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I. Introduction. 

The concept of the existence of the cell cycle appeared shortly after the 
advent of light microscopy in the last century when natural scientists first 
described the intranuclear events involved in mitosis and cytokinesis. It was not 
long before significant intercellular variation in the cell generation time (the 
elapsed time between cell birth and the production of two daughter cells, also 
called the intermitotic time) was described in a variety of cell types. 

The next major advance in cataloging the events of the cell cycle came when 
Howard and Pe1c [1] utilized radioactively labelled compounds to demonstrate that DNA 
synthesis occupied a discrete portion of the cell cycle, and used this observation to 
divide the cell cycle into four discrete phases. The period between cell birth and 
the initiation of DNA synthesis was denoted Gl, the DNA replication and mitotic 
phases were called Sand M respectively, and the period between the completion of S 
phase and the initiation of mitosis was named G2. Later work [2] indicated that the 
Gl phase might consist of two functionally different phases in series, with the phase 
preceeding Gl denoted by GO. Detailed studies of many different cell lines using a 
variety of techniques have revealed that there is significant variation in the 
duration of all phases of the cell cycle [3]. 

Given the nature of the experimental data, it is not unnatural that most 
interpretations of this variability in cell phase duration were based on 
probabilistic considerations [4-9]. However an alternate assumption, invoking the 
existence of an intracellular oscillator timing the cell cycle, has also been 
proposed [10-14] and criticized [15]. The nature of the oscillators considered 
ranges from 'limit cycle' to 'relaxation' types, though the distinction is more one 
of degree than of type. Others, to mimic the variability of cell cycle events, have 
assumed that this intracellular oscillator has superimposed 'noise' [16-20]. 
However, this assumption begs the question of the origin of cell cycle variability 
and is unable to account for the observed differences in the coefficient of 
variation of the densities of the distributions of the various cell cycle phase 
durations [3]. 

In [21], the hypothesis that there exists a mitotic oscillator with a strange 
attractor timing the cell cycle was shown to lead to results identical with those 
derived from the purely probabilistic model presented in [9]. Interestingly, the 
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existence of such an oscillator seems not to have been previously considered even 
though it was all but explicitly postulated in [22], and all of the dynamical 
ingredients are present in the cell for its occurrence. 

Here, a mitotic oscillator model consistent with the general formulation in [21] 
is used to analyze data for the duration of the cell cycle in a variety of cellular 
populations. Specific assumptions concerning the nature of the intracellular 
production of a substance or property called mitogen, and the dependence of this 
hypothetical oscillator on mitogen levels, allow a unique and simple deterministic 
model to replace a probabilistic approach. 

I!. The Model 

In this section, the model is specified. The model rests on three hypotheses 
previously presented in a more general context [21]. 

Hypothesis 1. There exists some substance(s) (mitogen) necessary, but not 
sufficient, for mitosis to take place. (There is ample experimental support for 
this concept, as reviewed in [23]). 

Consider a cell in a large population, born at time t = ° with mitogen content r. 
Assume that mitogen level s are normal ized and bounded on the closed interval [0,2], 
and that the evolution of mitogen following birth is governed by 

dm B dt = m(2-m), m(O) = r. (1) 

where B > ° is a parameter to be determined from the data. The solution of (1), 
denoted by m(r,t), is 

m(r,t) 1 + tanh {[t - t(r)]/B) (2 ) 

where t(r) = (B/2) ln [(2 - r)/r] and m(r,t) = 1. 

Hypothesis 2. There exists an oscillating intracellular variable sufficient to 
trigger mitosis once it exceeds a threshold value. 

More preCisely, let x(t) denote the value of this variable at time t, and tn' 
n = 0,1, ••• , denote the times at which x(t) attains a relative maximum. If 
xn = x(tn) are the values of these relative maxima, then it is assumed that 

(3) 
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where S:[O,l] + [0,1] is a Renyi transformation, and that mitosis takes place 

whenever xn > 1. (A mapping S:[O,I] + [0,1] which satisfies: 
i) There exists a partition 0 = ao < a1 < •.• < ap = 1 of [0,1] such that for 

each integer i, i = 1, ••• ,p, the restriction Si of S to the open interval (ai_I' ail 

can be extended as a C2 function to [ai_I' ail; 
i1) Si([ai _1, ai ]) = [0,1], 1, ••• , p; and 

iii) inf /S'(x)1 > 1 i = 1, ••• ,p 
(a. 1,a.) 

1- 1 
is called a Renyi transformation, see [24]). 

