
THE ROLE OF DISTRIBUTIONS 

OF CELL CYCLE TIMES 

AND 

NOISE IN DETERMINING THE 

STABILITY OF CELLULAR POPULATIONS 

VERSION OF 11 JUNE, 1994 

FILE: NOISEDEL.TEX1 

999 

MICHAEL C. MACKEY2•3 AND IRINA G. NECHAYEVA3•4 

ABSTRACT 

Here we consider the role of a distribution of cell cycle times and noise in determining the dynamics of a population 
of cells that are capable of simultaneous proliferation and maturation. The equations describing the cellular population 
numbers are stochastic first order partial integro-differential equations (transport equations) in which there is an explicit 
temporal retardation as well as a nonlocal dependence in the maturation variable due to cell replication. 

- I. Introduction. THIS SECTION WILL CONTAIN A BRIEF REVIEW OF CELL CYCLE KINETICS, AND THE 
MODELLING ATTEMPTS THAT HAVE BEEN MADE TO LOOK AT THEIR DYNAMICS. 

II. The Model. 
The assumption that cellular maturation proceeds simultaneously with cellular replication has been shown to be 

sufficient to explain existing cell kinetic data for erythroid and neutrophilic precursors in several mammals (Mackey 
and Dormer, 1981, 1982). Furthermore, the hypothesis is consistent with recent data related to the labeling index of 
neutrophil precursor cells in patients receiving human recombinant GM-CSF during the terminal phase of various car­
cinomas (REFERENCE HERE). Thus, we consider a population of cells capable of both proliferation and maturation. 
We assume that these cells may be either actively proliferating or in a resting (G0 ) phase. 

The Proliferating Phase. Actively proliferating cells are those committed to the replication of their DNA and the 
ultimate passage through mitosis and cytokinesis with the eventual production of two daughter cells. The position of 
one of these cells within the cell cycle is denoted by a (cell age), which is assumed to range from a = 0 (the point 
of commitment) to a = T (the point of cytokinesis). The age T at which cytokinesis takes place is not, however, 
identical for all cells (REF). Thus we assume that T is distributed with a density fr on an interval [TL, Tu] with 
0 < TL '.S Tu < oo. Since fr is a density, J;; fr(T)dT = l. The particular case when TL = Tu so fr is a dirac delta 
function, fr(T) = 6(T - TL), has been considered by a number of investigators (REF). 

The maturation variable is labeled by m which ranges from m = 0 tom= mp < oo. (For concreteness one could 
think of erythroid precursor cells and associate the maturation variable with the intracellular hemoglobin concentration 
which is maintained at cytokinesis.) However, many of the considerations here generalize to the case that m is not 
restrided to this specific assumption that the maturation variable is a conserved quantity, ( cf. Mackey and Rudnicki, 
1994.) 

We assume that proliferating cells age with unitary velocity so (da/dt) = 1, that cells in this phase are lost at a 
stochastic rate 6p(t), and both proliferating and non-proliferating cells mature with a stochastic velocity V(t, m). We 
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assume that the velocity of maturation is given by V(t, 0) = 0, V(t, m) = r(t) > 0 form E (0, mF) and V(t, mF) = 0, 
"'-""""here r(t) is understood to be a stochastic variable. 

-

-

Denote the number of actively proliferating cells at time t, maturation level m, and age a by p(t, m, a). Then the 
conservation equation for p(t, m, a) is 

ap(t,m,a) ap(t,m,a) a[V(t,m)p(t,m,a)] _ -" () ( ) 
at + aa + am - (J p t p t, m, a ' (1) 

in conjunction with an initial condition p(O, m, a) = f(m, a) for (m, a) E [0, mF] x [0, Tu]. The total number of 
proliferating cells at a given time and maturation level is given by 

1T(J 1T 
P(t,m)= f 7 (T) p(t,m,a)dadT, 

TL 0 
(2a) 

and the total population of proliferating cells is 

rmF 
P(t) = Jo P(t, m)dm. (2b) 

