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PERIODIC OSCILLATIONS OF BLOOD CELL POPULATIONS IN
CHRONIC MYELOGENOUS LEUKEMIA∗
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Abstract. Periodic chronic myelogenous leukemia and cyclical neutropenia are two hemato-
logical diseases that display oscillations in circulating cell numbers with a period far in excess of
what one might expect based on the stem cell cycle duration. Motivated by this observation and a
desire to understand how long period oscillations can arise, we analytically prove the existence and
stability of long period oscillations in a G0 phase cell cycle model described by a nonlinear differential
delay equation. This periodic oscillation p∞ can be analytically constructed when the proliferative
control is of a “bang-bang” type (the Hill coefficient involved in the nonlinear feedback is infinite).
We further obtain a contractive return map (for the semiflow generated by the functional differential
equation) in a closed and convex cone containing p∞ when the proliferative control is smooth (the
Hill coefficient is large but finite). The fixed point of this contractive map gives the long period
oscillation previously observed both numerically and experimentally.
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1. Introduction. Periodic hematological diseases have attracted a significant
amount of modeling attention from mathematicians, notably the disorders periodic
autoimmune hemolytic anemia [3, 17] and cyclical thrombocytopenia [27, 29]. Periodic
hematological diseases of this type, in which only a single cell type is typically involved,
usually display a periodicity in circulating cell numbers between two and four times
the bone marrow production delay. This clinical observation has a clear explanation
within a modeling context [10].

Other periodic hematological diseases such as cyclical neutropenia [4, 10, 11, 15,
16, 18] and periodic chronic myelogenous leukemia (PCML) [8] have more than one
circulating blood cell type (i.e., white cells, red blood cells, and platelets) that display
oscillatory levels. The oscillations in cell numbers in these two diseases have period
durations ranging from weeks to months in general and are thought to originate in
the pluripotential stem cell compartment [10]. In the particular case of PCML, the
period can range from 40 to 80 days. Two lines of evidence indicate that the PCML
oscillations originate in the stem cell population based in the bone marrow. The
first suggestion that this is the case comes from the presence of the Philadelphia
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chromosome in all hematopoietic cells in PCML [5, 7, 9, 12, 30]. Second, in PCML
it is observed that white blood cells, erythrocytes, and platelets all oscillate with the
same period [8].

“How do ‘short’ cell cycles give rise to ‘long’ period oscillations?” This question
has arisen from the observation of circulating blood cell oscillations in PCML [8].
There is an enormous difference between the relatively short cell cycle duration, which
ranges between 1 and 4 days [13, 18, 19], and the long period oscillations in PCML
(between 40 and 80 days) [8]. The link between these relatively short cycle durations
and the long periods of peripheral cell oscillations in PCML is unclear and has been
neither biologically explained nor understood.

Using a G0 model of the cell cycle [6, 20, 28], an attempt to answer this ques-
tion has been made in [1, 25, 24], where the role of various model parameters on
the period and amplitude of the cellular oscillations was examined. When cellular
reentry from G0 into the proliferative phase is subject to “bang-bang” control (tech-
nically, where the Hill coefficient in the model re-entry rate n is infinite—see below),
qualitatively the cell cycle regulation parameters have a major influence on the os-
cillation amplitude, while the oscillation period is primarily determined by the cell
death and differentiation parameters. Under this strong assumption, the cell cycle
model is described by a piecewise linear scalar delay differential equation that, after
nontrivial but straightforward calculations, has a periodic solution with large period
and amplitude and strong stability properties.

Here, we prove analytically that similar conclusions hold in the more biologically
realistic case that the re-entry rate is a smooth monotone function. We construct a
convex closed cone containing the periodic solution when n = ∞ and a contractive
return map defined on this cone such that a fixed point of the return map gives a
stable periodic solution of the model equation when n is large. This method was first
developed by Walther [31, 32] for a scalar delay differential equation with constant
linear instantaneous friction and a negative delayed feedback, and was later extended
to state-dependent delay differential equations [33, 34] and to delay differential systems
[34, 36]. This method was further developed in [23] by incorporating some ideas
from classical asymptotic analysis and using matching methods. Applications of this
method to the present cell cycle model are nontrivial since both the instantaneous
loss and the delayed production of stem cells involve the nonlinearity and there is no
analytic formula for the periodic solution in the limiting case (n = ∞).

This paper is organized as follows. In section 2 we present the model in detail.
Section 3 summarizes previous results from [24] in the case where the Hill coefficient n
is infinite. Then, we introduce a more general result for the perturbed delay equation
given in section 4, and we present our main results in section 5 including the full
asymptotic expansion for the periodic solutions.

2. Description of the model. The G0 model of the cell cycle (see Figure 2.1 for
a depiction) is conceptually based on the work of Lajtha [14] and was first developed
by Burns and Tannock [6]. It can be derived from an age structured system of two
coupled partial differential equations, along with appropriate boundary and initial
conditions [15, 16, 21, 26]. Integrating along characteristics [35] these equations can
be transformed into a pair of coupled nonlinear first-order differential delay equations
[15, 16, 18]. The resulting model depicted in Figure 2.1 consists of a proliferating
phase cellular population P (t) at time t and a G0 resting phase, with a population
of cells N(t). The proliferative phase cells consist of cells in the G1 phase of the cell
cycle, the DNA synthesis (S) phase, G2, and mitosis M . In this proliferative phase,
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Fig. 2.1. A schematic representation of the G0 stem cell model. Proliferating phase cells (P )
include those cells in G1, S (DNA synthesis), G2, and M (mitosis), while the resting phase (N)
cells are in the G0 phase. δ is the rate of differentiation into all the committed populations arising
from the stem cells, and γ represents the apoptotic loss of proliferating phase cells. β is the rate of
cell re-entry from G0 into the proliferative phase, and the cell cycle time τ is the duration of the
proliferative phase. See [15, 16, 18] for further details.

cells are committed to undergo cell division a constant time τ after their entry into
G1. The choice of a constant cell cycle time τ simplifies the problem, though some
models with a nonconstant value of τ have been examined [2, 4]. The proliferative
phase death rate γ is due to apoptosis (programmed cell death). At the point of
cytokinesis (cell division), a cell divides into two daughter cells, both of which are
assumed to enter the resting (N) phase. In this phase, cells cannot divide but they
may have one of three possible fates: differentiate at a constant rate δ, re-enter the
proliferative phase at a rate β, or remain in G0. The re-entry rate β is a nonlinear
function of the cellular density and the central focus of this study.

