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ABSTRACT. Recent results from ergodic theory are used to examine
the possible dynamical foundations of nonequilibrium thermodynamics.
Though ergodicity is necessary and suÆcient to establish a unique state of
thermodynamic equilibrium, much stronger dynamical properties (asymp-
totic periodicity and exactness) are needed to ensure that system entropy
will change from its initial level. Asymptotic periodicity allows system en-
tropy to evolve to a relative state of thermodynamic equilibrium in which
the �nal entropy depends on system preparation. Exactness, a property
that only irreversible (noninvertible) systems may have, is both neces-
sary and suÆcient for entropy to go to zero. Since all physical laws are
formulated in terms of reversible dynamics, these results present a clear
problem. Coarse graining, traces, factors, and perturbations are examined
as possible sources of the experimentally observed behaviour of entropy.
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0. INTRODUCTION.

The mathematical discipline of ergodic theory developed in response to
mathematical questions raised by the seminal work of Boltzmann[1] and Gibbs[11]

at the turn of the century. Though the �rst few decades of this century saw
extensive interaction between ergodic theorists and statistical mechanicians, the
�elds have diverged somewhat in recent years leaving a number of important
physical questions unanswered. This paper outlines a reconvergence of these two
�elds. A more extensive discussion of the issues raised here and examples of
various points, as well as a proof of all results, can be found elsewhere[22;25;25a].

The central goal of this paper is to examine the primary issues that any
successful statistical mechanics must address in deriving an understanding of the
origin of the Second Law of thermodynamics. The Second Law of thermodynam-
ics comes in so many forms that it is often confusing to understand precisely what
a given author understands by the use of this term. To make matters explicit,
we distinguish four versions. Let STD(t) denote the thermodynamic entropy at
time t.

The weakest form of the Second Law is the

0th order Second Law. STD(t) = STD(t
0) for all times t; t0, so the entropy

di�erence �S = STD(t
0)� STD(t) satis�es �S � 0:

In this form, the system entropy remains forever �xed at the value with which
the system is prepared, be it by Nature or by an investigator.

The next strongest form is called the

1st order Second Law. STD(t) � STD(t
0) for all times t > t0 Thus, with this

form the system entropy may increase and �S � 0.

Following the 1st order form we have the stronger assertion

2nd order Second Law. STD(t) � STD(t
0) for all times t > t0 and at least

one limt!+1 STD(t) = S�TD exists. Thus �S(t) = STD(t) � S�TD � 0 and
limt!+1�S(t) � 0:

In this case system entropy converges to a steady state value S�TD which may not
be unique. If it is not unique it characterizes a metastable state.

The �nal, and strongest, form of the Second Law of thermodynamics is the
most interesting.

3rd order Second Law. STD(t) � STD(t
0) for all times t > t0 and there is

a unique limt!+1 STD = S�TD for all initial system preparations. Under these
circumstances, limt!+1�S(t) = 0:

In this case we know that the system entropy evolves to a unique maximum value
irrespective of the way in which the system was prepared.
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1. PRELIMINARIES.

In this section we introduce some basic concepts.

1.1. Thermodynamic Systems and Measure Spaces.

We �rst start with a set X which is going to be the phase space on which
all of our dynamics operates. Whatever X is we are going to assume that it does
not have any pathological properties. We let A denote a �-algebra on X , and
� be a measure de�ned on the �-algebra A .

With the three concepts of a phase space X , a �-algebra A, and a measure
� we call the triple (X;A; �) a measure space. All of the measure spaces we
consider will be �-�nite, and we associate a thermodynamic system with a �-�nite
measure space through the following postulate.

POSTULATE A. A thermodynamic system is equivalent to a measure
space.

1.2. Dynamics.

Consider a general thermodynamic system operating in a phase space X .
On this phase space the temporal evolution of our system is described by a
dynamical law St that maps points in the phase space X into new points, i.e.,
St : X ! X , as time t changes. In general X may be a d-dimensional phase
space, either �nite or not, and therefore x is a d-dimensional vector. Time t may
be either continuous (t 2 R) or discrete (integer valued, t 2 Z).

Two types of dynamics will be important in our considerations. First we
introduce the concept of a dynamical system fStgt2R (or, alternately, t 2 Z
for discrete time systems) on a phase space X , which is simply any group of
transformations St : X ! X having the two properties: (1) S0(x) = x; and

(2) St(St0(x)) = St+t0(x) for t; t
0

2 R. Dynamical systems are invertible or
reversible since they may be run either forward or backward in time. All of the
laws of classical and quantum physics are invertible and describe the behaviour
of reversible systems.

The second type of dynamics that is important to distinguish are those of
semidynamical systems fStgt>0, which is any semigroup of transformations

St : X ! X , i.e. (1) S0(x) = x; and (2) St(St0(x)) = St+t0(x) for t; t
0

2 R+

(or N). In sharp contrast to dynamical systems, semidynamical systems are
noninvertible or irreversible and may not be run backward in time in an
unambigious fashion.

It is important not to confuse the issue of reversibility (or invertibility),
which is a purely mathematical question, with the issue of dissipativeness, which
is a physical question. In spite of the enormous signi�cance of distinguishing
between dynamical and semidynamical systems later, at this point no assumption
is made concerning the invertibility or noninvertibility of the system dynamics.
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1.3. Thermodynamic States and Densities.

In keeping with the ergodic theory approach adopted here we study the way
in which the system dynamics operate on an in�nite number of initial points.
More speci�cally, we will examine the way in which the dynamics alter densities.
If f is an L1 function in the space X , i.e., if

R
X jf(x)j dx < 1; then f is a

density if f 2 ff 2 L1 : f � 0; k f k= 1g. As usual, k f k denotes the L1

norm of the function f , k f k=
R
X jf(x)j dx: The examination of the evolution

of densities by system dynamics is equivalent to examining the behaviour of an
in�nite number of trajectories. This apparently simple assumption concerning
the way in which systems operate on densities is so fundamental and important
to the understanding of the foundations of thermodynamics that it is given a
special status.

POSTULATE B. A thermodynamic system has, at any given time, a
state characterized by a density f(x), not necessarily independent of
time.

Given a density f then the f-measure �f (A) of the set A in the phase space
X is de�ned by �f (A) =

R
A f(x) dx; and f is called the density of the measure

�f . The usual Lebesgue measure of a set A is denoted by �L(A), and the density
of the Lebesgue measure is the uniform density, f(x) = 1=�L(X) for all points x
in the phase space X . We always write �L(dx) = dx.

Both Boltzmann and Gibbs, in their treatments of statistical mechanics,
assumed they were dealing with systems of dimension d = 2s whose dynamics
were described by s position variables xi and s momentum variables pi.

Boltzmann considered the basic phase space to be a 2s dimensional space
which is usually called � space. He then considered the evolution of a large
number N of identical particles, each with the same dynamics, in � space. N is
large and typically on the order of Avagadro's number, 6 � 1023. The limiting
case of N ! 1 is the thermodynamic limit in which case the Boltzmann
approach considers the evolution of a density in � space.

Gibbs also considered N identical particles operating with these 2s dimen-
sional dynamics in a phase space (commonly called the � space) of dimension
2sN . He then considered an in�nite number of copies of this original system,
and gave this construct the name ensemble. Thus Gibbs studies the evolution
of the ensemble density.

1.4. Boltzmann-Gibbs Entropy.

In his work Gibbs, assuming the existence of a system state density f on
the phase space X , introduced the concept of the index of probability given
by log f(x) where \log" denotes the natural logarithm. He then introduced a
quantity H(f) which is the negative of the phase space average of the index of
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probability weighted by the density f , i.e.

H(f) = �

Z
X

f(x) log f(x) dx:

This is now known as the Boltzmann-Gibbs entropy of a density f since
precisely the same expression appears in Boltzmann's work (with the opposite
sign) but the phase space is di�erent for Boltzmann (� space) and for Gibbs (�
space). The Boltzmann Gibbs entropy is just the expectation of the negative of
the index of probability, and is the only reasonable candidate for a theoretical
analog of the empirical thermodynamic entropy. This is because the only function
for the index of probability that gives the requisite additive property to make the
entropy an extensive quantity is the logarithmic function, and that it is unique
up to a multiplicative constant.

2. MAXIMAL ENTROPY PRINCIPLES.

2.1. Microcanonical Ensembles.

We may immediately understand the origin of the classical Gibbs micro-
canonical ensemble as re
ecting a simple manifestation of extremal properties of
the entropy. Consider a given spaceX with �nite Lebesgue measure, �L(X) <1
(forgo the normalization �L(X) = 1 temporarily), and all possible densities f .
Then the only density that maximizes the entropy is the (uniform) density of the
Lebesgue measure of X . More precisely,

Theorem 2.1. When �L(x) < 1, the density that maximizes the Boltzmann-
Gibbs entropy is the uniform density

f�(x) =
1

�L(X)
: (1)

For any other density f 6= f�, H(f) < H(f�).