The Resting Phase. After cell division, both daughter cells are assumed to enter the resting Go phase. The cellular 
age in this population ranges from a = 0, when cells enter, to a = oo. We assume that if the maturation of the 
mother cell at cytokinesis is rn, then the maturation of a daughter cell at birth is m/2 so there is a strict division and 
conservation of the maturation variable m. Let the number of cells in this stage be n(t, m, a), so the total number of 
resting stage cells of maturation m is 

N(t, m) = 1= n(t, m, a) da, (2c) 

while the total number of resting phase cells at all maturation levels is 

N(t) = 1mF N(t, m) dm. (2d) 

We make the assumption that the non-proliferating cells also age with unitary velocity, and that they may exit 
from the resting stage either by being lost at a stochastic rate 6R(t), or by re-entering proliferation. We take the rate 
of re-entry into proliferation to be given by f](t)R(N, m) (in agreement with the existing data on the regulation of 
cell kinetics), where /3(t) is the stochastic maximal re-entry rate, while R : [0, oo] x [0, mF] ---+ [0, 1] is the fractional 
re-entry rate. Then the conservation equation for n(t, m, a) is given by 

8n(t,rn,a) an(t,m,a) a[V(t,m)n(t,m,a)] = -[" () /3() (•r() )] ( ) 
at + aa + am (J N t + t R JV t 'm n t, m, a ' (3) 

again with an initial condition n(0, m, a) = µ( m, a) for ( m, a) E [0, m F] x [0, oo). We assume that lima_, 00 µ( m, a) = 0. 

Boundary Conditions. There are two natural boundary conditions for this problem that come from the biolog_y. The 
first of these relates the equality of the cellular effiux following cytokinesis to the input flux of the resting compartment, 
and is 

(4) 

The second boundary condition, equating the effiux from the resting population to the proliferative population influx, 
IS 

p(t, rn, 0) = 1= f](t)R(N(t), m)n(t, m, a) da = f](t)R(N(t), m)N(t, m). (.5) 
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The Stochastic Parameters . . We have already introduced the stochastic nature of the cell cycle time T, and to 
.,_.proceed further we must, at this point, specify the nature of the other four stochast~c v~riables in t_!ie model-namely 

Op, ON, r, and fJ. We assume that each of these variables has a mean value given by Op, ON, f, and fJ respectively and 
that 

-

- dwp(t) 
op(t) = Op +up dt , 

- dwN(t) 
ON(t) =ON+ UN dt , 

dwr(t) 
r(t) = r+u --

r dt ' 

fJ( ) fJ- dw13 (t) 
t = +u13~, 

where each wi(t) is a Wiener process distributed with amplitude ui, density Ji, and i = P,N,r,orf}. The densities Ji 
are assumed to be supported on an interval of R+ and such that any one of the four variables Op, 15N, r, and fJ may 
never assume a negative value due to fluctuations. 

Equations for P and N. We now turn to a derivation of the evolution equations for P(t, m) and N(t, m) from the 
conservation equations {l) and {3), and the associated initial and boundary conditions. 

Integrating equation (1) over the age variable and then averaging with respect to T gives 

aP(t, m) a[V(t, m)P(t, m)] 
at +-----a~m------------

= -8p(t)P(t, m) - {1:u f 7 (T)p(t, m, T)dT - p(t, m, 0)}, {6) 

while integrating (3) over the age variable yields 

aN(t, m) a[V(t, m)N(t, m)] 
at + am 

= -[8N(t) + fJ(t)R(N(t), m)]N(t, m) - c~~ n(t, m, a) - n(t, m, 0)}. (7) 

To proceed further, we must have the functions p(t, m, a) and n(t, m, a), the solutions of {l) and {3) in conjunction with 
their initial conditions. Since the equations along the characteristics of (1) and {3) are now rather simple stochastic 
differential equations, this is straightforward. We set 

for notational convenience and find that the general solution of {l) is 

and for (3) 

p(t,m,a) = _ { 
r(m(t, m), a - t)e-'Spte-o-pwp(t) 

p(t - a, m(t, m), 0)e- 8Pae-a-pwp(a) 

0:::; t < a 

a:::;; t, 

{ 
µ,( m(t, m ), a _ t)e- [/3'R(N(t),m)+8N]te-lo-fJwfJ(t)'R(N(t),m)+a-NwN(t)] 

n(t, m, a) = n(t _ a, m,(t, m), O)e-l/3'R(N(a),m)+8N]ae-lo-fJWfJ(a)'R(N(a),m)+a-NWN(a)] 

O:S;t<a 

a< t. 

