is multistability? From a mathematical point of view, it 
refers to the co-existence of multiple attractors such that there is 
a dependence of the eventual behaviour of a dynamical or semi­
dynamical system on the initial condition that the system is faced 
with. 
We conjecture that different attractors may correspond to differ­
ent memories or different responses. From the nervous systems 
point of view, the speed with which it could switch between differ­
ent basins of attraction is clearly of importance. However, there 
are two (not necessarily mutually exclusive) ways of dealing with 
an acceleration of switching. 

(a) One is to ensure that the individual dynamics containing the 
coexisting attractors has a relatively rapid switching speed 
(large negative real part of an eigenvalue) 

(b) The second will become apparent below when we discuss the 
concept of the behaviour of densities. 

3. Note that multistability in this sense is not that much different 
from what is typically discussed in the current neural network 
literature. 
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(a) The consensus in the neural network literature is that there 
is an intimate connection between associative memory and 
multistability, as summarized in Hertz et al. [15]. 

(b) The possibility has been raised by Canavier [7] that some 
forms of memory in the CNS, specifically active short term 
memory, might also be related to multistability. 

( c) The one difference is that in neural networks, this multista­
bility is dependent on a modification of the synaptic weights 
in response to usage (Hebbian synapses, or something akin 
to them.) 

( d) The multistability found in neural networks in which Hebbian 
synapses are used to embed multiple memories suffer from the 
defect that when they are overloaded (i.e. presented with 
more memories that the maximum allowed by the network 
size and dynamics), their total performance is degraded in 
the sense that the recall of all memories becomes poorer as 
has been discussed in Abeles [1]. 

(e) In contrast, psychological experience seems to indicate that 
slight overloading may affect some memories but in fact leaves 
most intact. 

(f) This synaptic modification is not necessary for the type of 
dynamic multistability that we have in mind, but it is cer­
tainly possible that it could be incorporated in which case 
we might have a new type of multistable behaviour emerging 
as a consequence. 
But note here that training implies a modification of dynam­
. ' lCS. 

4. From the perspective of neurobiology, multistability might be im­
portant if the CNS was such that it were multistable and thus 
different stimuli were capable of evoking different solutions from 
the harem of multistable solutions that the CNS was capable of 
generating . 

. 5. In the real CNS it is unclear which (if any) mechanisms could 
lead to multistability and what the nature of the locally stable 
attractors might be. Neurons are well known to be bistable, e.g. 
the squid giant axon as shown by Guttman et al. [14] and the 
a-motoneuron as studied by Hounsgaard et al. [16], and may 
in fact be multistable [7]. Further, small neural circuits may 
be multistable in both their electronic realizations as shown in 
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the work of Foss et al. [12] and in the real biological situation 
studies by Kleinfeld et al. [21]. What happens in large neural 
populations? 

6. Another strength is the following. In the multistability that oc­
curs in systems of ordinary differential equations, a single suit­
ably timed stimulus (initial condition) of the proper magnitude 
is capable of switching between eventual behaviors. 

However, in the multistablity displayed by differential delay equa­
tions (or functional equations for that matter), an entire history 
of the stimulus pattern for some finite interval of time is required 
to determine the eventual behavior. Thus in this case one has a 
way of eliciting different responses to a "temporal code" extend­
ing over a finite period of time. 

F. What do We Know About Multistability? 

1. From an experimental point of view in biological situations it is 
known that the squid giant axon is capable of generating bistable 
behaviour [14], as is the a-motoneuron [16]. Furthermore, in 
the work of Martinez and Segundo [36] it is highly likely that 
multistable behaviour was induced via the addition of a recurrent 
inhibitory feedback to a crayfish stretch receptor, while in the 
work of Kleinfeld et al. [21] the existence of multistable behaviour 
in an Aplysia neuron inserted into biologically constructed 
recurrent inhibitory loop was demonstrated beyond a doubt. 

2. Also, from an experimental perspective there are neural circuits 
that control motor outputs in which the same group of neurons 
and interneurons are capable of firing in a variety of different 
patterns, a characteristic of multistability, cf. Delcomyn [10], 
Kristan [22], Selverston [45], and Roberts and Roberts [43]. 

3. From a modeling perspective, the mathematical model of Canavier 
et al. [7] has shown the existence of seven coexisting solutions in 
a model for the Rl 5 neuron of Aplysia. Of these patterns, have 
any been seen experimentally? 

4. Many of our other examples of multistability derive from stud­
ies of first order differential delay equations with mixed feed­
back, some of which were motivated by studies of a model for 
the ubiquitous occurrence of recurrent inhibition in the nervous 
system. Thus from an analytic point of view we have the studies 
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of [5, 4, 32, 3, 30] and Foss et al. [12]. Note however that in the 
model of Foss et al. [12] for recurrent inhibition, the feedback is 
not of "mixed" type, but rather is negative feedback. 

