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ABSTRACT

This paper reviews a variety of models for the regulation of hematopoiesis that are most
naturally framed as nonlinear differential delay equations, and which are often obtained
from partial differential equations. We review the development of these models, and point
out a number of interesting mathematical questions raised by the biology, including the
effects of multiple delays, distributions of delays, state dependent delays, and noncon-
stant initial functions. The range of insight given by the modelling to experimentally and

clinically observed dynamics is discussed.



INTRODUCTION

The dynamics of many biological variables, z(t), can be modeled by the differential

equation! —2

d .
GEs Production rate - Destruction rate

di
=P-D (1)

Typically P and/or D are highly nonlinear functions of the state variable at some time, 7

in the past, @(t — 7), as well as depending on the current value of z(1), i.e.

dx
'E = P('T{t): .’L‘(f: T T),,M] yf42y } v D(ﬁ?(f),&(f o T): J'-f'-llnf*";&' Py ) (2')
where the jii, put,¢ = 1,2, are control parameters which, in comparison to the state

variable, either do not change with time, or change so slowly that they can be regarded
as constant by the investigator. In order to solve the differential delay equation (2) it is
necessary to specify an initial function on the interval [—7,0]. In this sense differential
delay equations like eq. (2) are infinite dimensional systems. Differential delay equations
have a rich literature®~*.

Equation (2) is to be contrasted with models typically encountered in the physical sci-
ences where the dynamics are often described by differential equations in which the right
hand side is an instantaneous function of z(t). In biology, the time delays are often in-
herent properties of the control mechanisms and arise, for example, because of non-zero
conduction times in the nervous system, the cell cycle time or maturation time in repli-
cating cellular populations, delays due to transcription or translation in the genome and
circulatory times in the cardiovascular system® .

Differential delay equations have been used to model the control of respiration®—®, the

pupil light reflex® =12, blood cell dynamies*?~2%, simple neural networks®~?%, population
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growth?®, protein synthesis®*~%, optical®2—3% and acousto-optical®® bistability and the

dynamics of economic commodity markets®® .

Here we focus on applications of Eq.
(2) for modelling the control of blood cell numbers with references to other physiological
contexts. Mathematical investigations of the control of blood cell dynamics continue to
provide important insights into the properties of the hematological regulatory systems. In
addition, we draw attention to experimental and clinical observations which suggest the

importance of extending these studies to situations which, to our knowledge, have not been

explored mathematically.

CONTROL OF HEMATOPOIESIS

The formation of red blood cells (erythrocytes), white blood cells (granulocytes) and
platelets (thrombocytes) primarily oceurs in the bone marrow (see references 37-39 for
a general discussion). A simplified schematic representation of normal hematopoiesis i3
shown in Figure 1. As depicted there, a self-maintaining pluripotential stem cell population
(PPSC) is thought to exist which is capable of producing committed stem cells (CSC)
specialized for the erythroid, granuloid and thromboid cell lines. The influx of cells fromn
the PPSC to the CSC lines is regulated in two ways: 1) long range humoral mechanisms
(labeled LR in Figure 1); and 2) local environmental mechanisms which are as yet poorly

understood

The long range humoral substances regulating the erythroid (erythropoietin) and throm-
boid (thrombopoietin) cell lines are primarily produced by the kidney, but extra-renal sites
such as liver may also be of importance. A variety of substances possessing granulopoietic
activity have been isolated from T lymphocytes, monocytes, endothelial cells and fibrob-
lasts. An intrinsic property of these fecdback mechanisms is the presence of time delays
which range from seconds (e.g. circulatory time) to days (e.g. maturational times).
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Under normal circumstances marked fluctuations in blood cell number do not seem to be
present. In humans abnormal oscillations in blood cell number occur in a group of disorders
collectively referred to as periodic hematological diseases (for a recent review see reference
40). The periodic hematological diseases include periodic hematopoiesis (also referred to
as cyclic neutropenia)!=*%, cyclic thrombocytopenial®, cyclic eosinophilic myositis and
hyper-immunoglogulin E syndrome®* and the periodic variants of chronic myelogenous
leukemia®®=1% and autoimmune hemolytic anemiat™*®. In addition, oscillations in granu-
locyte number have been observed following the administration of chemotherapeutic agents
to patients with chronic myelogenous leukemi A%

Experimental study of the periodic hematological diseases has sometimes been facilitated
by the availability of suitable animal models. For example, all gray collies have periodic
hematopoiesis® 5!, and periodic erythropoiesis can be induced in mice®?~*3 by the ad-
ministration of a single dose of the marrow-seeking radioisotope **Sr and in rabbits®* by
the administration of red blood cell auto-antibodies.

In principle, there are three types of mechanisms which can account for oscillations in

peripheral blood cell number.
1. Oscillations can occur because of instabilities in the long range feedback mechanisms.

9. Oscillations in peripheral blood cell number may simply be a reflection of oscillations in

PPSC number due to abnormalities in PPSC regulatory mechanisms.