(8) 

(9) 

If the initial conditions satisfy µ(m, 0) = 2f(2m, T) and r(m, 0) = fJR(N(O), m)N(O, m), then from the boundary 
conditions (4) and (5) it follows that both p and n are continuous functions. Further, since lima__,oo µ(m, a) = 0 by 
assumption, we also have lima__, 00 n(t, m, a) = 0. 

Using the boundary condition (5), equation (8) can be used to give 

{ 
f(m(t, m), T - t)e- 8Pte-O-pWp(t) 

p(t, m, T) = fJ(t - T)R(Nr(t), m(t, m))Nr(t, m(t, m))e-8PTe-o-pwp(T) 

O:S;t<T 

T :S; t, 
(10) 
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where NT(t) = N(t - T) and NT(t, m(t, m)) = N(t - T, m(t, m)). Using (10) and (5) in equation (6) we find that the 
._.dynamics of P(t, m) is governed by the delayed first order partial differential equation 

aP(t, m) a[V(t, m)P(t, m)] 
at + am 

= - 8p(t)P(t, m) 

+ f3(t)N(t, m)R(N(t), m) (11) 

{ 
e-lipte-apwp(t) I:: JT(T)r(m(t, m), T - t)dT 

J;:r JT (T)/3(t - T)R(NT(t), m(t, m))NT(t, m(t, m))e-lipT e-apwp(T)dT 

Further, from the other boundary condition (4) in conjunction with (10), followed by (5), equation (8) for N becomes 

aN(t, m) a[V(t, m)N(t, m)] 
at + am 

= -[8N(t) + /3(t)R(N(t), m)]N(t, m) 

{ 
e-{,pte-apwp(t) I:: JT(T)f(m(t, 2m), T - t)dT 

+2 -1:: JT(T)/3(t - T)R(NT(t), m(t, 2m))NT(t, m(t, 2m))e-lipTe-apwp(T)dT 

O:St<T 

T '.St. 

(12) 

The interesting thing about equations (11) and (12) is that although the dynamics of P depends on N, the 
converse is not true. Thus the dynamics of N evolves independently of what is going on in the proliferative phase, 
and the dynamics in the proliferating phase is in a sense "driven" by the dynamics of the nonproliferative cells. This 
illustrates the central importance of the resting phase cells in any regulatory consideration of cell cycle dynamics. This 
same feature has been found in a number of other models of the cell cycle. 

,.._. Maturation Independent Proliferation Control. Another interesting feature of this model is the following. In 
the special case that the proliferative control function R is independent of the maturation level m, then even simpler 
equations for the dynamics may be obtained since the maturation completely disappears! 

-

To see how this works is quite simple, since integrating (11) over the maturation variable, and remembering the 
properties of V, gives 

aP(t) = - 8p(t)P(t) + f3(t)N(t)R(N(t)) 
at 

{ 
e-llpte-apwp(t)) fomF I:: JT(T)f(m(t, m), T - t)dTdm O '.St< T 

J;: fT(T)/3(t - T)R(NT(t))NT(t)e-lipTcapwp(T)dT T :St, 

while the corresponding operation on (12) yields 

O:St<T 

T::;: t. 

(13) 

(14) 

The types of equations we want to look at the stability of. Thus, the bottom line equation that we have to 
study the stability of is either (12), written in the form [for T < t] 

aN(t, m) a[V(t, m)N(t, m)] --- + -------at am 
= -[8N(t) + f3(t)R(N(t), m)]N(t, m) (15) 

+ 2e-{,pte-apwp(t) 1TU JT(T)f](t - T)R(NT (t), m(t, 2m))NT(t, m(t, 2m))e-r5pT e-apwp(T)dT. 
TL 
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or the maturation independent case (14) written as 

(16) 

I am afraid that (15) may be too difficult, and maybe we should stick to (16) initially-though I freely admit that I 
haven't thought about it too much at this point. 

