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I .  INTRODUCTION 

A large number of human diseases are characterized by changes in the quali- 
tative dynamics of physiological control systems: Systems that normally oscillate. 
stop oscillating, or begin to  oscillate in a new and unexpected fashion, and systems 
that normally d o  not oscillate, begin oscillating. These changes in qualitative 
dynamics often have a sudden onset, and in many instances it has not been pos- 
sible to  identify the factors that lead to  the disease. By dynarnical disease we mean 
a disease that occurs in an intact physiological control system operating in a range 
of control parameters that leads to  abnormal dynamics and human p a t h ~ l o g y . ~ ’  
In this paper, the changes in qualitative dynamics associated with the onset of 
the disease are identified with bifurcations in the dynamics of mathematical models 
of the physiological control systems. We shall consider in some detail dynamical 
diseases in the respiratory and haematopoietic systems. 

Our starting point is the ordinary differential equation 

- -  - A - y x  dx 
di 

where x is a variable of interest, A is a production rate for x ,  y is the destruction 
rate of x ,  and t is the time. For X and y constant, x -+ A/y in the limit r - m .  

However, in many physiological systems A and y a t  t may depend on x and/or  
x, (the value of x at  a time I - T, where T is the time lag). We show that in- 
stabilities analogous to  those found in pathological conditions in humans can be 
reproduced by assuming that A and y in Equation 1 .  I are appropriate nonlinear 
functions of x and/or  x,. 

2. RESPIRATION 

Respiratory oscillations in mammals are generated in the brainstem. Several 
groups have shown that this region is essential for respiration, and that cells 
located in the brainstem fire phasically during the respiratory cycle. Several dif- 
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ferent classes of cells have been identified (e.g., inspiratory cells and expiratory 
cells which fire during inspiration and expiration, respectively), but the number 
of different classes of cells, their anatomical location, and interconnections are not 
agreed upon by workers in the field.74 A number of mathematical models of the 
respiratory oscillator have been s ~ g g e s t e d . ” ~ ’ ~  

Experimental studies have shown that both the frequency and amplitude of the 
respiratory oscillations can be modulated by a variety of factors including activity 
in the cerebral cortex, pH and concentrations of CO, and O2 in arterial blood and 
cerebrospinal fluid, and the amount of stretching in the intercostal muscle in the 

In healthy humans, these inputs act to maintain arterial concentrations 
of O2 and C 0 2  a t  constant levels. 

Respiratory Disorders 32 

Rapid shallow breathing (panting, tachypnea, or polypnea) occurs in a variety 
of pathological conditions, for example, as a result of pain in structures moved by 
breathing, during fever, and under severe hypoxia (low oxygen tension) of long 
duration. In dogs, panting is a normal response t o  heat stress, and brief periods 
of panting (frequency 300-400 min-’) alternate with periods of normal breathing 
(frequency 20-40 ~ n i n - ’ ) . 6 ~  Superimposed on the panting rhythm may be an occa- 
sional deep breath to give a sighing pattern. 

There are a variety of patterns in which periods of apnea alternate with pe- 
riods of breathing. We call these apneic patterns. Apneic patterns are referred to 
by clinicians generically as “periodic breathing.” The variety of apneic patterns 
that have been described include Cheyne-Stokes respiration, Biot breathing, and 
infant apnea. 

Cheyne-Stokes breathing is characterized by a regular waxing and waning of 
breathing amplitude separated by periods of distinct apnea (FIGURE 1). This is 
the most common apneic pattern encountered clinically, and is often found in 
obese patients, patients with congestive heart failure, and patients with certain 
neurological deficits. It is also seen in normal humans after arrival at high alti- 
tude. It is interesting that a regular waxing and waning of breathing amplitude 
wilhout apnea (a “wavy” pattern), is more commonly observed than Cheyne- 
Stokes respiration65 and is not necessarily associated with pathological condi- 
tions (FIGURE 1). 