The full model, described by a coupled nonlinear first-order delay equation, takes
the form

dP (t)

dt
= −γP (t) + β(N)N − e−γτβ(Nτ )Nτ(2.1)

and

dN(t)

dt
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ ,(2.2)

where Nτ = N(t−τ). The resting (G0) to proliferative phase feedback rate β is taken
to be a monotone Hill function of the form

β(N) =
β0θ

n

θn + Nn
.

In (2.2), the first term represents the loss of nonproliferating cells to the proliferative
phase (flux β(N)N) and to differentiation (flux δN). The second term represents the
production of G0 phase cells from the proliferating stem cells. The factor 2 accounts
for the amplifying effect of cell division while e−γτ accounts for the attenuation in the
proliferative phase due to apoptosis. Note that we need to study only the dynamics
of the G0 phase resting population (governed by (2.2)) since the proliferating phase
dynamics (governed by (2.1)) are driven by the dynamics of the resting cells. This is
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strictly a consequence of the fact that we have assumed β to be a function of N alone
[21, 22].

Introducing the dimensionless variable x = N/θ, we can rewrite (2.2) as

dx

dt
= −[β(x) + δ]x + kβ(xτ )xτ ,(2.3)

where

β(x) = β0
1

1 + xn
,(2.4)

and k = 2e−γτ . The steady states x∗ of (2.3) are given by the solution of dx/dt ≡ 0.
Thus we have x∗ ≡ 0, and

x∗ =

(
β0

k − 1

δ
− 1

)1/n

.(2.5)

Here we require

τ < − 1

γ
ln

δ + β0

2β0
,

so β0
k−1
δ > 1 in (2.5) and the second nontrivial steady state will be positive. Note

that when n → ∞, x∗ → 1 in (2.5) and β(x) tends to a piecewise constant function
(the Heaviside step function).

A solution of (2.3) is a continuous function x : [−τ,+∞) → R+ obeying (2.3) for
all t > 0. The continuous function ϕ : [−τ, 0] → R+, ϕ(t) = x(t) for all t ∈ [−τ, 0],
is called the initial condition for x. Using the method of steps, it is easy to prove
that for every ϕ ∈ C([−τ, 0]), where C([−τ, 0]) is the space of continuous functions
on [−τ, 0], there is a unique solution of (2.3) subject to the initial condition ϕ.

3. Periodic solutions: Limiting nonlinearity. In this section we study the
dynamics of (2.3) when β(x) is the step function

β(x) =

{
0, x ≥ 1,
β0, x < 1.

By a solution of (2.3) in this case, we mean a continuous function x(t) on the interval
[−τ,∞) which is piecewise differentiable and satisfies (2.3) for t ∈ [0,∞) except at
the point t where x(t) or x(t− τ) is equal to 1. For any initial data ϕ ∈ C[−τ, 0], it
is not difficult to obtain a unique solution x(t) by using the method of steps. As in
[24], we introduce two constants

α = β0 + δ, Γ = 2β0e
−γτ = kβ0.

Inserting the step function β(x) into (2.3), we obtain

dx

dt
=

⎧⎪⎪⎨
⎪⎪⎩

−δx, 1 < x, xτ ,
−αx, 0 < x < 1 < xτ ,
−αx + Γxτ , 0 < x, xτ < 1,
−δx + Γxτ , 0 < xτ < 1 < x,

(3.1)

where xτ = x(t− τ).
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For (3.1), we choose the initial function ϕ(t) ≥ 1+η for t ∈ [−τ, 0) and ϕ(0) = 1+η
where η is a small positive constant specified later. By the continuity of the solution
x, we have from (3.1) the existence of t1 such that x(t) and x(t− τ) are greater than
1 for t ∈ [0, t1) and x(t1) = 1. The solution x(t) then satisfies

dx

dt
= −δx for t ∈ [0, t1].(3.2)

Thus solving the above equation, we have x(t) = ϕ(0)e−δt = (1 + η)e−δt. It follows
that

t1 =
lnϕ(0)

δ
=

ln(1 + η)

δ
.(3.3)

In the next interval of time, defined by (t1, t1 + τ), we have x(t − τ) > 1. From the
first two lines in (3.1), the solution is decreasing and thus crosses the level x = 1. The
dynamics are given by

dx

dt
= −αx(3.4)

as long as x(t) < 1. The solution is then given by x(t) = e−α(t−t1) for t ∈ [t1, t1 + τ ]
and x(t1 + τ) = e−ατ independent of the initial function ϕ(t). Thus, the dynamics
eventually destroy all memory of the initial function.

The solution in the next interval will be such that x, xτ < 1. In order that (3.1)
has periodic solutions, we impose an extra condition on Γ and α so that

−αx + Γxτ > 0.(3.5)

Otherwise, if −αx + Γxτ ≤ 0, then the solution may tend to zero as t approaches
infinity and thus we cannot expect a periodic solution. In particular, if

−αx + Γxτ ≈ 0,

then the solution may stay below the line x = 1 so long that the resulting analysis
becomes very complicated. Note that for t ∈ [t1 + τ, t1 + 2τ ], we have x(t − τ) =
e−α(t−t1−τ). Then if x(t) < 1, from (3.1), we have dx

dt = −αx + Γxτ = −αx +

Γe−α(t−t1−τ) which gives

x(t) = e−α(t−t1−τ)(e−ατ + Γ(t− t1 − τ)).(3.6)

For the sake of simplicity, we impose an extra condition on Γ:

Γ > max

{
1

τ
(eατ − e−ατ ), αeατ

}
.(3.7)

Note that condition (3.7) clearly holds if β0 is large.
Equation (3.6) is only valid if the value of x(t) is less than or equal to 1. However

when we directly replace t in (3.6) by t1+2τ , we have x(t1+2τ) = e−ατ (e−ατ+Γτ) > 1.
Thus we need to use (3.6) to find a point t2 ∈ (t1 + τ, t1 + 2τ) such that x(t2) = 1
and (3.6) is valid for t ∈ [t1 + τ, t2]. Assume t2 = t1 + τ + u, u ∈ (0, τ). Then from
(3.6) we have

eαu = e−ατ + Γu.(3.8)



PERIODIC SOLUTIONS IN CHRONIC MYELOGENOUS LEUKEMIA 171

Equation (3.8) is a transcendental equation and cannot be solved explicitly. However,
the existence of a positive solution u ∈ (0, τ) is obvious given (3.7). Therefore (3.5)
holds for t ∈ [t1 + τ, t2] (due to the fact that x(t− τ) ≥ e−ατ ).