Random (no pun intended) Thoughts Related to Equation (16) Without Noise. 
Equation (16) is a nonlinear stochastic functional integro-differential equation, and as such sees quite difficult to 

deal with. As a start, we will look at the linearized version of (16) to try to see how the stability of the situation 
in the absence of noise but still with the distribution of time delays is modified by the presence of this distribution of 
delays. Thus we first determine what the steady states of (16) in the absence of any fluctuations are by taking c,i = 0 
for i = P,N,r, or (J. 

One of the steady states in the absence of noise is the trivial one of N. = 0, while the second is determined from 
the implicit relation 

(17) 

where 

(18) 

satisfies (for 6p 2'. 0) 

(19) 

- (Remember that, since f is a density it is normalized.) Thus, if 'R(N.) > 0, then we must have I> ½-

-

If we set g(N) = NR(N), then in the neighborhood of either of the steady states the linearized version of (16) 
in the absence of fluctuations is given by 

ddz = -[6N + ~g'(N.)]z + 2~g'(N.) 1ru f(T)z(t - T)e-iipr dT, 
1 ~ 

(20) 

where z(t) = N(t) -N. is the deviation of N from the steady state N •. This means that the eigenvalue equation will 
be given by 

(21) 

1. Note that if f is a delta function f(T) = 6(T - TL), then (21) takes the simpler form 

(22) 

where 
A= 6N + ~g'(N.) and B = 2~g'(N.). 

Using well established techniques (c.f. Hale), it can be shown that Re,\< 0 when 

_ (AeiiPTL) cos l 
B 

TL < -----:=========== 
1 - (

AeBfiPTL )2 Be-8PTL 

(23) 

If the inequality (23) is replaced by an equality, then Re,\= 0. 



6 MICHAEL C. MACKEY2•3and Irina G. Nechayeva3,4 

2. However, if f is not a delta function, then (21) can be rewritten in the equivalent form (A and Bare as defined 
._.., 1bove) 

This doesn't look too useful to me. 

.X+A = 1ru f(T)e-(>.+6p)rdT 
B TL 

= E ( e-(>.+6p)r) 

= f= (-lt (.X+6p)mE(Tm). 
m. 

m=O 

(24) 

2. Alternately, if we change variables sou= T + TL, then the eigenvalue problem can be rewritten in the form 

(25) 

If we assume that the data are such that we can take Tu - T£ to be quite large, then the last equation becomes 

.X:::::: -[6N + ,8g'(N.)] + 2,8g'(N.)eC>.+6p)TL lim ru-TL f(u - TL)e-(>.+6p)1.1du 
Tu-TL--t00 lo 

= -[6N + ,8g'(N.)] + 2,8g'(N.)eC>.+6p)TL £>.+6N[f(u - TL)], (26) 

where the notation £,.[.f(t)] denotes the Laplace transformation off with respect to the complex variable 8. This 
means that we should be able to drag out all of the machinery to do with Laplace transformations to look at the 
eigenvalue problem. 

,,_., 3. In terms of trying to obtain workable results, it may be necessary to pick a certain density f to work with. 

-

HOWEVER, IT WOULD ALSO BE NICE IF WE COULD MAKE GENERIC STATEMENTS ABOUT STABILITY 
FOR ANY DENSITY IF ANY OF IRINA'S RESULTS THAT SHE WROTE UP IN FEBRUARY ARE WORKABLE. 
I THINK THAT THE ANDERSON RESULTS ARE USABLE HERE, BUT NOT SURE. 

