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Cyclical neutropenia (CN) is an interesting dynamic hematological disease in which the neutrophils
spontaneously oscillate from approximately normal levels to near zero with a period between 19 and
21 days. In the only known animal model for this disorder, the grey collie, the disease’s single apparent
difference from human CN is the smaller period of 11–15 days. CN can be treated using the cytokine
G-CSF which decreases the period (to about 14 days in humans), increases the mean value, and elevates
the amplitude of the oscillations. After reviewing the clinical and laboratory data on this disease, we
examine the proposition that CN is due to a loss of stability in the peripheral negative feedback control
of neutrophil production. This is accomplished by the development of a physiologically realist
mathematical model for the system. We conclude that there is no consistent way in which such a
destabilization can give rise to either the clinical or laboratory characteristics of CN. Rather it seems
more likely that the oscillations of CN are generated within the pluripotential stem cell population.
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1. Introduction

Cyclical neutropenia (CN) is a relatively rare
disorder, the hallmark of which is a periodic fall in the
circulating neutrophil numbers from normal values to
virtually zero in severe cases. This paper examines the
potential role of instabilities in the peripheral control
of neutrophil production (granulopoiesis) in generat-
ing the characteristic oscillations observed in the
neutrophil counts of patients with CN. We also
consider the grey collie—the naturally occurring
laboratory model for this disease.

Following a review of normal granulopoiesis and
granulopoiesis in CN (and previous models for CN)
in Section 2, we present a model for the control of
granulopoiesis in Section 3 including an estimation of
the relevant parameters of the model for normals and
in cyclical neutropenia, an analysis of the local
stability properties of the model and numerical
investigation of the full nonlinear model. The paper
closes with a discussion in Section 4 of the

implications of this work for our understanding of the
origin of CN.

2. Biological Background

2.1.  

Figure 1 is a cartoon representation of the
organization of normal myelopoiesis that outlines the
three major components of the myelopoietic system
and the known or putative regulatory feedback loops.
For more details, consult (Dexter & Spooncer, 1987;
Ogawa, 1993) and any recent hematology textbook,
such as Beutler et al. (1995).

The control of granulopoiesis via the circulating
neutrophil levels is obscure. One of the primary
controlling agents is thought to be granulocyte colony
stimulating factor (G-CSF). G-CSF is known to be
absolutely essential for the growth of the granulocytic
progenitor cells CFU-G in vitro (Williams et al.,
1990). CFU-G colony growth is a sigmoidally
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increasing function of increasing G-CSF concen-
tration (Hammond et al., 1992; Avalos et al., 1994).

The possible importance of G-CSF for in vivo
control of granulopoiesis is shown in the work of
Lieschke et al. (1994). In mice that lack G-CSF (due
to an ablation of the G-CSF gene in embryonal stem
cells) there is a pronounced neutropenia and
reduction of the marrow granulocyte precursor cells
by a factor of 50%. Exogenous G-CSF obliterates the
neutropenia in one day and within 4 days restores the
marrow composition to that of a normal wild type
mouse. G-CSF also corrects neutropenia in humans
(Bronchud et al., 1987; Layton et al., 1989; Leary
et al., 1992; Lord et al., 1989; Lord, 1992; Ponchio
et al., 1995) and other mammals (Cohen et al., 1987;
Ikebuchi et al., 1988; Lord et al., 1991; Molineux
et al., 1990). In addition, there is a clear alteration of
the neutrophil precursor maturation time character-
istics under the action of G-CSF (Price et al., 1996).
These observations indicate that G-CSF most
certainly plays some role in the normal maintenance
of granulopoiesis.

Several studies have demonstrated an inverse
relation between circulating neutrophil density and
serum levels of G-CSF (Kearns et al., 1993; Mempel
et al., 1991; Takatani et al., 1996; Watari et al., 1989).

Coupled with the in vitro colony growth character-
istics cited above the observations on G-CSF
knockout mice, this inverse relationship suggests that
the nature of the neutrophil production regulation via
G-CSF would be that of negative feedback. Thus, a
fall in circulating neutrophil levels would lead to an
increase in serum G-CSF levels and an eventual
increase in marrow production of neutrophils. We
address this control issue more quantitatively in
Section 3.4.

2.2.  

Our understanding of CN has been greatly aided by
the discovery that the grey collie also suffers from the
same disease. In the grey collie, this disease is
apparently the same as in humans with the exception
of the period which ranges from 11 to 15 days (Haurie
et al., 1998c), while in humans the period is typically
reported to fall in the range of 19–21 days (Dale &
Hammond, 1988) or 20–30 days (Haurie et al.,
1998b). Reviews of both human and canine cyclic
neutropenia (Dale & Wolff, 1972; Dale & Hammond,
1988; Haurie et al., 1998a; Jones & Lange, 1983;
Lange & Jones, 1980; Lange, 1983; Page & Good,
1957; Quesenberry, 1983; Wright et al., 1981) may be
consulted for information not contained in the
summary below.

In both human CN (Dale et al., 1972a, b; Haurie
et al., 1998b; Hoffman et al., 1974) and the grey collie
(Guerry et al., 1973; Haurie et al., 1998c) there is not
only a periodic fall in the circulating neutrophil levels,
but also an oscillation of platelets, often the
monocytes and eosinophils, and occasionally the
reticulocytes. These oscillations all occur with the
same period. In contrast to the neutrophils, the
monocyte, eosinophil, and platelet oscillation levels
range from normal to high levels, while the
reticulocytes typically oscillate around normal values
(Dale & Hammond, 1988).