Next for t ∈ (t2, t2 + τ), we claim that

x(t) > 1.(3.9)

Indeed, from the above analysis, we know that e−ατ < x(t − τ) < 1 and at the
particular point t2, x(t2 + 0) = limt→t2+0 x(t) = 1, so x(t2 − τ) ≥ e−ατ . By (2.3) and
(3.7) we have

x′(t2 + 0) = −[β(x) + δ]x + kβ(xτ )xτ > −α + Γxτ > 0.

The solution x(t) is differentiable with respect to t as long as x(t) and x(t − τ) are
not equal to 1. To see our claim suppose, by contradiction, that there exists a point
h ∈ (t2, t2 + τ) such that x(h) = 1, x′(h − 0) ≤ 0, and x(t) > 1 for t ∈ (t2, h). Then
using (3.1), we have by (3.7) that

x′(h− 0) = −δ + Γx(h− τ) ≥ −δ + Γe−ατ > 0.

This is a contradiction, and our claim is true.
Splitting [t2, t2 + τ ] into two subintervals [t2, t1 + 2τ ] and [t1 + 2τ, t2 + τ ], we can

give explicit formulae for the solution x(t) as follows.
For t ∈ [t2, t1 + 2τ ], we know that x(t− τ) = e−α(t−t1−τ) < 1. The dynamics are

thus given by

dx

dt
= −δx + Γxτ = −δx + Γe−α(t−t1−τ),

which has the solution

x(t) = e−δτ(t−t2)

{
1 − Γ

β0
eα(t1+τ)−δt2

(
e−β0t − e−β0t2

)}
.(3.10)

Moreover, since the solutions are differentiable provided that x(t) and x(t − τ) are
not equal to 1, and the solutions are continuous everywhere, for t ∈ [t1 + 2τ, t2 + τ ]
we have

dx

dt
= −δx + Γxτ

= −δx + Γe−α(t−t1−2τ)(e−ατ + Γ(t− t1 − 2τ)),

so

x(t) = e−δ(t−t1−2τ) [x(t1 + 2τ) + Γ (j(t) − j(t1 + 2τ))] ,

where

j(t) =
1

(δ − α)

(
e−ατ + Γ(t− t1 − 2τ) − Γ

δ − α

)
e(δ−α)(t−t1−2τ).

After the time t2 + τ , both xτ and x are greater than 1, and the solution satisfies

x′ = −δx(3.11)

as long as x(t) > 1 and thus is decreasing. Therefore, there exists a point, say, t = d,
so that x(d) = 1. Note that in the interval [t2, d], the graph of the solution x(t) is
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independent of the initial function ϕ(t). Now we can use (3.9) and (3.11) to choose a
small positive constant η < 1 such that the following hold:

1. We have

t1 =
log(1 + η)

δ
< τ ;(3.12)

2. we have

Γ > max

{
1

τ
(eατ − e−ατ ), α(1 + η)eατ

}
,(3.13)

and x(t) reaches 1 + η at a point t3 ∈ (t2, t2 + τ); and
3. there is a point Tx, t3 + τ < Tx < d so that

x(Tx) = 1 + η, x(Tx + s) > 1 + η, s ∈ [−τ, 0).(3.14)

With this choice of η, we have x(t) > 1 + η for t ∈ (t3, Tx) and the solution is
strictly increasing for t ∈ [t2, t3] (due to (3.13)). Finally, when we continue to solve
(3.1) step by step, we have x(t) = x(t+Tx) for t ≥ 0. Summarizing the above analysis,
we have the following result.

Theorem 3.1. Suppose that Γ satisfies (3.7). Assume that x is the solution of
(3.1) subject to the initial condition φ ≥ 1 + η where η is chosen to satisfy (3.12),
(3.13), and (3.14). Then the solution x satisfies x(t) = x(t + Tx) for t ≥ 0.

4. Periodic solutions: General nonlinearity.

4.1. Perturbed delay equation. With the preceding analysis of the G0 phase
cell cycle model when the feedback function β is a Heaviside step function, we turn
to a consideration of the general continuous nonlinearity. More precisely, we consider

dy

dt
= −[β(y) + δ]y + kβ(yτ )yτ ,(4.1)

returning to the original problem with β = β0
1

1+yn . Let ε = 1/n. Then we can rewrite
the Hill function as

βε(y) = β0
1

1 + y1/ε
.

Let the initial function ϕ be chosen from the closed convex set

Aη = {ϕ ∈ C([−τ, 0]) : 1 + η ≤ ϕ(t) for t ∈ [−τ, 0], and ϕ(0) = 1 + η},

where η < 1 is a small positive constant as chosen in the previous section. For given
ϕ in Aη, we have a unique solution to (4.1). The relations

Fε(t, ϕ) = yt, yt = y(t + s), −τ ≤ s ≤ 0, t ≥ 0,

define a continuous semiflow F = Fε on C([−τ, 0]).
As a technical preparation, we now describe some elementary properties of the

Hill function we employ here.
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Lemma 4.1. Assume ε = 1
n < 1. The following inequalities hold:

(a) If y >
(

1
ε

)ε/(1−ε)
, then

βε(y) < β0ε, yβε(y) < β0ε

and if 0 < y < εε, then

β0 > βε(y) > β0(1 − ε) and |yβε(y) − β0y| < β0ε.(4.2)

(b) Also, ∣∣∣∣d(yβε(y))

dy

∣∣∣∣ < β0ε for y >

(
1

ε

)2ε

,

and ∣∣∣∣d(yβε(y) − β0y)

dy

∣∣∣∣ < β0ε for 0 < y <

(
ε2

1 + ε

)ε

.

Proof. (a) If y >
(

1
ε

)ε/(1−ε)
, then

βε(y) =
β0

1 + y1/ε
<

β0

y1/ε
<

β0(
1
ε

)1/(1−ε)
< β0ε,

and

yβε(y) =
β0y

1 + y1/ε
<

β0

y
1
ε−1

< β0ε.

If 0 < y < εε, then

β0 > βε(y) =
β0

1 + y1/ε
> β0(1 − y1/ε) ≥ β0(1 − ε),

and

|yβε(y) − β0y| =

∣∣∣∣β0
y1/ε+1

1 + y1/ε

∣∣∣∣ < β0y
1/ε+1 < β0ε.