Biot breathing refers to alternating periods of breathing with apnea. The regu- 
lar alternations of Cheyne-Stokes respiration are absent, and marked irregularity 
is observed. Biot breathing is often observed just prior to  death. 

Infant apnea refers to  the pronounced periods of apnea found in most prema- 
ture and many full term infants (FIGURE 2).% The apnea generally occurs during 
rapid eye movement sleep. It has been speculated that there is a causal relation 
between the sudden infant death syndrome and infant apnea. 

Although we have classified apneic patterns into a small number of discrete 
classes, intermediate patterns also exist. Unfortunately, extended records of 
pathological breathing patterns are not generally available. 
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a 

b 

FIGURE 1. (a) A wavelike respiration pattern. (b) Cheyne-Stokes respiration in a 29-year- 
old man (5 horizontal divisions = 1 min. 10 vertical divisions = 1 liter). (From Sprecht and 
Fruhman.65 By permission of Bulletin Europken de Physiopathologie Respiratoire.) 
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Mathematical Models of Respiratory Disorders 

Theoretical studies of the mechanism of Cheyne-Stokes respiration ascribe the 
slow oscillations observed to instabilities in the respiratory control system.4,37*47*48 
It is known that the total ventilation increases monotonically as the C 0 2  concen- 
tration in arterial blood increases. However, since the blood is oxygenated in the 
lungs but the receptors, which are sensitive to the COz concentration, are  believed 
to  be present in the brainstem, there is an inherent time lag 7 in the respiratory 
control system. Several investigators have developed complex systems of differen- 
tial-delay equations to  describe the production, transport, and elimination of C 0 2  
in h ~ m a n s . ' ' * ~ ~ * ~ *  Since the mathematical properties of these complex systems of 
equations are not easily deduced, we have proposed a simplified schematic model 
which displays similar qualitative features to  the more complex modeb4' 

The ventilation V at  time f is assumed to depend on x ( t  - T ) ,  the COz con- 
centration at timer - T. We also assume that C 0 2  elimination is proportional t o  
the product of COz concentration ( x )  and ventilation. Experimental studies indi- 
cate that ventilation is an increasing monotonic function of C 0 2  concentration." 
Assuming that the dependence of the ventilation on C 0 2  concentration is de- 
scribed by the Hill function V = V,,,,,x~/(8'' + x : ) ,  we obtain, 

where V,,, is the maximum ventilation and n, 8 and a are parameters chosen to  
agree with experimental data4' 

The stability of (2.1) in the neighborhood of the steady state can be analyzed 
(at the steady state d x / d f  = 0). Denoting the values of x and V a t  the steady state 
by xo  and VO, and setting SO = (dV/dx) , ,  and a = X/xo Vo,  the first-order equa- 
tion in x and x ,  is. 

x AS0 - - ( x  - xo) - - ( x ,  - xo) dx 
dt X O  VO 
- =  (2.2) 

The stability criteria for (2.2) are  well known." In general, for the first-order 
linear differential-delay equation, 

dz 
dt 
- = A Z  + Bz, (2.3) 

the eigenvalues of the steady state z = 0 have negative real parts if and only if, 

A T  < 1 

A 7  < --BT < d ( A 7 ) '  + a Iz  (2.4) 

where al  E (0, r) is the root of the equation, 

a cot a = A T  

and n ,  = ir/2 if A 7  = 0. Applying (2.4) to determine the stability of the steady 

(2.5) 
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state of(2.1), we find that the steady state will be stable provided, 

where a ,  is found by solving, 

A7 a cot a = -- 
XO 

(2.7) 

Further analysis requires numerical values for the parameters in (2.6) and (2.7). 
Approximate values of the parameters for normal humans are readily obtained 
from the experimental l i t e r a t ~ r e . ~ ‘  We take, 

xo = 4 0 m m  Hg 

A = 6 mm Hg/min 

Vo = 7 liter/min 

So = 4 liter/min mm Hg 

T = 0.25 min (2.8) 