3. Oscillations in blood cell number may arise because of interactions between two or more
cell lines.
In the following, we survey the work that has been done in each of these areas, as well

as offering some possible unexplored, or incompletely explored, extensions.

-
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LONG RANGE HUMORAL MECHANISMS

a). Delayed negative feedback: Single delay

The control of erythrocyte production can be characterized as a delayed negative feed-
back mechanism®” (Figure 2a). Hypoxia (due, for example, to a fall in erythrocyte number)
induces the release the hormone erythropoietin from the kidney. Erythropoietin, in turn,
increases the production rate within the early committed erythroid series cells, ultimately
augmenting circulating erythrocyte numbers (i.e. negative feedback). There is a signifi-
cant delay between the receipt of this erythropoietin signal and a consequent change in the
influx of circulating erythrocytes. This is because once a cell from the PPSC is committed
to the erythroid series it takes an average of 7, ~ 5.7 days for it to complete a series of
nuclear divisions and undergo maturation before being released into the circulation,

Oscillations in erythrocyte number, E, are rarely observed in humans®*=*%, but can
be induced in rabbits by using a red blood cell auto-antibody to increase the peripheral
erythrocyte destruction rate®. In terms of eq. (2), a possible model for induced rabbit

auto-immune hemolytic anemia (AIHA) is

dE
-C'it'_‘ Wi f(ETrrI.) _ TEi (3)
where
a6
e 4

~ > 0 is the random rate of erythrocyte destruction, and n, f,, and @ are constants (i.c.

14 The notation

control parameters) characterizing the erythrocyte production function
E,. denotes E at a time 7,, in the past, i.e. B = E(t — 7). A monotone decreasing
F(B,. ) is consistent with in vive measurements of erythrocyte production rates in rats®,

Increasing the parameter n increases the maximal slope of the feedback function f, the
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parameter 8 controls the location of the point of maximum slope, while fy controls the
maximal erythroid production rate. Increases in n are equivalent to increasing the gain in
the feedback loop*®~11,

The properties of eq. (3) have been extensively studied using analytical and numerical
methods®=%:56, Two types of stable solutions are known to exist: 1) a locally stable

equilibrium point, E* > 0, defined by dE/dt = 0, and given implicitly by

Bob"

TE v 611+(E*)n;

(5)

and 2) a stable limit cycle oscillation of simple type, 1.e. one maximum per period®®,
A supercritical Hopf bifurcation between these two types of solutions occurs'! when the

control parameters n, v, and T, satisfy

where

W = [FE) -~ (6)

and f'(E*) = (0f/0E+,)E,, =£-. The period, Ty = 27 fw, of the oscillatory solution at
the Hopf bifurcation® is easily shown to be bounded by 27, < Ty < 47, For 7, ~ 6
days, these bounds predict oscillations with periods between 12-24 days, but use of the
strict relation Ty = 27 /w with estimates of the other parameters'? sharpens the estimated
period to about 21 days which is in good agreement with the observed period of 16-17 days
in induced AIHA.

Because of the nonlinear nature of the problem, numerical calculations must be used
to explore the global behavior of the solutions of eq. (3) as the control parameters are

increased beyond the Hopf bifurcation. To obtain insight intc the nature of the dynamics
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of ATHA, changes in  are important since red cell auto-antibody causes random erythro-
cyte lysis. As v is increased, there is a progressive fall in the steady state number of
circulating erythrocytes as would be expected. However, the other feature that appears as
7 1s increased is related to a loss of the stability of this steady state for some biologically
important ranges of the parameters fy,n, and 7,. In these ranges, for small values of 7,
the steady state is locally stable. At a critical value of 4 = 4,1 which may be calculated
exactly from eqs. (6a,b), there is a supercritical Hopf bifurcation and the steady state
E* is locally unstable. This instability persists for all yerit,1 < ¥ < 7Yerig,2- Finally, at
Y = 7Yerit,2 there is a reverse Hopf bifurcation, and the (depressed) steady state E* is once
again stable for ¥ > 7.2 (Figure 2b). This sequence explains the observation in rabbit
AIHA that reticulocyte levels may be either depressed at constant levels or oscillate around

depressed levels depending on the severity of the hemolytic anemia®?.

Once the supercritical Hopf bifurcation has occurred and the positive steady state E* is
unstable (Yepiz,1 < ¥ < Yerity, it is found numerically that increasing the control parameters
n and f controlling the gain changes the shape of the oscillation with little change in

frequency®—11,

The more complex waveforms typically associated with the occurrence
of higher-order bifurcations®®, such as period-doubling bifurcations or bifurcations from a

limit cycle to a two torus, are not seen and the results of Kaplan and Yorke®® make it

likely that no other bifurcations exist.

In the special case of piecewise constant negative feedback, when f(E;, ) is replaced by

F(E. ) given by

a ifE, <8

F(E,,) =
(Er.) {0 if B, >8,

and o, # are positive constants, it has been possible to prove that only one type of stable

oscillatory solution exists®.