(b) If y > (1/ε)
2ε

, then

∣∣∣∣d (yβε(y))

dy

∣∣∣∣ = β0

∣∣∣∣
(

1

ε
− 1

)
y1/ε − 1

∣∣∣∣
(1 + y1/ε)2

≤ β0

(
1

ε
− 1

)
y−1/ε < β0ε.

Since

f(x) =

(
1 +

1

ε

)
x +

1

ε
x2

1 + x

is strictly increasing for x ∈ (0, ε2

1+ε ) and f( ε2

1+ε ) < ε, we obtain∣∣∣∣d (yβε(y) − β0y)

dy

∣∣∣∣ = β0

(1 + 1
ε )y1/ε + 1

εy
2/ε

1 + y1/ε
< β0ε

for 0 < y < ( ε2

1+ε )
ε.
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We found that for (3.1), if ϕ ∈ Aη, then the solution will return to Aη after finite
time. The following lemma shows a similar property for (4.1).

Lemma 4.2. Let y be the solution of (4.1) with an initial function ϕ ∈ Aη. Then
there exists a point Ty > 0 such that y(Ty) = 1 + η and

y(t) ≥ 1 + η for t ∈ [Ty − τ, Ty].(4.3)

Moreover, there exists a constant ε1, ε1 ∈ (0, 1), such that for each ε ∈ (0, ε1), we
have

Ty = Tx + O(ε log ε)(4.4)

and

y(t) = x(t) + O(ε log ε),(4.5)

uniformly for t ∈ [0, Tx] and ϕ ∈ Aη, where Tx is the period of the periodic solution x
to (3.1) obtained in Theorem 3.1.

Proof of Lemma 4.2. We first claim that there exist three points η1, t
y
1, η2, 0 <

η1 < ty1 < η2, which are dependent on ε and ϕ, such that

y(η1) =

(
1

ε

)2ε

> 1, y(ty1) = 1, y(η2) =

(
ε2

1 + ε

)ε

< 1.(4.6)

Indeed, if y(t) > ( 1
ε )2ε >

(
1
ε

)ε/(1−ε)
> 1 and y(t − τ) > ( 1

ε )2ε > ( 1
ε )ε/(1−ε), then we

have by Lemma 4.1 that

βε(y(t))y(t) < β0ε, βε(y(t− τ))y(t− τ) < β0ε

and

dy(t)

dt
= −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ),

= −δy(t) + O(ε)

< −δ

2
for ε ∈ (0, σ1).(4.7)

Here σ1 is chosen so that for each ε ∈ (0, σ1), we have −δy(t) + O(ε) < − δ
2 . This

means that y is decreasing as long as y(t) ≥ ( 1
ε )2ε > ( 1

ε )ε/(1−ε). Therefore there is a

point η1 > 0 so that y(η1) = (1/ε)
2ε

and 1 + η > y(t) > (1/ε)
2ε

for t ∈ (0, η1). Using
dy
dt = −δy + O(ε) and y(0) = 1 + η, we also have

η1 =
log(1 + η)

δ
+ O(−ε log ε) = t1 + O(−ε log ε).(4.8)

Here the term O(−ε log ε) holds uniformly for all the initial functions ϕ in Aη. Next
in the interval (η1, η1 + τ), we have βε(y(t− τ))y(t− τ) = O(ε) and

dy(t)

dt
= −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ)

< −δy(t) + kβε(y(t− τ))y(t− τ)

= −δy(t) + O(ε)

< −δ

2
for ε ∈ (0, σ2)
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as long as y(t) ≥ ( ε2

1+ε )
ε. Here σ2 is chosen so that for each ε ∈ (0, σ2), we have

−δy(t) + O(ε) < −δ

(
ε2

1 + ε

)ε

+ O(ε) < −δ

2
.

This means that the solution is decreasing and there exist two points ty1, η2, η1 < ty1 <
η2, such that

y(ty1) = 1, y(η2) =

(
ε2

1 + ε

)ε

.

By the mean value theorem, it is easy to show that

|y(η1) − y(η2)| ≥
δ

2
|η1 − η2|

or, equivalently,

η2 − η1 ≤ 2

δ
(y(η1) − y(η2)) =

2

δ

[(
1

ε

)2ε

−
(

ε2

1 + ε

)ε
]

= O(−ε log ε).

Therefore,

0 < ty1 − η1 < η2 − η1 = O(−ε log ε).(4.9)

Now using (4.1) for t ∈ [0, η1], we have

y′ = −δy + O(ε), y(0) = 1 + η,

which gives

y(t) = (1 + η)e−δt + O(ε).

We claim that

y(t) = x(t) + O(ε)(4.10)

uniformly for t ∈ [0, ξ1] and ϕ ∈ Aη, where

ξ1 = min{t1, η1}.

Indeed, this is true, since x(t) = (1 + η)e−δt for t ∈ [0, t1].
Next for t ∈ [ξ1, η2], using an argument that the length of the interval [t1, η1] is

of order O(−ε log ε), and both |x′(t)| and |y′(t)| are bounded by a constant, say, M ,
which is independent of ε and η, we conclude from (4.10) that

y(t) = x(t) + O(−ε log ε).(4.11)

For t ∈ [η2, τ + ξ1], we can show that y(t − τ) > (1/ε)
2ε

. Note that η2 ≤ ξ1 + τ
since η2 − ξ1 = O(ε log ε) and τ is a constant. Here we have assumed that ε ∈ (0, σ3),
where σ3 is small enough so that for each ε ∈ (0, σ3), we have O(ε log ε) < τ. By
Lemma 4.1, we have

y(t− τ)β(y(t− τ)) = O(ε).
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Using (4.1) we know that

−αy + O(ε) ≤ y′ ≤ −δy + O(ε),

and thus the solution y(t) ≥ (ε2/(1 + ε))εe−ατ + O(ε) and its derivative

y′(t) ≤ −δ(ε2/(1 + ε))εe−ατ + O(ε) < 0 for ε ∈ (0, σ4),

where σ4 is chosen so that for each ε ∈ (0, σ4), we have −δ(ε2/(1+ε))εe−ατ+O(ε) < 0.
So y(t) is decreasing for t ∈ [η2, τ + ξ1]. Note that 0 < y < y(η2) ≤ εε so that (4.2) in
Lemma 4.1 holds. Thus we can derive from (4.1) that

y′(t) = −αy(t) + O(ε)(4.12)

for t ∈ [η2, τ + ξ1]. Coupling this equation with (3.4) and using (4.11) at the point
t = η2 give

y(t) = x(t) + O(−ε log ε)

for t ∈ [η2, τ + ξ1].
For t ∈ [τ + ξ1, τ + η2], again using the fact that both the derivatives of x and y

are bounded and the length of this interval is of order O(−ε log ε), we have

y(t) = x(t) + O(−ε log ε).