From (2.8) we find that Xr/xo = 0.0375. A numerical solution of (2.7) gives a, = 

1.5943. Since a ,  - 7r/2, and for the parameters in (2.8), a, >> AT/XO, the con- 
dition for a stable steady state can be given approximately as, 

(2.9) 

The period of the oscillation is about 47. 
FIGURE 3 shows numerical integration of (2.1) for two values of So in the 

unstable region with the other parameters given in (2.8). Choosing a value of So, 
the parameters in (2.1) can be found from the relations, 

(2.10) 

Note that both a “wavy” pattern and apneic pattern are found in the figure. 
These results are of interest for several reasons. Investigators have noted an 

increased C 0 2  sensitivity (So) and delay time in patients displaying Cheyne- 
Stokes re~pi ra t ion .~ .~’  Further, the numerical values computed using (2.8) for the 
unstable regime fall in a range outside accepted values for normals. For example, 
given V,, A, 7 in (2.8) instability is predicted for So > 7.44 I/min/mm Hg, 
which is above However, the crudeness of the model makes detailed 
quantitative comparisons questionable. Other workers, who have investigated sta- 
bility for mathematical models of respiration, have noted an approximate hyper- 
bolic relation between So and T ,  leaving the other parameters of the system 
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fixed .37.47,48 The boundary separating stable and unstable regions in the S o ,  
T-plane. given by (2.9), is a hyperbola. 

The Piecewise Linear Case 

Numerical integration of (2.1) indicates that, in the unstable regime, the oscil- 
lations approach a stable limit cycle oscillation. The problem of determining the 
asymptotic behavior of time-delay differential equations is complex, and only 

TIME (min) 

FIGURE 3. Numerical solutions to Equation 2.1. The time course of x ( t )  as computed 
from (2.1), using parameters listed in (2.8) with the exception of So. (a) SO = 7.7 I/min m m  
Hg. (b) So = 10.0 I / m h  m m  Hg. With these values of SO, n and @ in (2.1) were computed 
using (2.10). (From Mackey and Glass.4' By permission ofScience.) 

limited results have been achieved to date.6*23," In the limit n - a, Equation 2.1 
becomes piecewise linear, and explicit solutions can be constructed. 

In the limit n - =, (2.1) can be written, 

dx - = (0, X, = 8 
di (2.11) 
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where X/y < 8. Assume that for t < 0, x = x o ,  where xo < 8. For t > 0, we 
assume that (2.11) holds. By direct integration of (2.11), the time course of x can 
be explicitly computed. From (2.11), x initially increases and at  some time t o ,  x = 

0. For t > t o ,  the temporal evolution of x is given by 

x ( t )  = e + x ( t  - to ) ,  to I t I 11 

where: 

(2.12) 
t z  i t I t 3  

8 - V Y  1 t 2  - 11 = - log 
Y 

(2.13) 

During the ascending and descending phases, Equation 2.12 is continuous and 
differentiable. The derivatives are discontinuous at  t = t l  and t = t 3 .  Note that 
x ( t 4 )  = 8, so that for all times t > t4 the solution repeats with a cycle pe- 
riod of, 

8 + AT - X/y (8 - X/y)(l - e-7') (2.14) 
Y 8 - V Y  I+ x 

The solution defined by Equations 2.12 and 2.13 is also a solution of Equation 2.1 I 
with 7, = T + mT. As a consequence, for T fixed, there is a family of solutions, so 
the solution is not unique. 

