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INTRODUCTION 

Many phenomena in physiology and clinical medicine recur at regular, or almost 
regular, intervals. In 1963, Reimann' drew attention to a diverse group of diseases in 
which symptoms recurred at seven-day intervals, or integer multiples thereof, which he 
collectively referred to as periodic diseases. In all of these diseases, oscillations 
appeared in physiological systems not normally characterized by oscillations. 
Although in most of his patients these were regular oscillations, he noted that in some 
patients symptoms recurred in a more irregular manner. 

It is more common to observe oscillations in physiological control systems that 
occur on a more rapid time scale, that is, milliseconds to hours. Moreover, abnormali- 
ties in many of these physiological rhythms are of major clinical importance. For 
example, an abnormality in the cardiac rhythm, ventricular fibrillation, is a common 
life-threatening medical emergency. In addition to their clinical importance, observa- 
tions of these oscillations demonstrate that there is a rich variety of dynamics that 
many physiological control systems can exhibit, ranging from rhythms with differing 
periodicities to irregular "noise-like" phenomena. 

As an extension of the concept of periodic diseases, the concept of a dynamical 
disease has been introduced." A dynamical disease is defined as a disease that occurs 
in an intact physiological control system operating in a range of control parameters 
that leads to abnormal dynamics. The signature of a dynamical disease is a change in 
the qualitative dynamics of some observable nature as one or more parameters are 
changed. These changes in dynamics would correspond mathematically to bifurcations 
in the relevant nonlinear equations describing the physiological system. 

This paper reviews the applicability of the concept of dynamical disease as it has 
developed over the past few years. 

ROUTES TO PERIODIC DISEASES 

TABLE 1 lists several examples of physiological systems in health and disease in 
which both regular and irregular dynamics have been observed. Though it is 
undoubtedly true that normal, intact physiological control systems can be shown to 
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undergo such transitions in vitro and/or in  animal models, it must be recognized that in 
many of the clinical situations in which abnormal dynamics occur, there are also 
coexisting pathological structural abnormalities as well as changes in the physiological 
control parameters. The interplay between structural and control parameter altera- 
tions in producing abnormal dynamics is not presently understood. However, even in 
the setting of a pathologically altered physiological control system, it is possible for 
changes in dynamics to occur, reflecting alterations in control parameters, although 
admittedly the control system may not be functioning in the same way as seen in 
health. 

TABLE I. Examples of Regular and Irregular Dynamics in Health and Disease 
Field Regularly Recurring Irregularly Recurring Reference 

Behavior 

Cardiology 

Electrophysiology I beta cells 
molluscan neuron 
thalamus 
EEG 
recurrent inhibition 

Hematology 

Movement 
locomotion 
coordinated activity 

Nerve-Muscle 

Neuro-ophthalmology 
pupil diameter 
eye movements 

Respiration 

Affective disorders 
“rapid cyclers” 

Sinus rhythm 
Ventricular bigeminy 
Wenckebach phenomenon 

Rhythms and bursts 

Spike and wave 
Hippocampal activity 
Periodic hematopoiesis 
Autoimmune hemolytic 

anemia 

Gait 
Tremors 
Hiccups 
Fibrillations 
Myotonic discharges 
M yokimia 

Pupic cycle time 
Nystagmus 
Periodic breathing 
Cheyne-Stokes 

“Rapid cyclers” 5-7 

Atrial fibrillation 8 
Ventricular fibrillation 

9-10 
Irregular spiking 11-12 

Penicillin epilepsy model 15 

13 
Background activity 14 

Periodic CML 16 
Cyclical thrombocytopenia 

Cerebellar gait 17-18 
C horeo-at hetosis 
M yoclonus 
Fasciculations 19-20 

21-24 
Hippus 
Opsoclonus 

Cluster breathing 
Ataxic breathing 25-26 

In  general, three types of qualitative changes in dynamics have been observed: ( 1) 
the appearance of a regular oscillation in a physiological control system not normally 
characterized by rhythmic processes, (2) the development of new periodicity in an 
already periodic process, and (3) the disappearance of a rhythmic process. Dynamical 
changes of these types are readily observed in the cardiac, respiratory, and hematologi- 
cal systems, but will be discussed elsewhere (see below and the paper by Glass in this 
volume). Here, we briefly discuss some neurological examples. 