As shown in [21], the consequence of this hypothesis in conjunction with a 
theorem of Lasota and Yorke [25] is that once the mitogen level exceeds the threshold 

value of 1, the mitotic rate is S(m-1), where S ) ° is constant. Therefore, if 
a(r,t) denotes the fraction of cells born with mitogen level r that have not divided 

by time t, then 

air, t) t 

[ -sf [m(r,y)-I] dY] 

t 

O<t<t(r) 

(4) 

t(r) " t. 

Note that -at(r,t) = -aa(r,t)/at = S[m(r,t)-I]a(r,t) is the density function for the 
distribution of intermitotic (generation) times in this population of cells having 
initial mitogen levels r. 

form 
Using the solution for m(r,t) given in equation 2, a(r,t) assumes the explicit 

a(r,t) = {I 

{COSh[t-t(r)]/Bj-SB 

O<t<t(r) 

t( r) " t. 

(5) 

Generally, the initial mitogen level r in a population of cells will be distributed 
on [0,1) with a density fir), so a(t) for the entire population is given by 

1 

a(t) = f a(r,t)f(r)dr. 

o 

(6) 

Finally, the density function for the distribution of generation times for the entire 



population is given by 

1j>(t) - -

1 

J at(r,t)f(r)dr. 

o 
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(7) 

To complete the specification of this model, the distribution fer) of initial 
mitogen levels in the population of cells is required. This results in the third 

and final hypothesis of the model: 

Hypothesis 3. Each sister cell receives exactly one-half of the mitogen present in 
the mother cell at mitosis. 

As shown in [9], from this and the previous hypotheses there is a globally 
asymptotically stable distribution of mitogen f in the population of cells given by 

{
o 

fer) = 2r 

2q(2r)exp [ J q(z}dz ] 
1 

o < r < 1/2 

(8) 

1/2 ( r < 1. 

where q(y) = SB(y-1)/y(y-2). Carrying out the integration in equation 8 gives 

fld' { 

o o < r < 1/2 

(9) 

2r-1 [ ]~SB 2SB 4r!I-rl 4r(1-r) 1/2 ( r < 1. 

Another statistic, widely used by cell kineticists in characterizing populations of 
renewing cells, is the fraction of sibling cell pairs whose intermitotic times 
differ by at least a time t. This fraction is denoted by eft). The derivation of 
eft) given in [9] for this hypothetical cellular population leads directly to 

1 

eft) -2J J at(r,x)a(r,x+t)f(r)dxdr, 

o 0 
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Figure 1. Correspondence between model predictions and data from SY3T3 cells grown 
at four different concentrations of fetal calf serum. A: Serum = 0.05%; B: 0.25%; 
C: 1.0%, and D: 10.0%. Data from [27]. In each panel of this and succeeding 
figures, the vertical axis is a or S and the horizontal axis is cell age in hours, 
the data points are indicated by (+), and the best fitting a(t) and S(t) curves 
predicted by the model, based on the indicated parameter values, are represented by 
solid lines. The dashed (---) lines bounding the predicted a(t) and S(t) curves give 
the confidence intervals corresponding to the percentages indicated at the top of 
each panel. [A confidence interval value of 99% means that if the data can be 
described by a(t), then the probability that, at a given t j , the observed value a(t j ) 
will be either above or below the confidence interval is 1~ or less.] 

which, under the assumptions of this paper, takes the form 

s(t) 2 f x tanh(x/B) {cosh(x/B) cosh [(X+t)/B])-SBdx . 

o 

III. Analysis of the Data. 

(10) 

Equations 5, 6, and 9 and 10, respectively specify the functions a(t) and S(t) 
and involve only two parameters, Sand B. We examined the ability of this model of 
the cell cycle to account for 18 existing publ ished data sets {tj , a(tj l}, 
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{tj' S (tj l), though here we present only some of the results of our analysi s. 

We digitized and stored the data sets {tj,a(tjl}, {tj,s(tj )}, and then 
determined the parameter values that gave the best fit to the data using nonlinear 
regression techniques [Santavy, in preparation]. We first determined the values of S 
and B that gave the best fit to the {tj' a(t j )} data, and then compared the resulting 

predicted Bit) with the actual {tj,s(tj )} data set. 
The results of this procedure are illustrated in Figure 1 for SV3T3 cells grown 

at four different concentrations of fetal calf serum. Note that with increasing 
serum levels, there is a progressive elevation in the parameter S and a concomitant 
fall in the parameter B. 