3. HAEMATOPOIESIS 

In the normal mammal, circulating levels of the formed elements of the blood 
(the white and red blood cells, platelets, and lymphocytes) are maintained at  fairly 
constant levels. In response to various assaults by the environment, however, 
one or  more of these blood cell types may change their relative concentrations in 
a transient f a ~ h i o n . ' ~  

It is generally believed that there exists a self-maintaining pluripotentiul stem 
cell population (PPSC) in the marrow capable of producing committed cells for the 
erythroid, myeloid, or thromboid lines. These populations are not self-maintaining 
but depend on a cellular flux from the PPSC for their continued integrity. Cells 
a t  the committed level undergo four to five effective divisions (nuclear divisions 



222 Annals N e w  Y o r k  Academy of Sciences 

for the myeloid and erythroid series; cytoplasmic divisions for the thromboid 
series) before losing their nuclei to enter a maturation phase. Cells are then re- 
leased from this marrow maturational compartment to  enter the blood as a ma- 
ture white blood cell, red blood cell, or  latel let.^' 

There is control operating in the erythroid series between the circulating eryth- 
rocyte and the PPSC. Decreases in oxygen levels lead to the release of a substance 
called erythropoietin (EP), which acts to increase the cellular flux from the 
PPSC.i-67 A number of investigators have looked for similar regulators in the 
myeloid and thromboid series, and to date the existence of putative granulopoietins 
(CP)59 and thrombopoietins (TP)' has been claimed. In  addition to this stimulatory 
effect on cell production, there have been numerous reports concerning the partial 
isolation of mitotic inhibitory substances in the myeloid and erythroid lines, which 
are termed chalones.'8*62 These chalones appear to be produced by mature granu- 
locytes and erythrocytes, and inhibit proliferation at the myeloblast or erythro- 
blast stage. 

I n  addition to the feedback from circulating blood cells to the PPSC, control 
mechanisms are believed to exist within the PPSC itself, acting to control cell 
population numbers.' Although the details are not clear, it seems that the PPSC 
regulates its size by adjusting the rate a t  which cells enter active proliferation on 
the basis of the number of resting ( G o )  phase  cell^.^'^^''^^'*^^ 

Dynamic Hematologic Disorders 

I n  the hematology literature, there are a number of well-documented patholo- 
gies characterized by periodic oscillations in the formed elements of the blood in 
an apparently constant environment, and in the absence of any clinical interven- 
tion. Pathologies in which blood elements remain approximately constant a t  ab- 
normal levels are also well known. 

Cyclical neutropenia is characterized by an oscillation in circulating neutrophil 
numbers from normal to low values (FIGURE 4).17 In  humans, the majority of 
cases display a period in the range of 17 to 28 days. All grey collies have a similar 
disorder, with an oscillatory period of 1 1  to 12 days7.'0 I n  both humans and grey 
collies, a concomitant oscillation of all the formed blood elements, with the excep- 
tion of the lymphocytes, is These elements oscillate with the same 
period as the neutrophils, but with phase differences consistent with the known 
differences in maturation times for each of the cell types. Thus, this disorder is 
more appropriately termed periodic haematopoiesis (PH). I n  aplastic anemia 
(AA), there are severely depressed levels of all circulating elements of the blood, 
as well as a hypoplastic marrow. There is experimental evidence that the defect 
giving rise to PH and AA is contained in the PPSC,' and a common mechanism 
has been hypothesized to underly both  disease^.^'.^^ 

Chronic rnyelogenous leukemia (CML) is a neoplastic disorder of the haema- 
topoietic system generally characterized by a massive increase in circulating cells 
of the myeloid and thromboid series, and approximately normal erythroid ele- 
m e n t ~ . ' ~  I n  the past decade, reports in the clinical literature establish the existence 
of an interesting and provocative periodic variant, periodic C M L  (PCML). In  the 
handful of patients in which PCML has been found, the peripheral leukocyte and 
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thrombocyte counts oscillate around elevated levels with a period of 30 to 70 days 
depending on the patient (FIGURE 5).5,'2.58*6s Oscillations are commonly noted in 
all of the myeloid and thromboid series elements of these patients, and in two 
patients there is clear evidence of oscillations in the erythrocyte  level^.^*^^ As in 
PH and AA, the PPSC is implicated as the source of the defect giving rise to CML 
and PCniIL.73 
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FIGURE 4. An example of human cyclic neutropenia (left-hand side) compared to a nor- 
mal volunteer. The marked periodicity in the neutrophil count, with a period of 20 days, is 
also reflected in the monocytes, lymphocytes, platelets, and reticulocytes to a significant 
degree (period-gram analysis). (From Guerry et ~ 1 . 1 ~  By permission of Journal of Clinical 
Investigation.) 
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Cyclical thrombocytopenia is a rare disease in which rhythmic changes in 
platelets and megakaryocytes from normal to low values are observed to occur 
with a period of about 28 days." There are documented cases in the literature in 
which the presence of these platelet cycles has persisted for up to 12 years. 