These results indicate that this model accurately replicates the essential clements of
the dynamic behaviour of induced AIHA. However, the oscillations in erythrocyte number
observed in ATHA show variations in both waveform morphology and inter-peak interval.
Recently the possibility that noise-like fluctuations of these types may be of deterministic
origin , l.e. ‘chaotic’, has attracted a great deal of att ention®~ 78981 Thus, these modeling
observations further indicate that chaotic dynamics can not be produced by nonlinear
negative fecdback mechanisms of the type described by eq. (3) in the absence of stochastic

inputs.

b). Mixed feedback: Single delay

The type of feedback which arises in the regulation of neutrophil numbers differs from
that involved in the regulation of erythrocyte numbers. At sufficiently high neutrophil
numbers, the neutrophil production rate decreases as the number of neutrophils increases
(i.e. negative feedback). However, at low neutrophil numbers the production rate falls
to zero. Thus in the range of low neutrophil numbers, the production rate increases as
the neutrophil number increases (i.e. positive feedback). The resulting feedback function
has the ‘humped’ shape shown in Figure 2a. This type of feedback has been referred to
as ‘mixed’ feedback!=2. Though the feedback function for neutrophil regulation has a
different functional characteristic (mixed) than does the one for erythrocytes (negative),
they are similar in that the feedback in both is delayed. For the neutrophils, there is once
again a significant delay of 7, =~ 5-7 days between when the feedback signal is sensed by the
primitive neutrophil precursors and when the effect of this signal is seen in the periphery.
Finally, from studies utilizing labeled neutrophils, it is known that these cells have an
exponential disappearance from the circulation, consistent with random destruction at a

constant rate.



Oscillations in neutrophil number occur in a type of human Jeukemia referred to as peri-
odic chronic myelogenous leukemia (CML). A simple model for the regulation of neutrophil

number, N, which incorporates the delayed mixed feedback 155t

dN

2 = 4N = 7N (8)

where ~ is again the random destruction rate and the delayed production function is

Pl ©)

Q(N"'m) gn + Nn

In contrast to the erythroid control system, this model predicts that there are potentially

two steady state levels of neutrophil numbers: Ny = 0, and a second positive steady state

Ni Zﬂlﬁnﬁ' ]

which cxists whenever ( > . As for the model of erythroid production, it is possible to

N} given explicitly by

analyze the local stability of both of these steady states, and the results of this analysis
indicate that whenever NJ > 0 exists, the steady state corresponding to no neutrophils,
N} = 0, is unstable. For fixed values of the random peripheral neutrophil destruction rate
~, increases in either By and/or n, which both increase the gain of the system at the steady
state, and in 7, will eventually lead to a loss of stability of Ny through a supercritical
Hopf bifurcation and the onset of limit cyele behaviour. The criteria for this bifurcation
are given by eqs. (6a,b) with ¢ replacing f.

The behaviour of eq. {8) has been studied numerically’ %, and these studies indicate
that the dynamics of egs. (8) and (9) is much richer than for the simple negative fecd-
back model of erythrocyte production. Increases in Ty are of particular interest since a
prolongation of the neutrophil maturation time is inferred in patients with CMILS2, Asim

is increased an initially stable equilibrium becomes unstable and stable periodic solutions
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appear. Further increases in 7 lead to a sequence of period-doubling bifurcations which
ultimately culminates in an apparently chaotic or aperiodic regime (an example of which is
shown in Figure 2c). In the aperiodic regime, the choice of the initial function determines
the evolution of the dynamics. In addition, for some choices of initial functions stable,
but complex periodic oscillations may also be observed, Precisely the same mathemati-
cal observations have been made®® using a different analytic mixed feedback form for the
function g.

Figure 2¢ compares a computer simulation of eq. (8), when the maturation time is
increased from a normal value of ~ 5-7 days to 20 days, to the changes in neutrophil
aumber measured for a CML patient. Not only does the simulation correctly predict the
overall period of the observed oscillations in neutrophil number, but it also duplicates
the irregular fluctuations. Thus in the case of mixed feedback it is not easy to distinguish
fAluctuations which arise from stochastic inputs {“noise”) from the inherent dynamics of the
control mechanism. To our knowledge, this simple model for the production of neutrophils
was the first association of “intrinsic” chaos in a continuous time deterministic equation
with a pathological process.