5. It has been shown by Foss et al. [12] that temporal pattern 
codes are produced by neural circuits which have the property of 
multistability. This observation is of particular interest given the 
current excitement surrounding temporal pattern coding in the 
nervous system. 

6. These analytic studies have been extended to second order delay 
systems and it is clear that in these one can have multistable so­
lution behaviour in the even simpler case of negative feedback as 
shown in the studies of an der Heiden et al. [2] for piecewise con­
stant negative feedback (which may be applicable to the bistable 
behaviour found in the pupil light reflex), and Campbell et al. [6] 
for continuous negative feedback. 

7. From a perspective of problems motivated by examples in physics 
we have only to turn to the work oflkeda and Matsumoto [18] and 
Ida and Davis [17] that was motivated by experimental work on 
laser cavity experiments and which demonstrated the existence 
of multistable behaviour. 

8. The property of multistability has also been demonstrated in high 
order discrete time semi-dynamical systems called coupled map 
lattices. Though this phenomenon has been observed in CML's 
by many investigators [citeREFS] without realizing what it was, 
perhaps the clearest explicit demonstration of it is contained in 
the work of [26, 27], and Losson et al. [31] for deterministic 
systems, and [29] for stochastic systems. 

G. Densities and the Nervous System 

1. The experimental studies described above in the section on tem­
poral and distribution coding make it clear that there may be a 
likelihood, at least in some situations, that ensemble coding is of 
importance in the nervous system. 

2. Because of the extensive convergence and divergence properties 
of the nervous system, as well as the large number of neurons 
involved, this is not especially surprising. 

3. If indeed ensemble coding is of importance, then the only natural 
way to describe the ensemble activity is through the density of 
the distribution of the activity in the ensemble. 
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4. Typically one only thinks of density descriptions of systems as be­
ing of use in the calculation of static statistical properties. How­
ever, much is now known about the evolution of densities (statis­
tical properties) under the action of deterministic dynamics [25], 
and a number of types of convergence behaviour of densities are 
now described. 

,5. One of the most attractive aspects of thinking that the nervous 
system might operate by computing with densities is that their 
speed of convergence is typically many orders of magnitude larger 
than one can expect from examining the statistical convergence 
along the trajectory of an individual unit even if the underlying 
dynamics are ergodic. 

6. From our perspective, one of the most attractive types of conver­
gence behaviors of densities with respect to the possible function­
ing of the nervous system is that of statistical periodicity which 
we consider extensively in the next two sections. 

H. What is Statistical Periodicity, and Why Should we be Mind­
ful of It? 

1. Statistical periodicity is a periodicity property of densities that 
was first demonstrated to exist by Ionescu Tulcea and Marinescu 
[47] for discrete time systems (maps). The essence of statisti­
cal periodicity is that although a trajectory may appear to be 
"chaotic", if one examines the evolution of densities under the 
action of a map then the densities actually exhibit a strictly pe­
riodic behaviour. 

2. Statistical periodicity may be either an inherent property of a 
completely deterministic system, or it may be a property of a 
stochastic system induced by the injection of noise ( additive or 
parametric) into a deterministic system. [The simplest, but triv­
ial, example of the latter situation is the statistical periodicity 
induced by the addition of noise to a deterministic system with 
a limit cycle behaviour.] 

3. One of the attractive aspects of statistical periodicity is that the 
nature of the limiting oscillations of the densities is continuously 
dependent on the initial density in spite of the fact that the 
period of the oscillation is fixed by the dynamics. 

4. Thus if you were thinking of statistical periodicity as a dynamic 
mechanism for storing memory one could have a virtually contin-
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uous relationship between dynamic responses and the stimulus. 
The ability to discriminate between the continuous array of re­
sponses would be only limited by our ability to discern "tiny" 
differences. 

I. What do we Know of Statistical Periodicity? 

1. The mathematical foundation for the existence of statistical pe­
riodicity (also sometimes known as asymptotic periodicity) was 
laid by Ionescu Tulcea and Marinescu [4 7]. See also Lasota and 
Mackey [25] for a treatment of the characteristics of statistical 
periodicity. 

2. A concrete one dimensional dynamical system demonstrating sta­
tistical periodicity is the "tent map" studied by [41] who extended 
the analytical work of Ito et al. [19] and Yoshida et al. [?]. 

3. The work on statistical periodicity of the single tent map was 
extended by [26] to the case of two coupled tent maps. 

4. Work on high dimensional dynamical systems ( coupled map lat­
tices) displaying statistical periodicity can be found in a number 
of papers including [27] and Losson et al. [31], which considered 
coupled lattices of the tent map and the "quail map". 