Mathematical Models of Dynamic Hematological Diseases 

In this section we consider two problems: the first is related to  peripheral con- 
trol over circulating cell numbers (e.g., as exercised via erythropoietin), and the 
second is related to control within the PPSC compartment. In both cases, our 
models are similar to models proposed by others for coupled stem cell-peripheral 
control systems in g r a n u l o p o i e ~ i s , ~ ~ ~ ~ ~ ~ '  e r y t h r o p ~ i e s i s , ~ ~  and thrombopoie~is . '~  

Peripheral Control in Haematopoiesis 

We first consider a simple model for the control of peripheral blood cell num- 
bers via a humoral feedback mechanism. Let x ( t )  be the concentration of circu- 
lating cells (cells/kg) and assume that cells are randomly lost from the circulation 
at a rate y(day-') proportional ' to  their concentration. To  reproduce the effects 
of poietin feedback control from the circulating population of cells, we assume 
that the flux (A in cells/kg/day) into the circulation from the stem cell compart- 
ment depends on x at  time t - 7, and thus the dynamics of x ( t )  is governed by, 

We have examined two forms for A(x): 

x, 6" 

A(x )  = {z 
0" + x" 

where n,B (cells/kg), A,, (day-'), and A, (kg/day-cell) are  parameter^.^' The 
control function (3.2) is a simple monotone decreasing function of x for x 2 0, 
while that of (3.3) is a single-humped function. 

Combining Equation 3.1 with the equations for X thus gives two possible equa- 
tions governing the evolution of x( t ) ,  

and (3.5) 

An equation similar to (3.4) has been proposed for the control of e ry thropoie~is .~* '~  
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FIGURE 6. Bifurcating solutions to Equation 3.5. Here we show the numerically detet- 
mined solutions to this equation in the form of phase plots of x, = x(2) versus x = x(1). 
The integrations were carried out with a step size of 0.05 using a predictor-corrector method, 
assuming y = 1, A, = 2,B = 1, 7 = 2, and an initial condition on x and x, of 0.50. 

(a) n = 7, 100 5 t 5 150 
(c) n = 8.50, 200 I r 5 250 
(e) n = 9.65, 300 I t 5 600 
(g) n = 9.6975,300 I t 5 400 
( i )  n = 10.0, 300 5 t 5 600 

(b) n = 7.75, 150 5 t 5 200 
(d) n = 8.79, 300 5 t 5 400 
(f)  n = 9.69715, 300 I t 5 800 
(h) n = 9.76, 300 I t I 400 
(j) n = 20.0, 300 I t 5 400 
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The nonzero steady states x, of these equations may be calculated and the 
local behavior of the solutions examined near xo as in the section on respiratory 
models. The results of these computations indicate that increases in n, 7 ,  or 
A,,, or decreases in y or XI may lead to a loss of stability a t  xo and the ap- 
pearance of oscillatory solutions about xo. 

To investigate the behavior of (3.4) and (3.5) away from the region of applica- 
bility of this linear analysis, we have numerically integrated the equations using 
either a predictor-corrector or a Runge-Kutta integration scheme. For Equation 
3.4, we have found only two qualitatively different behaviors: I )  either a stable 
steady state o r  2 )  a stable limit cycle oscillation-for any set of parameters only 
one or the other behavior is found. 