For t ≥ τ + η2, the solution y begins to increase since Γ satisfies (3.7). To be
precise, we have βε(y(t)) < β0, βε(y(t− τ))y(t− τ) = β0y(t− τ) + O(−ε log ε) and

y′(t) = −(δ + βε(y(t)))y(t) + kβε(y(t− τ))y(t− τ)

≥ −αy(t) + kβ0y(t− τ) + O(−ε log ε)

= −αy(t) + Γx(t− τ) + O(−ε log ε)

≥ −α(1 + η) + Γe−ατ + O(−ε log ε)

> 0 for ε ∈ (0, σ5)

as long as y(t) ≤ 1 + η and t ≤ 2τ + η2. Here σ5 is sufficiently small so that for each
ε ∈ (0, σ5), we have −α(1 + η) + Γe−ατ + O(−ε log ε) > 0. Using similar arguments
as above, we conclude that there exist three points η3, t

y
2, η4, with η3 < ty2 < η4 such

that

y(η3) =

(
ε2

1 + ε

)ε

, y(ty2) = 1, y(η4) =

(
1

ε

)2ε

,

η3 = ty2 + O(−ε log ε), η4 = ty2 + O(−ε log ε),(4.13)

and

ty2 = t2 + O(−ε log ε).(4.14)

We can continue this process to find that y will satisfy

y(t) = x(t) + O(−ε log ε)
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for t ∈ [0, τ + ξ2], where ξ2 = min{t2, η3}. From the expression for x, we know from
the preceding equation that there exists a point ty3 ∈ (η4, τ+ξ2) such that y(ty3) = 1+η
and ty3 = t3 + O(−ε log ε).

For t ∈ [τ + ξ2, τ + η4], using the same argument as in the interval [τ + ξ1, τ + η2],
we again have

y(t) = x(t) + O(−ε log ε).(4.15)

Finally for t ≥ τ +η4, the solution is decreasing and will reach the value 1+η at some
point Ty. In the whole interval [0, Tx], if we choose ε1 = min{σi, 1 ≤ i ≤ 5}, then we
can show as before that for each ε ∈ (0, ε1), we have

y(t) = x(t) + O(−ε log ε), x ∈ [0, Tx],(4.16)

and

Ty = Tx + O(−ε log ε).(4.17)

Furthermore, we also have y(Ty) = 1 + η and

y(t) ≥ 1 + η for [Ty − τ, Ty].(4.18)

Remark 4.3. By Lemma 4.2 and (4.1) we have two positive constants M1 and
M2 which are independent of ε and the initial data ϕ so that for t ≥ 0,

|y(t)| ≤ M1(4.19)

and ∣∣∣∣dy(t)dt

∣∣∣∣ ≤ M2.(4.20)

Now we are ready to define a continuous return map

R : Aη 	 ϕ → yq(ϕ) = Fε(q(ϕ), ϕ) ∈ Aη,

where q(ϕ) = Ty. To verify that there exists a unique fixed point in Aη for the map
R, we need to show that the map R is contractive, i.e., derive an estimation for the
Lipschitz constant and show that the Lipschitz constant is less than 1.

4.2. Lipschitz constant for the map R. The Lipschitz constant of a given
map T : DT → Y , DT ⊂ X, where X and Y are normed linear spaces, is given by

L(T ) = sup
u∈DT ,v∈DT ,u �=v

||T (u) − T (v)||
||u− v|| .

In the case where DT = X = Y = R, [u1, u2] ⊂ R, and f = T , we set

L[u1,u2](f) = L(f |[u1, u2]).

If f(u) = uβε(u), u ∈ R, we define the following four Lipschitz constants:

Lε
1 = L[1+η,+∞)(uβε(u)),

Lε
2 = L[( 1

ε )2ε,+∞)(uβε(u)),

Lε
3 = L(0,+∞)(uβε(u)),

Lε
4 = L

(0,( ε2

1+ε )ε)
(uβε(u)).
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Similarly for the function f(u) = uβε(u)−β0u, u ∈ R, we define the following Lipschitz
constant for later use:

Lε
5 = L

(0,( ε2

1+ε )ε)
(uβε(u) − β0u).

When ε << 1, we have

Lε
1 = O

(
1

ε(1 + η)1/ε

)
, Lε

2 = O(ε), Lε
3 = O(1/ε), Lε

4 = O(1), Lε
5 = O(ε).(4.21)

Theorem 4.4. There exists ε2, ε2 ∈ (0, ε1), such that for each ε ∈ (0, ε2) the
Lipschitz constant Lε

R of the map R is less than 1. In particular, we have

lim
ε→0

Lε
R = 0.

Proof. Step 1. Take φ, φ̄ in Aη. Using a similar argument as in the proof of
Lemma 4.2, we conclude that there exist η1, η2 and η̄1, η̄2 such that

yφ(η1) =

(
1

ε

)2ε

, yφ(η2) =

(
ε2

1 + ε

)ε

, η1 − η2 = O(−ε log ε)

and

yφ̄(η̄1) =

(
1

ε

)2ε

, yφ̄(η̄2) =

(
ε2

1 + ε

)ε

, η̄1 − η̄2 = O(−ε log ε).

Let

ηmin = min{η1, η̄1}

and

ηmax = max{η2, η̄2}.

Then by (4.8) and (4.9) we have

ηmin = t1 + O(−ε log ε), ηmax = t1 + O(−ε log ε), and(4.22)

ηmax − ηmin = O(−ε log ε).

Since t1 = log(1 + η)/δ < τ , from (4.22) we have that ηmin < τ and ηmax < τ .
Here we have chosen σ6 > 0 sufficiently small so that for each ε ∈ (0, σ6)

ηmax = log(1 + η)/δ + O(−ε log ε) < τ.