The peripheral neutrophil kinetics indicate that the
disappearance half time of circulating cells is normal
(Dale et al., 1972b). This implies that there is not a
periodic modification of the peripheral loss rate but
rather a periodic failure of marrow cell production.

In humans with CN, there is an orderly cell density
wave that proceeds successively through the
myeloblasts, promyelocytes, and myelocytes and then
enters the post-mitotic maturation compartment
(comprised of the metamyelocytes, the banded
neutrophils, and the segmented, or polymorphonu-
clear, neutrophils) before being manifested in the
circulation (Guerry et al., 1973; Brandt et al., 1975).
Further studies have shown that this wave extends
back into the committed stem cells CFU-G and

F. 1. The architecture of hematopoietic regulation. This figure
gives a schematic representation of the architecture and control of
platelet (P), red blood cell (RBC), and white blood cell (WBC,
including neutrophils and monocytes) production. (Basophil and
eosinophil lines not indicated.) Various presumptive control loops
mediated by thrombopoietin (TPO), erythropoietin (EPO), and
granulocyte colony stimulating factor (G-CSF) are indicated, as
well as putative local regulatory (LR) loops within the various
committed and pluripotential stem cell populations. CFU refers to
the various colony forming units (M=megakaryocyte,
E=erythroid, and GM=granulocyte/monocyte) which are the in
vitro analogs of the in vivo committed stem cells (CSC). PPSC
denotes the pluripotential myeloid stem cell population. Adapted
from Mackey (1996).
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T 1
Distribution of maturation time parameters deduced from published data

Condition �t� (day) s2 (day2) tm (day) Reference

Normal human 9.70 16.20 3.8 (Perry et al., 1966)
CN human 7.57 12.01 1.2 (Guerry et al., 1973)
30 mg G-CSE human 6.27 4.60 2.4 (Price et al., 1996)
300 mg GCSF human 4.86 2.30 2.0 (Price et al., 1996)
Normal dog 3.68 0.198 3.0 (Deubelbeiss et al., 1975)
Gray collie apogee 3.21 0.042 2.6 (Patt et al., 1973)
Gray collie nadir 3.42 0.157 2.6 (Patt et al., 1973)

See the text for details

CFU-M, and precedes the wave in the myeloblast
compartment (Jacobsen & Broxmeyer, 1979). In the
grey collie the same pattern exists as does waves of cell
density in the CFU-G and CFU-E (Dunn et al., 1977,
1978; Hammond & Dale, 1982; Jones & Jolly, 1982)
and the BFU-E (burst forming units—erythroid
which proceed the CFU-E) and CFU-GM (Ham-
mond & Dale, 1982; Abkowitz et al., 1988).

There are also changes in the distribution of transit
times (cf. Section 3.1.2.) in CN. We discuss these in
Section 3.1.3. and summarize them in Table 1. Briefly,
in CN it is found that the neutrophil precursor mean
maturation time is shortened, and the variance of the
distribution is decreased relative to normal.

Cyclical neutropenia in the grey collie can be cured
by lethal irradiation followed by transplantation of
normal bone marrow (Dale & Graw, 1974; Jones
et al., 1975a). CN can be induced in normal collies by
bone marrow transplant from a cyclical neutropenic
littermate (Jones et al., 1975a, b; Weiden et al., 1974).
The same is true in humans (Krance et al., 1982).
These studies suggest that the origin of the defect in
CN is resident in one of the stem cell populations of
the bone marrow.

In both the grey collie (Hammond et al., 1990;
Haurie et al., 1997c; Lothrop et al., 1988) and in
humans with CN (Hammond et al., 1989; Migliaccio
et al., 1990; Wright et al., 1994) administration of
G-CSF leads to an increase in the mean value of the
peripheral neutrophil counts, an increase in the
amplitude of the oscillations, and a decrease in the
period of the oscillation. Exogenous G-CSF had no
effect on the peripheral half-time for neutrophil
disappearance, but there were significant changes in
the distribution of marrow maturation times for
neutrophil precursors in normal humans with a
reduction in both the average maturation time and
the variance of maturation times with G-CSF (Price
et al., 1996) (cf. Section 3.1.3.).

In the grey collie (Avalos et al., 1994; Lothrop
et al., 1988) and in humans (Hammond et al., 1992)
the responsiveness of CD34+ cells, which include

neutrophil precursor cells, to G-CSF is attenuated
compared to normal dogs. Typical figures indicate
that in CN the G-CSF concentration required to give
half maximal colony growth (c50) is on the order of 7
to 9 times normal without any change in the
stoichiometry. CD34+ colony growth studies with
GM-CSF show that in cells taken from cyclical
neutropenic patients the c50 is increased by a factor of
about 2.5 relative to normal marrow cells (Hammond
et al., 1992). In cells identified as CFU-GM from
cyclical neutropenic patients, the c50 was elevated by
a factor of 10 to 30 (Wright et al., 1989).

2.3.      



Given the interesting dynamical presentation of
CN in both its clinical and laboratory manifestations,
it is not surprising that there have been a number of
attempts to model this disorder mathematically. In
this section we briefly review these attempts as they
focus the work of this paper and simultaneously
motivate the extensions that we have made.