4. One possible density we could take is the density of the gamma distribution, viz. 

(27) 

for TL < T, and t,, is a suitably defined normalization constant. Actually, K, has the value 

an+l 
K, = ----,------,-

r ( n + 1) 
n > 0, (28a) 

where r is the gamma function, or 
an+l 

"'= - (28b) n! 
when n is an integer. Integer n might be OK, because I think we can always fit data pretty well this way. If we have 
integer n, then a few computations show that the mean delay is given by 

n+l 
l;r = TL + -- = TL + T, 

a 

where T = (n + l)/a, and the variance D~ =< (T -l;r)2 > is given by 

For integer n, the eigenvalue equation becomes 

(29) 

(30) 

(31) 



THE ROLE OF DISTRIBUTIONS OF CELL CYCLE TIMES AND NOISE IN DETERMINING THE STABILITY OF CELLULAR POPULATIO 

where the lower limit can be taken to be zero since f(T) is identically zero for T < T£. Using the fact that the integral 
,_.Jn the right hand side of (31) is a Laplace transform with respect to .A+ 6p we can write the eigenvalue equation, 

-

when f is the density of the gamma distribution, as 

(32) 

or 

(33) 

It turns out that something close to this eigenvalue equation has been analyzed by S.P. Blythe, R.M. Nisbet, and 
W.S.C. Gurney in "The dynamics of population models with distributed maturation periods", Theor. Popul. Biol. 
(1984), 25, 289-311. Unfortunately, in our particular case things do not work out to be quite as tidy as with Blythe 
et al. 

To see this, divide (33) by (6p + at+l and define 

and 

Then the eigenvalue equation (33) becomes 

( 
.A )n+l 

(..X+A) 1+ 6p+a =pe->.TL_ 

If we assume that .A is pure imaginary, .A= iw, then this takes the form 

Define rp by 

(iw+A) (1+i 6p:a)n+1 =pe-iwTL_ 

w 
-r--=tanrp, 
vp+a 

so the eigenvalue equation becomes 

[ 
, . ] n+l . cosrp+ismrp .. 

(iw + A) _....;.._ __ "-- = p [cos(wTL) + ism(wTL)]. 
cos 'P 

(34) 

(35) 

(36) 

(37) 

(38) 

Remembering that [cos rp + i sin rp]"+l = cos[(n + l)rp] + sin[(n + l)rp], and separating the real and imaginary parts of 
the eigenvalue equations gives us 

cos"+1 rpcos(wT£) 
A- wtan[(n + l)rp] = p [( ) 

cos n+l rp 
cos"+l rpsin(wTL) 

Atan[(n+l)rp]+w=p [( ) . 
cosn+lrp 

This latter pair of equations is simply a linear system in (A, p), which is easily solved. To do this I first defined 

cos"+l rpcos(wTL) 
0: = ---------

cos[(n + l)rp 
and 

(3 _ cos"+l rpsin(wTL) 
- cos[(n + l)rp ' 

and cranked the whole mess through to eventually obtain 

w 
A= 

tan[WT£ + (n + l)cp] 
w 

p= 
cos"+l rpsin[wTL + (n + l)rp] · 

(39a) 

(39b) 

(40) 

(41a) 

(41b) 
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How can these be simplified? I haven't had much luck, but one should note that since tan cp = w / ( 8 p + a), it then 
iollows that 

1 
cos cp = --;====== 

i+(-w )
2 

8p +a 

Furthermore, if the solutions for A and p are written in the form 

Asin[WT£ + (n + l)cp] = -wcos[WTL + (n + l)cp] 

psin[wTL + (n + l)cp] cosn+l cp = -w, 

and we then square and add we obtain 

However, 

so the latter expression becomes 

w2 +A2 
cosn+l cp = --­

p2 

Furthermore, if we divide the equations for A and p we then obtain 

or 

A 
cos[wTL + (n + l)cp] cosn+ 1 cp = -, 

p 

[ 
2] (n+l)/2 

cos [wTL + (n + l)tan- 1 (~)] = A l + (~) 
6r+a p Dp+a 

( 42) 

(4:fa) 

( 4:~b) 

( 44) 

( 45) 

( 46) 

(47) 

(48) 

These two boxed equations have to be dealt with to determine the stability, if I haven't made a mistake somewhere-­
which is more than possible. 