As in the case of negative feedback, it has been possible to obtain greater analytical
insight into the properties of mixed feedback by considering the special case of piecewise

constant mixed feedback?. In particular, g(N-., ) in eq. (8) is replaced by G{N,, ) where

0 N, <6
GWN.,)=4 a if6 <N, <6, (10)
§ if6y <N,

and @ > & > 0. In this case it has been proved! that for constant initial functions there
exist stable equilibria, stable and unstable limit cycles, Li and Yorke®* type chaos, and

mixing and exact motions for various parameter values.
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¢). Multiple delays

In the models for erythrocyte and neuntrophil regulation, the destruction rates only
accounted for cell loss due to random processes in the circulation such as immune-mediated
cytolysis and loss of cells in hemostatic-thrombotic events. For neutrophils this is an
accurate representation of the underlying physiology, but erythrocytes also age and are
removed from circulation as a consequence of senescence. Laboratory studies indicate that
in humans, the lifespan of erythrocytes is on the order of 120 days®”. Figure 3a illustrates a
possible model for erythrocyte production which incorporates loss due to senescence. If we
denote the erythrocyte senescence time by s, then the dynamics will be more accurately

described by

4B
dt

= f(Br,) = YE = f(Brpsr, )¢ (11)
In contrast to eq. (3), eq. (11) contains two different time delays, 7, and 7,. Numerical
simulations of eq. (11) indicate that for 7, = 120 days, the dynamics do not differ sig-
nificantly from those produced by eq. (3) (M.C. Mackey, unpublished data). This is not
surprising since for large 74, v75 >> 1 and e~ ~ 0, so eq. (11) is approximated by eq.
(3).

However, in other situations multiple delays may have profound effects on the pre-
dicted dynamics. One example comes from a mode! for the production of platelets,
whose dynamics are of interest because of the as yet unexplained condition of cyclical
thrombocytopenia®®. In this disease, platelet levels cscillate from high to low levels with
a period of approximately 28 days. If the platelet count at the nadir of the oscillation is
sufficiently low, the patient is at risk for a stroke, and indeed this is the cause of death
for many of these patients. Initial reports of this condition were in women, and it was

thought that the oscillation might be driven by the menstrual cycle. However, there are
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other clinical studies of the same disease in men thus ruling out this explanation for all
cases.

Platelets are produced from megakaryocytes by a fragmentation processes’®. Normally,
the total time between the appearance of a recognizable megakaryocyte and when it starts

to produce platelets is T ~ 9 days®.

Once released into the circulation, the platelet
lifetime is 7, ~ 10 days®’. Thus two delays arise: one associated with the platelet lifetime
(,) and another with the megakaryocyte maturation time (7p, ). In contrast to the situation
for erythrocyte production, these two delays are of comparable magnitude.

A simple yet realistic model for platelet production is shown schematically in Figure 3b

and can be expressed mathematically'® as

dP

= P+ &7 [B(Pry) = B(Priten )] (12)

where the feedback function A is of the mixed form like that described by eq.(9), 7 is
the random rate of destruction of platelets in the circulation, and 6 is the random rate of
megakaryocyte destruction.

As in the model for neutrophil dynamics of the previous section, this model has two
steady state values of platelet levels, one zero (P = 0) which always exists,and a second
positive one (P7 > 0) that exists for all values of v satisfying 0 < 7 < Ycrir- How-
ever, the existence of the two time delays controlling the dynamics makes the stability
analysis at these steady states much more complicated than the analysis when only one
delay is present®®. One of the surprising predictions of the model for platelet regulation
is that the nonzero platelet steady state is unstoble for low platelet destruction rates 7,
and that increases in 7, in addition to decreasing the unstable steady state platelet lev-
els, will ultimately result in a reverse supercritical Hopf bifurcation so that the platelet

numbers are eventually stabilized by increasing platelet destruction rates. Precisely the
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same behaviour is found following increases in §. These results suggest that a possible,
but certainly non-intuitive, treatment for the potentially life-threating condition of cyclical
thrombocytopenia might be to increase platelet and/or megakaryocyte destruction rates

in a carefully controlled fashion.

d). Distributed delays

In writing egs. (3), (8), (11) and (12) we have assumed that the maturation time is the
same for all cells, In general, however, this is not the case and there will be a distribution of
maturation times. Similar problems arise in the modeling of recurrent inhibitory pathways
in the nervous system, where there is not a single delay but rather a distribution of delays
due to a distribution of fibre diameters and conduction path lengths, and a consequent
distribution of conduction times in the feedback pathways.

Considerations like these lead to models framed in terms of integro-differential equations.

For example, eq. (3) becomes

92 = f(u(®) - 7B (130)

where

= bt - w)B(u) du, (13b)
—co
the kernel ¢ gives the distribution of maturation times and T, = 018 the minimum
maturation time. Clearly if ¢ is a dirac delta function, ¢(t —u) = 6(t —u — Tm) With
T > Tmin, then we just have y(t) = E(f — r) and the original model of eq. (8) is
recovered.