The mathematical models that have been put
forward for the origin of CN fall into two major
categories. Reference to Fig. 1 will help place these in
perspective. [See Dunn (1983); Fisher (1993) for other
reviews].

The first group of these models takes a cue from the
existence of oscillations in many of the peripheral
cellular elements (neutrophils, platelets, and erythroid
precursors, see Fig. 1) and postulates that the origin
of CN is in the common pluripotential stem cell
(PPSC) population feeding progeny into all of these
differentiated cell lines. A loss of stability in the stem
cell population is hypothesized to be independent of
feedback from peripheral circulating cell types (see
below) and would thus represent a relatively
autonomous oscillation driving the three major lines
of differentiated hematopoietic cells.

Mackey (1978) analysed a model for the dynamics
of a stem cell population and concluded that one way
the dynamic characteristics of cyclical neutropenia
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could emerge from such a formulation was via an
abnormally large cell death rate within the proliferat-
ing compartment. This hypothesis allowed the
quantitative calculation of the period of the oscillation
that would ensue when stability was lost. This
hypothesis has been expanded elsewhere (Mackey,
1979; Mackey & Milton, 1990; Milton & Mackey,
1989) and allows a qualitative understanding of the
observed laboratory and clinical effects of G-CSF and
chemotherapy discussed above (Mackey, 1996). In
spite of the resonance of this stem cell origin
hypothesis in the clinical and experimental communi-
ties (Quesenberry, 1983; Ogawa, 1993) there has been
little extension of this hypothesis in the modeling
literature related to CN.

The second broad group of these models ident-
ifies the origin of CN with a loss of stability in the
peripheral control loop, operating as a sensor
between the number of mature neutrophils and the
control of the production rate of neutrophil
precursors within the bone marrow (cf. Fig. 1).
This control has been uniformly assumed to be of
a negative feedback type whereby an increase in
the number of mature neutrophils leads to a
decrease in the production rate of immature
precursors. The other facet of this hypothesis is a
significant delay due to the maturation times
required between the signal to alter immature
precursor production and the actual alteration of
the mature population numbers. Typical examples
of models of this type which have specifically
considered CN are Kazarinoff & van den Driessche
(1979); King-Smith & Morley (1970); MacDonald
(1978); Morley et al. (1969); Morley & Stohlman
(1970); Morley (1979); Reeve (1973); von
Schulthess (1982); Shvitra et al. (1983), all of which
have postulated an alteration in the feedback on
immature precursor production from the mature
cell population numbers.

As a subset of this second group of models
invoking an instability in the peripheral control
loop in the generation of CN, we would like to
especially mention the work of Schmitz (1988).
Elaborations of this have appeared in a series of
papers over the past decade (Wichmann et al.,
1988; Schmitz et al., 1990, 1993, 1994, 1995). These
papers model a sequence of cell kinetic compart-
ments in which peripheral control is mediated by
circulating levels of G-CSF. The onset of CN (in
humans and the grey collie) is attributed to a
decreased variance in the density of the marrow
maturation time distribution. Furthermore, it is
postulated that the effects of G-CSF in modifying
the period of the oscillations characteristic of CN

are due to a decrease in the minimal marrow
transit time from 6.3 days to 1.5 days in humans,
an increase in the number of mitoses in the
myeloblast, promyelocyte, and myelocyte stages,
and (to a minor extent) an increase in the
variance of the density of the maturation time
distribution.

A number of studies can be used to directly
determine the distribution of maturation times in
the neutrophil precursors, and modifications of this
distribution in CN and after administration of
G-CSF. Given the availability of these data and
the quite specific nature of the Schmitz hypothesis,
we were motivated to examine the notions concern-
ing the destabilization of the peripheral feedback
control of neutrophils with the involvement of the
density of distributions of the maturation times.
We have done this using a very general model (that
captures the primary elements of previous models
for peripheral neutrophil production, including the
Schmitz model) in a form that allows us to
specifically test elements of the hypothesis that
destabilization of the peripheral control of neu-
trophil production is responsible for the dynamic
aspects of CN.

3. Model for the Control of Granulopoiesis

3.1. 

3.1.1. Dynamical equation

We are now ready to translate the physiology of
this system into a formal mathematical model based
on our discussion of the control of granulopoiesis in
Section 2. In the model development that follows
reference to the lower part of Fig. 1, where the control
of white blood cell production is outlined, will be
helpful.

We let x(t) be the density of white blood cells in the
circulation (units of cells/ml blood), a be the random
disappearance rate of circulating white blood cells
(days−1), and M0 be the production rate (cells/ml-day)
of white blood cell precursors in the bone marrow.

