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Let X be a sigma finite measure space, and S : X -+ X a dynamics that is not necessarily measure preserving. 

Definition LMl. We say that Sis Lasota Mixing 1 if and only if \/ A, B, CCX with µ(A), µ(B), p(C) nonzero 
and finite we have 

lim _µ(-'--S_-_n(-'--C....;..)_n_A...;...) -+ _µ(_A_) 
n-= µ(S-n(C) n B) µ.(B)' 

(1) 

OBSERVATIONS ABOUT LMl. 

(1) This definition reduces to the normal definition of mixing if S preserves the measureµ. To see this consider 
B = X and µ(X) = 1 so 

µ(s-n(C) n B) = µ(S-n(C) n X) 

= p(S-"(C)) 

= µ(C), 

where the last two lines follow from the assumption that µ is preserved. Therefore we have 

lim µ(S-"(C) n A) = µ(A)µ.(C). 
r7,------t00 

(2) In equation (1) the left hand side may not be defined for small n, i.e. n must be sufficiently large to permit 
adequate spreading. This does not, however, matter for the limit. 

(3) As an example of Lasota Mixing 1, we might consider the baker transformation in which you have compression 
by a factor of 4 but only stretch by a factor of 2: 

{ 
1 

2x -y 
'4 

T(x,y) = 1 1 
2x-1 -y+

' 4 2 

1 
x E [0, 2] 

1 
xE(2,l] 

(4) The definition of Lasota Mixing 1 is good for situations in which the contraction (or expansion) of a set by 
iteration is independent of the set (or its location). 

In thinking about a second ( and more general) definition of Lasota Mixing, let X be a sigma finite measure space, and 
S : X -+ X a dynamics that is not necessarily measure preserving. 
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Definition LM2. We say that Sis Lasota Mixing 2 if and only if 1::/ A, B, CCX with µ(A), p(B), µ(C) nonzero 
and finite :3 a finite A > 0, independent of C, 3 

In general, A depends on A and B. 

OBSERVATIONS ABOUT LM2. 

I. µ(S-n(C) n A) , 
Im ----,---- ---+ A 

n_,= µ(S-n(C) n B) 

(1) If p.(X) = 1 and 8 is measure preserving, then LM2 is equivalent to normal (Strong or Hopf) mixing. 

Proof. Since B is arbitrary, take B = X. then we have 

p(X n s-n(C)) = p.(S-n(C)) = µ(C) 

since 8 is measure preserving. Thus from (2) we have 

Jim µ(s-n(C) n A)= .\µ(C) 
n_,= 

since A only depends on A. This, in turn, implies that 

Jim µ(8-n(X \ C) n A) = .\µ(X \ C) 
rl,---tCX) 

since A is independent of C. But we can rewrite the left hand side of this rela.tion as 

p.(s-n(X \ C) n A)= µ((X \ s-n(C) n A) 

=µ(A\ s-n(C)) 

so we have 

This implies that ,\=µ(A) and thus 

= µ(A) - µ(An s-n(C)) 

---+ µ(A) - .\µ(C) 

p.(A) - .\µ(C) = .\µ(X \ C) 

= .\[µ(X) - µ(C)] 

= ,\[l - µ(C)]. 

Jim µ(S-n(C) n A)= µ(A)µ(C) 
n_,= 

( 15 June, 1987: Brissac). If 8 is LM2, then 8 is ergodic. 

Proof. Assume C is an invariant set so 

c = s- 1 (C) 

From the definition of LJ\/l2 we have 
p.(AnC =A 
p.(B n C) 

We want to show that ,\ independent of C ==} c C X is trivial. 
a. If C = X then A is independent of C since 

b. A is arbitrary so set A = X \ C ==} 

But 

.\=µ(A). 
µ(B) 

µ(An C) = 0 

µ(An C) = .\µ(B n C) 

(2) 

(3) 

so with (8) and ,\ > 0 (definition of LM2), we must have µ(B n C) 
==} p(C) = 0. 

0. Since µ(B) > 0 by assumption, this 

- Therefore, all invariant subsets are trivial and ergodicity is proved. 

with f. J,;i V. E D. 
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CORRELATIONS AND LASOTA MIXING 

See "Time's Arrow", Chapter 5 (Mixing), Section C (The Decay of Correlations) for the relevant computations 
reprinted below. 