Notice that in this theorem there is no reference to the nature of the dy-
namics of the system generating the density. This is in sharp contrast to the
usual approach in thermodynamics in which the dynamics are quite speci�cally
used to argue for the plausibility of the microcanonical density (1). The fact that
a generalization of this density appears in such a natural way merely illustrates
the generality of both the density and the method used to obtain it, and that
the existence of the density of the microcanonical ensemble is independent of the
system dynamics.

2.2. Canonical Ensembles.

Even more interesting consequences can emerge from the extremal proper-
ties of entropy that o�er insight into the basic foundation of thermodynamics of
both classical and quantum systems. Namely,
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Theorem 2.2. Assume that a nonnegative measurable function �(x) is given as
well as the average < � > of that function over the entire space X , weighted by
the density f :

< � >=

Z
X

�(x)f(x) dx: (2)

(Note that < � > is nonnegative and may be time dependent.) Then the maxi-
mum of the entropy H(f), subject to the constraint (2), occurs for the density

f�(x) = Z�1e���(x) (3)

where Z is de�ned by

Z =

Z
X

e���(x) dx; (4)

and � is implicitly determined from < � >= Z�1
R
X �(x)e���(x) dx:

The choice of notation in (3) and (4) was intentional to draw the connection
with the density of the Gibbs canonical ensemble, especially that Z corresponds
to the partition function. It is quite easy to state and prove an obvious general-
ization of Theorem 2.2 that is applicable to systems in which there are multiple
known averages < �i >.

2.3. The Thermodynamic Connection.

All of conventional equilibrium thermodynamics can be deduced from the
density (3), by a proper association with thermodynamic quantities[25;25a], if we
admit the fundamental assumption of thermodynamics that

POSTULATE C. There exists a one to one correspondence between
states of thermodynamic equilibrium and states of maximum entropy.

If there is but one state of thermodynamic equilibrium that is attained
regardless of the way in which the system is prepared then this is called a globally
stable equilibrium and is associated with a globally stable state of maximal
entropy (3rd order form of the Second Law). If, however, there are multiple states
of thermodynamic equilibrium, each corresponding to a state of locally maximal
entropy and dependent on the initial preparation of the system, then we say that
these are local or metastable states of equilibrium (2nd order Second Law).

3. REVERSIBLE AND IRREVERSIBLE SYSTEMS.

From the perspective of the previous section, the central problem in ther-
modynamics is: \How may one guarantee that the entropy of a system
will increase to its maximum value regardless of the manner in which
it was prepared?" In this section we start our investigation of this question.
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3.1. Markov Operators.

In every situation considered by theoretical physics, as developed to this
point in time, the evolution of densities may be studied by the use of either the
linear Markov or Frobenius-Perron operators. This is in spite of the fact that the
underlying system dynamics responsible for the evolution of the density may be
highly nonlinear.

The Frobenius-Perron operator, introduced in Section 4, is the most useful
to describe the evolution of densities in systems for which the dynamics are
totally deterministic, i.e. the dynamics evolve according to a very speci�c law
that permits the accurate speci�cation of a system state at any point in time.

The Frobenius-Perron operator is a special case of the more general Markov
operator which may be used in the description of both deterministic and stochas-
tic systems. Since the �rst results on reversibility and irreversibility that are of
importance to an understanding of thermodynamics can be stated for Markov
operators, we start with them.

Any linear operator P t : L1 ! L1 that satis�es: (1) P tf � 0; and (2)
k P tf k=k f k for all t 2 R and f � 0, f 2 L1 is called a Markov operator. If
we restrict ourselves to only considering densities f , then any operator P which
when acting on a density again yields a density is a Markov operator. Any density
f� that satis�es P tf� = f� for all t is said to be a stationary density of the
Markov operator P .

In precise analogy with the de�nitions of dynamical and semi- dynamical
systems in the last section, we may discuss reversible and irreversible Markov
operators. Given a Markov operator P t, then P t is a reversible Markov oper-

ator if: (1) P 0f = f ; and (2) P t(P t
0

f) = P t+t
0

f for all t; t
0

2 R or Z. Clearly,

allowing t; t
0

2 R or Z is the origin of the reversibility. However, if property

(2) of a reversible Markov operator is replaced by (2') P t(P t
0

f) = P t+t
0

f for all

t; t
0

2 R+ or N , then P t is an irreversible Markov operator.

3.2. Conditional Entropy.

If f and g are two densities such that supp f � supp g [supp f denotes the
support of f ], then the conditional entropy of the density f with respect to
the density g is

Hc(f jg) = �

Z
X

f(x) log

�
f(x)

g(x)

�
dx: (5)

The conditional entropy is always de�ned, i.e. Hc is �nite or equal to �1. As is
evident from the de�ning equation (5), Hc(f jg) measures the deviation between
the two densities f and g.

There are two important properties of Hc(f jg): (1) Since f and g are both
densities, it can be shown that Hc(f jg) � 0. It is only when f = g that the
equality holds; and (2) If g is the constant density of the microcanonical ensemble,
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i.e. g = 1=�(X) throughout the phase space X , then Hc(f jg) = H(f)� log�(X).
If the space X is normalized, then g = 1 and Hc(f j1) = H(f). This illustrates
how the conditional entropy is a generalization of the Boltzmann-Gibbs entropy.

From the de�nition it follows that Hc(f jg) = H(f) +
R
X
f(x) log g(x) dx:

An elementary calculation using property (1) of Hc(f jg) shows that the second
term in the rewritten form of Hc(f jg), with f = g = f�, is just �H(f�) and
that Hc(f jf�) = 0 when f = f�. These observations, in conjunction with our
formulations of the 2nd and 3rd order forms of the Second Law, immediately
suggest that the conditional entropy Hc can be interpreted as the entropy dif-
ference �S. For example, under the conditions of Theorem 2.2, the Boltzmann-
Gibbs entropy H(f) is maximized by the density f� given by equation (3) and
H(f�) = logZ + � < � > : Thus, within the context of Theorems 2.1 and 2.2 we
conclude that the conditional entropy will be zero whenever the Boltzmann-Gibbs
entropy is at its maximum value.

With only the few tools developed so far and our identi�cation of Hc with
�S, the behaviour of the entropy of a sequence of densities fP tfg evolving under
the action of a Markov operator may be examined. The �rst result is a weak (1st

order) form of the Second Law of thermodynamics stating that the conditional
entropy is never decreasing. More precisely[32],

Theorem 3.1. If P t is a Markov operator, then Hc(P
tf jP tg) � Hc(f jg) for and

all densities f and g.

Notice in this theorem that if g = f� is a stationary density of P
t so P tf� =

f�, then Hc(P
tf jf�) � Hc(f jf�): Thus the conditional entropy with respect to a

stationary density is always a nondecreasing function bounded above by Hmax =
Hc(f�jf�) = 0. In examining the behaviour of Hc(P

tf jf�) we therefore know
that it has a limit as t ! 1, though more information about P t is required to
de�ne the limiting value.

The conclusions of Theorem 3.1 seem to be precisely the same as those
reached by Boltzmann[1] in his pioneering work on the mechanical foundations of
thermodynamics. However, things are not quite as transparent as this since to
this point nothing has been said about the reversibility or irreversibility of the
Markov operator P t with respect to the behaviour of the entropy. This distinction
is crucial for the limiting value of Hc(P

tf jf�) since the entropy for a reversible
Markov operator is constant and determined by the way in which the system is
prepared.

Theorem 3.2. If P t is a reversible Markov operator, then the conditional en-
tropy is constant for all times t, and equal to the value determined by the choice
of the initial densities f and g. That is, Hc(P

tf jP tg) = Hc(f jg) for all t.

From this theorem, in any system whose evolution of densities is described
by a reversible Markov operator the entropy is forever �xed at a value determined
by the initial state. Or, put another way, the entropy is uniquely determined
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by the method of preparation of the system. A specialized form of the proof of
Theorem 3.2 was used by Loschmidt[24] in hisUmkehreinwand (objection based on
time reversal) argument against the Boltzmann approach to statistical mechanics.

Thus, not too surprisingly, we conclude that irreversibility in system dynam-
ics, as re
ected in an evolution of densities via an irreversible Markov operator, is
necessary for the entropy to increase as the system evolves. We cannot, however,
assert that irreversibility is suÆcient to guarantee this, and indeed it is not the
case.

Based on much more speci�c assumptions, this result concerning the neces-
sity of irreversibility was well known to Clausius[3] and Boltzmann[1], two of the
founders of modern thermodynamic theory. How, then, did Boltzmann arrive at
his conclusion that the entropy would increase to a maximum in a collection of
particles moving under the action of (reversible) Hamiltonian dynamics? Both he
and Clausius tried to circumvent this clear problem [the use of reversible (Hamil-
tonian) dynamics] by the addition of their Stosszahlansatz (molecular chaos) pos-
tulate. This reduces, quite simply, to a postulate of irreversibility.