However, the qualitative behavior of (3.5) in response to parameter changes 
are quite different. To illustrate this behavior we assume that y = I ,  XI = 2, 
0 = 1 (so xo = I ) ,  and T = 2. Equation 3.5 was integrated starting from an ini- 
tial condition x ( r )  = 0.50, -7 < f < 0, using a predictor-corrector integration 
routine with a step size of A = 0.05 for various values of n. 

The linear analysis of(3.5) indicates that with these parameters, xo = I should 
be stable for n < 5.0404, and, as stability is lost for n - 5.0404, periodic solutions 
of period T - 5.49 should appear. Numerical solutions of (3.5) in the neighbor- 
hood of n = 5.04 bear out the accuracy of this analysis, and indicate that the 
periodic solutions are stable. 

I n  FIGURE 6 we show the dynamics of (3.5) in the x, - x phase plane for sev- 
eral values ofn.  Notice that as n is increased, the oscillation undergoes a sequence 
of bifurcations. Further, this sequence is analogous to the sequence of bifurcations 
observed in a class of finite-difference equations in Notice 
that the oscillatory patterns in  FIGURE 6a and b are analogous to  the “period 2” 
oscillation; FIGURE 6b and 6c are analogous to the “period 4” oscillation: FIG- 
U R E  6d is analogous to the “period 8” oscillation; FIGURE 6g is analogous to  the 
“period 3” oscillation; FIGURE 6h is analogous to  the “period 6” oscillation: 
FIGURE 6e and 6i are analogous to  the ”chaotic regimes.” In FIGURE 6f we observe 
that the “period 3” oscillation has almost “condensed” out  of the chaotic regime. 
FIGURE 6j shows a stable oscillation, which appears for large n .  

At the moment we are not aware of any clinical data concerning circulating 
levels of blood elements that displays similar sequences of bifurcations in their 
qualitative dynamics. However, (3.4) can be usedm to describe the periodic fluc- 
tuations i n  circulating rcd blood cell numbers observed in an auto-immune 
hemolytic anemia” (increased cell destruction rate y). 

Control Within The PPSC 

T o  examine the possible origins of PH within the PPSC, we assume 
I )  cells in the PPSC are either proliferating or in the resting phase ( G o )  cells, 
2 )  cells travel through proliferation to  undergo mitosis a t  a fixed time 7 (days) 
from their time of entry into the proliferative phase, 3) all cells enter Go upon the 
completion of mitosis, and 4) cells in Go exit randomly to differentiate either 
irreversibly into one of the haematopoietic lines (myeloid, erythroid, or throm- 
boid) a t  a rate a (day-’) or reenter proliferation at a rate fi  (day-‘) propor- 
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FIGURE 7 .  Linear stability analysis for Equation 3.7.  Here we show the predicted regions 
of local stability of the steady state xo of Equation 3.7, assuming n = 3, T = 2.22 days, b0 = 
1.77 days-'; u denotes the region where x, is not stable according to the linear analysis, 
while s denotes stability. For all parameter values ( k ,  a / & )  above the top curve, a 
positive steady state does not exist. 
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FIGURE 8. Numerical solutions to Equation 3.6: Here we illustrate the time course of x ( i )  
as computed from Equation 3.6 using a predictor-corrector integration scheme with an inte- 
gration step size of 0.05, n = 3, a = 0.05 day-', b0 = 1.77 day-', T = 2.22 days, 8 = 1.98 x 
10' cells/kg, and an initial condition x(0) = 6.43 x IO'cells/kg. (a) k = 0.20 day-', (b) k = 
0.25, (c) k = 0.28, and (d) k = 0.29. The behavior in (a) and (d) has been interpreted as re- 
flecting the pattern of aplastic anemia, while that of (b) and (c) is similar to periodic haema- 
topoie~is.'~ 
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tional to their concentration (in certain pathological states, proliferating phase 
cells die a t  a rate k (day- ' )  proportional to their concentration). 