The same procedure was followed in an examination of the ability of this 
oscillator model of the cell cycle to account for data from eight other cell lines as 
shown in Figure 2. 

For the data analyzed in Figures 1 and 2, as well as other cases that we have 
not presented, we are able to achieve a more than satisfactory correspondence between 

the model predictions and the {tj,a(tj )} data. However, the predicted Bit) often 
deviates significantly above the data, i.e. sister cell pairs have differences in 
intermitotic times significantly less than predicted based on the population 
response. 

Noti ng thi s, we foll owed two di fferent data fitti ng procedures, illustrated for 
the BHK 21 cells of Figure 2 (reproduced in Figure 3A). First, the parameters Sand 

B were determined to give the best fit to the {tj ,s(tj )}, and then the a(t) curve was 
predicted (Figure 3B). Second, Sand B were determined to give the best fit to both 

the {tj,a(tjl} and the {tj,s(tj )} data (Figure 3C). It is clear that neither 
procedure gives a satisfactory fit to the data. 

One might question whether the failure of this model to account for the existing 
sets of data is due to the improper choice of the assumed dynamics of mitogen 
production (Equation 1). However, it is easy to show that this is not the case. 
Consider the following. Assume that a population of N cells is composed of m 
different subtypes, with each different subtype characterized by a different mitotic 
rate. Let hi (t)dt be the fraction of the ith cell type with intermitotic time Ti 
such that t < T i < t+dt so hi (t) is the mi toti c rate for the i th type of cell. 

Further take hi (t) = 0, 0 < t .;; t), hi (t) " Hi for t) < t " t z ' and hi (t) = Hi for 
t z < t. Then the mitotic rate for the entire cellular population satisfies 

hit) " H = L wiHi for t) < t " t z and hit) = H for t z < t, where wi is the fraction 
of the total population comprised of the ith cell type. Thus, the logarithmic slope 
of the a(t) curve for the entire population will be constant and equal to -H for 
sufficiently large t. Now consider sister cell pairs drawn from this same 
population. Then, the mitotic rate for a cell of type i at time t+X whose sister 

divided at time X is simply hi (t+X) which, for tz-t) < t, is simply Hi' A 
straightforward argument then shows that for sufficiently large times t the 
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Figure 2. The results of determining the best model fit to eight 
sources: Euglena gracilis [26]. Balb 3T3 [27]. L cells [28]. S. 
[30]. 3T3 [31]. BHK21 [32]. and CHO [31]. 

sets of data. Data 
Albus [29]. V79 
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Figure 3. The results of three different procedures to fit data from BHK 21 cells 
[27J. A: The result of fitting the a data and predicting B, reproduced from Figure 
2; B: The fit to B and the predicted a; and C: The consequence of fitting the a and 
B data together. 

logarithmic slope of the B(t} function must be identical to -H. Thus, an improper 
choice of the mitogen dynamics in equation 1 cannot be the source of the discrepancy 
between the observed and predicted behaviour of sister cell pair intermitotic times. 

To have more control over tl and t z than was available in our formulation of 

the model, we introduced a third parameter 0 such that the mitotic rate is given by 
S[(m(r,t)-1}/0] for 1 ( m(r,t) < 1+0 and is just S for m(r,t} > 1+0. With this 
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modification it was possible to achieve equal predicted logarithmic slopes for both 
~(t) and s(t) at smaller values of t and not just in the limiting (t+OO) case. 
However, this modification was insufficient to give a satisfactory agreement between 
the model predictions and the existing data, for the S(t) data once again displayed a 
significantly greater (in absolute value) slope than predicted from the model. 

IV. Discussion. 

Of the three hypotheses used in the development of this model, the major 
mathematical and biological questions revolve around Hypothesis 3. 

First, note that probabilistic formulations of cell cycle models are 
mathematically identical with a formulation based on the existence of a mitotic 

oscillator with the characteristics detailed in Hypothesis 3 (compare [9] and [21]). 
However, there are significant and profound differences in the interpretation of the 

underlying biology within the context of the two formulations. 
Second, is there any oscillating dynamical or semi-dynamical system with 

successive maxima determined by a Renyi transformation? Any continuous time system 
with this property must, by necessity, be of dimension 3 or greater. Though there is 
no analytic proof of the existence of such systems at this time, there is good 
numerical evidence for their existence as shown in [33] and [34] from an analysis of 
the Lorenz equations. 