Appearance of Rhythms 

The appearance of a regular, or almost regular, rhythm in a normally stable 
physiological process has long attracted clinical interest. Examples include the periodic 
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diseases described by Reimann,’ as well as a number of phenomena in clinical 
neurology1”” such as tremors, ankle clonus in corticospinal tract diseases, ocular 
nystagmus in brainstem disease, and muscle fibrillations observed electromyographi- 
cally in neurogenic muscle disease. 
FIGURE 1 shows an example of a physiological control system in which transitions 

from irregular to regular dynamics occur in response to changes in the underlying 
control parameters. The diameter of the pupil of the eye undergoes spontaneous 
fluctuations in size, which have variously been referred to as hippus or pupillary 
u n r e ~ t . ~ ~ * ~ ‘  The cause and significance of these fluctuations are subjects of considerable 
debate and controversy. The possibility that these fluctuations may have a determinis- 
tic origin is suggested by the observations in FIGURE 1, which shows the diameter of the 
pupil as a function of time of a sleepy narcoleptic patient in complete darkness with his 
eyes open.24 As he becomes less alert, regular oscillations in pupil diameter appear, 
with the regularity again disappearing as he becomes more alert. Alertness is related to 
activity in a part of the brainstem referred to as the ascending reticular activating 
system (ARAS),” and activity in the ARAS regulates the activity of a parasympa- 
thetic nucleus involved in the control of pupil diameter, the Edinger-Westphal (EW) 
nucleus.” It is tempting to speculate that the changes in pupillary dynamics shown in 
this figure reflect differing dynamical signatures corresponding to different functional 
activity levels in the light reflex pathway. 

Appearance of New Periodicities 

Situations occur in which an oscillation with a new periodicity and waveform, 
replaces a previously oscillatory process. Well-known examples are the development of 

0 10 20 30 50 60 

Seconds 

FIGURE 1. Pupil diameter measured in complete darkness for four consecutive minutes (a to d. 
respectively) in a sleepy patient with narcolepsy. The patient becomes more drowsy at  - 1  10 
seconds and then more alert at  -200 seconds. (From Yoss ef d.’* With permission from The 
American Journal of Ophthalmology.) 
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FIGURE 2. Daily mood ratings in a patient with rapid cycling manic-depressive illness.’ Vertical 
lines above ratings indicate where switches into mania or depression occurred; numbers above 
indicate days elapsed between switches in either direction. Desipramine dose indicated above line; 
lithium carbonate dose was 750 mg. (With permission from T. A. Wehr.) 

AV block and bigeminal arrhythmias in the cardiac cycle,’ and the appearance of 
abnormal respiratory cycles such as Cheyne-Stokes Here we discuss an 
example in which such transitions appear to occur in response to medication. 

Manic-depressive illness is a pathological biological rhythm whose characteristics 
have been extensively explored.s-’ In some cases, the illness takes a rapid cycling form 
with manic and depressive phases alternating four or more times yearly. Changes in 
the manic-depressive rhythm which, a t  least superficially, resemble period doubling 
bifurcations occur in “rapid cyclers.” For example, the period of the cycle may 
sometimes suddenly lengthen by doubling. In addition, these patients quite commonly 
experience one or more consecutive 48-hour sleep cycles, that is, there is a doubling of 
the 24-hour sleep-wake cycle such that there are alternate nights without sleep, when 
they switch from depression to mania. Initially depressed patients can sometimes be 
made to undergo such a change by artificially depriving them of a night’s sleep. In 
others, the period of the cycle appears to change in response to certain medications, 
notably antidepressants.’ FIGURE 2 illustrates a change in periodicity of a rapid cycler 
in response to the antidepressant desipramine. With the introduction of this medica- 
tion, the patient cycles more rapidly, only to apparently return to his previous rhythm 
following discontinuation of the medication. 