'). Another specific density for the distribution of delays that we could pick is one that is piecewise constant, i.e., 

f(T) ~ { ~U J 
otherwise. 

For this especially simple choice, if we define the width of the density as 6.T = Tu - T£ then the mean delay is 

while the variance can be calculated as 

It is also trivial to show that 

In this particular case, the eigenvalue equation 

D2 = (6.T)2 
T - 12 . 

and 

(49) 

(50) 

(Eil) 

(-52) 

(53) 
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now takes the form 
A+ 8N + /3g' = e-(>.+<5p)~.,. {e-().+6p)~r _ e+().+6p)~r}. 

2/Jg' Lh(A+op) 
(54) 

If we set p = ~T(A + 8p ), i.e., just shift and scale the eigenvalues, and define constants 

0 = 8 N + [Jg' - D p 

2/Jg' , 
and ( 5,5) 

[Question: Is this R like the "relative variance" that Bob Anderson talks about in his papers? Answer: Very similar, 
since he takes the relative variance to be a-2 I e. l then (54) takes the form 

I p[ap + 0] = e-p/ R { e-p - eP} -I (56) 

Thus the eigenvalue problem depends on the parameter vector (a, 0, R). 
6. While talking to Ira on 3 May, 1994, I realized that if one goes back to the original linearized equation (20): 

(20) 

and sets a= -[8N + f3g'(N.)] and b = 2/3g'(N.) then we can use the integrating factor exp(at) to rewrite this as 

(20a) 

If we define a new variable y(t) = z(t) exp( at), then (20a) takes the equivalent form 

dy lru _ 
dt = b f(T)y(t - T)e(a- 5p)r dT, 

TL 

(20b) 

and then maybe some of the work that Ira found can be used to examine the stability of y. Once we know the stability 
of y, it is trivial to determine the linear stability of x. 

Steady States and Stability in the Presence of Noise. 
Lets return to the original equation (16) and not neglect the noise. Thus we have, writing it in the more traditional 

form of a stochastic equation, 

dN(t) = - 8NN(t)dt - /3R(N(t))N(t)dt 

+ 21ru fT(T)/3R(Nr(t))Nr(t)e-Spr e-apwp(r)dT dt 
TL 

- uNN(t)dwN(t) - u13R(N(t))N(t)dw13(t) 

+ 21ru fr(T)u13R(Nr(t))Nr(t)e-<5pre-apwp(r)dT dw13(t). 
TL 

(57) 

Integrating (57) from O to t gives 

N(t) -N(0) = - lat 8NN(t)dt- lat /3R(N(t))N(t)dt 

+ 2 lat [1:u fr(T)/3R(N7 (t))N7 (t)e-Spr e-apwp(r)dT] dt 

- lat uNN(t)dwN(t) - lat u13R(N(t))N(t)dw13(t) 

+ 2 lat [1:u fr(T)u13R(Nr(t))Nr(t)e-Spr e-apwp(r)dT] dw13(t). (58) 
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and now taking the mathematical expectation of both sides we have 

E(N(t)) - E(N(0)) = - E (lt [t5N(s) + /J(s)R(N(s))] N(s)ds) 

+ 2E (lt [1:u fr(T)/J(s - T)R(Nr(s))N7 (s)e-.5rr e-o-rwr(r)dT] ds) 

= - E (lt 8NN(s)ds )- E (lt {JR(N(s))N(s)ds) 

+ 2E (lot [1:u fr(T){JR(Nr(s))N7 (s)e- 8Pre-o-pwp(r)dT] ds) 

- E (lt CJNN(s)dwN(s))- E (lt Cl(3R(N(s))N(s)dw(3(s)) 

+2E (lt [1:u fr(T)Cl(3R(Nr(s))N7 (s)e- 8rre-o-pwp(r)dT] dw(3(s)). 