Third, do intracellular oscillations exist? Again, the answer is yes. For 
example, Rapp [35] has cataloged literally hundreds of reported oscillations of 
cellular events occurring on relatively short time scales. More recently, a variety 
of investigators (see Lloyd and Edwards [36]) have noted oscillations in cellular 
respiration, a variety of enzymes, the adenine nucleotides, and ATPase activity to 
name but a few. Finally, Klevecz (see [13,37]) has collected data from a number of 
cell lines which he interprets as evidence for the existence of a quantal oscillator 
clocking the cell cycle with a period of the order of 4 hours. 

Fourth, do there exist known intracellular biochemical control pathways capable 
of generating irregular oscillations? Biochemical control loops within the cycling 
cell are numerous, richly interconnected, and nonlinear. Further, many display mixed 
positive/negative feedback with or without significant time delays in their feedback 
pathways [38-40]. As has been repeatedly shown numerically [41,42] these are exactly 
the conditions under which strange attractors and the attendent properties required 
by the theory developed in [21] may be encountered. Two examples immediately come to 

mind. 
The general scheme for the production of repressible enzumes put forward in 

Tyson and Othmer [38] contains multiple nonlinearities as well as time delays 
required for transcription and translation. A subsequent application of this model 
to the tryptophan operon in E. coli [40] experimentally demonstrated the instability 
of this gene control network and the existence of oscillations. 
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A second example involves the biochemical control networks for purine and 
pyrimidine synthesis which supply necessary precursors for DNA replication and the 
initiation and maintenance of transcription. These networks are highly 
interconnected with multiple positive, negative, and mixed positive-negative feedback 
loops. Preliminary simulations of the dynamics of this system [Mackey, unpublished] 
with known or estimated parameter values and feedback functions indicate that there 
are large regions of parameter space in which steady states are unstable and highly 
irregular oscillations may occur. 

All of the failures, noted in the previous section, to obtain better agreement 
between the existing data and the one dimensional oscillator model formulated here 
may be traced to the fact that the oft claimed equality of the limiting logarithmic 
slopes of the a(t) and B(t) data is only approximate. This experimental observation 
thus disqualifies all one dimensional models (either probabilistic or deterministic) 
for the statistics of the cell cycle, and suggests that a multi-dimensional model 
would be more appropriate. However, with the introduction of a multi-dimensional 
mitotic model we would also be in the position of not being able to check the 
validity of such a model based only on existing a(t) and B(t) data. For example, a 
two-dimensional model will be able to easily fit both the a(t) and B(t) data (even if 
they are independent as assumed in the Brooks two random transition model [31]), but 
the validation of such an extended model would require the availability of a third 
statistic in addition to a(t) and B(t). 

Of the known events associated with the cell cycle, the two most recognizable 
are mitosis and DNA synthesis. We feel that the observations cited above concerning 
the potential behaviour of the biochemical control networks involved in the synthesis 
of DNA precursors, along with the failure of a single threshold oscillator model as 
presented here to account for the sister-sister intermitotic time data, offer a 
strong motivation for expanding the model to include two oscillators -- one for the 
initiation of DNA synthesis, and the second for the initiation of mitosis. 

There are a number of attractive aspects to the hypothesis that variability 
within the cell cycle may arise from the operation of an oscillator with a strange 
attractor. 

First, if the present formulation were extended to a higher dimensional 
threshold crossing oscillator model it offers the possibility to understand the 
deterministic origin of the variability found within specific phases of the cell 
cycle [3]. Second, if amplitude characteristics of the oscillator and/or threshold 
levels are responsive to a variety of extracellular factors (eg., the serum effects 
shown in Figure 1) then the model offers a different interpretation of the current 
view of the GO state. Third, if intracellular oscillators are assumed able to cross 
threshold for DNA synthesis and to occasionally miss a mitotic threshold, then the 
hypothesis offers a qualitative explanation for the existence of polyploid cells in 
normal tissue. An alteration of oscillator and/or threshold characteristics in 
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transformed cells could explain the increased frequency of polyploid cells in 
abnormal tissues. A similar explanation would suffice to explain the existence of 
reduction divisions. Fourth, irregular oscillations in the pools of DNA precursors 
in conjunction with a threshold for the initiation of DNA synthesis could serve to 
explain data that have often been interpreted to indicate that DNA synthesis may be 
intermittent. Finally, the model would have sufficient flexibility to explain the 

fact that DNA synthesis and mitosis may not always occur in a sequential fashion as 
noted, for example, in rapidly growing bacteria. 
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