4. ERGODICITY.

In the last section we asserted the necessity of irreversibility for increases
in entropy to take place. However, the two interrelated questions of the exis-
tence of a unique state of thermodynamic equilibrium, and the global approach
of the entropy to an absolute maximum, were not addressed. This section pro-
vides a necessary and suÆcient criterion for the existence of a unique state of
thermodynamic equilibrium as characterized by a unique stationary density f�.

4.1. The Frobenius Perron Operator.

A transformation St is said to be measurable if S�1t (A) � X for all A �
X . Furthermore, given a density f� and associated measure ��, a measurable
transformation St is nonsingular if ��(S

�1
t (A)) = 0 for all sets A such that

��(A) = 0.
If St is a nonsingular transformation, then the unique operator P t : L1 ! L1

de�ned by Z
A

P tf(x) dx =

Z
S�1

t
(A)

f(x) dx (6)

is called the Frobenius-Perron operator corresponding to S.
If f is a density, then equation (6) de�ning the Frobenius-Perron operator

has a simple intuitive interpretation. Start with an initial density f and inte-
grate this over a set B that will evolve into the set A under the action of the
transformation St. However, the set B is S�1t (A). This integrated quantity must
be equal, since St is nonsingular, to the integral over the set A of the density
obtained after one application of St to f . This �nal density is P tf .

Given a density f and associated measure �f , then a measurable transfor-

mation St is said to be f measure preserving if �f (S
�1
t (A)) = �f (A) for all
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sets A. Measure preserving transformations are necessarily nonsingular. Since
the concept of measure preservation is not only dependent on the transformation
but also on the measure, we alternately say that the measure �f is invariant
with respect to the transformation St if St is f measure preserving.

It is possible to draw a connection between states of thermodynamic equi-
librium, invariant measures and stationary densities of the Frobenius-Perron op-
erator through the following theorem.

Theorem 4.1. Let St be a nonsingular transformation and P t the Frobenius-
Perron operator associated with St. Then there exists a state of thermodynamic
equilibrium whose density f� is a stationary density of P t if and only if the
measure ��(A) =

R
A f�(x)dx is invariant with respect to St.

In particular the density f� = 1 of the microcanonical ensemble corresponds
to a state of thermodynamic equilibrium if and only if the system dynamics pre-
serve the Lebesgue measure. That is, systems preserving the Lebesgue measure
may be appropriately described by the microcanonical ensemble. Of course it is
important to realize that this theorem says nothing about either the uniqueness
of this state of thermodynamic equilibrium or of the invariant measure corre-
sponding to it.

4.2. Ergodicity.

We are ready to begin consideration of the characteristics St must have
to guarantee the existence of a unique state of thermodynamic equilibrium that
maximizes the entropy. The density maximizing the entropy should also be an
equilibrium density, so our search is really one for the properties of St necessary
to guarantee that a density f� is a stationary density of the Frobenius-Perron
operator corresponding to St; i.e. P

tf� = f�, and that f� is unique.

We start by de�ning a few new terms, given, as usual, dynamics described
by a transformation St. First, any set A such that S�1t (A) = A is called an
invariant set. Given a density f� on a space X , any invariant set A such that
��(A) = 0 or ��(X nA) = 0 is called trivial.

A nonsingular transformation St is said to be f� ergodic if every invariant
set A is a trivial subset of the phase spaceX , i.e. either ��(A) = 0 or ��(XnA) =
0. If the phase space is �nite and f�is the uniform density of the microcanonical
ensemble, then we say that St is uniformly ergodic instead of f� ergodic. In
the older physics and mathematics literature, ergodic systems were often called
metrically transitive or metrically indecomposable.

The following result establishes a one to one correspondence between the
uniqueness of a state of thermodynamic equilibrium and ergodicity.

Theorem 4.2. Let St be a nonsingular transformation and P t the corresponding
Frobenius Perron operator. There is a unique state of thermodynamic equilibrium
with associated stationary density f�, P

tf� = f� if and only if St is f� ergodic.
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What does this result, in conjunction with Theorem 4.1, tell us? First
consider the microcanonical ensemble with its uniform density. Then a given
dynamics St will be measure preserving with respect to the Lebesgue measure
if and only if the uniform density of the microcanonical ensemble is a station-
ary density of the Frobenius-Perron operator corresponding to St. Furthermore,
from Theorem 4.2 the uniform density of the microcanonical ensemble will be the
unique stationary density of P t if and only if the system St is uniformly ergodic.
Hence, the existence of a unique state of thermodynamic equilibrium, charac-
terized by the uniform density of the microcanonical ensemble which maximizes
the Boltzmann-Gibbs entropy to zero, is totally dependent on the operation of a
uniformly ergodic dynamics that preserves the Lebesgue measure!

In the more general case, the nonuniform density f� of the canonical en-
semble which maximizes the conditional entropy will be the unique density cor-
responding to a state of thermodynamic equilibrium if and only if it is the sta-
tionary density of the Frobenius-Perron operator corresponding to an f� ergodic
system St with respect to which the measure ��(A) =

R
A f�(x) dx is invariant.

Thus in complete generality ergodicity is necessary and suÆcient to guar-
antee the existence of a unique state of thermodynamic equilibrium characterized
by maximal entropy. That this unique state exists is, of course, only half of the
picture for we must also understand what kind of systems can evolve to that
state.

To conclude we state one last theorem concerning conditions for the f�
ergodicity of a transformation St and thus, by our comments following Theorem
4.2, for the existence of a unique state of thermodynamic equilibrium.

Theorem 4.3. Let St be a nonsingular transformation and P t the corresponding
Frobenius Perron operator with stationary density f� > 0 for all points in the
phase space X . Then St is f� ergodic if and only if fP tfg is Ces�aro convergent to

f� for all densities f , i.e., if limt!1
1
t

Pt�1
k=0 < P kf; g >=< f�; g > in the discrete

time case, or if limT!1
1
T

R T
0 < P tf; g > dt =< f�; g > in the continuous time

case, for all bounded measurable functions g.

Since Frobenius-Perron operators are specialized Markov operators, we ex-
tend the concept of ergodicity to Markov operators. Thus let P t be a Markov
operator and assume that P t has a stationary density f�. We will say that P t is
f� ergodic if fP tfg is Ces�aro convergent to f� for all initial densities f .

5. ASYMPTOTIC PERIODICITY.

In this section we turn to an investigation of the fascinating property of
asymptotic periodicity in the evolution of densities. This behaviour is the sta-
tistical analog for densities of the more common periodicity found in some time
series. The existence of asymptotic periodicity implies a 2nd order form of the
Second Law.
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5.1. Asymptotic Periodicity.

A Markov operator P t is said to be smoothing if there exists a set A of
�nite measure, and two positive constants k < 1 and Æ > 0 such that for every
set E with �L(E) < Æ and every density f there is some integer t0(f; E) for
which

R
E[(XnA) P

tf(x) dx � k for t � t0(f; E). This de�nition of smoothing just

means that any initial density, no matter how small a region of the phase space
X it is concentrated on, will eventually be smoothed out by P t.

Smoothing operators are important because of the following result[19].

Theorem 5.1. Let P t be a smoothing Markov operator. Then there is an
integer r > 0, a sequence of nonnegative densities gi and a sequence of bounded
linear functionals �i, i = 1; : : : ; r; and an operator Q : L1 ! L1 such that for all
densities f , Pf has the form

Pf(x) =
rX
i=1

�i(f)gi(x) +Qf(x): (7)

The densities gi and the operator Q have the following properties: (1) The gi
have disjoint support (i.e. are mutually orthogonal), so gi(x)gj(x) = 0 for all
i 6= j; (2) For each integer i there is a unique integer �(i) such that Pgi = g�(i).
Furthermore, �(i) 6= �(j) for i 6= j. Thus the operator P permutes the densities
gi; and (3) k P tQf k! 0 as t ! 1, t 2 N , so Q can be viewed as a transient
operator.

Notice from equation (7) that P t+1f may be immediately written in the
form

P t+1f(x) =

rX
i=1

�i(f)g�t(i)(x) +Qtf(x); t 2 N (8)

where Qt = P tQ, k Qtf k! 0 as t ! 1, and �t(i) = �(�t�1(i)) = � � � .
The terms in the summation of (8) are just permuted by each application of
P . Since r is �nite, the sum

Pr
i=1 �i(f)g�t(i)(x) must be periodic with a period

T � r!. Further, as f�t(1); : : : ; �t(r)g is just a permutation of 1; : : : ; r this
summation takes the alternative form

Pr
i=1 ���t(i)(f)gi(x); where �

�t(i) is the

inverse permutation of �t(i).
This rewriting of the summation portion of (8) makes the e�ect of successive

applications of P completely transparent. Each operation of P permutes the set
of scaling coeÆcients associated with the densities gi(x) [remember that these
densities have disjoint support]. Since the summation portion of (8) is periodic
(with a period bounded above by r!), and k Qtf k! 0 as t ! 1, we say
that for any smoothing Markov operator the sequence fP tfg is asymptotically
periodic.

