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Abstract

WRITE AN ABSTRACT WHEN WE ARE DONE
HELMUT: WE NEED TO SETTLE ON WHICH MEASURE-

MENT SYSTEM TO USE, AND MAKE ALL OF THE FORMULAE
CONSISTENT.

Contents

1 Introduction 2

2 Vacuum and thermal fluctuations are normally distributed 4
2.1 3D spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Zero temperature . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Non-zero temperature . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Autocorrelation function . . . . . . . . . . . . . . . . . . . . . 10

3 Constructing a stochastic process with a non-white spec-
trum 11
3.1 Case 1. σ2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Case 2: σ2 > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Discussion 14

∗e-mail: mackey@cnd.mcgill.ca, Departments of Physiology, Physics & Mathematics
and Centre for Nonlinear Dynamics, McGill University, 3655 Promenade Sir William Osler,
Montreal, QC, CANADA, H3G 1Y6
†email: schwegler@itp.uni-bremen.de, Institut für Theoretische Physik, Universität

Bremen, NW1, M 3190 Otto-Hahn-Allee, D-28334 Bremen, Germany

1



1 Introduction

Planck (1914) postulated the average energy of a collection of one dimen-
sional harmonic oscillators at temperature β = 1/kT and frequency ω = 2πν
to be

U(ω, β) =
1

2
~ω +

~ω
exp(β~ω)− 1

. (1.1)

The first term in Equation 1.1 is now known as the zero point energy (since
it is the only limiting term when T = 0) and attributed to vacuum fluc-
tuations, while the second is due to ordinary Bose-Einstein statistics. The
relation (1.1) is now enshrined in the foundations of quantum mechanics
and quantum field theory Milonni (1994), and has played a seminal role in
the development of much of the physics of the last 100 years. It obviously
suffers from the prediction that the total integrated energy∫ ∞

0
U(ω, T )dω =

∫ ∞
0

1

2
~ωdω +

∫ ∞
0

~ω
exp(β~ω)− 1

dω

= lim
ωc→∞

∫ ωc

0

1

2
~ωdω +

π2

6β2~

is infinite due to the presence of the zero point energy term. This problem
is typically obviated in quantum field theory by invoking a cutoff frequency
ωc corresponding to the Planck length (Milonni, 1994), but this in turn
leads directly to the infamous and vexing cosmological constant problem
(Weinberg, 1989; Rugh and Zinkernagel, 2002; Peebles and Ratra, 2003;
Bousso, 2008).

The concept of vacuum fluctuations really had its birth after the work
of Planck, and in spite of the convergence difficulties mentioned above the
concept has proved enormously successful in explaining a variety of experi-
mental facts. For example it has been successfully invoked to explain X-ray
scattering in solids (Debye, 1914); understand the Lamb shift between the s
and p levels in hydrogen (Welton, 1948; Power, 1966); predict the Casimir
effect (Casimir, 1948; Casimir and Polder, 1948); understand the nature of
Van der Waals forces (Casimir, 1948; Boyer, 1969, 1972a,b, 1973b, 1974,
1975); offer an interpretation of the Aharonov-Bohm effect (Boyer, 1973a,
1987); and explain Compton scattering (Welton, 1948).

Some of these explanations invoking the concept of the concept of vac-
uum fluctuations have been indirect, while other have been much more di-
rect. In our opinion one of the most direct and powerful demonstrations that
vacuum fluctuations have the spectral properties included in Equation 1.1
by is based on the theoretical work of Callen and Welton (1951) and Koch
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Figure 1.1: Spectral density of current noise as measured in the Koch et al.
(1982) experiment for two different temperatures (note T = 1/kβ and ν =
ω/2π). The solid lines are the prediction of Equation 1.2, whereas the dashed
lines are given by (4h̄ω/R)(exp(βh̄ω)−1)−1. The shunting resistance in this
case was R = 0.7 Ω so the corresponding spectral density of the energy is
given by U(ω, β) = S(ω) × R/4. (Taken from Koch et al. (1982) with
permission.)