The rate of change of the peripheral (circulating)
white blood cell density is made up of a balance
between the loss of white blood cells (−ax) and their
production (M0(x̃)), or

dx
dt

=−ax+M0(x̃). (1)

wherein x̃(t) is x(t− t) weighted by a distribution of



  171

maturation delays. x̃(t) is given explicitly by

x̃(t)=g
a

tm

x(t− u)g(u) du

0g
t− tm

−a

x(u)g(t− u) du. (2)

tm is the minimal maturation delay and g(t) is the
density of the distribution of maturation delays as
specified below in Section 3.1.2. Since g(t) is a
density, it is normalized by definition:

g
a

0

g(u) du=1. (3)

To completely specify the semi-dynamical system
described by eqns (1) and (2) we must additionally
give an initial function

x(t ')08(t ') for t ' $ (−a, 0). (4)

3.1.2. Distribution of maturation times

A wide variety of analytic forms could be used for
the density of the distribution of the maturation times
in the bone marrow. We have chosen to use the
density of the gamma distribution.

g(t)= 80 am+1

G(m+1)
(t− tm )m e−a(t− tm )

tE tm

tm Q t
(5)

with a, me 0, as have Blythe et al. (1984); Cooke &
Grossman (1982); Gatica & Waltman (1982, 1988) in
a different context. This choice was predicated on two
issues. First, we have found (see Section 3.1.3.) that
we can achieve a good fit of the existing data on
cellular maturation times using eqn (5). Second, the
density of the gamma distribution has been used a
number of times in the past (Kendall, 1948; Powell,
1955, 1958) to fit distributions of cell cycle times.
When the parameter m in eqn (5) is a non-negative
integer then the corresponding eqns (1) and (2) reduce
to a system of linear ordinary differential equations
coupled to a single nonlinear delayed equation with
a discrete (not continuously distributed) delay
(Fargue, 1973, 1974; MacDonald, 1989). This leads to
analytic simplifications, though we do not use them
here since we have typically found non-integer values
for the parameter m. We did, however, use this
reduction to test the accuracy of our numerical
simulations of the full model (cf. Section 3.4.).

The parameters m, a, and tm in the density of the
gamma distribution can be related to certain easily

determined statistical quantities. The average of the
unshifted density is given by

t2 =g
a

tm

tg(t) dt=
m+1

a
, (6)

and thus the average maturation delay as calculated
from eqn (5) is given by

�t�= tm + t2 = tm +
m+1

a
. (7)

The variance (denoted by s2) is given by

s2 =
m+1

a2 . (8)

Given the expressions (6), (7) and (8) in terms of the
gamma distribution parameters m and a, we may
easily solve for these parameters in terms of t2 and s2

to give

a=
t2

s2 (9)

and

m+1=
t2

2

s2. (10)

Equations (9) and (10) will be used in Section 3.1.3.

3.1.3. Parameter estimation

Several studies have shown that labeled neutrophils
disappear from the circulation with a half life t1/2 of
about 7.6 hr in humans (Dancey et al., 1976) and dogs
(Deubelbeiss et al., 1975) with a range of 7–10 hr.
Furthermore, this disappearance rate is unaffected in
human (Guerry et al., 1973) and canine CN (Dale
et al., 1972b) and is not altered by the administration
of exogenous G-CSF (Price et al., 1996). Since the
decay coefficient a of eqn (1) is related to the t1/2

through the relation

a=
ln 2
t1/2

, (11)

we have taken values of a $ [1.664, 2.378] (days−1) in
all of the numerical work reported here.

Distributions of maturation times were determined
from published data on the emergence of the
number of labeled circulating neutrophils
following pulse labeling by tritiated thymidine.
The published graphed data were scanned and
the postscript file viewed with Ghostview.
Ghostview gives coordinates for the position of the
points which, using position of the axes, can be easily
transformed to give the actual data points. The data
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were adjusted for the random death occurring at
a rate a by using the method of (Dancey et al.
(1976).

Assume that the neutrophils spend a period of
time U in the bone marrow, and Y in the blood.
Then the fraction, N(t), of labeled cells in the
blood at a time t is the probability that the time
in the marrow is less than t and that the total time
in the marrow and blood before death is greater
than t. Let g(u) be the density of the distribution
of the maturation times in the marrow, and
remember that g(u) is the quantity that we wish to
determine. Further note that, because of the
experimentally observed random destruction of
neutrophils in the circulation, if the rate of random
destruction is a then the density of the distribution
of destruction rates is given by a e−ay. With these
observations, for N(t) we finally have

N(t)=g
t

0 g
a

t− u

a e−ayg(u) dy du

=g
t

0

e−a(t− u)g(u) du. (12)

Thus,

eatN(t)=g
t

0

eaug(u) du, (13)

and differentiating both sides with respect to t gives

a eatN(t)+ eatN '(t)= eatg(t). (14)

The final result for the density of marrow transit times
is

g(t)= aN(t)+N '(t). (15)

F. 2. Densities of distributions of maturation times and the least square fits to the data achieved using the density of the gamma
distribution. The three left hand panels are for humans and show, from top to bottom, a normal human, data from a cyclical neutropenia
patient, and a normal human receiving 300 mg G-CSF. The three right hand panels are for dogs and correspond to (top to bottom) a normal
dog, a grey collie at the apogee of the cycle and a grey collie at the nadir of the cycle. See Table 1 for the parameters used to fit the data
and the references for the source of the data.
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As we had discrete data points from the labeling
data, we used the midpoint of two data points
and the slope of the joining line in (15), and
determined g(t) at the midpoint. The mean and
variance were calculated from the new density, and
the corresponding m and a determined from
eqns (9) and (10) were used as the initial values in
a nonlinear least squares fit to the data. The results
of these determinations for a number of published
data sets are summarized in Table 1. Figure 2
shows the raw data as well as the fits to the data
using the density of the gamma distribution.