For t ∈ [0, ηmin], using (4.1) for yφ(t) and yφ̄(t) gives

dyφ(t)

dt
= −[δ + βε(y

φ(t))]yφ(t) + kβε(y
φ(t− τ))yφ(t− τ)(4.23)

and

dyφ̄(t)

dt
= −[δ + βε(y

φ̄(t))]yφ̄(t) + kβε(y
φ̄(t− τ))yφ̄(t− τ).(4.24)
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Now we estimate the difference between yφ(t) and yφ̄(t). Subtracting (4.24) from
(4.23) yields

(yφ(t) − yφ̄(t))′ = −δ(yφ(t) − yφ̄(t))(4.25)

−[βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)]

+k[βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)].

Substituting the inequalities

|βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)| ≤ Lε
2|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
1||φ− φ̄||

into (4.25), we have

(yφ(t) − yφ̄(t))′ ≤ (δ + Lε
2) |yφ(t) − yφ̄(t)| + kLε

1||φ− φ̄||.(4.26)

Integrating (4.26) from 0 to t gives

(yφ(t) − yφ̄(t)) ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.

Similarly, we have

−(yφ(t) − yφ̄(t)) ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.

Thus, we have found that

|yφ(t) − yφ̄(t)| ≤
∫ t

0

(
(δ + Lε

2) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds.(4.27)

From Gronwall’s inequality, we obtain

|yφ(t) − yφ̄(t)| ≤ C1||φ− φ̄||,(4.28)

where

C1 =
e(δ+Lε

2)ηmin − 1

δ + Lε
2

kLε
1.(4.29)

Step 2. For t ∈ [ηmin, ηmax], we have

|βε(y
φ(t))yφ(t) − βε(y

φ̄(t))yφ̄(t)| ≤ Lε
3|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
1||φ− φ̄||.

Thus from (4.23) and (4.24) we obtain, as before,

|yφ(t) − yφ̄(t)| ≤
∫ t

ηmin

(
(δ + Lε

3) |yφ(s) − yφ̄(s)| + kLε
1||φ− φ̄||

)
ds + C1||φ− φ̄||.
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Then by Gronwall’s inequality, we have

|yφ(t) − yφ̄(t)| ≤ C2||φ− φ̄||,(4.30)

where

C2 = C1e
(δ+Lε

3)(ηmax−ηmin) +
e(δ+Lε

3)(ηmax−ηmin) − 1

δ + Lε
3

kLε
1 > C1.(4.31)

Remember that ηmin ≤ τ since t1 < τ in (3.14) and ηmin = t1 + O(−ε log ε).
Moreover ηmax ≤ τ since ηmax = t1 + O(−ε log ε) from (4.22).

Step 3. For t ∈ [ηmax, τ + ηmin],

|βε(y
φ(τ))yφ(t) − β0y

φ(t) − (βε(y
φ̄(t))yφ̄(t) − β0y

φ̄(t))| ≤ Lε
5|yφ(t) − yφ̄(t)|

and

|βε(y
φ(t− τ))yφ(t− τ) − βε(y

φ̄(t− τ))yφ̄(t− τ)| ≤ Lε
2C2||φ− φ̄||.

It is thus easy to derive

|yφ(t) − yφ̄(t)| ≤
∫ t

ηmax

(
(α + Lε

5)|yφ(s) − yφ̄(s)| + kLε
2C2||φ− φ̄||

)
ds + C2||φ− φ̄||

and to conclude that (since τ + ηmin − ηmax < τ)

|yφ(t) − yφ̄(t)| ≤ C3||φ− φ̄||,(4.32)

where

C3 = C2e
ατ+τLε

5 +
eατ+τLε

5 − 1

α + Lε
5

kLε
2C2 > C2.(4.33)

Step 4. When t ≥ τ + ηmin, we have from (4.13) and (4.14) that there exist
η3 < η4 and η̄3 < η̄4 such that

yφ(η3) =

(
ε2

1 + ε

)ε

, yφ(η4) =

(
1

ε

)2ε

, η4 − η3 = O(−ε log ε)

and

yφ̄(η̄3) =

(
ε2

1 + ε

)ε

, yφ̄(η̄4) =

(
1

ε

)2ε

, η̄4 − η̄3 = O(−ε log ε).

Let

η3
min = min{η3, η̄3}, η4

max = max{η4, η̄4}.

Then by (4.13) and (4.14) we have

η3
min = t2 + O(−ε log ε), η4

max = t2 + O(−ε log ε), η4
max − η3

min = O(−ε log ε).(4.34)

Since t2 > t1 + τ , we can choose σ7 > 0 sufficiently small so that for each ε ∈ (0, σ7)
the inequality

τ + ηmax < η3
min



PERIODIC SOLUTIONS IN CHRONIC MYELOGENOUS LEUKEMIA 181

holds. For t ∈ [τ + ηmin,η
3
min], we similarly have

|yφ(t) − yφ̄(t)| ≤
∫ t

τ+ηmin

(
(α + Lε

5)|yφ(s) − yφ̄(s)| + kLε
3C3||φ− φ̄||

)
ds + C3||φ− φ̄||

and

|yφ − yφ̄| ≤ C4||φ− φ̄||,(4.35)

where

C4 = C3e
(α+Lε

5)(η
3
min−τ−ηmin) +

e(α+Lε
5)(η

3
min−τ−ηmin) − 1

α + Lε
5

kLε
3C3 > C3.(4.36)

Step 5. For t ∈ [η3
min, η

4
max], from (4.22) and (4.34) it is easy to demonstrate that

ηmax ≤ t− τ ≤ η3
min. Thus we have

|yφ(t) − yφ̄(t)| ≤
∫ t

η3
min

(
(δ + Lε

3)|yφ(s) − yφ̄(s)| + kLε
4C4||φ− φ̄||

)
ds + C4||φ− φ̄||.