Loss of Rhythmicity 

The final situation occurs in which there is the disappearance of a rhythmic 
process. Examples of this include the replacement of the normal cardiac rhythm by 
atrial or ventricular fibrillation,’ and the development of apneic respiratory 

In a few patients with epilepsy, seizures occur reg~larly.~’ In a small proportion of 
patients with cyclic epilepsy, seizures cannot be controlled with medication, but the 
rhythmicity can be destroyed. FIGURE 3 shows two such examples. Both patients show 
a circadian pattern to their seizure recurrences and the patient in FIGURE 3a also 
appears to show an ultradian pattern of recurrence as well. However, both patterns 

Here, we give an example of this phenomenon in a periodic disease. 
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FIGURE 3. Seizure diaries for two patients with epilepsy. The Occurrence of each seizure has 
been indicated by a 0. (From Griffiths Br Fox?’ With permission from Loncer.) 
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were lost once the patients received medication, only to reestablish themselves 
following cessation of the medication. 

MODELS OF DYNAMICAL DISEASES 

It is safe to say that all physiological systems contain significant feedback 
mechanisms and, in  many of these, time delays are  extremely important. These time 
delays may arise because, for example, of the time required for a cell to mature, of the 
time for the nerve impulse to travel along the axon and across the synapse, or the time 
for hormonal signals to travel from their site of production to target organs by diffusion 
and/or passage through the circulation. Here we consider several highly simplified 
mathematical models for time-delayed physiological control systems that have 
dynamics like those observed experimentally and clinically. 

Let x ( t )  be some controlled variable. Then typically the net rate of change of x. 
denoted by dx/dt or x ( r ) .  will be given by the difference between its production rate P 
and its rate of destruction Dx. Mathematically, this may be written as 

f ( t )  = P - Dx(t). (1) 

Since i ( f )  > 0 for x P/D, and x ( t )  < 0 for x > P/D, this system can be thought of as 
a simple feedback system with a set point P/D. As is well known, when P and D are 
constant, x cannot oscillate but will monotonically approach the value P/D. However, 
if important time delays are present so P and/or D are not constant but depend on the 
variable x at some time Tin the past, i.e., on x(t - T), then x ( t )  may not only display 
sustained and regular oscillations, but it may also display a type of very irregular or 
“chaotic” dynamics. To illustrate the importance of these types of behaviors, we 
consider three examples of physiological control systems with time-delay systems.’* 

Cheyne-Stokes Respiration 

There is a well-characterized breathing pattern known as Cheyne-Stokes respira- 
tion (FIG. 4a) in which there is a regular waxing and waning of 
Cheyne-Stokes respiration often occurs in  congestive heart failure, in obese individu- 
als, and after neural brainstem lesions. 

To see how simple considerations of physiological control systems may play a role 
in understanding Cheyne-Stokes respiration, we focus on the control of ventilation by 
blood COz levels.*.’ Bearing in mind equation I ,  let x denote pCO,, the partial pressure 
of arterial C 0 2 .  The COz is produced by body tissues at a constant rate, P, under 
constant conditions. The C 0 2  elimination rate from the body, D, is proportional to the 
ventilation, V ,  which is a monotonic increasing function of arterial COz levels some 
time T in the past,29 as shown schematically in FIGURE 5a. This delay T is due to the 
blood transit time from the brainstem (where ventilation is determined by chemorecep- 
tors and by the “respiratory oscillator”) to the lungs (where C02 elimination takes 
place). 

This model for the control of pC0, levels has been discussed in detail elsewhere.’‘‘ 
Designate the values of x and V at  the steady state, i.e., i ( t )  = 0, by x, and V,, 
respectively, and set So = V’(x = x,) so that So is an index of the sensitivity of the 
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FIGURE 4. Dynamics of Cheyne-Stokes respiration.’ (a) Ventilation as a function of time in a 
29-year-old patient suffering from Cheyne-Stokes respiration.% (b) and (c) The results of 
simulations from a simple model for arterial C 0 2  control (see text) in which the sensitivity So of 
the ventilatory response curve at  steady state is increased (So - 7.7 and 10.0 liters/min mm Hg in 
b and c, respectively) past the critical value for stability. Compare the pronounced periods of 
apnea in (a) and (c). 

ventilatory response curve to changes in CO, levels near the steady state. Then it is 
straightforward to show that the steady-state arterial pC0, will be unstable whenever 
So > rVo/2PT, and that there will be an oscillation in pC0, and, consequently, in the 
ventilation with a period approximately equal to 4T (FIGS. 4b and c). 

