NOTES ON MODELING INTERSPIKE INTERVAL DENSITIES AND THEIR TRANSFORMATION BY SYNAPTIC TRANSMISSION
 12 APRIL, 1990
 TYPED VERSION OF 25 NOVEMBER, 1995
 UPDATES 6 JANUARY, 1996

ANDRZEJ LASOTA AND MICHAEL C. MACKEY

We consider a monosynaptic pre- and postsynaptic cell population situation in which there are many presynaptic cells acting on one postsynaptic cell (convergence). In this situation presynaptic spikes are generating EPSP's that arrive at times $t_{-1}, t_{0}, t_{1}, \cdots$ and which generate a total EPSP in the postsynaptic cell soma of the form

$$
E(t)=E_{0} \sum_{i=0}^{n} e^{-\left(t-t_{i}\right) / \tau}
$$

We assume that the differences in arrival times, $t_{n}-t_{n-1} \equiv \Delta_{n}$ are identically distributed with the density f and are independent of one another.

Assume that the maximum amplitude of the inputs is a constant $\theta_{1}>\theta_{0}$ and that the threshold function $\theta(t)$ for the production of post-synaptic spikes has the form

$$
\begin{equation*}
\theta(t)=\frac{\theta_{0}}{1-e^{-\left(t-t_{a}\right) / \tau_{\theta}}} \tag{1}
\end{equation*}
$$

where t_{a} is the absolute refractory time of the post-synaptic cell and τ_{θ} is the decay constant of the threshold in the relative refractory state back to θ_{0}. We further assume that $\tau_{\theta}<\tau$ which means that the only possible intersection point of $\theta(t)$ and $E(t)$ is on the upstroke of the EPSP's.

Assume that an action potential was generated in the post synaptic cell at time $t=0$. To calculate the time $t=T_{A P}$ of occurrence of the next post synaptic spike we solve the equation $\theta\left(T_{A P}\right)=\theta_{1}$ and denote this solution by

$$
T_{A P}=T_{A P}\left(\theta_{0}, \theta_{1}, t_{a}, \tau\right)
$$

The next post synaptic spike will occur at a time $T_{*}=t_{n}$ where $T_{n} \geq T_{A P}$ and $T_{n-1}<T_{A P}$. Our goal is to find the density function f_{*} for the distribution of the random variable T_{*} given by

$$
\begin{equation*}
T_{*}=t_{n} \quad \text { if } \quad t_{n-1}<T_{A P} \leq t_{n} \tag{2}
\end{equation*}
$$

Let

$$
p_{n}=\operatorname{Prob}\left(t_{n-1}<T_{A P} \leq t_{n}\right)
$$

and denote by f_{n} the density of the distribution of the t_{n}. Then we argue that the density f_{*} is given by

$$
\begin{equation*}
f_{*}(x)=\sum_{n=1}^{\infty} p_{n} f_{n}(x) \tag{3}
\end{equation*}
$$

Next we are going to calculate f_{n} and p_{n}. The first is easy since

$$
t_{n}=\Delta_{n}+t_{n-1}
$$

and consequently

$$
\begin{equation*}
f_{n}(x)=\int_{0}^{x} f(y) f_{n-1}(x-y) d y \quad \text { with } \quad f_{1}(x)=f(x) \tag{4}
\end{equation*}
$$

To calculate the p_{n} note that

$$
\begin{align*}
p_{n} & =\operatorname{Prob}\left(t_{n} \geq T_{A P} \text { and } t_{n-1}<T_{A P}\right) \\
& =\int_{0}^{T_{A P}} \operatorname{Prob}\left(t_{n} \geq T_{A P} \mid t_{n-1}=x\right) f_{n-1}(x) d x \tag{5}
\end{align*}
$$

Clearly,
$\operatorname{Prob}\left(t_{n} \geq T_{A P} \mid t_{n-1}=x\right)=\operatorname{Prob}\left(t_{n-1}+\Delta_{n} \geq T_{A P} \mid t_{n-1}=x\right)$

$$
=\operatorname{Prob}\left(\Delta_{n} \geq T_{A P}-t_{n-1} \mid t_{n-1}=x\right)
$$

(6) $\quad=\operatorname{Prob}\left(\Delta_{n} \geq T_{A P}-x\right)$ since Δ_{n} and t_{n-1} are independent.

Therefore for $x \leq T_{A P}$ we have

$$
\begin{gather*}
\operatorname{Prob}\left(t_{n} \geq T_{A P} \mid t_{n-1}=x\right)=\operatorname{Prob}\left(\Delta_{n} \geq T_{A P}-x\right) \\
=\int_{0}^{T_{A P}-x} f(y) d y \tag{7}
\end{gather*}
$$

Combining equation (7) with (5) we have

$$
p_{n}=\int_{0}^{T_{A P}}\left\{\int_{0}^{T_{A P}-x} f(y) d y\right\} f_{n-1}(x) d x
$$

or

$$
\begin{equation*}
p_{n}=\int_{0}^{T_{A P}}\left\{\int_{0}^{T_{A P}-y} f_{n-1}(y) d x\right\} f(y) d y \tag{8}
\end{equation*}
$$

In summary from equations (3), (4), and (8) we have

$$
\begin{align*}
f_{*}(x) & =\sum_{n=1}^{\infty} p_{n} f_{n}(x) \tag{9}\\
f_{n}(x) & =\int_{0}^{x} f(y) f_{n-1}(x-y) d y \quad \text { with } \quad f_{1}(x)=f(x) \tag{10}\\
p_{n} & =\int_{0}^{T_{A P}}\left\{\int_{0}^{T_{A P}-y} f_{n-1}(x) d x\right\} f(y) d y \tag{11}\\
T_{A P} & =t_{a}+\tau_{\theta} \log \left[\frac{\theta_{1}}{\theta_{1}-\theta_{0}}\right] \tag{12}
\end{align*}
$$