One of the interesting interpretations of equation (8) is that any asymp-
totically periodic system is quantized from a statistical point of view. Thus if t
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is large enough, which simply means that we have observed the system longer
that its relaxation time so k Qtf k' 0, then P t+1f(x) '

Pr
i=1 �i(f)g�t(i)(x):

Asymptotically, P tf is either equal to one of the basis densities gi of the i
th pure

state, or to a mixture of the densities of these states, each weighted by �i(f).
It is important to also realize that the limiting sequence fP tfg is, in general,
dependent on the choice of the initial density f .

Asymptotically periodic Markov operators always have at least one station-
ary density given by

f�(x) =
1

r

rX
i=1

gi(x); (9)

where r and the gi(x) are as in the Komornik-Lasota Theorem 5.1. It is easy to
see that f�(x) is a stationary density, since by Property (2) of Theorem 5.1 we
also have Pf�(x) =

1
r

Pr
i=1 g�(i)(x); and thus f� is a stationary density of P t.

Hence, for any smoothing Markov operator the stationary density (9) is just the
average of the densities gi.

We close with a necessary and suÆcient condition for the f� ergodicity of a
smoothing Markov operator.

Theorem 5.2. Let P be a smoothing, and thus asymptotically periodic, Markov
operator working in a normalized measure space. Then P is ergodic if and only
if the permutation �(i) of the Spectral Decomposition Theorem 5.1 is cyclical.

Thus, cyclicity of the permutation �(i) is necessary and suÆcient for the
existence of a unique state of thermodynamic equilibrium characterized by the
stationary density f�.

5.2. Local Evolution of Entropy.

The fact that asymptotically periodic Markov operators have a stationary
density given by (9) does not guarantee the uniqueness of this stationary density.
Regardless of whether or not asymptotically periodic systems have unique sta-
tionary densities, they have the important property that their conditional entropy
is an increasing function that approaches a maximum.

Theorem 5.3. Let P be an asymptotically periodic Markov operator with sta-
tionary density f�. Then the conditional entropy Hc(P

tf jf�) of P tf with respect
to f� approaches a limiting value Hmax(f; f�) � 0, where

Hmax(f; f�) = �
X
i

Z
X

�i(f)gi(x) log

(
1

f�(x)

X
i

�i(f)gi(x)

)
dx: (10)

Note that if the stationary density f� of P is given by (9), then the ex-
pression for Hmax(f; f�) becomes even simpler. Namely, Hmax(f; f�) = � log r�Pr

i=1 �i(f) log�i(f) when we use the orthogonality of the densities gi(x). Since
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0 � �i(f) � 1 for all i, we may also place a lower bound on Hmax(f; f�) with
� log r � Hmax(f; f�) � 0:

This 2nd order form of the Second Law of thermodynamics is the strongest
result that we have yet encountered. It demonstrates that as long as the density
in a discrete time system evolves under the operation of a Markov operator that
is smoothing, the conditional entropy of that density converges to a maximum.
However, there are two important facets of this evolution that should be recog-
nized: (1) The convergence of the entropy is due to the fact that k Qtf k! 0 as
t!1 in the representation (8) of Theorem 5.1; and (2) The maximum value of
the entropy, Hmax(f; f�), as made explicit by the notation, is generally depen-
dent on the choice of the initial density f and, thus, the method of preparation
of the system.

6. MIXING.

In this section, we consider systems with irregular dynamical behaviors that
are stronger than ergodic. Namely, we consider with dynamics described by f�
measure preserving transformations that have the property of strong, or Hopf,
mixing. Systems with reversible mixing dynamics have entropies that are forever
�xed by their mode of preparation. However, it is important to discuss mixing
for two reasons. First there is a general misconception that mixing is suÆcient
to allow the evolution of entropy to a maximum. This is most certainly not
the case in spite of the fact that mixing is necessary for the evolution of system
entropy to a maximum. Secondly, as we will show in Section 8, if there is a
certain imprecision in our knowledge of the values of the state variables in a
mixing system then this is suÆcient to cause the system entropy to evolve to its
maximal value.

6.1. Mixing.

Gibbs[11] realized that ergodicity was inadequate to guarantee the approach
of system entropy to equilibrium. As a consequence he qualitatively discussed a
property stronger than ergodicity which is now called (strong) mixing. This
was subsequently developed mathematically by Hopf[14], Koopman[20], and von
Neumann[33].

Let St be an f� measure preserving transformation operating on a �nite
normalized space. Then St is called f� mixing if limt!1 ��(A \ S�1t (B)) =
��(A)��(B) for all sets A and B. If f� is the uniform density of the microcanon-
ical ensemble, then we say that St is uniformly mixing. The de�ning relation
for f� mixing could equally well be written limt!1 ��(A\St(B)) = ��(A)��(B);
whenever St is reversible (invertible).

It is a straightforward consequence of the de�nition that f� mixing implies
ergodicity. Furthermore, an f� measure preserving transformation St, with as-
sociated Frobenius-Perron operator P t and stationary density f�, is f� mixing
if and only if the sequence fP tfg is weakly convergent to the density f� for all
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initial densities f . If f� = 1, then St is uniformly mixing if and only if fP tfg
is weakly convergent to the density of the microcanonical ensemble for all initial
densities f . This is expressed more formally in:

Theorem 6.1. Let St be an ergodic transformation, with stationary density f�
of the associated Frobenius- Perron operator, operating in a phase space of �nite
f� measure. Then St is f� mixing if and only if fP tfgis weakly convergent to f�,
i.e., limt!1 < P tf; g >=< f�; g > :

In our subsequent discussion, we will call a Markov operator P t with sta-
tionary density f� mixing if fP tfg is weakly convergent to f�.

Gibbs[11], Krylov[21], and many others have emphasized the importance of
mixing for the understanding of thermodynamic behaviour. Indeed, at �rst one
might think that this weak convergence of the sequence fP tfg to the density
f� of the canonical ensemble, or to the density f� = 1 of the microcanonical
ensemble, no matter what initial density f was chosen, would be exactly what is
required to guarantee the approach of the entropy to its maximum. Such is not
the case. It is most certainly true that mixing is necessary for this convergence
of the entropy, but it is not suÆcient as we show in Section 7.

6.2. Kolmogorov Automorphisms.

In this section, a concept that will be used later is brie
y introduced, namely
that of Kolmogorov automorphisms, or K automorphisms. We use the notation
St(A) = fSt(A) : A 2 Ag , t = 0;�1;�2; : : : ; where A is a sigma algebra. Then
if St is an invertible transformation operating on a normalized space, and both
St and S�t are f� measure preserving, St is said to be a K-automorphism if
there is a sigma algebra A0 2 A such that: (1) S�t(A0) 2 A0; (2) The sigma
algebra de�ned by \1t=0S�t(A0) is trivial in the sense that it only contains sets
of f� measure 0 or 1; and (3) The smallest sigma algebra containing [1t=0St(A0)
is identical to A .

Kolmogorov automorphisms have behaviors stronger than mixing in that
if a transformation is a K-automorphism then this also implies that it is f�
mixing[4;34]. The other property of K-automorphisms that is important for ther-
modynamic considerations is that since they are f� measure preserving they have
a unique stationary density f�. However, since they are invertible,by Theorem
3.2 the entropy of a K-automorphism is identically equal to the initial entropy
determined by the initial density with which the system is prepared.

7. ENTROPY EVOLUTION TO ITS MAXIMUM.

The results of the previous sections indicate that attention should be focused
on extensions of the concepts of ergodicity, asymptotic periodicity, and mixing
that may only occur in irreversible systems. Since we also know that increases in
entropy need not culminate in the maximum value of the entropy (e.g. asymp-
totically periodic systems, Section 5), the essential question we must now face is:
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Under what circumstances will the entropy of an irreversible system
approach its maximum value of zero? This section provides a complete
answer to this question.

7.1. Exactness.

If St is an f� measure preserving transformation operating on a normalized
phase space X , then St is said to be f� exact if limt!1 ��(St(A)) = 1 for all
sets A of nonzero measure. If f� is the uniform density, f� = 1, then we say that
St is uniformly exact. The f� exactness of a transformation implies that it is
f� mixing.

To understand the nature of exactness, it is �rst important to realize that
reversible systems can never be exact. To see this, note that for a reversible f�
measure preserving transformation St we have ��(St(A)) = ��(S

�1
t (St(A))) =

��(A). Thus the de�nition of exactness is violated.
Exact systems are important for an understanding of how convergence to a

stationary density f� of the canonical ensemble may be reached in a way that is
an extension of mixing. Speci�cally,

Theorem 7.1. If St is an f� measure preserving transformation operating on
a �nite normalized phase space X and P t is the associated Frobenius-Perron
operator, then St is f� exact if and only if limt!1 k P tf � f� k= 0; i.e., fP tfg
is strongly convergent to f�, for all initial densities f .