The inequality resulting from this stability analysis, i.e., So > rVo/2PT, predicts 
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that there are four possible ways in which the steady-state pCOz level, xo, may become 
unstable and start to oscillate: ( I )  If either the sensitivity (So) of the C 0 2  control 
function at the steady state, the time delay (T), or the whole body C02 production rate 
(P) is increased sufficiently or (2) if the steady-state ventilation (V,) is decreased 
sufficiently. 

From these observations, we may now qualitatively understand why Cheyne- 
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FIGURE 5. Schematic forms of nonlinear feedback functions. (a) Ventilatory response to 
arterial CO, levels as an illustration of controlled destruction. (b) The neutrophil production rate 
is shown as a function of circulating white blood cell (WBC) numbers to illustrate controlled 
production. 
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Stokes respiration often occurs in the pathological condition of congestive heart failure 
since it is associated with increased circulatory time from the lungs to the chemosensi- 
tive centers in the brainstem regulating ventilation. Cheyne-Stokes respiration has also 
been induced in normal dogs by increasing the circulatory time with the addition of an 
arterial e~tension.~' Further, in obese individuals, the C 0 2  production rate P is 
increased, and finally after neural brainstem lesions, an increased sensitivity (So) of the 
ventilatory C 0 2  response function has been reported. All of these factors will dispose 
the system controlling arterial C 0 2  levels to instabilities and consequent oscillation. 

More complex mathematical models for the control of ventilation than that 
considered here have been developed to account for changes in both O2 and C02, but 
they are generally sufficiently complex to preclude detailed theoretical analysis of 
stability 

Periodic Hematological Diseases 

As a second example of a physiological feedback system in which time delays are 
important, we consider the control of white blood cell production and the curious 
dynamics observed in some patients suffering from chronic myelogenous leukemia 
(CML). CML is a neoplastic disorder of the hematopoietic system generally charac- 
terized by a massive increase in circulating neutrophils. In the past two decades, 
clinical reports have established the existence of an interesting variant in which the 
neutrophil counts oscillate around elevated levels with a period of 30 to 70 days 
depending on the ~atient.~'  FIGURE 6a shows the serial white cell counts in a 
12-year-old girl with the periodic version of CML.3s 

Again keeping equation 1 in mind, let x be the density of circulating neutrophils, D 
be the random neutrophil destruction rate, and P be the flux of new neutrophils into the 
blood. Since the committed neutrophil precursor cells require a period of time T 
(normally about five days) to produce mature neutrophils, P is a function of the white 
blood cell population a time T ago. Thus, in this system, the effective time delay is the 
cell maturation time. 

Over a wide range of circulating neutrophil levels, the neutrophil production rate P 
is a decreasing function of increasing neutrophil density. However, due to a variety of 
factors, it is expected that at very low neutrophil levels the production rate will fall to 
zero. Thus, for P, we pick36 a mixed positive/negative type feedback function as shown 
in FIGURE 5b. Note that in contrast to the ventilatory control system of the previous 
example, the rate constant for the destruction of cells is now fixed, but the rate of 
production of cells is under feedback control. Further, instead of having only one 
steady state, the dynamical equation for neutrophil production may have two steady 
states: x, = 0, and a second steady state xI > 0. 

The steady state x, - 0 turns out to be uninteresting for our understanding of 
periodic CML. However, the second (nonzero) steady state may be locally stable or 
unstable depending on the values of a variety of parameters. The condition for the local 
stability of this second steady state is complicated, and we do not write it down here.36 
Several investigators believe that CML is generally accompanied by an increase in the 
transit time T through the cellular maturation compartments. As the maturation time 
T increases in the model, the steady state will eventually become unstable. When this 
happens, an oscillatory number of circulating neutrophils with a period between 2T 
and 4T will result. This local analysis, however, does not even begin to uncover the 
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behavior that this deceptively simple model for the control of neutrophil production is 
capable of producing. To see this, we must abandon analytic tools in favor of numerical 
studies. 