We further assume that control in the PPSC is exercised over the rate p of cell 
reentry into proliferation and that @ is a monotonic decreasing function of Go 
cells. Calling the population density of the Go cells x (cells/kg), we obtain, 

d s  - -  2@008nx, pOenx 
dt 8" + x," en + X n  

exp(-kr )  - a x  - ~ 
- -  (3.6) 

where 0 (cells/kg), Po (day-'), and n are parameters characterizing the PPSC. 
PH and A A .  Based on several lines of evidence, there is good reason to believe 

that the strange dynamics of PH is intimately connected with the death of cells 
from the proliferating phase of the PPSC. Further, at least some cases of AA may 
involve the death of proliferating PPSC cells.' 

It is possible to estimate the values of the parameters characterizing a PPSC 
population in a normal (k = 0) state. Depending on the values of these param- 
eters, the linear analysis of the stability of the nonzero steady state xo of (3.6) 
predicts two possible responses in the PPSC to increases in k (FIGURE 7). For 
humans, taking n = 3 ,  T = 2.22 days, a = 0.05 day-',  and Po = 1.77 days, an 
increase in k leads to a depression of the steady state x o .  At about k = 0.235 
day-', the steady state is no longer stable and periodic solutions of period 19.00 
days are predicted. At k = 0.287 day- '  a stable steady state reappears. For 
0.235 < k < 0.287, numerical studies indicate stable limit cycle oscillation. These 
behaviors are illustrated in FIGURE 8.  Since both depression of cell densities and 
periodic dynamics can be accounted for in this single model and the numerical 
values obtained are reasonable, it has been suggested that both AA and PH can be 
accounted for by varying rates of cell destruction during proliferation of stem 
~ e i i s . ' ~  

3.  MISCELLAKEOUS DYNAMICAL DISEASES 

During the course of  our research we have become aware of a large number of 
other pathological conditions with striking dynamical behavior. Although some 
of the conditions are well known to the layman, others are obscure and often not 
even accurately diagnosed. We mention some representative examples, and recent 
references, which can be consulted for extensive bibliographies. 

Cardiac A rrh y thm ias 36*6 ' 
The heart is capable of beating in a variety of different regular and irregular 

oscillatory patterns. These patterns can be visualized by the electrocardiogram 
(ECG) shown in FIGURE 9. Normally the cardiac cycle is initiated by the sinoatrial 
(S-A) node that acts as a pacemaker, initiating activity that travels through the 
cardiac tissue to the atrioventricular (A-V) node. Excitation a t  the S-A node leads 
to contraction of the atria and excitation at the A-V node leads to  ventricular con- 
traction. 

However, most heart tissue is capable of generating spontaneous rhythms, and 
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in many pathological conditions the S-A node partially or completely loses its 
role as the pacemaker. A few pathologies will be illustrated. FIGURE 9a shows an 
ECG taken from a patient in which every fourth pulse generated by the S-A node is 
ineffective in driving the ventricular rhythm (the Wenkebach phenomenon). In the 
same patient, a t  a slightly higher pulse rate (FIGURE 9b) every other pulse gener- 
ated by the S-A node is ineffective. In another pathology, the ventricles display 
high-frequency contraction, apparently out of control of the S-A node. This con- 
dition (ventricular tachycardia) may have sudden onset and cessation (FIGURE 9c). 
Ventricular fibrillation is characterized by “chaotic, irregular, and  disorganized 
ventricular activity,”36 and usually leads to death within a few minutes (FIG- 
U R E  9d). 

a 

b 

C 

d 

FIGURE 9. Electrocardiograms of four pathological cardiac arrhythmias: (a) 2: I A-V 
block, (b) The Wenkebach phenomenon, (c) Ventricular tachycardia, (d) Ventricular fibrilla- 
tion. (From Lindsay and Budkin.j6 By permission of Year Book Medical Publishers.) 