However, since 

E (1: f(s)dw(s)) = 0, 

( cf. Lasota and Mackey, equation (11.4.2)) the last three integrals in equation (59) vanish and we are left with 

E(N(t)) - E(N(0)) = - E (lot 8NN(s)ds) - E (lt {JR(N(8))N(s)ds) 

(59) 

(60) 

+ 2E (lt [1:u fr(T){JR(N7 (s))N7 (s)e- 8rT e-o-pwp(r)dT] ds). (61) 

Now denote the expectation of a quantity :f (t) by 

E(:f (t) =< :f (t) >, 
and differentiate ( 61) with respect to time t to obtain 

d < N(t) > - -
--- = - t5N < N(t) > -/) < R(N(t))N(t) > 

dt 

+ 2{] (1:u fr(T)R(N7 (t))N7 (t)e-,5pr e-o-pwp(r)dT ) 

In analogy with the situation without noise, we define a stochastic steady state N. as one in which 

d < N(t) > _ 
dt = O 

so 

(62) 

(63) 

(64) 

We now return to equation (57), and linearize it in the neighborhood of a stochastic steady state defined implicitly 
by (64). As previously, we define 

R(N(t))N(t) = g(N(t)) 

to simplify matters, thus obtaining 

dN(t) = - t5N(t)N(t)dt - !J(t)g(N(t))dt 

+ 2 [1:" fr(T)/J(t - T)g(Nr(t))e-.5rr e-o-pwp(r)dT] dt 

'.:c:'. - [8Ndt + ClNdwN(t)]N(t) - [{Jdt + Clf3dwf3(t)][g(N.) + g' (N.)(N(t) - N.)] 

+ 2g(N.) ru fr(T)[{Jdt + Clf3dw(3(t)]e- 8PT e-CTpWp(r)dT dt 
}TL 

+ 2g'(N.) ru fr(T)[fJdt + Clf3dw(3(t)][Nr(t) -N.]e-.5pT e-CTpWp(r)dT dt 
}Tr, 

(65) 
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Integrating equation (65) from O to t, taking the mathematical expectation of the result in conjunction with relation 
._ (60), and then once again differentiating with respect to time t results in 

-

d < N(t) >:::::: - 8N < N(t) > dt - ,B[g(N.) + g'(N.)( < N(t) > -N.)] dt 

+ 2,Bg(N.) ru fr(T)e-{)pT e-crpwp(T)dT dt 
}TL 

+ 2(3g'(N.) (1:u fr(T)[Nr(t) -N.]e-°Spr e-crpwp(r)dT ) dt. 

Using the notation g defined above, now rewrite (64) in the equivalent form 

and define the deviation of< N(t) > from the stochastic steady state N. by 

z(t) =< N(t) > -N •. 

Using (67) and the definition of z we can rewrite (66) in the form 

dz(t) 0 - [8N + ,Bg'(N,)]z(t) dt + 2,Bg'(N,) < 1:u fr(T)zr(t)e- 6PT e-crpwp(r)dT ) dt 

+- /~[( g(N(t))) - g(N,)] { 1-21:u fr(T)e-bpr e-crpwp(r)dT} dt. 

Our next task is to calculate (1:u fr(T)Zr(t)e- 8PT e-crpwp(r)dT), 

(66) 

(67) 

(68) 

and I think that the following derivation is correct. PLEASE CHECK THIS CAREFULLY IRA. THANK YOU. I 
have mostly used Gardiner here ('Handbook of Stochastic Methods'-we have it in my office or yours). 

Using a modification of Gardiner equation ( 4.2.38) we have 

so 

Consequently, we can write 

(69) 
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and the linearized equation (68) thus takes the form 

dz(t) = - [6N + ;Jg')z(t) dt + 2;3g' 1ru fr(T)z7 (t)e- 6P7 dT dt 
TL 

+ ;J[(g(N(t))) - g(N.)] { 1-21:u f 7 (T)e- 6PTe-upwp(r)dT} dt. (70) 

Now note in (70) that when z(t) = 0, it reduces to 

(71) 

for all times t, and thus (70) takes the form 

(72) 

which is identical to the linearized equation (20) in the absence of any fluctuations. Thus we conclude that the 
linear stabillity of the deterministic steady states given in (17) is identical with the stability of the 
stochastic steady states defined by (64). 