In FIGURE 6b, we show the numerically determined neutrophil numbers predicted 
by this simple model when all parameters are maintained at their estimated normal 
values, except the maturation time (T)  has been increased from its normal value of 5 
days to a value of 20 days. With these parameters, the stability analysis predicts that 
the steady-state numbers of neutrophils should be unstable. Note the evident instabil- 
ity as well as the extreme irregularity of the solution to the totally deterministic model 
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FIGURE 6. Dynamics in chronic myelogenous leukemia (CML). In (a) we have redrawn” the 
WBC counts from a 12-year-old girl suffering from periodic CML. There was no treatment 
during this period. (b)  The pattern of WBC levels predicted by the simple model described in the 
text after increasing the neutrophil precursor maturation time from the normal value of 5 days to 
20 days. 

generating the behavior. The results of the simulation results shown in FIGURE 6b are 
of immediate interest when contrasted with the data presented in FIGURE 6a, as they 
mimic the observed pathological dynamics quite well. 

This simple model for the production of neutrophils was the first association of 
intrinsic “chaos” in a continuous time deterministic system with a pathological 
process. Thus in contrast to random inputs leading to random fluctuations in output, 
here the levels of circulating neutrophils in  the model appear random simply as a 
consequence of their own deterministic evolution. 
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A variety of other periodic and aperiodic hematological disorders have been 
modelled in a similar fashion including autoimmune hemolytic anemia," cyclical 
neutropenia (also known as periodic hematopoiesis), aplastic anemia,3s and cyclical 
thromb~cytopenia.'~ In every case, it has been possible to associate known or inferred 
clinical alterations in the pathophysiological state with bifurcations in the models. 

A number of investigators have shown that it is possible to induce oscillatory 
dynamics in hematological control systems by either the application of chemothera- 
peutic drugs in normal dogs"' and in chronic myelogenous leukemia patients:' or the 
application of marrow-seeking radioactive compounds in normal mice." Thus, bifurca- 
tions to periodic and aperiodic behavior may be produced by alterations in the number 
of cells allowed to complete the DNA synthesis, mitosis, and cytokinesis sequences. 

Recurrent Inhibition 

As a final example of how time delays and nonlinearities may play an important 
role in the generation of irregular dynamics in physiological feedback systems, we 
consider a model that may be of importance in understanding some of the processes 
leading to the onset of epileptic seizures. In an attempt to understand the complex 
sequence of events leading to the onset of petit ma1 and grand ma1 epileptic seizures, 
neurophysiologists and neurologists have often employed the penicillin-induced epilep- 
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FIGURE 7. Penicillin-induced alterations in the neuronal discharge. This figure shows a 
noncontiguous sequence of recordings from a neuron in the pericruciate cortex of cat. (From 
Prince.'' With permission from the publisher.) 
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FIGURE 8. A schematic representation of some recurrent inhibitory interconnections in the 
hippocampus. 

tic discharge model. In this preparation, the topical application of penicillin to various 
cortical structures leads to a discharge pattern in cortical neurons quite similar to those 
observed in naturally occurring epileptic seizures. These patterns are generally 
characterized by a gradual shift from low frequency burst like firing patterns to one in 
which there is continuous and sustained high frequency irregular neuronal firing. 
FIGURE 7 illustrates the type of firing patterns observed in a cortical neuron following 
the application of penicillin.” 

Of all cortical structures that have been studied using this technique, probably the 
most popular has been the hippocampus, for which a great deal of knowledge exists 
concerning the type of neural connections present. In the hippocampus, a widely 
studied neural circuit is the recurrent inhibitory pathway formed by the CA3 
pyramidal cells, the mossy fibers, and the basket cells. Recurrent inhibition is a process 
that has been described in almost every type of neural tissue in species ranging from the 
lowest invertebrates through man. In the hippocampus, this process is characterized by 
presynaptic cells (the mossy fibers) delivering excitation to postsynaptic cells (the CA3 
pyramidal cells, FIG. 8). The postsynaptic cells then generate action potentials, and one 
effect of these action potentials is to activate inhibitory interneurons (the basket cells) 
via axon collaterals from the postsynaptic cell axons. These interneurons in turn deliver 
inhibitory activity back to the postsynaptic cells from which their original activation 
was derived. A number of investigatorsw9 have evolved models of varying complexity 
to treat the dynamics of recurrent inhibition. 