et al. (1980). They showed, based on the concept of vacuum fluctuations,
that in a Josephson junction shunted by a resistance R the junction noise
current should have a spectral density given by

S(ω) =
4

R
U(ω, β) =

4~ω
R

(
1

2
+

1

exp(β~ω)− 1

)
. (1.2)

In a beautiful experimental study, this predicted behaviour has been verified
at two different temperatures up to frequencies of order 6 × 1011 Hz by
Koch et al. (1982), see Figure 1.1. Experiments are currently underway
(Barber and Blamire, 2006; Warburton, 2006) to extend these measurements
to higher frequencies.
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The central questions we address in this paper are: first, what is the
density of the distribution of the vacuum and thermal fluctuations as a
function of frequency ω and temperature T ; and second, can one construct
a stochastic process with the known properties of the spectrum 1.1 insofar
as they have been measured?

The outline of the paper is as follows. In Section 2 we derive the density
of the distribution of the vacuum and thermal fluctuations and show that
it is Gaussian at all frequencies ω. The following Section 3 uses a linear
system driven by a white noise (Wiener process) to construct a filtered
noise source with a spectrum approximating that observed in the Josephson
junction experiments of Koch et al. (1982). The paper concludes with a
brief discussion in Section 4.

2 Vacuum and thermal fluctuations are normally
distributed

The T = 0 and T 6= 0 sections should be combined.

2.1 3D spectrum

Equation 1.1 gives the vacuum fluctuation spectrum for one degree of free-
dom. For three degrees of freedom, the relation ρ(ω, β) = 2ω2Ū(ω, β)/πc3

between the energy Ū and the spectrum ρ, yields

ρ(ω, β) =
~ω3

πc3

[
1 +

2

exp(β~ω)− 1

]
(2.3)

2.2 Zero temperature

This section provides a quantum theoretical calculation of the density w(E)
of the distribution of the electric field fluctuations in the vacuum state |0 >.
Here E denotes the value of an arbitrary component of the electric field.
For the calculations in the following we choose the z component of E whose
operator at a position x is given by

Ez =
∑
k,λ

ek,λz

√
~ω(k)

2ε0V
i
[
ak,λe

ik·x − a+
k,λ

e−ik·x
]

(2.4)

Here ω(k) = c|k|, and ek,λ (λ = 1, 2) are two unit vectors for two po-
larization directions orthogonal to the wave vector k, ak,λ and a+

k,λ
are,
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respectively, the annihilation and creation operators for the mode (k, λ),
and V is the volume to which the system is confined1. For a finite volume
V = L3 the allowed wave vectors are of the form

k =
2π

L
(n1, n2, n3), ni = 0,±1,±, · · · , i = 1, 2, 3. (2.5)

Since the different modes k, λ do not interact, we can calculate the contribu-
tion of each term of (2.4) separately, and later combine these contributions
to give the final result. We begin by considering a wave vector k orthogonal
to the z direction. Then only the polarization in the z direction (say λ = 1)
is relevant and the orthogonal polarization (say λ = 2) does not contribute.
Suppressing the polarization index λ = 1 we have to consider the operator√

~ω(k)

2ε0V
i
[
ake

ik·x − a+
k
e−ik·x

]
. (2.6)

We can easily obtain an expression for the distribution wk(E) due to the
term (2.6) through a comparison with the simple harmonic oscillator where
(ak + a+

k
) and i(ak − a

+

k
) are the position and momentum operators up to

a multiplicative numerical factor. At first sight the space dependent factors
exp(±ikx) in the term (2.6) would seem to complicate things. However,
because of the homogeneity of physical space the final results for the field
fluctuations cannot depend on the position x2. Therefore, we can choose
the exponential factors so that we have the simple operators (ak + a+

k
) or

i(ak − a
+

k
).

In the first case we have to compare with the position operator of the
harmonic oscillator and the probability for a position x in the ground state
|0 >,

| < 0|x > |2 =

√
mω

π~
e−

mω
~ x2 , (2.7)

and immediately obtain for a vector k orthogonal to the z direction the
density of the Gaussian distribution

wk(E) =

√
ε0V

~ω(k)π
e
− ε0V

~ω(k)E
2

. (2.8)

The second case with the momentum operator gives the same result.