To understand the connection between mixing and the decay of correlations requires the introduction of a few 
concepts. If we have a time series x(t) [either discrete or continuous], and two bounded integrable functions(}', T) : X -> 

R, then the correlation of (J' with T) is defined as 

in the discrete time case, or 

T-l 

R 17, 11 (T) = lim 2_ '°' (J'(x(t + T))TJ(x(t)) 
T-->oo T ~ 

t=O 

R17 , 11 (T) = lim 2_ ( (J'(x(t + T))TJ(x(t)) dt 
T--,oo T }0 

in the continuous case. The average of the function (J' is just 

T-l 

< (J' >= lim Tl '°' (J'(x(t)), 
T-->oo ~ 

t=O 

or 

l 1T < (J' >= lim - (J'(x(t)) dt, 
T-->oo T 0 

so it is clear that 

(1) Ru,11 (0) =< (J'T) >; and 
(2) R172(0)R112(0) 2 Ru,11 (T). This follows directly by writing out the expression< [o:(J'(t) + /3TJ(t + T)j2 > for real 

and nonzero o: and /3, and noting that it must be nonnegative. 

The covariance of (J' with TJ, C17, 11 (T), is defined by 

Cu,11 (T) = Ru,11 (T)- < (J' >< T) >, 

while the normalized covariance Pu,11 (T) is 

Clearly, Prr, 11 (0) = 1. 

( ) - R17 , 11 (T)-<(J'><T)> 
Pu,71 T - < (J'T) > - < (J' >< T/ > 

Now assume we have an ergodic transformation St with consequent unique stationary density J., operating in a 
finite normalized phase space X, and that St is generating the sequence of values {x(t)}. Then the correlation of (J' 
with 'T/ can be written in both the discrete and continuous time case as 

Ru,11 (T) = l (J'(Sr(x))TJ(x)f.(x) dx (5. 7) 

by use of the extension of the Birkhoff Ergodic Theorem 4.6. Using the definition of the Koopman operator, along 
with the adjointness of the Ftobenius-Perron and Koopman operators, equation (5.7) can be rewritten in the form 

(5.8) 

Writing the defining relation for mixing transformations as in the proof of Theorem 5.1, it is clear that for general 
functions 'T} and (J' we have 

lim < pt(TJf.), (J' >=< TJf., l >< f., (J' >, 
t----tCX) 

so (5.8) yields 
)i~ R 17, 11 (T) =< T) >< (J' > 

when St is mixing. Thus we have the following result connecting mixing with the limiting behaviour of the normalized 
covariance. Namely, 

Theorem 5.3. St is J. mixing if and only if 
lim Pu, 11 (T) = 0. 

T-->00 
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Both Krylov and Ma emphasize decay of correlations to zero in a finite time as being important for the approach 
of the entropy to its maximum. Many exact transformations have this property, so we have the following conjectures. 

Conjecture 1. S : X ---, X measure preserving (is it necessary that measure be finite). S is exact if and only if 
::3 finite To > 0 3 

VT> To. 

Corollary 1. ::3 finite no(!) > 0 3 
H(Pn f) = 0 V n > no(!). 

Conjecture 2. S : X ___, X ergodic with stationary density J.. S is asymptotically stable if and only if ::3 finite 
To> 0 3 

Rt,g(T) =< f, 1 >< J.,g) 

VT> To. 

f E L1, g E L00 

Corollary 2. ::3 finite no(!) > 0 3 
H(Pn flf,) = 0 V n > no(!). 
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WEAK LASOTA MIXING 

In the normal definition of weak mixing we have S : X ---, X on a normalized measure space, S measure preserving 
{=} J. = 1 is the only stationary density. Then Sis weak mixing if and only if 

n-l 

lim ..!:. '°' jµ(A n s-k(B)) - µ(A)µ(B)I = o 
n---+oo n ~ 

k=O 

A,BEA. 

An obvious extension to a non measure preserving S is given by 

Definition. Sis Lasota Weak Mixing if VA, B, CC A ::3 finite positive .X, independent of C, 3 

. 1 n-11 µ(An s-k(C)) I 
hm- -.X=O 

n---.oo n ~ µ(B n S-k(C)) 
VA,B c A. 

GENERALIZATIONS OF K-AUTOMORPHISM 

In the normal case we define K-automorphism in the following way. We have sn(A) = {Sn(A): AC A}. (X,A,µ) 
is normalized and S : X ___, X is invertible and 3 S and s- 1 are measurable and measure preserving. S is a K 
automorphism is ::3 a sigma algebra Ao C A 3 

(1) s- 1 (Ao) C Ao; 
(2) The sigma algebra n~=0 s-n(Ao) is trivial (only consists of sets of measure O or 1); and 
(3) The smallest sigma algebra containing U~=0s-n(Ao) is A. 

How to generalize this definition to non measure preserving S so that the new property {=} Lasota Mixing? ::3 two 
questions here: 

(1) Generalize K automorphism definition to non measure preserving S. Hint: Look at the proof that the baker 
transformation is a K automorphism (E4.5.1, pp 74-5) for clue of how to generalize. 

(2) Show that the generalization {=} Lasota Mixing. Hint: Look at proof of Theorem 4.5.2 (every K auto is 
mixing) for the clue. See also Walters (1982) An Introduction to Ergodic Theory, Springer; and Parry 
(1981) Topics in Ergodic Theory, Cambridge University Press. 