It has been known for some time®$7—% that if a smooth kernel corresponding to a
P

gamma distribution of maturation times is chosen,

am+ 1

o) = mgme I, am20,
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with m an integer, then the system (13) can be rewritten as a system of m linear differential
equations coupled to one nonlinear differential delay equation. In the case thati T =10
then the system just reduces to a system of ordinary differential equations. Furthermore,
in this latter case it is easy to calculate that the average delay corresponding to the gamma
distribution kernel is simply 74, = (m + 1)/@ and thus taking the double limit m,a — co

with 7,y held constant we have

im  ¢(q) = 8(t — Ta),

T, B— O
TayCONSt

50 y(t) o E(t — Tay). The dynamics of systems with no minimum delay (Tmin = 0) and
a continuous gamma distribution of delays as the parameter m is increased have been
studied®?. Mackey (unpublished) has compared the numerical behaviour of differential
delay equations with delta function delays (hoth negative and mixed feedback) with that
of the same equations but with a gamma distribution of delays and 74y = Tmin, and found
that there seemed to be no new qualitative behaviors introduced by the distribution of
delays. The system (13) with very general kernels ¢ may be approximated by systems of

ordinary differential equations™.

e). State-dependent delays

To now we have assumed that the time delays are constant. However, in the case of
platelet production there is clear evidence that the megakaryocyte age at which platelets
are produced is, in fact, not constant but is a function of platelet number™. Megakary-
ocytes mature by undergoing repeated nuclear divisions without cytokinesis to the point
of disintegration in three principal ploidy classes®: 8n, 16n, and 32n. Since more nuclear
divisions are required to produce a 32n versus a 8n megakaryocyte, ploidy is a convenient
marker of megakaryocyte age. In the normal situation the majority of circulating platelets

are produced by 16n megakaryocytes. In response to a fall in platelet number’!, there
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is a poorly characterized increase in the velocity of megakaryocyte maturation leading to
an eventual decrease in T,. In addition 7, may be altered under pathological conditions
because the different ploidy classes respond differently to stimulation and suppression of
thrombopoiesis™, i.e. differing proportions of circulating platelets may be derived from
the various ploidy classes in these situations.

In view of these observations, eq. (12) should be modified to read

dP Sy T
— =—1P+te s P [B(P,, (p)) = B(Protrm(p)e ] (14)

where the dependence of 7, on platelet number is explicitly recognized™®. Now, the platelet
dynamics are described by a nonlinear differential delay equation with two delays, one of
which is constant (7,) and the second of which is a monotone increasing function of the
state variable, 7, (1) 2 0.

Though little is presently known about the dynamics of the solutions of problems with
state dependent delays™ 7%, a local stability analysis of the positive steady state of eq. (14)
indicates that when the megakaryocyte destruction rate is positive, § > 0, the inclusion of
the state dependent delay Tm(P) is equivalent to an augmentation of the random platelet
destruction rate v. Thus, if the positive steady state Py of the original platelet model given
by eq. (12) was unstable, the effect of the state dependent delay would be to move the
steady state closer to the stability boundary. This stabilizing effect of the state dependent
delay is a consequence of the fact that the delay is an increasing function of the circulating
platelet numbers.

State-dependent delays also arise in models of economic commodity dynamics and of
recurrent inhibition in the nervous system. In the economic context, the state dependent
delays arise because producers are able to store commoadities for a period of time that is

dependent on market price®®. In this situation, it would be expected that the delay would
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be a decreasing function of the state variable, market price. In the recurrent inhibitory
models, the average value of the distribution of delays mentioned in the previous section is
expected to be a decreasing function of the state variable which is the difference between
the excitatory and inhibitory potentials in a population of post synaptic cells. In both of
these models, based on a local stability analysis the existence of the state dependent delay

is a destabilizing factor.

REGULATION OF PLURIPOTENTIAL STEM CELL PRODUCTION

The most common periodic hematological disease in humans is periodic hematopoiesis
(PH)*~12, PH is characterized by 17-28 day periodic oscillations in all the formed ele-
ments of the blood and is currently thought to be due to a defect in the regulation of the
pluripotential stem cells (PPSC)™8~77. Although control mechanisms within the PPSC
populations are not well understood, there is evidence that short range interactions are
more important than long range circulating regulators for limiting stem cell numbers.

A schematic representation of a possible model for the production of PPSC is shown
in Figure 4. Stem cells are classified as being in either a proliferative {cycling) phase (C)
or resting phase (R). Cells travel through proliferation to undergo mitosis after a fixed
time (7). Proliferating cells entering R may exit randomly to either re-enter proliferation
at a rate B (known to be a monotone decreasing function of the number of resting phase
cells) or to be irreversibly lost via differentiation into the hematopoietic cell lines at an
approximately constant rate §. In addition proliferating cells may be lost from any phase
of the cell eycle at a rate 7.