1We will see later that our final results are independent of V .
2A more complicated calculation confirms this without resorting to this argument.
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The generalization to arbitrary wave-vectors k is straightforward. We
choose the polarization direction λ = 1 in the (k, z) plane, and the direction
λ = 2 orthogonal to it. Then only λ = 1 contributes to Ez, namely with
a factor of sin θ(k) where θ(k) is the angle between k and z. Thus the
generalization of Equation 2.8 is the Gaussian density

wk(E) =

√
ε0V

~ω(k)π
· 1

sin θ(k)
e
− ε0V

~ω(k)
1

sin2 θ(k)
E2

. (2.9)

The total electric field component in the z direction is the sum of all contri-
butions from the different modes k. Since these are statistically independent
variables the distribution of the sum is obtained easily, namely the charac-
teristic function is a product and all cumulants are simply sums of the single
contributions. This means, in our case of Gaussians, c.f (2.9), that we have
also a Gaussian density for the total electric field:

w(E)) =
1

σ
√

2π
e−

E2

2σ2 . (2.10)

The second cumulant, the variance σ2, is the vacuum expectation value of

the square of Equation 2.4 with ekz = sin θ(k). This, in turn, is simply the
sum of all the contributions from the different modes k

σ2 =
∑
k

~ω(k)

2ε0V
sin2 θ(k) < 0|aka

+

k
+ a+

k
ak|0 >

=
~

2ε0V

∑
k

ω(k) sin2 θ(k). (2.11)

We approximate the summation by an integration using the (smeared) den-
sity of k states

ρ(k)d3k =
V

(2π)3
d3k =

V

(2π)3
k2 sin θdkdθdφ, (2.12)

with the result

σ2 ' ~
2ε0V

V

(2π)3

∫
ω(k)k2dk sin3 θdθdφ

=
~

6π2ε0

∫ ∞
0

ω(k)k2dk

=
~

6π2ε0c3

∫ ∞
0

ω3dω. (2.13)
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(Note that the pesky volume V has disappeared!) If we assume a cutoff
frequency ωc we obtain a Gaussian density of the electric field component
with a variance given by

σ2 =
~ω4

c

26π2ε0c3
. (2.14)

2.3 Non-zero temperature

Now our aim is a quantum theoretical calculation of the distribution w(E)
of the electric field fluctuations in a thermodynamic equilibrium situation
at temperature T (the vacuum case of T = 0 was already dealt with in the
previous section).

At a temperature T the energy eigenstates | · · ·nkλ · · · > of the elec-
tromagnetic field characterized by a set of occupation numbers nk,λ for all

modes (k, λ) are weighted according to a canonical distribution

p(· · ·nk,λ · · · ) =
exp

(
−β
∑

k,λ nkλ~ω(k)
)

∑
···n

k′λ′
··· exp

(
−β
∑

k′,λ′ nk′λ′~ω(k′)
) (2.15)

with β = 1/(kBT ). This is nothing more than the canonical Gibbs distri-
bution. The sum in the exponent of the numerator runs over all modes k, λ
and uses for the nk,λ the values fixed as an argument on the left hand side of

(2.15). The denominator is the partition sum function Z which runs over all
energy eignestates | · · ·nkλ >. That is it runs over all numbers nk′,λ′ from

0 to ∞, which is analogous to going over all the states (· · ·nk′,λ′ · · · ) of the

system. These are parameterized by the occupation numbers nk′,λ′ for all

modes k′, λ′. The sum in the denominator is analogous to the exponential
in the numerator. Namely it runs now over all the modes k′, λ′ and uses for
the nk′,λ′ the values of the chosen state (· · ·nk′,λ′ · · · ).