This theorem o�ers a necessary and suÆcient condition for the exactness
of St in complete analogy with the previously presented necessary and suÆcient
ergodicity and mixing conditions.

As with ergodicity and mixing, we extend the de�nition of exactness to
Markov operators P t with a stationary density f�. Then we say P t is f� exact
if fP tfg is strongly convergent to f� for all initial densities f .1 For Markov
operators, f� exactness implies f� mixing implies f� ergodicity. We close with a
simple suÆcient condition for the f� exactness of asymptotically periodic Markov
operators.

Theorem 7.2. Let P be a smoothing, and therefore asymptotically periodic,
Markov operator. If r = 1 in the spectral decomposition (7) of P tf , then P is f�
exact.

7.2. The Second Law of Thermodynamics.

The main result of this section is a condition for the Second Law of ther-
modynamics to operate in its strongest possible (3rd order) form. We consider
a Markov operator P that has a stationary density f� which is not necessarily
constant, thus corresponding to the density of the canonical ensemble. Namely
we have:

1Operators P t that are f� exact have been called strong Markov operators[27] and mono-

tonic Markov operators[13].
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Theorem 7.3. Let P t be a Markov operator operating in a phase spaceX . Then
the conditional entropy of P tf with respect to a density f� goes to its maximal
value of zero as t!1,

lim
t!1

Hc(P
tf jf�) = 0;

if and only if P t is f� exact.

Theorem 7.3 is remarkable in that it sets forth necessary and suÆcient crite-
ria for the operation of the strongest form of the Second Law of thermodynamics,
namely for the entropy of a system to globally converge to its maximal value
regardless of the way in which the system was prepared. The only requirement
that the system must satisfy is that the density must evolve under the action of
an exact Markov operator. If this operator is a Frobenius Perron operator then
the dynamics must be f� exact. Since f� exactness implies f� ergodicity, the
state of thermodynamic equilibrium characterized by the density f� is unique

Thus, the Boltzmann-Gibbs entropy will converge to its maximal value of
zero if and only if the density of the microcanonical ensemble is a stationary
density and the system evolves under the action of a uniformly exact Markov
operator P ! As before, ergodicity of P guarantees that the uniform density of
the microcanonical ensemble is the unique state of thermodynamic equilibrium,
while the uniform exactness of P guarantees that the entropy will approach its
maximum value of zero regardless of the way in which the system is prepared.
Hence, in general

P t is f� exact, lim
t!1

Hc(P
tf jf�) = 0:

These results point out a very interesting property of the entropy vis /`a
vis the common notion that maximal entropy should be associated with maximal
disorder, or minimal structure. Experimentally, what we measure is that the
entropy of a system evolving in time goes to a maximum. Further, in the course
of any experiment the dynamics are the ultimate selector of the proper f� with
respect to which the conditional entropy is \computed" by the system evolution.
This state of maximal entropy, in turn, corresponds to a state of thermodynamic
equilibrium, and in no way makes a judgment about whether this state is totally
structureless (f� = 1) or highly ordered. Any apparent inconsistency between
a state of maximal entropy and a nonuniform f� comes exclusively from the
erroneous identi�cation of f� = 1 as the preferred state of thermodynamic equi-
librium. This partially stems from the long historical preoccupation of trying
to �nd a rational foundation for thermodynamics in the statistical mechanics of
Hamiltonian systems which do preserve the Lebesgue measure and for which the
attendant density f� = 1 is a stationary density.

With the results of this section giving necessary and suÆcient conditions
for the approach of system entropy to a maximum, one might think that our
quest for the dynamical foundations of thermodynamics and the functioning of
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the second law was at an end. However, this is far from the reality of the situation
as a moments re
ection reveals.

Here it has been demonstrated that it is only through the operation of ir-
reversible f� exact systems that the entropy will increase to its maximal value
(Theorem 7.3). Further, given the observation that dynamics are the ultimate
determinant of the stationary density f�, that this corresponds to a state of ther-
modynamic equilibrium, and that since states of thermodynamic equilibrium
depend on a variety of parameters (temperature, pressure, etc.), we must con-
clude that the corresponding f� must also depend on these parameters as must
the underlying dynamics.

Given these results we are now faced with another problem since all of
the laws of physics are framed in terms of reversible or invertible dynamical
(as opposed to irreversible or noninvertible semidynamical) systems which are
independent of these external parameters.

This dilemma seems to have at least two solutions. Either: (1) The laws
of physics are at present incorrectly formulated. [Penrose[28] has argued quite
lucidly and simply for this point of view, basing his thesis on CPT violation
in KÆ meson decay. Fer[8] makes a similar point, basing his argument on the
neglect of time delays in the usual formulations of physical laws. Gal-Or[9;10]

and Davies[5] have extensively examined possible sources of time asymmetry in
physics, primarily from a cosmological and electromagnetic perspective]; or (2)
There is some e�ect, neglected to this point in our considerations, which alters
the behaviour of a dynamical system to give rise to the observed behaviour.

The following sections are devoted to an exploration of the second of these
possibilities, as the �rst involves a drastic restructuring of the entire formulation
of classical and quantum physics.

8. COARSE GRAINING.

To this point, in calculating the entropy from the de�ning equations it has
been assumed that the dynamical variables were known with in�nite precision.
As a consequence, the density f corresponding to a given thermodynamic state
would also be known precisely. While this is the situation when an analytic form
for the density is available, in the world of experiment the reality is that the
density f (or, more usually, some functional of f) is either measured or estimated.
Several consequences may ensue from this. The �rst and perhaps most obvious
is that due to errors (arising, for example, from measurement impreciseness or
numerical roundo� in computer experiments), f will not be known exactly but
will be known only to some level of accuracy.

Alternately, it is entirely possible that Nature herself may have introduced
an inherent graininess to phase space, rendering the absolute determination of
dynamical variables, and thus densities, impossible. Many have suggested that
there is an elementary fundamental volume in position-momentum space whose
measure corresponds to Planck's constant. This would be entirely in keeping with
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other apparently fundamental indivisible units in the real world. In this section
we examine the consequences of imprecision in the measurement of dynamical
variables by studying the properties of the coarse grained entropy.

8.1. Coarse Grained Entropy.

To examine the e�ect of imprecision in the measurement of dynamical vari-
ables on entropy calculations, we introduce the concept of the entropy of a coarse
grained density, or more brie
y, the coarse grained entropy. This concept
seems to have been �rst qualitatively discussed by Gibbs[11], and quanti�ed by
Ehrenfest and Ehrenfest[7]. Denbigh and Denbigh[6] have considered aspects of
the e�ects of coarse graining on the behaviour of entropy.

Coarse graining is carried out by �rst partitioning the phase space X (�nite
and normalized) into discrete cells Ai that satisfy [iAi = X and Ai \i6=j Aj = ;:
Obviously, there is no unique way in which such a partition fAig may be formed,
but we require that the partition is nontrivial with respect to the Lebesgue
measure �L so 0 < �L(Ai) � �L(X) = 1 for all values of i. For every density
f , within each cell Ai of this partition we denote the average of f over Ai by
< f >i,

< f >i=
1

�(Ai)

Z
Ai

f(x) dx; (11)

so the density f coarse grained with respect to the partition Ai is given by

fcg(x) =
X
i

< f >i 1Ai
(x): (12)

[Here, 1A(x) = 1 for x 2 A and 1A(x) = 0 when x =2 A.] Clearly
P

i < f >i

�L(Ai) = 1; and it is important to realize that fcg is constant within each cell
Ai, having the value given by (11).

Therefore, given a nontrivial partition Ai, a density f , and a coarse grained
density fcg de�ned by (11)-(12), then the Boltzmann-Gibbs entropy of the coarse
grained density fcg is given by

H(fcg) = �
X
i

< f >i �L(Ai) log < f >i :

It is noteworthy that for any density f , the Boltzmann-Gibbs entropy of
the coarse grained density fcg may be greater than the entropy of f , or more
speci�cally:

Theorem 8.1. For any density f and any nontrivial partition Ai of the phase
space X , H(f) � H(fcg).

Thus, the e�ect of any imprecision in the estimation of a density f char-
acterizing a system, no matter what the origin, will be to either increase the
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entropy of the estimated (coarse grained) density H(fcg) above its actual value
H(f), or leave it unchanged.

Precisely analogously to the way in which the entropy of the coarse grained
density was derived, it is easy to show that the conditional entropy of fcg with
respect to a second density g, also coarse grained with respect to the partition
Ai, is given by Hc(f

cg jgcg) = �
P

i < f >i �L(Ai) log [< f >i = < g >i] : It is
equally easy to show that H(f jg) � Hc(f

cgjgcg) for all densities f and g, and
nontrivial partitions Ai of the phase space X .