I f  one identifies x ( t )  with the frequency of firing in the CA3 pyramidal cells, then 
within the context of equation 1 the production P of x is entirely due to the excitatory 
activity within the mossy fiber population. The rate constant for the destruction of x is 
determined by two different processes: ( 1 )  The natural decay of activity that occurs 
because of the electrotonic properties of the CA3 pyramidal cell membrane and (2) a 
mixed (positive/negative, FIG. 5b) type of feedback because of the recurrent inhibitory 
pathway comprising the basket cells. The final aspect of this process that is important 
is the time delay in the generation of the recurrent inhibition due to conduction and 
synaptic delays within the feedback pathway. 

The CA3 pyramidal cell-mossy fiber-basket cell complex has been extensively 
studied, and it is possible to estimate the relevant parameters for a model of this 
system.45 It is known that the inhibitory neural transmitter between the basket cells 
and the CA3 pyramidal cells is gamma-aminobutyric acid (GABA) and that penicillin 
binds almost irreversibly to the GABA receptors on the CA3 pyramidal cell 
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membrane. Thus it is natural to examine the behavior of a model for this system as the 
GABA receptor density is decreased, corresponding to increasing penicillin levels. 

In FIGURE 9, we have illustrated the response of this simple model for recurrent 
inhibition as a function of the number of GABA receptors. As receptor density is 
decreased to mimic the results of applying penicillin, there is a progressive shift in the 
cellular activity from regular bursting-like behavior with differing periodicities to a 
final sustained but irregular firing pattern a t  low receptor numbers. 
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FIGURE 9. Simulated effects of penicillin in the recurrent inhibitory circuit of FIGURE 8. Each 
panel shows one second of simulated model activity at various densities (N) of GABA receptors as 
indicated. (Redrawn from M. Mackey & U. an der Heiden.") 
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IS CHAOS SOMETIMES THE NORM? 

In the preceding sections, we have discussed several examples of physiological 
systems in which irregular, noise-like oscillations appear as certain parameters are 
altered. In some cases, the onset of irregular oscillations can be identified with a 
pathological state (TABLE I ) .  However, on close inspection, most normal physiological 
oscillations also show variability, albeit sometimes very small, e.g., in interevent 
intervals and consecutive amplitudes. The usual interpretation of this irregularity, if 
considered at all, is to attribute it to biological “noise” or “slop.” Although in some 
cases such as interpretation may be reasonable, it is essential to recognize that 
irregularity may in fact be a reflection of the intrinsic dynamics of the system and thus 
would be observed even in the complete absence of biological “noise.” Examples in 
which there is some evidence to indicate that the observed variability may, a t  least in  
part, be of deterministic origin include the cell generation interbeat variabil- 
ity in the electr~cardiogram,~~~’’ background activity in the electroen~ephalogram,~~ 
and irregular glucose-induced oscillations in the electrical activity of mouse pancreatic 
be ta -~e l l s .~ , ’~  

Mathematical techniques are under development to analyze the irregularities 
noted in experimental data with the goal of learning something about the nature (e.g., 
the dimension) of the underlying system.” However, confirmation that observed 
irregular dynamics are in fact deterministic chaos is problematic. Indeed, in view of the 
fact that for almost every time series there are an infinite number of possible 
deterministic systems that will generate a time series with the same statistical 
properties,” it would seem that obtaining a unique solution, a t  least for arbitrarily 
chosen examples of noise-like dynamics, is not possible. 

I f  variability is an intrinsic dynamic ingredient in the operation of normal 
physiological systems, then its significance is far from clear. It is not difficult to see 
that an irregular oscillation encodes more information in its varying amplitudes and 
interevent intervals than does a precisely periodic oscillation. However, it remains to be 
seen what the purpose of this information is and whether transmitting it by a noisy 
signal is more faithful in the face of ever-present biological noise. 