3.2.     

3.2.1. The steady state

The equilibrium solution for the functional
differential equation (1)–(2) occurs when

dx
dt

=0=−ax+M0(x̃), (16)

so the steady state x* is defined implicitly by the
solution of the equation

ax*=M0(x *). (17)

Given the presumptive monotone decreasing nature
of the negative feedback production rate inferred
from the biology, there can be but a single unique
value for the steady state white blood cell density x*.
It is important to note that x* is completely
independent of the nature of the density g(t) of the
distribution of the maturation times. However, the
stability of x* is dependent on g(t) as we show in the
following section.

3.2.2. Stability

One of the primary considerations of this paper has
to do with the stability of the unique steady state,
defined implicitly by eqn (17), and how that stability
may be lost. In general, the question that one would
always like to be able to examine is the global stability
of a x* to all perturbations away from x*. However,
there are no general global stability results for systems
with dynamics described by eqns (1)–(2), and
consequently the usual approach is to examine the
stability of x* in the face of very small deviations
away from the steady state. This type of examination
is called an analysis of the local stability of x*.
Though this analysis involves an approximation it is
quite useful since the loss of local stability of a steady
state implies the global loss of stability, and our goal
here is to look for situations in which the steady state
is globally unstable.

Throughout this analysis, an important parameter
that will appear is the slope of the production function
M0 evaluated at the steady state, denoted by M'0*.
Because of our arguments at the end of Section 2.1.
concerning the negative feedback nature of the
peripheral control mechanisms acting on neutrophil
production, we know that this slope must be
non-positive (i.e. negative or zero).

To examine the local stability, we write out eqn (1)
for small deviations of x from x*. In the first (linear)
approximation this gives

dx
dt

2 − ax+M0* + (x̃− x*)M'0*, (18)

wherein

M0* 0M0(x̃= x*) (19)

and

M'0* 0
dM0(x̃)

dx̃ bx̃= x*

. (20)

Utilizing eqn (17) and defining the deviation from
equilibrium as z(t)= x(t)− x*, we can rewrite
eqn (18) in the form

dz
dt

=−az+M'0* g
t− tm

−a

z(u)g(t− u) du. (21)

To proceed, we make the ansatz that the deviation z
from the steady state has the form z(t)2 exp (lt),
substitute this into eqn (21), carry out the indicated
integrations and finally obtain

l+ a=M'0* 0 a
l+ a1

m+1

e−ltm . (22)

Equation (22) for the eigenvalues l may have a
variety of solutions. If an eigenvalue l is real, then a
simple graphical argument shows that the eigenvalue
will be negative and contained in the open interval
(−a, −a).

Alternately, the eigenvalue solutions of (22) may be
complex conjugate numbers, in which case the most
interesting thing to know is when the real part of the
eigenvalue is identically zero. This will define the
boundary between a locally stable steady state Re
lQ 0 and a locally unstable steady state with Re
lq 0.

To investigate this possibility, we take l= m+ iv
and substitute this into eqn (22) to give, with m=0,

iv+ a=M'0* 0 a
iv+ a1

m+1

e−ivtm, (23)
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or rewriting

$(iv+ a)01+ i
v

a1
m+1

%=M'0* e−ivtm (24)

This equation can be manipulated to give a set of
parametric equations in a and M'0*. We start by
setting

tan u=
v

a
. (25)

Using de Moivre’s formula in eqn (24) gives

(a+ iv)( cos [(m+1)u])+ i sin [(m+1)u])

=M'0* cosm+1u( cos vtm − i sin vtm ) (26)

Equating the real and imaginary parts of eqn (26)
gives the coupled equations

a−M'0* R cos vtm =v tan [(m+1)u], (27)

and

a tan [(m+1)u]+M'0* R sin vtm =−v, (28)

where

R=
cosm+1u

cos[(m+1)u]
. (29)

Equations (27) and (28) are easily solved for a and
M'0* as parametric functions of v to give

a(v)=−
v

tan [vtm +(m+1) tan−1(v/a)]
(30)

and

M'0*(v)=

−
v

cosm+1[ tan−1(v/a)] sin [vtm +(m+1) tan−1(v/a)]

(31)

respectively.
To show that the stability boundary defined

implicitly by eqns (30) and (31) delimits a transition
from a locally stable steady state to a locally unstable
steady state as M'0* decreases, we must show that the
real part of the eigenvalue is negative on one side of
the boundary and positive on the other. Thus, the real
part of dl/dM'0*, or equivalently of (dl/dM'0*)−1, must
be negative when l= iv.

Implicit differentiation of eqn (22) yields

0 dl

dM'0*1
−1

=0l+ a
a 1

m+1

eltm

+M'0*
m+1
l+ a

+M'0* tm , (32)

and the use of eqn (22) in (32) gives

0 dl

dM'0*1
−1

=M'0*0 1
l+ a

+
m+1
l+ a

+ tm 1. (33)

Evaluating (33) at l= iv and eliminating complex
numbers in the denominators, we have

0 dl

dM'0*1
−1

=M'0*0 a− iv
a2 +v2 +

(m+1)(a− iv)
a2 +v2 + tm 1 (34)

with

Re00 dl

dM'0*1
−1

1
=M'0*0 a

a2 +v2 +
(m+1)a
a2 +v2 + tm1. (35)

If M'0* is negative (as in our case), then the right hand
side of eqn (35) is negative indicating that for
increases in M'0* to more positive values at the
boundary where m0 0, the real part of the eigenvalue
l is crossing from positive to negative.