Therefore, in general, coarse graining of the phase space, and the consequent
coarse graining of a density, will either increase the entropy or leave it equal to
its value before coarse graining.

In analogy with (12), the coarse grained P tf is given by (P tf(x))cg =
P

i

< P tf >i 1Ai
(x) where < P tf >i= [�L(Ai)]

�1
R
Ai

P tf(x) dx: It is important
to realize that we are assuming that the Markov operator operates without any
error on the density f , and that the coarse graining arises because of our in-
ability to precisely measure dynamical variables, and consequently densities, for
whatever reason. The converse situation in which we may measure densities with
in�nite precision, but the dynamics always work with some error are considered
in Sections 10 and 11 where we consider system interactions with a heat bath.

Simple examples show that, for reversible systems, coarse graining: (1)
Induces the entropy of the coarse grained density to approach the equilibrium
entropy for both positive and negative times; (2) This approach may not be
monotone: (3) The approach is not necessarily symmetric with respect to a
reversal of time; and (4) The approach may be dependent on the partition chosen.

8.2. Coarse Graining of Mixing Systems.

Coarse graining has interested numerous authors since the concept was �rst
introduced by Gibbs[11] with the observation that coarse graining of a mixing
system should lead to an increase in the entropy to its maximal value. More
speci�cally,

Theorem 8.2. If P t is a reversible f� mixing Markov operator with a unique
stationary density f�, and fAig is a nontrivial partition of the phase space X ,
then limt!�1(P tf)cg = fcg� for all initial densities f .

As a consequence of this result and Theorem 7.3, we have

Theorem 8.3. If P t is a reversible f� mixing Markov operator with a unique
stationary density f� and fAig is a nontrivial partition of the phase space X ,
then limt!�1Hc((P

tf)cgjfcg� ) = 0 for all initial densities f . [Notice that the
entropy approach to zero is independent of the direction of time!]

For uniformly mixing systems operating in a normalized �nite space, it is
an easy consequence of these results that after coarse graining of the phase space,
fP tfg will approach the density of the microcanonical ensemble, and that the
Boltzmann-Gibbs entropy will approach its maximum value of zero.
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8.3. Summary.

Even setting aside the lack of irreversibility in the behaviour of the coarse
grained entropy, it is important to realize that the rate of convergence of the
entropy of the coarse grained densities that Theorem 8.3 guarantees will, in gen-
eral, depend on the way in which the coarse graining of the phase space is car-
ried out. Experimentally, if entropy increases to a maximum only because we
have reversible mixing dynamics but there is coarse graining due to measure-
ment imprecision, then the rate of convergence of the entropy (and all other
thermodynamic variables) to equilibrium should become slower as measurement
techniques improve. Such phenomena have not been observed. Thus, it seems
likely that nontrivial coarse graining plays no role in determining thermodynamic
behaviour, even if the coarse graining is externally imposed by Nature in the form
of an inherent graininess or unitary cellularity of phase space.

9. TRACES AND FACTORS.

As an alternative to the coarse graining of the previous section, we now
explore the consequences of a reversible dynamics in which not all dynamical
variables are observable. Essentially this means that we have a dynamical system
operating in an m-dimensional space, but are able to observe only n < m of these
variables. That is, we observe only a trace of its operation in an n-dimensional
space because (m � n) of the variables are hidden to us, e.g. because either we
do not know about them, or do not have the technology to measure them.

9.1. Traces.

Let X and Y be two (topological Hausdor�) phase spaces, F : Y ! X a
given continuous function, and St : Y ! Y a dynamical system operating in the
phase space Y . A function h : R ! X is the trace of the dynamical system if
there is a point y in the space Y such that h(t) = F (St(y)) for all times t.

One is naturally led to wonder under what circumstances a trajectory can be
viewed as the trace of a higher dimensional dynamical system. It is actually easy
to give a surprising answer to a much more general question. Every continuous
trajectory (function) in a space X is the trace of a single dynamical system
operating in a higher dimensional phase space Y ! More precisely, we have the
following result.

Theorem 9.1 (\God" Theorem). Let the phase space X be arbitrary. Then
there is a second phase space Y , a dynamical system St operating in Y , and a
continuous function F : Y ! X such that every continuous trajectory h : R! X
is the trace of St.

There are important consequences for the behaviour of the entropy when
one is considering the trace of a dynamical system. If we have a dynamical system
St operating on Y , then the entropy is always identically equal to the entropy
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of the initial density since it is impossible for the entropy of a reversible system
to change (Theorem 3.2.). However, this may not be the case for the entropy
of the density of a trace of a dynamical system, since the simple act of taking a
trace of a dynamical system with time independent entropy may be suÆcient to
generate a system in which the entropy is increasing. Of course, in general we do
not know what the limit of this increase may be, and the entropy may certainly
approach a limit considerably less than its maximal value if, for example, the
trace is asymptotically periodic.

9.2. Factors.

This leads us to discuss speci�c types of traces for which much more can
be said about the behaviour of the entropy. To see how this works, we introduce
the notion of a factor of a transformation with the aid of the following diagram.

Y
St����! Y

F

??y ??yF
X ����!

Tt
X

Let X and Y be two di�erent phase spaces with normalized measures �f� and
�g� and associated densities f� and g� respectively, and Tt : X ! X and St :
Y ! Y be two measure preserving transformations. If there is a transformation
F : Y ! X that is also measure preserving, i.e., if �g�(F

�1(A)) = �f�(A) for all
subsets A of the phase space Y , and such that Tt Æ F = F Æ St (so the diagram
commutes), then Tt is called a factor of St. From this de�nition the trajectory
of the factor Tt is a trace of the system St.

The formal connection between these concepts and the behaviour of the
entropy is furnished by the following theorem due to Rochlin[30].

Theorem 9.2. Every f� exact transformation is the factor of a K-automorphism.

The transformation F involved in our discussion of factors and traces is
precisely what Misra et al.[27] and Prigogine[29] refer to as a projection operator
in their work on the generation of irreversible behaviour from reversible dynam-
ics. Theorem 9.2 serves as the analytic link in their work between reversible
K-automorphisms and f� exact transformations (or strong or monotonic Markov
operators).

As noted in Section 6, since K-automorphisms are invertible their entropy
is forever �xed at its initial value by Theorem 3.2. On the other hand, by The-
orem 7.3 we know that the entropy of an f� exact transformation, which by the
above theorem is the factor of a K- automorphism, increases smoothly to its
maximum value of zero irrespective of the initial density with which the system
was prepared.
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9.3. Coarse Graining and Traces.

There is a connection between the e�ects of coarse graining the phase space
and taking the trace of a dynamical system. In nontrivial coarse graining, we
lose some information about the exact values of the dynamical variables. One
could easily imagine the situation in which we have m variables, of which n
were measured with in�nite precision, and (m� n) of them were measured with
some error. Thus the act of taking a trace is just a more extreme case of coarse
graining in which we are not able to measure any of the (m � n) variables, i.e.
the partition is trivial.

Viewed from this perspective, it is surprising that there is such a di�erence
between the results of a nontrivial coarse graining of the phase space (no induction
of irreversible thermodynamic behaviour), and examining only the trace of a
dynamical system operating in a higher dimensional space than our observations
permit. However, it is precisely trivial coarse graining of a phase space in which
the evolution of densities is governed by the Liouville equation that leads to
the Boltzmann equation and its successful predictions of the behaviour of dilute
gases. The Boltzmann equation describes the behaviour of a density evolving
under the action of a factor of the original dynamics.

9.4. Summary.

Here we have introduced the concept of a trace, and shown that when a
trace is a factor of a dynamical system, the entropy may increase. Even stronger
results are available in some circumstances when the trace is taken from a K-
automorphism, for then the trace may be f� exact with an entropy that increases
to its maximal value of zero. This and the previous section have presented two
possible ways out of the clear problems associated with the necessity of an irre-
versible system for entropy to increase, and the fact that all of the laws of physics
are formulated as reversible dynamical systems.

10. OPEN DISCRETE TIME SYSTEMS.

This section examines the consequences of having a discrete time determin-
istic transformation experience a perturbation from an outside source. Thus we
are starting to consider open systems, the mathematical analogue of the interac-
tion between a system and a \heat bath". Stochastically perturbed continuous
time systems with dynamics described by ordinary di�erential equations are con-
sidered in the Section 11.

10.1. An Operator Equation.

Assume that, in general, a system evolves according to a given transfor-
mation S(xt). The qualifying phrase `in general' means that the transition
xt ! xt+1 = S(xt) occurs with probability (1 � �). In addition, with proba-
bility �, the value of xt+1 is uncertain. If xt = y is given, then, in this case, xt+1
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may be considered as a random variable distributed with a density K(x; y) which
depends on y.