Then it follows that

|yφ(t) − yφ̄(t)| ≤ C5||φ− φ̄||,(4.37)

where

C5 = C4

(
e(δ+Lε

3)(η
4
max−η3

min) +
e(δ+Lε

3)(η
4
max−η3

min) − 1

δ + Lε
3

kLε
4

)
.(4.38)

Step 6. For t ∈ [η4
max, τ+η4

max], we claim that yφ(t) ≥ (1/ε)2ε and yφ̄(t) ≥ (1/ε)2ε.
We prove this claim only for the function yφ, because the proof for the function yφ̄ is
similar and hence omitted. Note that t3 > η4

max = t2 +O(−ε log ε) for each ε ∈ (0, σ8)
where σ8 is chosen so that t3 > t2 + O(−σ8 log σ8). Using yφ(t) = x(t) + O(−ε log ε),
with yφ(t − τ) = x(t − τ) + O(−ε log ε) ≥ e−ατ + O(−ε log ε), and (3.7) and (4.34),
we have from (4.1) that dyφ(t)/dt > 0 for t ∈ [η4, t3], and thus yφ is increasing and
satisfies yφ(η4

max) ≥ yφ(η4) ≥ (1/ε)2ε. For t ∈ [t3, τ + η4
max], x(t) ≥ 1 + η. Then using

Lemma 4.2 again we have

yφ(t) = x(t) + O(−ε log ε) >

(
1

ε

)2ε

provided ε ∈ (0, σ9), where σ9 is sufficiently small so that the above formula holds for
ε ∈ (0, σ9). Therefore, we obtain

|yφ(t) − yφ̄(t)| ≤
∫ t

η4
max

(
(δ + Lε

2)|yφ(s) − yφ̄(s)| + kLε
3C5||φ− φ̄||

)
ds + C5||φ− φ̄||

and

|yφ(t) − yφ̄(t)| ≤ C6||φ− φ̄||,(4.39)

where

C6 = C5

(
e(δ+Lε

2)τ +
e(δ+Lε

2)τ − 1

δ + Lε
2

kLε
3

)
.(4.40)
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Step 7. When t ≥ τ + η4
max, both y and ȳ are decreasing and will take the value

1 + η after a finite time. Suppose that s and s̄ satisfy

yφ(s) = 1 + η, yφ̄(s̄) = 1 + η.

For the rest of the proof, we consider only the case s < s̄, since the case when s ≥ s̄
can be similarly dealt with and the proof is omitted. By (4.4) and (4.34), we also
obtain

s− (τ + η4
max) = Tx − (τ + t2) + O(−ε log ε)

and

s̄− (τ + η4
max) = Tx − (τ + t2) + O(−ε log ε),

where Tx is the period of the function x. Because the distance between τ + η4
max and

s may be greater than τ , we need to split the interval [τ + η4
max, s] into subintervals

[τ + η4
max, 2τ + η4

max], [2τ + η4
max, 3τ + η4

max], . . . , [mτ + η4
max, s], where the length of

each interval is exactly τ except the last one. Here m is the largest integer less than
or equal to (s − (τ + η4

max))/τ . We can successively estimate |yφ − yφ̄| on the above
subintervals to obtain

|yφ(t) − yφ̄(t)| ≤ C7||φ− φ̄||, t ∈ [τ + η4
max, s],(4.41)

with

C7 = C6

(
e(δ+Lε

2)τ +
e(δ+Lε

2)τ − 1

δ + Lε
2

kLε
2

)Tx

.(4.42)

For t ∈ [s, s̄], the function yφ̄ satisfies

yφ̄(s̄) = 1 + η and yφ̄(t) = 1 + η + O(−ε log ε),

because the length of the interval [s, s̄] is of order O(−ε log ε) and the derivative of
yφ̄ is bounded; c.f. Remark 4.3. On the other hand, since s = Tx + O(−ε log ε),
s̄ = Tx + O(−ε log ε), x(t) ≥ 1 + η for t ∈ [t3,Tx], and yφ̄(t) = x(t) + O(−ε log ε) for
t ∈ [0, Tx], we know by (4.20) that for t ∈ [s, s̄],

yφ̄(t− τ) ≥
(

1

ε

)2ε

and

kβε(y
φ̄(t− τ))yφ̄(t− τ) = O(−ε log ε).

Therefore, from (4.1) we know that for t ∈ [s, s̄] the function yφ̄ is decreasing and∣∣∣∣∣dy
φ̄(t)

dt

∣∣∣∣∣ =
∣∣∣−(δ + βε(y

φ̄(t)))yφ̄(t) + kβε(y
φ̄(t− τ))yφ̄(t− τ)

∣∣∣
≥ |−δ(1 + η) + O(−ε log ε)|

≥ δ(1 + η)

2
.
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Here we have assumed that ε is in the interval (0, σ10), where σ10 is chosen so that
for each ε ∈ (0, σ10), the inequality

−δ(1 + η) + O(−ε log ε) < −δ(1 + η)

2

holds. Applying the mean value theorem to the function yφ̄ yields the existence of
ρ ∈ [s, s̄] such that

|yφ̄(s̄) − yφ̄(s)| = |(yφ̄)′(ρ)(s̄− s)| ≥ δ(1 + η)

2
|s̄− s|

or, by (4.41),

|s̄− s| ≤ 2

δ(1 + η)
|yφ̄(s̄) − yφ̄(s)| =

2

δ(1 + η)
|yφ(s) − yφ̄(s)|,(4.43)

≤ 2C7

δ(1 + η)
||φ− φ̄||.

Our ultimate goal is to derive an estimate of |yφ̄s̄ (θ) − yφs (θ)| where θ ∈ [−τ, 0].
Indeed, we have

|yφ̄s̄ (θ) − yφs (θ)| ≤ |yφ̄s̄ (θ) − yφ̄s (θ)| + |yφ̄s (θ) − yφs (θ)|.(4.44)

The first term of the right-hand side is bounded by

∫ s̄+θ

s+θ

dyφ̄(t)

dt
dt ≤ M2 |s̄− s| ,

where M2 is the maximum value of the derivative of the function yφ̄; c.f. Remark 4.3.
The second term of (4.44) is bounded by C7||φ− φ̄||. Thus from (4.44), we have

|yφ̄s̄ (θ) − yφs (θ)| ≤ C7

(
1 +

2M2

δ(1 + η)

)
||φ− φ̄||.(4.45)

Using (4.21), we conclude from (4.29), (4.31), (4.33), (4.36), (4.38), (4.40), and (4.42)
that

lim
ε→0

Lε
R = lim

ε→0
C7

(
1 +

2M2

δ(1 + η)

)
= 0 < 1.

Therefore we conclude that there exists ε2 < min{ε1, σ6, σ7, σ8, σ9, σ10} so that for
each ε ∈ (0, ε2), the Lipschitz constant Lε

R of the map R is less than 1. This completes
our proof.

For Lε
R < 1, the return map R is contractive and there exists a unique fixed point φ

in Aη. Thus we have demonstrated the existence of a unique slowly oscillating periodic
solution for (4.1). The stability and exponential attractivity of this unique periodic
orbit can be established using the standard techniques developed in [31, 32, 33, 34, 36].