Thus, we conclude that the locus of points defined
by eqns (30) and (31) define the location in (a, M'0*)
parameter space where a supercritical Hopf bifur-
cation takes place and a periodic solution of period

THopf =
2p

v
(36)

occurs.

3.3.      

In Fig. 3 we have parametrically plotted M'0*(v) vs.
a(v) (v is the parameter) [eqns (30) and (31)] to give
the stability boundaries for a normal human and a
human with CN using the data of Table 1. (Ignore the
lines corresponding G-CSF for the time being). The
two vertical dashed lines correspond to the normal
range of a values as discussed in Section 3.1.3., the
lower dashed line is the stability boundary for the CN
case, and the solid line is for the normal human.
Regions above a given stability boundary in (a, M'0*)
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F. 3. A parametric plot of the regions of linear stability and
instability based on data for normal humans (solid line) (Perry et
al., 1966), humans with CN (lower dashed line) (Guerry et al.,
1973), and normal humans administered G-CSF (upper dashed line
is for 30 mg, and the dash-dot line is for 300 mg) (Price et al., 1996).
In this and all subsequent stability diagrams, points (a, M'0*) above
a given stability line correspond to linear stability of the steady
state and those below correspond to an unstable steady state. See
the text for details.

in CN, so an increase in a cannot be the source of
these depressed levels.)

Suppose for the sake of argument that in humans
such a decrease in M'0* has taken place—i.e. that M'0*

has become sufficiently negative for an unstable
situation to occur. We can calculate exactly the period
of the solution when the Hopf bifurcation to unstable
behaviour occurs. In the case of the g parameters for
the normal human THopf $ [18.23, 17.79] days for
a $ [1.664, 2.378]. The corresponding range for the
CN boundary is THopf $ [14.18, 13.78] days. These
values are significantly lower than the smallest
observed periods in clinical CN as reviewed in Section
2.2. and as found in the analysis of Haurie et al.
(1998b).

Turning to the case of canine CN, we have plotted
stability boundaries for a normal dog and grey collies
at the peak and nadir of their cycle in Fig. 4. The
stability boundaries for all three situations (using the
appropriate parameters from Table 1) fall virtually on
top of one another. As with human cyclical
neutropenia the local stability analysis suggests that,
in contrast with the hypothesis of Schmitz et al.
(1990), the origin of canine cyclical neutropenia is not
a consequence of alterations in the distribution of
marrow maturation times for neutrophil precursors
alone. Rather, as in the human case, a shift in M'0* to
more negative values would be required to effect the
requisite instability.

Assume for the grey collie that such a shift in M'0*

to values sufficiently negative to destabilize the system
has taken place. What then are the predicted Hopf
periods at the onset of the ensuing oscillation? Based
on the data for normal dogs presented in Table 1, for
a $ [1.664, 2.378] the local stability analysis of Section
3.2.2. predicts that THopf $ [8.46, 8.15] days. For the

parameter space correspond to a locally stable steady
state neutrophil level, while regions below are
unstable. For values of (a, M'0*) exactly on a given line
there is a bifurcation to a periodic solution with Hopf
period THopf as discussed above.

3.3.1. Implications for the origin of cyclical
neutropenia

The first point to be noted is the following: if the
model for granulopoiesis is stable for a normal
human, then a simple alteration of the characteristics
of the maturation time distribution to correspond to
the value for cyclical neutropenia (Table 1) is
incapable for singlehandedly inducing an instability.
Furthermore, note that the unique steady state of the
model as given implicitly by eqn (17) is independent of
any alterations in the distribution of maturation
times. However, the dynamically varying neutrophil
levels in CN are often depressed relative to the normal
state (Section 2.2.) thus implying that a simple
alteration of the distribution of maturation times
could not be the sole source of CN dynamics alone.

Examination of Fig. 3 shows that if the dynamic
behaviour of CN is to be a result of an instability in
this model then, in addition to the known alterations
in the distribution of maturation times, there must be
a concomitant decrease in M'0* to more negative
values such that (a, M'0*) falls in the zone of
parameter space where x* is unstable. Since one of the
hallmarks of CN is an oscillation about a reduced
average neutrophil count, this decrease in M'0* must
also be accompanied by a decrease in M0* to account
for the decrease in x*. (Remember that a is not altered

F. 4. A parametric plot of the regions of linear stability and
instability based on data for normal dogs taken from Deubelbeiss
et al. (1975) and from grey collies at the apogee and nadir of their
oscillation as taken from Patt et al. (1973). Note that the three
stability boundaries are virtually indistinguishable from one
another.
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grey collie maturation distribution data taken at the
nadir of the cycle this range is reduced to
Thopf $ [7.95, 7.63] days, while the collie data from the
apogee predicts THopf $ [7.35, 7.05] days. All of these
estimates are below the reported ranges for the period
of canine CN discussed in Section 2.2. and in Haurie
et al. (1998c).

Thus, for both human and grey collie CN we
conclude that there is no evidence from the linear
stability analysis that the dynamics of CN are due to
an instability in the peripheral control of granu-
lopoiesis caused by a change in the distribution of cell
maturation times.