One interpretation of this process is that � corresponds to the degree of
coupling between the system under study and the heat bath. If this is the case,
then the parameter � can be thought of as a number related to the ratio of
the fundamental frequency of operation of the basic deterministic system, FD ,
to the frequency of the outside perturbation coming from the heat bath, FP .
Thus when FD � FP , � ' 1 and the system operates almost like a random
walk, while with FD � FP , we have � ' 0 and the system evolves almost
completely deterministically. We will refer to the situation when 0 < � < 1 as
`loose coupling', while for � = 1, in which the in
uence of the external system is
always experienced, we will speak of strong (or continuous) coupling. However,
as will become clear in Section 10.3, precisely the same formulation may be
interpreted in a totally di�erent fashion.

Assume that the dynamics of our system operate in a phase space X (with
positive measure, of course) which is some measurable subset of Rd, and that the
dynamics S are nonsingular and have an associated Frobenius Perron operator
PS . Then the operator P describing the evolution of densities in this mixed
system operating with both deterministic and perturbed elements is

Pf(x) = (1� �)PSf(x) + �

Z
X

K(x; y)f(y) dy: (13)

It is straightforward to show that (13) is a Markov operator.
Since for �xed y, K(x; y) is a density it clearly satis�es K(x; y) � 0 andR

X
K(x; y) dx = 1: This condition, in conjunction with the requirement that K

is measurable means that K is a stochastic kernel. Further, we will always
assume that for every � > 0 there is a Æ(�) > 0 such that

R
E
K(x; y) dx � �; for

every y in X and subset E of X with �L(E) � Æ.

10.2. Loosely Coupled Systems.

We are now in a position to state our main results concerning the behaviour
of the entropy of a discrete time deterministic system coupled to a heat bath. In
investigating the properties of the evolution of densities by the operator equation
(13), and the consequent behaviour of the entropy of these densities, some mild
restrictions on both the transformation S and the kernel K are required. First,
assume that the deterministic transformation S satis�es

jS(x)j � a0jxj+ a1 (14)

throughout the phase space, where a0 < 1 and a1 are nonnegative constants.
Secondly, it will be assumed that with b0 < 1 and b1 nonnegative constants,Z

X

jxjK(x; y) dx � b0jyj+ b1: (15)



25

This condition is automatically satis�ed if the phase space X is �nite, but if it
is unbounded then (15) prevents divergence of the trajectories to in�nity.

The �rst result guarantees the existence of at least one state of thermody-
namic equilibrium and the evolution of the conditional entropy to a maximum,
though not necessarily to zero, in the presence of noise. Thus this following result
is equivalent to the 2nd order formulation of the Second Law of thermodynamics.

Theorem 10.1. If S is a nonsingular transformation that satis�es (14) and K
is a uniformly integrable stochastic kernel satisfying (15), then for 0 < � � 1 the
operator P given by (13) is smoothing, and thus asymptotically periodic.

Therefore, for any closed system whose dynamics evolve through the action
of a nonsingular transformation S satisfying (14), placing it in contact with a
second system whose e�ect on the �rst is a perturbation characterized by a
kernel K satisfying (15) leads automatically to a situation in which the resulting
open system is asymptotically periodic regardless of the nature of the original
closed system S. Further, since this procedure induces asymptotic periodicity we
know that at least one state of thermodynamic equilibrium, characterized by a
stationary density f�, exists and that the conditional entropy H(P tf jf�) is an
increasing function with a limiting value given by Hmax(f; f�) as de�ned in (10).

Under certain circumstances involving loose coupling to a heat bath, there
are even stronger results concerning the behaviour of the entropy, corresponding
to the 3rd order formulation of the Second Law of thermodynamics. One such
case is as follows.

Assume that the value of the perturbation to the system S coming from
the heat bath (when it occurs) at time (t + 1) is independent of the value of
xt. Then the stochastic kernel K(x; y) is independent of y and simply becomes
K(x; y) = g(x), where g is the density of the perturbations �t. In this case,
with the external perturbations independent of the state of the system S, the
perturbations �t could be interpreted as completely stochastic or as coming from
another deterministic system. They could even be viewed as the trace of some
deterministic system whose Frobenius-Perron operator has g as its unique sta-
tionary density. This is a slightly di�erent situation from that explored in Section
9. There we considered the e�ect on the behaviour of the entropy of only exam-
ining the trace of a system. Now we are considering the situation which could be
interpreted as the perturbation of a system by the trace of another system.

In this case, the operator equation (13) takes the simple form

Pf(x) = (1� �)PSf(x) + �g(x): (16)

There are some surprising consequences of making the loose coupling independent
of the state of the system S. Namely

Theorem 10.2. If P is the operator de�ned by (16), then fP tfg is f� exact.

Thus, by the simple expedient of loosely coupling a system to a heat bath
such that the system experiences perturbations that are independent of the state
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of the system, there will be a unique state of thermodynamic equilibrium and the
conditional entropy of the coupled system will globally converge to zero regardless
of the nature of the original system S!

10.3. Strongly Coupled Systems.

A much di�erent interpretation of this perturbation at random times of
a deterministically operating system is possible and related to strong coupling
between a deterministic system and an external source of noise. When � = 1 and
X = Rd, then equation (13) takes the form

Pf(x) =

Z
Rd

K(x; y)f(y) dy: (17)

In thinking about the interpretation of (17), consider the following. Take the
quantities �0; �1; : : : to be d-dimensional random vectors and let the phase space
X be Rd. Then for a given f�tg and a dynamics W of two variables, W : Rd �
Rd ! R, we may assume that the system goes from xt = y to xt+1 = W (y; �t).
Let K(x; y) be the density of W (y; �t). Then the density will always exist if
W (y; z) as a function of z is nonsingular. If this is the case, then equation (17)
describes the evolution of the densities corresponding to xt+1 = W (xt; �t): We
can make this more formal through the following unpublished theorem initially
formulated and proved by A. Lasota, J. Traple, and J. Tyrcha.

Theorem 10.3. Let g : Rd ! Rd be a density and K : Rd � Rd ! Rd be a
stochastic kernel. Then the (generally nonunique) function W : Rd � Rd ! Rd

de�ned implicitly by
RW (y;z)

0 K(r; y) dr =
R z
0 g(u) du de�nes a dynamical system

xt+1 = W (xt; �t) where the �t are independent random variables with density
g. This system has an evolution of densities described by ft+1 = Pft where the
operator P is given by Pf(x) =

R
Rd K(x; y)f(y) dy:

10.4. Asymptotic Periodicity and Additive Perturbations.

Often the perturbations are additive,W (y; z) = S(y)+z, so we have xt+1 =
S(xt) + �t: It is rather surprising that a dynamics of this form may also appear
as the consequence of taking a factor or trace[25;25a].

If the sequence f�tg of random variables has a common density g, then it
follows that K(x; y) = g(x� S(y)), and equation (17) becomes

Pf(x) =

Z
Rd

f(y)g(x� S(y)) dy: (18)

For the special case of additive noise, (18) can be derived independent of any
assumption concerning the nonsingularity of S. Furthermore, in this case the
condition given by equation (15) reduces to m =

R
Rd jxjg(x) dx < 1: Thus we

have an immediate corollary to Theorem 10.1 for systems with added noise[23].
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Corollary 10.4. If S (nonsingular or not) is a transformation operating in the
phase spaceRd, satis�es inequality (14), and experiences an additive perturbation
whose density has a �nite �rst moment, then the sequence fP tfg, where P is the
Markov operator de�ned by equation (18), is asymptotically periodic.

Hence for all situations in which perturbations are added to a transformation
S, the e�ect is to induce asymptotically periodic behaviour regardless of the
nature of the original unperturbed dynamics S (remember that S may even
be singular!). Because of this, we also know that perturbations induce at least
one state of thermodynamic equilibrium, whose stationary density is given by
equation (9), and guarantee the approach of the conditional entropy to a maximum
(Theorem 5.3).

For some transformations, the induction of asymptotic periodicity by the
addition of perturbations would not be at all surprising, e.g. the addition of a
stochastic perturbation to a transformation with an exponentially stable peri-
odic orbit gives asymptotic periodicity. The surprising content of Theorem 10.1
(and Corollary 10.4) is that even in a transformation that has aperiodic limiting
behavior, additive perturbations will result in asymptotic periodicity.

10.5. f� Exactness and Additive Perturbations.

Under certain circumstances there are even stronger results concerning the
e�ects of additive perturbations. Namely, additive perturbations may induce f�
exactness with a consequent increase in the conditional entropy to its maximal
value of zero corresponding to the strongest (3rd order) form of the Second Law
of thermodynamics.

10.6. Parametric Perturbations.

As another speci�c example, consider the case when W (y; z) = zS(y) and
S > 0, so xt+1 = �tS(xt): Using Theorem 10.3, it is straightforward to show that
the operator (17) takes the explicit form

Pf(x) =

Z
Rd

f(y)g

�
x

S(y)

�
dy

S(y)
: (19)

Horbacz[15;16] has considered the behaviour of this system when S : R+ !
R+. The 
avor of her results are summarized in the following two theorems.