This expression (2.15) can be factored with respect to the modes (k, λ)
and written in the form

p(· · ·nk,λ · · · ) =
∏
k,λ

exp
(
−βnkλ~ω(k)

)∑∞
ñkλ=0 exp

(
−βñkλ~ω(k)

) =
∏
k,λ

p(nkλ), (2.16)

where

p(nkλ) =
1

Zk,λ
exp

(
−βnkλ~ω(k)

)
(2.17)
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is the probability that there are nk,λ photons in the mode (k, λ), and

Zk,λ =
∞∑

ñkλ=0

exp
(
−βñkλ~ω(k)

)
=

1

1− exp(−β~ω(k))
(2.18)

is the partition function for the mode k, λ. Physically this can be interpreted
that each mode k, λ is an independent harmonic oscillator. Equation 2.17
is simply the canonical Gibbs’ distribution for the single mode k, λ.

As in Section 2.2 we first consider the contribution of each term k, λ in
the electric field operator (2.4) separately, and call this contribution wk(E).
Also, as before, only the polarization in the (k, z) plane is important, and
it is again taken as λ = 1. Henceforth this index will be suppressed.

In the case of non-zero temperature, for a mode k we have to take into
account all states |nk > with different photon numbers nk. As is usual
in statistical thermodynamics, we obtain the distribution wk as a thermal
average over the contributions wnk

, each resulting from a state |nk > of the

mode k:

wk(E) =

∞∑
nk=0

p(nk)wnk
(E)

=
1

Zk

∞∑
nk=0

e
−βnk~ω(k)

wnk
(E). (2.19)

The quantum theoretical probabilities wnk
(E) are calculated as in Section

2.2 in analogy with the simple harmonic oscillator. In the special case that
k is orthogonal to the z direction Equation 2.8 is generalized to

wnk
(E) =

√
ε0V

~ω(k)π
· 1

2
nknk!

H2
nk

(√
ε0V

~ω(k)
E

)
e
− ε0V

~ω(k)E
2

, (2.20)

where the Hn(ξ) are the Hermite polynomials, well known as parts of the
eigenfunctions of the harmonic oscillator.

For arbitrary wave vectors k we have to include the same factor sin θ(k)
as in Equation 2.9 with the result

wnk
(E) =

√
ε0V

~ω(k)π

1

2
nknk!

1

sin θ(k)
H2
nk

(√
ε0V

~ω(k)

1

sin θ(k)
E

)
e
− ε0V

~ω(k)

1

sin2 θ(k)
E2

.

(2.21)
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Together with the weights p(nk) [see Equations 2.17 and 2.19] we have

wk(E) = (1− r)
∞∑

nk=0

α
√
π2

nknk!
H2
nk

(αE)e−α
2E2

r
nk , (2.22)

where r = e−β~ω(k) and α =

√
ε0V

~ω(k)
· 1

sin θ(k)
.

The computation of the sum in Equation 2.22 is accomplished through
a result of Hille (1926, Eq. 39). Namely, it was shown that for r ∈ (0, 1)

∞∑
n=0

rn

2nn!
H2
n(x)e−x

2
=

1√
1− r2

exp

(
−1− r

1 + r
x2
)
. (2.23)

Thus, with x = αE we simply have that the distribution of the vacuum and
thermal fluctuations at all temperatures β is given by

wk(E) = α

√
1− r

π(1 + r)
exp

(
−1− r

1 + r
α2E2

)
. (2.24)

This is a Gaussian with variance

σ2k =
1

2α2
· 1 + r

1− r
=

~ω(k)

2ε0V
sin2 θ(k)

(
1 +

2

eβ~ω(k) − 1

)
. (2.25)

To combine all of the wk(E) to obtain the density w(E) for the resultant
field we can use the same arguments as in Section 2.2 to again obtain a
Gaussian

w(E) =
1

σ
√

2π
e
−
E2

2σ2 (2.26)

with variance

σ2 =
~

2ε0V

∑
k

ω(k) sin2 θ(k)

(
1 +

2

eβ~ω(k) − 1

)
. (2.27)

After a change to a continuous k space and integration over θ and φ we have

σ2 =< E2
z >=

~
3ε0π2c3

∫ ∞
0

ω3

(
1

2
+

1

eβ~ω − 1

)
dω. (2.28)

As in Equation 2.13, this will converge only if there is an upper cutoff of ωc:

σ2 =< E2
z >=

~
3ε0π2c3

∫ ωc

0
ω3

(
1

2
+

1

eβ~ω − 1

)
dω. (2.29)
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Notice the interesting connection with the Planck formula for the energy
density U of a photon gas at temperature β:

U =
~

π2c3

∫
ω3

(
1

2
+

1

eβ~ω − 1

)
dω. (2.30)

Integration of the second term gives the Stefan-Boltzmann law, and the first
term is finite only if it is assumed that there is a finite cutoff frequency ωc.
This first term in the integral is the zero point energy, and the second term
gives the additional energy due to a non-zero temperature.