3.3.2. Assessing the effects of G-CSF

The second point that we can address with the aid
of the local stability analysis of Section 3.2.2. is the
effect of G-CSF on the stability of the system in
normal humans. In Fig. 3 we have plotted the stability
boundaries for the data of Table 1 corresponding to
the alterations in normal humans induced by 30 and
300 mg G-CSF reported by Price et al. (1996). (Note
that if the individuals in this study weighed 70 kg,
then the dosage was either 0.43 or 4.3 mg/kg-day,
respectively.) It is clear from Fig. 3 that the region of
parameter space in which the normal human control
system is stable is actually decreased by the
administration of G-CSF since the stability bound-
aries for both dosages of G-CSF lie above the stability
boundary for a normal human. Unfortunately, we
have been unable to locate any data for the effects of
G-CSF on the density g of the distribution of
maturation times in dogs, but based on the
comparable data for humans we would not expect
large quantitative differences.

If data were available for the effects of G-CSF on
the density of the distribution of maturation times in
humans with CN we could assess the potential role of
G-CSF in altering the period as noted in the clinical
literature. However, we must note that if the changes
induced by G-CSF in CN are comparatively similar
to those in normals, then it is unlikely that G-CSF
could ever act to stabilize a peripheral instability in
neutrophil numbers since its role seems to be a
destabilizing one.

3.4.      

The linear stability analysis suggests that CN is not
the result of a change in the distribution of
maturation times. An examination of the full
numerical behaviour of the complete nonlinear
system once a control function M is specified must be
performed to determine if an alteration in the

feedback function can give the dynamics observed in
CN. This section is devoted to the issue.

3.4.1. A generic control function

In light of our discussion of the control of
granulopoiesis in Section 2.1., though the detailed
mechanisms whereby this control is exerted are
unclear at this time it is equally clear that the net effect
of the control elements regulating granulopoiesis are
such that an elevation of peripheral neutrophil
numbers eventually leads to a decrease in production
and vice versa. Thus the production function M0 can
be assumed to be a monotone decreasing function of
x̃, and has a negative feedback character.

In this paper, for numerical computation purposes
we assume that the production rate function M0 is a
Hill function of the form

M0(x)=MiA
un

un + xn nq 0. (37)

In eqn (37), the term represents Mi the cellular input
(in cells/ml-day) of cells from the neutrophil stem cell
precursors, while the Hill function portion of the
feedback

A(x)=Amax
un

un + xn (38)

represents the amplification factor assumed to
operate within the precursor compartment. The
maximal amplification is Amax .

To proceed with the numerical investigation of our
system (1) with the (2), (5), and the nonlinearity (38)
the parameters Mi , Amax , u and n must be estimated.
Given a normal value for the granulocyte turnover
rate (GTR), and letting A(x*) be the normal
amplification (usually thought to be around 8) within
the recognizable neutrophil precursors, we have

Mi =
GTR
A(x*)

cells/kg-day. (39)

It is easy to derive a relation between the normal
neutrophil density x*, u, n, and Amax . To do this,
evaluate eqn (37) at the steady state, substitute (39),
and define

G=
Amax

A(x*)
(40)

to give

u=
x*

nzG−1
. (41)

With x* and G known, (41) reduces to a relation
between u and n. A second relation involving some of
these parameters may be obtained by invoking the
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T 2
The primary data and the normal parameters derived
from these for simulation purposes using the arguments

outlined in the text
Quantity Units Humans Dogs

GTR cells/kg-day 8.7×108 1.65×109

a days−1 2.2 (1.7–2.4) 2.2 (1.7–2.4)
x* cells/ml 4.5×103 (1.8–7.5) 8.2×103 (6–12.5)
A(x*) — 8 8
Amax — 128 128
G — 16 16
Mi cells/kg-day 1.1×108 2.1×108

M'Hopf days−1 −4.57 −2.47
nmax — 2.22 1.19
u(nmax ) cells/ml 1.33×103 8.4×102

assumed a value of G=16. This allows estimations of
nmax and u for the normal state, noted in Table 2.

The experimental evidence cited earlier in our
review of CN indicates that the responsiveness of
neutrophil precursor cells to G-CSF is attenuated in
CN compared to normal (Avalos et al., 1994;
Hammond et al., 1992; Lothrop et al., 1988) though
the maximal value is unchanged. This suggests a shift
in the feedback function resulting from a decrease in
u. However, with the normal values given in Table 2,
we found that a decrease of u alone is insufficient to
decrease M' below M'CN

Hopf . As a decrease in Amax

increases the slope, we conclude that only an increase
in n can destabilize the system.

3.4.2. Numerical methods

Equation (1) cannot be solved analytically.
However, a numerical solution can be found to the
integro-differential equation via initial value tech-
niques used to solve ordinary differential equations,
along with an integral solver. Other numerical work
on similar problems has used the backward Euler
method (Markowich & Renardy, 1983; Nevanlinna,
1978). We used the trapezoidal method to evaluate
both the equation and the integral.

The accuracy of the program was first tested by a
comparison with the predictions of a linear stability
analysis. It was further checked by comparing the
results of simulations of a gamma function of integer
order with the results of simulations on xpp using the
linear chain reduction (Fargue, 1973, 1974; MacDon-
ald, 1989) with the same parameters. A copy of the
program is available from the authors on request.