The dynamics of this PPSC population is governed by the pair of coupled differential

delay equations!®?®

%f" = —yC + B(R)R — 7" (R, )R, (152)

17



B o (BB + )R+ 27 B(R)R, (15b)
where 7 is the time required for a cell to traverse the proliferative phase, and the resting
to proliferative phase feedback rate is taken to be

50 611

ﬁ(R) = on -I-R“‘

An examination of eq. (15b) shows that this equation could be interpreted as deserib-
ing the control of a population with a delayed mixed feedback type production term
[2¢=7"B(R,)R,] and a destruction rate [B(R) + 6] that is a decreasing function of R.
Once again, this model has two possible steady states. There is a steady state corre-
sponding to no cells, (C}, R}) = (0,0) which is stable if it is the only steady state, and
which becomes unstable whenever the second positive steady state (C, R3) exists. The
stability of the non-zero steady state depends on the value of v, When v = 0 (assumed
to characterize the normal situation), this steady state cannot be destabilized to produce
dynamics characteristic of PH, On the other hand for 4 > 0, increases in 7 lead to a de-
crease in the PPSC numbers and a consequent decrease in the cellular efflux (given by 6 R)
into the differentiated cell lines. This diminished efflux becomes unstable when a critical
value of v is reached, v = Yerir,1, at which a supercritical Hopf bifurcation occurs. For all
values of v satisfying Yeri,1 < ¥ < Yerit,2, there is a periodic solution of eq. (15) whose
period is in good agreement with that seen in PH. At v = 7cris,2, @ reverse bifurcation
occurs and the greatly diminished PPSC numbers as well as cellular efflux again becomes
stable. These results suggest that PH is likely related to defects, possibly genetic, within
the PPSC population that lead to an abnormal (y > 0) lesses of cells from the proliferative
phase of the cell cycle. Indeed oscillations can be induced in the peripheral reticulocyte

5233

number of mice using #¥Sr to increase .
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Numerical simulations of egs. (15) bear out the results of the above local stability
analyses, When all the parameters in the model are set to the values estimated from
laboratory and clinical data, no other types of bifurcations are found. Although these
simulations also indicate the existence of multiple bifurcations and chaotic behaviors, these
more complex dynamics are only observed for non-physiological choices of the parameters
(M. C. Mackey, unpublished). Thus the observed irregularities in the fluctuations in blood

cell pumbers in PH cannot be related to chaotic solutions of eq. (15).

CHAOS IN MATURING CELL LINES

The model for the regulation of the PPSC population given by egs. (15) was derived
by balancing cellular fluxes in each of the cell compartments. The fact that cells are both
maturing (or aging) and proliferating simultancously suggests that a model for PPSC
production might be better expressed in terms of partial differential equations rather than
differential delay equations. However for biologically appropriate boundary conditions it
has been previously shown!® that the deseription of PPSC production in terms of partial
differential equations reduces to the differential delay equations given by egs. (15). Since
complex and chaotic dynamics are observed for eqs. (15), this observation suggests that
similar dynamics might also be observed in partial differential equations. This is indeed
the case. Here we illustrate this point by considering a model for a population of cells
that are proliferating and maturing in a continuous manner. A similar model for a single

cellular population has appeared previously’s.

Characterize each cell in the population by two internal variables: a, the age of the cell
in the cell cycle, and m, the maturation level of the cell. For concreteness and convenience,
one could think of erythroid cells and take the intracellular hemoglobin content as an index

of maturation. At birth, cells have age a = 0 and their age increases with a velocity V,
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until cell division occurs at age @ = ap. In terms of maturation, cells are assumed to first
become identifiable members of the population under consideration at a maturation level
m = my. These cells mature at a velocity Vi until they reach the maturation level m = m;,
of a totally mature cell. During this entire process of maturation, the cells proliferate and
they may, in addition, also die at a constant random rate 4. It is important to emphasize
that this process explicitly allows cellular movement through the cell cycle to proceed
hand in hand with cellular maturation. This hypothesis is sufficient to explain existing
hematopoietic cell kinetic data’®.

Denote the number of cells of age a and maturation level m at time ¢ by n(t,m, a).
By our description of the assumed progression of cells through the age- maturation space,

n(t,m, ) must satisfy a continuity equation of the form

on  8(Van) | 8(Van) _
6t+ dm i du FoGree) (8

along with the mitotic flux condition
Va(t, m,0)n(t, m,0) = 2V,(t,m, ap)n(t,m, ap). (19)
At any given time ¢ and maturation level m the total number of cells of all ages is simply
@
N(t,m) =/ n(t,m,a)da. (20}
1]

If the velocity of maturation, Vig, is independent of cellular position within the cell cycle,
then eq. {18) may be integrated over cellular age @ and the result combined with (19) and
(20) to yield a corresponding continuity equation for N:

N ON Ve
”5?+Vnz§ﬂ";— ﬁ(ﬁ,?n,N]—m‘—'T N. (2‘1)

In (21), the relative proliferation rate f is defined by

Va(t,m,ap)n(t,m,ap)
N(t,m) ’

ﬁ(i,ﬂl,N)——“ (22)
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and plays a role analogous to the function f in the PPSC model of the previous section.
We assume that the maturation velocity V., as a function of maturation level m, is

given hy

Vin(t,m) = r(m — mo), (23)

where mp < m < my and r > 0 is constant. Equations (21) through (23), in addition to
the initial condition