DISCUSSION 

As this paper and others have illustrated, a wealth of dynamical behavior ranging 
from periodic to irregular, noise-like oscillations can readily be observed in physiolog- 
ical control systems both experimentally and clinically (see for example other papers in 
this volume). Although many of these situations are familiar to the physiologist, the 
universal and fundamental aspects of their rich dynamical fabric does not yet appear to 
be fully appreciated. The importance of these qualities becomes more evident when it is 
realized that relatively simple nonlinear mathematical models have these same 
properties, thus implying that dynamic complexity may be the norm rather than the 
exception in nonlinear systems. 

Our observations stress the importance of careful experimental documentation of 
the time-dependent behavior of physiological control systems in health and disease, 
particularly in response to changes in control parameters. Such observations not only 
provide important insights into the nature of the underlying control systems, but also 
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place constraints on the features that proposed models must contain. Unfortunately, it 
is uncommon to find published time series for physiological phenomena, particularly in 
the recent clinical literature. It is quite possible that both interesting and relevant 
dynamical changes are often observed but not published because their significance is 
not fully appreciated or the dynamical changes are wrongly ascribed to environmental 
noise and/or experimental error. 

The pooling of data from different experiments or patients often obscures the 
presence of interesting dynamics in experimental and clinical time records. A 
fundamental property of chaotic systems is that their dynamics are exquisitely 
sensitive to small changes in either the values of the control parameters and/or initial 
conditions. In view of the extensive range of biological variability, it is not surprising 
that even at the best of times the observed dynamics between two experiments or 
patients are not precisely the same. Striking examples of interpatient variability in this 
context are the observations of hippus in sleepy patients with narcolep~y*~*~‘ and of 
rapid cycling manic-depressive patients.%’ By pooling time series, one could easily 
submerge interesting dynamics into a monotonous and humdrum noisy sea. A similar 
problem may occur with the use of signal averagers unless care is taken in the choice of 
the stimulus used to trigger repetitive sweeps of the averager. 

In mathematical models, changes in dynamics correspond to bifurcations that 
occur as one or more control parameters are varied. Dynamical diseases may similarly 
arise because of pathological alterations in underlying physiological control parame- 
ters. Clearly the hope is that it may eventually be possible to develop diagnostic 
techniques to identify dynamical diseases as well as the altered control parameters. 
Therapeutic strategies could then be devised to readjust these altered control parame- 
ters by, for example, using mechanical, electrical, or pharmacological stimuli to 
reposition the control system in a range of parameter space associated with “healthy” 
dynamical behavior. 
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DISCUSSION OF THE PAPER 

E. BASAR: You have given three very interesting clinical examples and integrated 
several mechanisms to explain regular or irregular fluctuations of approximately 
one-minute duration. Did you think about correlations involving the motions of smooth 
muscle, oscillations that also have a periodicity of one minute? There are several 
studies, including some from Russian physiologists, that demonstrate minute rhythms 
in the brainstem. In Bob Galambos’s laboratory in San Diego, Scott Makeig has 
measured minute rhythms from scalp electrodes. At Lubeck (West Germany), we have 
measured minute rhythms from smooth muscles and are able to show that smooth 
muscle rhythms can be chaotic, having fractal dimensions below three. Did you try to 
correlate this minute rhythm with the other physiological mechanisms you discussed? 

M. MACKEY: I know that these rhythms exist in smooth muscle. I think you’re 
suggesting that there may be a correlation between the existence of these approxi- 
mately one-minute rhythms in brainstem areas and smooth muscle, with the kinds of 
behavior one sees on Cheyne-Stokes respiration. I would offer the following argument 
against that notion, not dogmatically, but in the spirit of friendly discussion. One can 
take this very simple model for the control of arterial C 0 2  and instead of changing the 
sensitivity of the ventilatory response curve, change the time delay; if the time delay 
becomes long enough, the system should become unstable and should oscillate with a 
period of approximately four times the time delay. Such experiments were carried out 
many years ago when Guyton and some of his co-workers introduced arterial shunts in 
the dog. They found that increasing the time delay past a certain critical value induced 
oscillations in ventilation, and the oscillations and the ventilation had a period of 
approximately four times the time delay. So my suspicion is that the oscillation that we 
are seeing in Cheyne-Stokes respiration might be due, not to what you’re suggesting, 
but to the instability of the global dynamics of the control system. As I said, I’m not 
being very dogmatic about this; I’d like to talk to you some more about it. 