3.4.3. Results

In Fig. 5 we present the results of an extensive series
of simulations for both humans and dogs. We ran the
simulations for transient of 400 days in humans and
200 days in dogs with a constant initial function of
one-half normal neutrophil values and then computed
the mean value of the neutrophil numbers, the
amplitude of the oscillation (maximum minus
minimum), and the period of the oscillation for 100
days after the transient. Amax and u were systematically
decreased from the values given in Table 2. n was
studied in the range [3, 7.5] for humans and [1.25, 5.5]
for dogs, which give unstable steady states.

As shown in Fig. 5, for small n the period was much
smaller than is observed in CN. In humans, it was
only for values of ne 5 that we were able to obtain
periodic neutrophil variation with a period approxi-
mating the lower range of the clinically observed
period (19 days). However, as is clear from Fig. 6,
having achieved a proper period, the simulations then

requirement that the steady-state number of neu-
trophils, x*, is stable in normal subjects. This in turn
implies that M'(x*)0M'0* qM'Hopf where M'Hopf is
given by eqn (31). It is a straightforward calculation
to show that

M'(x*)=

− n
M(x*)

x* $1−
M(x)
MiAmax%=−

n
a

·
G

G−1
. (42)

Requiring that the normal steady state be stable yields

−
n
a

·
G

G−1
qM'Hopf (43)

or

nQ =M'Hopf =
a

G
G−1

0 nmax . (44)

If CN is to arise because of an instability in the
peripheral control loop, modeled here then all of the
considerations of Section 3.3.1. become important.
Specifically, it is clear that the parameters must
change in such a way that the slope M'(x*CN ) of the
control function at a depressed and unstable steady
state x*CN becomes sufficiently negative that it falls
below the critical slope M'CN

Hopf at which the Hopf
bifurcation takes place.

Three parameters in our feedback function must be
estimated: u, Amax and n. A(x*), the normal
amplification, is usually thought to be around 8, and
the maximum amplification is estimated to be as high
as 64 (6 effective divisions) or 128 (7 divisions) under
certain circumstances. Thus, the maximum values of
the ratio G [eqn (40)] is between 8 and 16, G $ [8, 16].
This estimate is consistent with the work of Lord et al.
(1991) on the effects of G-CSF in mice where a value
of Ge 14.5 was found, and the work of Lord et al.
(1989); Lord (1992) where a value of Ge 9.4 was
found in humans treated with G-CSF. Here, we have
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had completely inappropriate appearance, with
maximum values substantially higher than found in
CN (Dale & Wolff, 1972). Also, the mean values and
amplitudes of the neutrophil oscillation are far in
excess of typical CN data.

In summary, we were unable to produce numerical
solution behaviour from the full nonlinear model that
bore any resemblance to what has ever been reported
in the clinical literature on CN. Furthermore, the
values of the parameter n that were required to
achieve this period exceed anything that would be
expected in terms of the negative feedback character-
istics between G-CSF and the response of primitive
neutrophil progenitor cells (Avalos et al., 1994;
Hammond et al., 1992; Lothrop et al., 1988).

Without belaboring the point, we found the same
qualitative failure of the model to produce behaviour
similar to that seen in the grey collie. For
completeness, we have also plotted the comparable
mean, amplitude, and period data in Fig. 5.

These failures, which are consistent with the
conclusions of Section 3.3., lead us to conclude finally

that given the current state of knowledge of cyclical
neutropenia the origin of the dynamic nature of this
disorder is not to be found in the peripheral control
of neutrophil production. Further, we conclude that
the response to treatment with G-CSF is not due only
to the effects of G-CSF on the distribution of
neutrophil precursor maturation times.

4. Discussion and Conclusions

Our original motivation in carrying out the
research reported here was to examine the hypothesis
that CN was due to a loss of stability in the peripheral
control of neutrophil production. Based on the
considerations of Section 3.3. that are independent of
the precise nature of the control function assumed,
and the numerical computations of Section 3.4. we
conclude that any alterations of parameters in this
peripheral control system consistent with the extant
laboratory and clinical data on CN are unable to
reproduce either the characteristics of clinical CN or
its laboratory counterpart in the grey collie. Further,

F. 5. Simulation results giving the numerically determined mean value (103 cells/ml), amplitude (103 cells/ml), and the period (in days)
of neutrophil oscillations predicted by the model eqns (1), (2), (5) and the nonlinearity (38) with the parameters of Table 2. Plotted are
n=3 (lower graphs) and n=5.5 for humans and n=1.25 (lower graphs) and n=5.5 for dogs. See the text for details.
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F. 6. Dynamics of the absolute neutrophil count (ANC, 103/ml)
in a CN patient and in simulation results (n=5.5, u=0.27,
Amax =128). Note that in spite of the fact that the simulation period
matches the one seen in CN, there is a huge discrepancy in the
amplitudes, and that the simulation results predict much longer
periods of severe neutropenia than observed.
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we conclude that the dynamic effects of G-CSF
treatment of CN are probably not primarily due to
the alterations of the peripheral control dynamics.

Rather we tentatively conclude, as has Mackey
(1996), that the dynamics of CN are due to a
destabilization of the pluripotential stem cell popu-
lation as originally proposed by Mackey (1978, 1979).
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