Theorem 10.5. Let the Markov operator P be de�ned by (19). Assume that
g is a density, 0 < S(x) � �x + �; and �m < 1 with m =

R1
0 xg(x) dx, where

� and � are nonnegative constants. Then the sequence fP tfg is asymptotically
periodic.

We close with a second theorem concerning f� exactness induced by multi-
plicative perturbations.
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Theorem 10.6. If the Markov operator P de�ned by (19) satis�es the conditions
of Theorem 10.5 and, in addition, g(x) > 0 then fP tfg is f� exact.

Theorems 10.5 and 10.6 illustrate the behaviors that may be induced by
multiplicative perturbations in discrete time systems. A number of other results
concerning asymptotic periodicity and f� exactness induced by multiplicative
perturbations may be proved, but rather than giving these the reader is referred
to Horbacz[15;16].

10.7. Markov Operators and Deterministic Processes.

On several occasions we have emphasized that the interpretation of a given
dynamics is not necessarily clear cut. In fact, given any Markov operator P it
is always possible to construct a sequence of deterministic transformations fSng
such that the limiting value of fP t

Sn
fg approximates fP tfg as closely as one

likes. Results along this line have been published by Brown[2] and Kim[18], but
we state this in the spirit of an unpublished result of Lasota.

Theorem 10.7. Let P be a given Markov operator operating in a �nite normal-
ized space X = [0; 1). Then there is a sequence of transformations Sn : X ! X
with Frobenius-Perron operators PSn such that limn!1 jjPSnf � Pf jj = 0:

The consequences of this theorem are extremely far reaching, for it tells us
that any Markov operator, whether it arises from the in
uence of random or de-
terministic perturbations on a totally deterministic system or through the action
of a completely unperturbed deterministic system, can always be approximated
by a totally deterministic system to any degree of accuracy.

10.8. Summary.

In this section we have explored the e�ects of outside perturbations acting
on a deterministic system with discrete time dynamics, and we have interpreted
this as the coupling of the system to a \heat bath". These outside perturbations
can be viewed as perturbations coming from another deterministic system, from
the trace of a deterministic system, or as stochastic perturbations. Whatever
their source, we have shown in a variety of situations that the e�ect of these
perturbations may be to either induce asymptotic periodicity or f� exactness. It is
interesting that asymptotic periodicity or f� exactness may be induced in systems
that had absolutely no remarkable behaviour, including statistical behaviour,
before they experienced the outside in
uences. Under certain circumstances it is
not even necessary that the original system be nonsingular.

Thus, the e�ect of perturbing systems in this way has a very powerful in
u-
ence on the behaviour of their entropy. If the perturbation induces asymptotic
periodicity, then the entropy will increase to a local maximum whose value de-
pends in a complicated way on the initial preparation of the system (Theorem
5.3). If, on the other hand, f� exactness is induced, then the entropy will increase
to its absolute maximal value of zero (Theorem 7.3).
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11. OPEN CONTINUOUS TIME SYSTEMS.

Given the results for discrete time dynamics, it is natural to wonder if the
perturbation of systems with continuous time dynamics (that is, placing them
in contact with a heat bath) will yield analogous results concerning the entropy.
The e�ects of perturbation on the entropy of systems with dynamics described
by sets of ordinary di�erential equations is brie
y considered in this section.

11.1. Stochastic Di�erential Equations.

Often, the dynamics of physical processes are formulated by a system of
ordinary di�erential equations dxi=dt = Fi(x), i = 1; : : : ; d operating in some
region of Rd with initial conditions xi(0) = xi;0. Here we examine the behaviour
of the stochastically perturbed analog

dxi
dt

= Fi(x) +

dX
j=1

�ij(x)�j ; i = 1; : : : ; d (20)

with the same initial conditions, where �ij(x) is the amplitude of the stochastic
perturbation and �j = dwj=dt is a \white noise" term that is the derivative of a
Wiener process. [A continuous process fw(t)gt>0 is a one dimensional Wiener
process if: (1) w(0) = 0; and (2) For all values of s and t, 0 � s � t the
random variable w(t) � w(s) has the Gaussian density g(t � s; x) = [2�(t �
s)]�1=2 exp[�x2=2(t� s)]: In a completely natural manner this de�nition can be
extended to say that the d-dimensional vector w(t) = fw1(t); � � � ; wd(t)gt>0 is a
d-dimensional Wiener process if its components are one dimensional Wiener
processes.]

Equation (20) is a stochastic di�erential equation. As in the case of a
nonperturbed system of ordinary di�erential equations, if the functions Fi(x)
and �ij(x) satisfy Lipschitz conditions, then (20) has a unique solution[12].

11.2. The Fokker Planck Equation.

The density function f(t; x) of the process x(t) generated as the solution
to the stochastic di�erential equation (20) is de�ned by prob(x(t) 2 B) =R
B f(t; s) ds: To guarantee the existence and di�erentiability of f(t; x), we will

assume the uniform parabolicity condition:
Pd

i;j=1 aij(x)�i�j � �
Pd

i=1 �
2
i

where � > 0. If the aij(x) satisfy the uniform parabolicity condition and if they
and the Fi(x) are continuous and C3, then f(t; x) exists and is di�erentiable.

Under the assumption that �ij and bi are C
2, they and their derivatives

up to second order are continuous for t > 0 and all x 2 Rd, and that they and
their �rst derivatives are bounded, the evolution equation for the density f(t; x)
is given by

@f

@t
= �

dX
i=1

@[Fi(x)f ]

@xi
+

1

2

dX
i;j=1

@2[aij(x)f ]

@xi@xj
(21)
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in the Ito interpretation of (20). This evolution equation is known as the Fokker-
Planck equation. In the absence of the di�usion term (aij � 0) it reduces to
the generalized Liouville equation.

If the stochastic di�erential equation (20) has an initial condition x(0) and
an an associated initial density f0, then the solution f(t; x) of the Fokker-Planck
equation satis�es f(0; x) = f0(x). Further, if the solution of the Fokker-Planck
equation can be written in the form f(t; x) =

R
Rd �(t; x; s)f0g(s) ds; where the

kernel � is independent of the initial density f(0; x) = f0(x) and limt!0 f(t; x) =
f(0; x) = f0(x), then f(t; x) is said to be a generalized solution of the Fokker-
Planck equation. Under some standard regularity conditions on the coeÆcients
of the Fokker-Planck equation the generalized solution is unique. Since f is a
density, the generalized solution corresponds to the evolution of the system to a
unique thermodynamic state.

From the expression for the generalized solution, a family fP tgt�0 of integral

operators can be de�ned by P 0f0(x) = f0(x); P
tf0(x) =

R
Rd �(t; x; s)f0(s) ds;

where f(0; x) = f0(x). If the generalized solution is unique, then the operator P is
a Markov operator. It is a rather simple demonstration that the unique stationary
density f� de�ned by limt!1 P tf(x) = f�(x) is given by the (unique) solution

of the elliptic equation �
Pd

i=1 @[Fi(x)f ]=@xi +
1
2

Pd
i;j=1 @

2[aij(x)f ]=@xi@xj = 0

For the continuous time closed system without noise, the evolution of the
Frobenius-Perron operator P t is determined by the the generalized Liouville equa-
tion. When the very same system is subject to external white noise perturbations,
then the evolution of the Markov operator P tf is governed by the Fokker-Planck
equation (20) which is just the same as the generalized Liouville equation with
the addition of the di�usion term.

11.3. The Behaviour of Entropy.

A closed continuous time system with dynamics described by ordinary dif-
ferential equations (reversible) has an entropy that is absolutely constant and
equal to the entropy of the initial density with which the system was prepared
(Theorem 3.2).

We now examine the e�ects of perturbations on the entropy of these contin-
uous time reversible systems. For one dimensional systems (d = 1), Rudnicki[31]

(1991) has recently proved a very interesting necessary and suÆcient condition for
the f� exactness, and consequent existence of 2nd Law behaviour in its strongest
form. We extend his result to the behaviour of the conditional entropy.

Theorem 11.3. Assume that d = 1 and (21) has a unique generalized solution.
Then the Markov operator P t whose evolution is governed by equation (21) is
f� exact and the corresponding conditional entropy Hc(P

tf jf�) approaches its

maximal value of zero as t!1 if and only if
R +1

�1 exp
h
�
R x 2F (z)

�2(z) dz
i
dx =1:

11.4. Phase Transitions and Perturbations.
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A variety of studies[17] have shown that in systems of di�erential equations
that display a Hopf bifurcation as a parameter is varied, when noise is added as in
(20) the stationary density of the Fokker Planck equation has behavior like that
encountered in phase transitions. Though general results are not available at this
time, it appears that if, in the absence of noise the system has a supercritical Hopf
bifurcation, then when noise is added the stationary density has behaviour like
that seen in 2nd order phase transitions. Alternately, if the unperturbed system
has a subcritical Hopf bifurcation then the density of the perturbed system has
1st order phase transition like behaviour[26].
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