5. Asymptotic expansions for the periodic solution. In the previous sec-
tion we used fixed point theory to prove that there exists a unique periodic orbit for
(4.1). We now carry out a quantitative analysis of this periodic solution as ε < ε2.
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Since the map R is contractive and the Lipschitz constant Lε
R is exponentially decay-

ing as ε → 0, we are able to give an asymptotic expansion for this particular solution
for t ∈ [−τ, 0] with error bound beyond all integer orders of ε.

If we take the initial function given by φ = 1 + η, then we have a solution y1+η(·)
which is not periodic. But by Lemma 4.2, we have y1+η(t) = x(t) + O(−ε log ε) for t
∈ [0, Tx], and a T1+η > 0 such that

y1+η
T1+η

(0) = 1 + η, y1+η
T1+η

(θ) > 1 + η, θ ∈ [−τ, 0).

It is obvious that y1+η
T1+η

(θ) ∈ Aη.

Assume that y is the periodic solution to (4.1) and satisfies y(θ) ∈ Aη for θ ∈
[−τ, 0]. Suppose also that y(θ) has the following asymptotic expansion:

y(θ) =

∞∑
i=0

φi(θ), θ ∈ [−τ, 0].(5.1)

The function φ0 is given by y1+η
T1+η

, and φi, i ≥ 1, with the norm ||φ|| =

max−τ≤θ≤0 |φ(θ)|, will be constructed below. Let yφ0

T0
denote the image of the re-

turn map R at φ0, i.e.,

yφ0

T0
(θ) = R(φ0) = Fε(T0, φ0), θ ∈ [−τ, 0],

where T0 > 0 satisfies

yφ0

T0
(0) = 1 + η, yφ0

T0
(θ) > 1 + η, θ ∈ [−τ, 0).

Similarly, by induction, we set

φ1 = R(φ0) − φ0 = yφ0

T0
− φ0,

yφ1

T1
(θ) = R(φ1) = Fε(T1, φ1),

φn(θ) = Rn(φ0) −Rn−1(φ0) for n ≥ 2,

yφn

Tn
(θ) = R(φn) = Fε(Tn, φn) for n ≥ 2,

where Tn satisfies

yφn

Tn
(0) = 1 + η, yφn

Tn
(θ) > 1 + η, θ ∈ [−τ, 0), n ≥ 1.

Thus we have

|φn(θ) − φn−1(θ)| ≤ Lε
R|φn−1(θ) − φn−2(θ)|

≤ (Lε
R)n−1|φ1(θ) − φ0(θ)|.

Therefore, y(θ) =
∑∞

i=0 φi(θ) is uniformly convergent for θ ∈ [−τ, 0] and it is the fixed
point of R.
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We now give an asymptotic expansion for the period of the periodic solution y.
Using (4.43), we have

|Ti − Ti−1| ≤
2C7

δ(1 + η)
||φi − φi−1||,

which means that the series

T0 +

∞∑
j=1

(Tj − Tj−1)

is absolutely convergent to some constant, say, Tε. Since LR is exponentially decaying
as ε → 0, it is easy to see that the value of Tε is dominated by T0 in the sense that
Tε−T0 is exponentially small as ε → 0. Likewise the value of y(θ) in (5.1) is dominated
by φ0 with an exponential error bound as ε → 0. Thus when t ∈ [0, T0], we know
that the periodic solution y(t) is also dominated by yφ0(t). Therefore the estimate
of yφ0(t) and T0 becomes significant. From Lemma 4.2 we have the following rough
result for yφ0(t) and T0:

yφ0(t) = x(t) + O(−ε log ε), T0 = Tx + O(−ε log ε).

We now give refined estimates for yφ0(t) and T0 using the above information. As
in the proof of Lemma 4.2, we split the interval [0, T0] into subintervals and estimate
yφ0(t) on each subinterval successively. We demonstrate this process on the first
subinterval for the purpose of illustration. Remember that the initial data are taken
to be φ0 which is greater than 1+η when t lies in the interval [−τ, 0). Let tφ0

1 , η1, and

η2 be the values as defined in the proof of Lemma 4.2. Thus tφ0

1 satisfy yφ0(tφ0

1 ) = 1.

Integrating (4.1) from 0 to t, t ∈ [0, tφ0

1 ], gives

yφ0(t) − yφ0(0) = −δ

∫ t

0

yφ0(s)ds−
∫ t

0

βε(y
φ0(s))yφ0(s)ds(5.2)

+ k

∫ t

0

βε(y
φ0(s− τ))yφ0(s− τ)ds.

Since tφ0

1 = t1 + O(−ε log ε) and t1 < τ , it is easy to see that the last term of the
right-hand side of (5.2) is small and of O(ε). Next we claim that∫ t

0

βε(y
φ0(s))yφ0(s)ds = O(ε), t ∈ [0, tφ0

1 ].(5.3)

Indeed when t ∈ [0, tφ0

1 ], we have kβyφ0(t− τ)yφ0(t− τ) = O(ε). Then from (4.1) we
have

−α(1 + η) ≤ dyφ0(t)

dt
= −[βε(y

φ0(t)) + δ]yφ0(t) + O(ε) ≤ −δ + O(ε).(5.4)

Thus from (5.4) and the fact that∣∣∣∣
∫ t

0

βε(y
φ0(s))yφ0(s)

dyφ0

ds
ds

∣∣∣∣ ≤
∣∣∣∣∣
∫ t

φ0
1

0

βε(y
φ0(s))yφ0(s)

dyφ0

ds
ds

∣∣∣∣∣
=

∣∣∣∣
∫ 1

1+η

β0u

1 + u1/ε
du

∣∣∣∣
= O(ε),
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we know that
∫ t

0
βε(y

φ0(s))yφ0(s)ds is also of O(ε) and the claim (5.3) is true. It

follows then from (5.2) that for t ∈ [0, tφ0

1 ],

yφ0(t) = −δ

∫ t

0

yφ0(t)dt + 1 + η + O(ε).

Using Gronwall’s inequality, we obtain

yφ0(t) = (1 + η + O(ε))e−δt,

which implies

yφ0(t) = x(t) + O(ε), t ∈ [0, tφ0

1 ].(5.5)

Continuing the above process, we can prove that (5.5) holds in the entire interval
[0, T0]. Furthermore, we also have

T0 = Tx + O (ε) ,

which completes our refined estimate.
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