There is an intriguing and widely scattered theoretical literature dealing with 
mechanisms of cardiac arrhythmias. In an early paper, van der Pol and Marks4 
generated oscillatory patterns similar to those shown in FIGURE 9 by coupling 
nonlinear oscillators with different natural frequencies. There has been additional 
theoretical work that attributes other arrhythmias to abnormal patterns of wave 
propagation in the excitable tissue of the heart.29,49,72 

Psychological and Neurological Disorders 

There are a variety of psychological and neurological disorders including 
insomnia, epilepsy, manic-depressive episodes, and schizophrenia that have been 
reported to display a variety of regular and irregular oscillatory patterns with 
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periodicities ranging from several days to several years.” Theoretical work has 
been done on the analysis of a proposed mechanism for periodic catatonic 
schizophrenia.* 

Cancer 

There is a large body of theoretical work that ascribes cancerous growth to 
instabilities in the dynamics of the cell cycle,’8s1q or in feedback control systems 
regulating mitosis.I6.“ It has been observed that cancer, if  untreated, does not 
necessarily grow “without limit.”30 Further, some cancerous growth, (e.g., the 
C M L  referred to above) may have a periodic time course (see the section on 
haematopoiesis). 

Miscellaneous 

There are a large number of other diseases that can display regular and irregu- 
lar oscillatory dynamics; e.g.. periodic synoviosis (swelling of the articulated 
joints), periodic peritonitis (swelling of the gut), periodic fever, and periodic 
pancreatitis.”-” Although it is plausible that some of these diseases arise from 
instabilities in feedback control mechanisms similar to those we have discussed 
here.5’ we are not aware of detailed theoretical analyses. Finally, the importance 
of periodic factors in both normal and pathological conditions in humans have 
been emphasized in the work of Halberg et a/.” 

5 .  Discussios 

Physiological control systems are extremely complex. Moreover, there are 
large differences in the details of the structure of these systems among different 
spccics, and even different members of the same species. As a consequence, those 
interested in studying dynamical diseases face numerous experimental difficulties. 
Experimentation on normal and diseased humans must be of an extremely limited 
kind. Since human experimentation is difficult, most of the systematic informa- 
tion that has been gathered about physiological control systems is from other 
mammals. Although principles of organization may be the same in these animals 
as in humans. extrapolation of quantitative results to humans is not easily done. 
Even more subtle problems arise. Many experimental paradigms that have been 
adopted by physiologists tend to obscure variability in a single animal during the 
course of an experiment, as well as the differences among different animals. Typi- 
cally, data from a number of animals are lumped together, and average data are 
reported. Since diseases tend to be rare, abnormal dynamical behavior (if it occurs 
at all), which might be most relevant from the standpoint of dynamical disease, is 
often disregarded or lumped with enough other data to give “good statistics.” 
One experimental approach to the study of dynamical disease is to develop animal 
models of the disease in which animals, after a variety of manipulations, display 
similar qualitative dynamics to those displayed in the human counterpart of the 
disease. Clearly, studies such as these can not be used to identify the cause of the 
disease in humans, but simply to generate plausible hypotheses. 
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The exis tence of classificable d y n a m i c a l  diseases  i n  h u m a n s  suggests  a cor re-  
spondingly  r ich theory  of bifurcat ions in  nonl inear  ord inary ,  par t ia l ,  a n d  func- 
t iona l  differential e q u a t i o n s  which  m o d e l  physiological  c o n t r o l  systems.  A t  this  
p o i n t  a sufficient b o d y  of d a t a  is  not yet  ava i lab le  f o r  ac tua l  tes t ing of theor ies  
o f  dynamica l  diseases. I n  our view, c lose co l labora t ion  between theoris ts  a n d  
cl inicians is needed t o  clarify t h e  bases o f  these dynamica l  diseases. 
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