Since

U =

〈
1

2
(ε0E

2 +
1

µ0
B2)

〉
, (2.31)

by using the equality of the electric and magnetic term and isotropy of
physical space, for the variance σ2 =< E2

z > of the distribution of the field
fluctuations, we again arrive at Equation 2.28.

2.4 Autocorrelation function

As for the variance, we can calculate an autocorrelation function. In the
Heisenberg picture

ak,λ(t) = ak,λe
−iωt and a+

k,λ
(t) = a+

k,λ
eiωt, (2.32)

where we write ak,λ ≡ ak,λ(0) and a+
k,λ
≡ a+

k,λ
(0). Furthermore, because

the order of operation of non-commuting operators is important we need to
use a symmetric autocorrelation function of the form

φ(t) =
1

2
〈Ez(0)Ez(t) + Ez(t)Ez(0)〉. (2.33)

Using Equations 2.4 and 2.32 and remembering that for each k only one
polarization contributes so that we can suppress the polarization index λ,
we have

φ(t) =
∑
k

~ω(k)

2ε0V
sin2 θ

∞∑
nk=0

p(nk)
1

2
〈nk|aka

+

k
+ a+

k
ak|nk〉(e

iωt + e−iωt)

=
∑
k

~ω(k)

2ε0V
sin2 θ

∞∑
nk=0

p(nk)

(
1

2
+ nk

)
cosωt

=
∑
k

~ω(k)

2ε0V
sin2 θ

(
1

2
+

1

eβ~ω(k) − 1

)
cosωt. (2.34)
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In the continuous limit this gives

φ(t) =
~

3ε0π2c3

∫ ∞
0

ω3

(
1

2
+

1

eβ~ω − 1

)
cosωtdω (2.35)

=
~

6ε0π2c3

∫ ∞
−∞

ω2|ω|
(

1

2
+

1

eβ~|ω| − 1

)
cosωtdω (2.36)

=
~

6ε0π2c3

∫ ∞
−∞

ω2|ω|
(

1

2
+

1

eβ~|ω| − 1

)
eiωtdω, (2.37)

since the sine integral vanishes.
Finally we can write this in the form

φ(t) =
1

2π

∫ +∞

−∞
S(ω)eiωtdω (2.38)

with the interpretation taken from the Wiener-Khinchine theorem that

S(ω) =
~

3ε0π2c3
ω2|ω|

(
1

2
+

1

eβ~|ω| − 1

)
(2.39)

is the spectral density of the vacuum plus thermal fluctuations.

3 Constructing a stochastic process with a non-
white spectrum

To construct a stochastic process with a spectrum analogous to that mea-
sured by (Koch et al., 1982) is, in principle, straightforward. We could
consider a multidimensional Ornstein-Uhlenbeck process

dx

dt
= Ax+ Σξ, (3.40)

where A and Σ are d× d matrices and ξ is a d dimensional vector of Gaus-
sian distributed, delta correlated processes. These could simply be given as
Wiener processes, or could alternately be due to the operation of a totally de-
terministic system with these properties, c.f. Mackey and Tyran-Kamińska
(2006). We then determine the character of F and Σ required to give the
corresponding required spectrum as given in Equation 2.39 over the range of
frequencies studied in Koch et al. (1982). It is important to remember that
if ξ is a Gaussian distributed white noise (delta correlated) then the filtered
response is still Gaussian distributed (Zakai and Snyders, 1970; Erickson,
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1971; Mackey and Tyran-Kamińska, 2006). However, it is equally impor-
tant to realize that it is impossible to construct a spectrum like (2.39) that
will be valid for all frequencies ω ∈ [0,∞) from any linear system [What
is the justification for this statement? I am convinced it is true,
how to prove it?]. Can I carry out the spectral derivation in the
general d-dimensional case? Should I?