5. The demonstration that statistical periodicity can be induced in 
a discrete time one dimensional dynamical system that has no 
continuous statistical behaviour (in the sense of the existence 
of densities) in the absence of noise is contained in the work of 
Lasota and Mackey [24] who examined the effect of additive noise 
in the "Keener map". These studies were extended by Provatas 
and Mackey [42]. 

6. Further considerations of noise induced statistical periodicity are 
to be found in the coupled map papers of [29] who considered 
collections of interconnected stochastically perturbed maps. 

7. It has been claimed that the phenomenon of statistical periodic­
ity is impossible in continuous time dynamical or semi-dynamical 
systems. [The fact that this claim is false is easily seem by ref­
erence to the situation described above in which noise is added 
to a system with limit cycle behaviour.] However, the analytic 
demonstration of non-trivial statistical periodicity in continuous 
time systems has not yet been achieved. 
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8. The above observations not with standing, statistical periodicity 
has been demonstrated in discrete time representations of dif­
ferential delay equations that capture the essence of recurrent 
inhibition, for example [28] showed that numerical solutions of 
a "tent map" differential delay equation display statistical pe­
riodicity, while evidence for this property was also found in a 
"stochastic Keener map" differential delay equation [28]. 

9. A natural extension of statistical periodicity is to think of sta­
tistical chaos-the situation in which there is a non-periodic 
evolution of densities. 

MCM thinks that a necessary condition for the occurrence of this 
behavior would be that the Frobenius Perron operator should be 
nonlinear, i.e. depend on the previous density in a manner that 
destroys the additivity property. 

A potential way to generate statistical chaos is to take a tent 
map in which the slope parameter a is dependent on the previous 
density, e.g. 

(3) 

and Ac [O, 1] . 

.J. What is the Connection Between Multistability & Statistical 
Periodicity? 

1. In the studies of high dimensional coupled map lattices of [27] 
and Losson et al. [31] we have the strongest connection between 
multistability and statistical periodicity. 

(a) On the analytic side Losson and Mackey [27] and Losson et 
al. [31] have given sufficient analytical conditions for the 
existence of statistical periodicity of densities in large 
N x N coupled map lattices, so they are in fact high dimen­
sional discrete time dynamical systems of dimension = N 2• 

(b) However, on the numerical side Losson and Mackey [27] and 
Losson et al. [31] have shown that starting from two random 
initial conditions in these N 2 dimensional systems the even­
tual patterns of activity in the system corresponding to the 
two realizations were different both to the eye, and as eval­
uated by the less subjective index of the "collapsed density" 
which also showed clear behaviour indicative of statistical 
periodicity. 
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1. Note that the collapsed density is not a representation 
of the density of the N 2 dimensional dynamical system. 

ii. Remember also that the statistically periodic behaviour 
of the collapsed density, taken as numerical evidence for 
multistability, was also shown to exist analytically. 

(c) Thus there is a clear correspondence in the coupled 
map lattices between the occurrence of multistability 
on the one hand, and statistical periodicity on the 
other. 

2. Exactly the same type of evidence linking multistability and sta­
tistical periodicity in the square lattices of Losson and Mackey 
[27] and Losson et al. [31] was found in the "one dimensional" 
lattice representations for differential delay equations presented 
in Losson and Mackey [28]. Thus we must conclude that it is 
highly likely that there is a strong connection between the occur­
rence of multistability in high dimensional dynamical systems, of 
which differential delay equations are but one example since they 
are effectively infinite dimensional, and the property of statistical 
stability. 

3. To nail this problem further, two numerical studies are proposed: 

(a) Claude Lacoursiere will examine the tent map differential 
delay equation of [28] to identify parameter values at which 
multistability and/or statistical periodicity occur, and deter­
mine the degree of overlap of the parameter spaces for these 
two phenomena; while 

(b) .Jennifer Foss will carry out exactly the same programme for 
her positive feedback model [12] of recurrent inhibition. 

(c) Both of the above programmes offer the definite advantage 
of being based on systems about which a good deal is known 
analytically, though we realize that the knowledge in each 
case is of a somewhat different nature. 

K. Open Questions to Consider in the Future. 

1. Can multistablity exist in systems with distributions of delays? 

2. What is the connection between the existence of statistical peri­
odicity and the generation of patterns in coupled map lattices? 
Originally we hedged our bets in Losson et al. [31], but recently 
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JL told MCM that he was convinced that there was a strong 
connection. Check with him to find out why, etc. 

3. Integrate and fire models (like the RED/WHITE/BLUE) model 
show cycling through activity patterns that have the same period 
but which change details depending on the initial condition given 
to the system. MCM thinks that this is evidence for the existence 
of statistical periodicity of measures which could be developed 
along the lines of Chapter 12 of Lasota and Mackey [25]. 

4. What is the connection between the development of a pattern 
and a concept? What does this question mean? 

5. If a "neurologically motivated" coupled map lattice were con­
structed, would it have the behaviour of statistical periodicity? 
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