N{0,m) = 9(m), (24)

complete the specification of the model.
One of the parameters is superfluous and may be eliminated by a judicious choice of

variables. To this end we first define a dimensionless maturation variable x by

m = My
g = ———
1y — My

s0 0 < z < 1. With this change, equations (21) through (23) may be transformed and

combined to yield
ON oN

E‘i‘rﬂ:_@'&?:[ﬁ(hx:N)_r—’r]N' (25}

with the associated initial condition
N(0,z) = v(z). (26)

Partial differential equations of the form®"

'au 3?1.
=T C(ﬂ«')“é“a; = flz,v) (27)

with the initial condition u(0,2) = v(z) have a unique solution only if ¢(0) = 0. However,

this requirement for the uniqueness of the solution has some other surprising consequences.
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Namely, under certain mild regularity conditions on the function f(z,u) one of two be-
haviours may occur. If the initial function v(z) satisfies v(0) > 0, then there is always a
stable unique solution u(t,«). However, this stability is lost if the initial function is such
that v(0) = 0, and the solutions are chaotic in a function space.

Our cell proliferation and maturation model is described by an equation (25) exactly of
the type of eq. (27), and it is rather easy to illustrate the nature of the unstable solutions
that Lasota’s results®® guarantee. To this end, we pick a relative proliferation rate given

by # = fo — N, where fy > 0 is constant. Then, eq. (25) takes the form

aN ON
ﬁ+1ma—[ﬁo*T—’f—N]N- (28)

With the initial condition (26), it is straightforward to show that the solution of eq. (28)

is given by
v{we™")e™
o
1 —v(ze=m)[1 —e*]’

N(t,2)= (29)

where we have set o = By — r — 7. Clearly, if the solutions N (¢, z) are to be biologically
meaningful, then we must have o > 0 and under this condition it is an immediate conse-
quence that limy—.co N(t,z) = o whenever v(0) > 0, thus illustrating the stability result
of Lasota®’.

If, however, v(0) = 0 then a much different situation occurs. Let v denote the exponential

rate at which v(ze™"") approaches 0. Then it is clear that

0 l<a<y
. e v(z) A .
iEn;ﬂN(t,m]— a1+v(m) v=a (30)
o v <,

which shows the nature of the instability and the sensitive dependence of the eventual
behaviour of N(#,z) on the initial function v(z).
The situation of v(0) = 0 is quite likely in hematopoietic systems since, for example, it

is known from in vitre observations that if cell numbers within the PPSC fall to low values
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then differentiation into the neutrophilic and erythroid cell lines ceases. When this occurs,
the result would be precisely v(0) = 0 and the instability predicted by the mathematical
results of Lasota®® and demonstrated by equation (30) could easily be obscrved if there
were fluctuations in a sufficiently large to cause switching between various dynamic be-
haviours. These Auctuations could arise, for example, because of fluctuations in the rate
r of cell maturation or in the rate v of cell death within the simultaneously proliferating
and maturing cells. The consequent switching in dynamic behaviour would be mirrored in
the output flux of cells from this compartment, proportional to N(t, 1), and eventually in

the numbers of circulating mature cells.

INTERACTIONS BETWEEN DEVELOPING CELL LINES

Interactions between different committed stem cell compartments occur®. For example,
in vive cxperimental maneuvers expected to increase (decrease) the erythropoietin drive
to the CSC-E, there is an accompanying decrease (increase) in the number of circulating
neutrophils as well as their primitive precursors. Thus changes in the proliferative activity
in one population gives rise to changes in the proliferative activity in another. Here we
examine whether certain periodic hematological diseases arise from abnormalities in the
interactions between different stem cell compartments.

This question has recently been examined®? in the context of n coupled first- order
partial differential equations of the form of eq. (21). The coupling of proliferative activity
between different committed stem cell compartments is mediated by cell number®!. This
coupling will be reflected through the dependence of the relative proliferative rate, B, on
the numbers, N; of the various stem cells. For N; stem cell populations coupled in this

way

aN; dN;
b Vm_z p '}Ar:"'a ri

MV

o N; (31)
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In the special case that

97 (m)

T+ (3 Bi(m)N,) )

ﬂ(t:miNh”' rN:')

it has been possible to show using local stability results (K. Loskot, unpublished) and nu-
merical simulations, that oscillatory dynamics do not occur. This observation suggests that

periodic hematological diseases likely have their origin in other destabilizing mechanisms.

CONCLUDING REMARKS

Here we have discussed the origins of periodic hematological diseases from the context of
the propertics of nonlinear delay and partial differential equations. These disorders likely
arise as a result of destabilization of feedback control mechanisms. In the case of discases
such as ATHA and CML this destabilization may occur in the long range humoral feedback
control mechanisms, whereas for diseases such as PH it probably occurs within the short
range feedback mechanisms in the PPSC compartment. In contrast, it is unlikely that
oscillations in blood cell number arise because of abnormalities in the interactions between
different stem cell compartments.