However, this is too general and in fact is is sufficient (I hope) to consider
the simpler second order system

dx1
dt

= a1,1x1 + a1,2x2 + σ1ξ1

dx2
dt

= a2,1x1 + a2,2x2 + σ2ξ2. (3.41)

so

x = (x1, x2)
T , ξ = (ξ1, ξ2)

T , A =

(
a1,1 a1,2
a2,1 a2,2

)
, and Σ =

(
σ1 0
0 σ2

)
(3.42)

To derive the spectral density of x1 if ξ is a white noise process (Gaussian
distributed delta correlated noise), we first of take the Laplace transforma-
tion of both equations in (3.41) to give (x̃i(s) = L[xi(t)])

sx̃1 = a1,1x̃1 + a1,2x̃2 + σ1ξ̃1

sx̃2 = a2,1x̃1 + a2,2x̃2 + σ2ξ̃2. (3.43)

Thus the transfer function is given by

W1(s) =
x̃1(s)

ξ̃2(s)
=

1

∆(s)

∣∣∣∣ σ1 s− a1,2
σ2 s− a2,2

∣∣∣∣ , (3.44)

where

∆(s) =

∣∣∣∣ s− a1,1 −a1,2
−a2,1 s− a2,2

∣∣∣∣ . (3.45)

The spectral density S(ω) is defined by the Fourier transform of the corre-
lation function

S(ω) = F[φ(t)] (3.46)

and in our case it is a standard result from linear systems analysis that

S1(ω) = |W1(jω)|2Sξ2(ω). (3.47)
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Since the spectral density of a white noise process is constant we conclude
that the spectral density Z of x1 is given by

Z(ω) ≡ S1(ω)

Sξ2(ω)
= |W1(jω)|2. (3.48)

Some algebra leads to the more explicit expression

Z(ω) =
p2 + σ2ω2

(γ − ω2)2 + α2ω2
(3.49)

wherein

α = a1,1 + a2,2 (3.50)

γ = a1,1a2,2 − a1,2a2,1 (3.51)

p = a1,2σ2 − a2,2σ1 (3.52)

σ = σ1 − σ2, (3.53)

and the dependence on the temperature T is to be determined. We identify
this spectral density with the spectral energy density in Equation 1.1:

Z(ω, T ) ≡ U(ω, T ).

This spectral density has the property that

Z(ω = 0, T ) =
p2

γ2
, (3.54)

lim
ω→∞

Z1(ω, T ) = 0. (3.55)

To approximate the data of Koch et al. (1982) as shown in Figure 1.1 we
note that in Equation 1.1, for β~ω � 1 we have

U ' 1

2
~ω +

1

β
, (3.56)

and thus we must have

Z(0, T ) =
p2

γ2
=

1

β
. (3.57)

Hence (
p2

γ2

)
T )=1.6◦K

= 0.14 meV(
p2

γ2

)
T )=4.2◦K

= 0.36 meV.

(3.58)

To assess the success with which Equation 3.49 can account for the ex-
isting data (Koch et al., 1982) we consider two cases.
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3.1 Case 1. σ2 = 0

In this case it is easy to show that the spectrum (3.49) has a single maximum
at an angular frequency

ωmax =

√
γ − α2

2
(3.59)

with a value of

Z1(ωmax, T ) =
p2

α2

[
γ − α2

4

] . (3.60)

In order for this maximum to exist and be finite we must have (α2/2γ) ∈
(0, 1].

In Figure 3.2, we show the fit of the Koch et al. (1982) data to Equation
3.49 under the constraint that Z(0, T ) = 1/β (Equation 3.57).

3.2 Case 2: σ2 > 0

In Figure 3.3, we show the fit of the Koch et al. (1982) data to Equation
3.49 under the constraint that Z(0, T ) = 1/β (Equation 3.57).

4 Discussion
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