Under certain conditions, nonlincar delay and partial differential equations can produce
(in addition to regular oscillations) complex, aperiodic, irregular fluctuations in blood
cell numbers. These “chaotic” dynamics are so complex that in some cases they could
be misinterpreted as, or mistaken for, noise and/or experimental error. ‘This observation
has caused many investigators to search for a deterministic origin for all of the complex,
noisy fluctuations seen in the real world®*~#. However attractive these claims may be,
obtaining solid evidence to support them has been problematic. The strongest case can
be made in those experimental situations in which it is possible to observe theoretically
predicted dynamics (periodic as well as chaotic) for corresponding parameter valuesT-8580,

The study of hematological control mechanisms is well suited for this approach. In this
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case the nature of the control mechanisms are well understood experimentally, a variety of
qualitatively different dynamics are observed in both clinical and laboratory settings, and
the values of the relevant control parameters can either be measured directly, or readily

estimated.

In all the models discussed in this review, oscillations in blood cell mumber which resem-
ble those observed in human disease and laboratory animals are produced. The fact that
these dynamics are observed in the model for the measured ranges of the control param-
eters indicates that these models provide, at the very least, plausible explanations for the
observed dynamics. However, these models do not, in general, readily account for the ob-
served irregular fluctuations in blood cell number. Delayed negative feedback mechanisms
(eq. 8) are incapable of generating chaotic dynamics and in the case of the PPSC model
(egs. 15) complex dynamics are not observed for physioclogically relevant values of the
control parameters. Only in the case of the mixed feedback model for CML (eq. 8) is a de-
terministic origin of irregular blood cell fluctuations plausible. These observations provide
little evidence to support the possibility of a deterministic origin to noise-like fluctuations

in blood cell number.

An alternate point of view is that complex, noisy dynamics observed in the real world
reflect an interplay between deterministic and stochastic processes. Indeed in order to
compare the predictions of any model to experimental and/or clinical data it would seem
to be prudent to explore the predictions of the model in the face of noisy perturbations
(additive and/or multiplicative). The study of the stochastic nonlinear delay and partial
differential equations that arise in the description of physiological phenomena has received

little attention.

From a clinical point of view, the potentially most important observation gained from
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modelling studies is the realization that qualitative changes can occur in blood cell dy-
namics as quantitative changes are made in control parameters. This suggests the possi-
bility of treating certain periodic hematological diseases by careful manipulation of control
parameters® 87788 Given the rapid advances in understanding the molecular biclogy
of hematological control mechanisms and the development of molecular probes, such an

approach may soon be feasible. It can be anticipated that modelling studies, such as those

reviewed here, will play an important role in implementing these treatment strategies.
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Figure 1.

Hematopoietic Regulation Architecture. A schematic representation of the con-
trol of platelet (P), erythrocyte (RBC), and white blood cell (WBC) production®®. The
peripheral control loops are mediated by the various poietins, and there are in addition
local regulatory (LR) loops within the various stem cell compartments. CFU stands for
the various colony forming units (M = megakaryocytic, E = erythroid, C = granulo-
cyte/macrophage) which are thought to be the in vitro analogs of the vvo committed

stem cell (CSC) populations, all of which arise from the pluripotential stem cells (PPSC).
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Peripheral Hematopoietic Regulation. a). The generic peripheral regulatory sys-
tem of Figure 1, with the qualitative dependence of the feedback mechanisms (right) on
circulating cell numbers for erythrocyte (top) and neutrophil (bottom) production. 7 is the
rate of random loss of cells from the circulation. b). Computer simulations of the model
for erthryocyte production, defined by eqs. (3,4), for four different peripheral destruction
rates, 4. The predicted reticulocyte numbers have been plotted relative to their normal
steady state values. See the text for further discussion. c). A comparison between the
temporal evolution of WBC numbers in & patient with periodic CML (from ref. 45) and
the predictions of the model defined by eqgs. (8,9) when the neutrophil production delay 1s

abnormally long®%. See text for further discussion.
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Figure 3.

Peripheral Regulation—Variation on a Theme. a). An elaboration of the erythroid
peripheral control, taking into account the senescence time 7, of circulating erythrocytes
which leads to a two delay problem as in eqn. (11). b). The peripheral control of platelet
production, including the variable maturation time () within the megakaryocyte com-

partment and the senescence time 7, of circulating platelets, as described by eq. (12).
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Figure 4.

Central Hematopoietic Regulation. A schematic representation of the control of
PPSC regeneration. Proliferating phase (C) cells include those cells in Gy, § (DNA syn-
thesis), Ga, and M (mitosis) while the resting phase (R) cells are in the G, phase. Local
regulatory influences are exerted via a cell number dependent variation [RA(R)] in the flux
of cells reentering proliferation. § is the normal rate of differentiation into all of the CSC
populations, while « represents an abnormal loss of proliferating phase cells. See the

text for further details.
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