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Abstract. In this note we outline the study of the asymptotic behaviour
of randomly perturbed dynamical systems from a statistical point of
view, using four different techniques. The results are formulated in
the language of Markov operator theory. Each technique is applied to a
typical biological model. We also show an extension of the last technique
— the Foguel alternative — to continuous time systems and its application
to the logistic equation with parametric noise.

1 Introduction

It has been known for many years that randomly perturbed dynamical systems
can be effectively studied by the use of Markov operators. Recently discovered
methods in the theory of Markov operators facilitate this study. The purpose of
this lecture is to present a few of these techniques which, in our opinion, are of great
potential value, and to illustrate their use with applications to different biological
models.

In Section 2 we start with a description of discrete time stochastically perturbed
systems, and derive the corresponding transition operators. Then in Section 3 we
review some basic facts from the theory of Markov operators, and outline four
techniques which allow one to determine the asymptotic behaviour of perturbed
systems from a statistical point of view. Sections 4 and 5 are devoted to the lower
bound function technique and its application to mathematical models of the cell
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cycle. In Section 6 we present the asymptotic decomposition theorem, and show
how it can be used to describe dynamical systems with additive and multiplicative
perturbations. In Section 7 we study integral operators having a positive invariant
density and we show an application to the Tyson—Hannsgen model of the cell cycle.
Finally in Sections 8 and 9 we present a new version of the Foguel alternative and
its application to the parametrically perturbed logistic equation. We also formulate
an open problem concerning the existence of a subinvariant function for integral
operators of Volterra type with advanced argument.

Most of the results discussed here are relatively new (e.g. Baron & Lasota
[1993], Lasota & Mackey [1994], Malczak [1992]) or were especially prepared for this
note. In particular we present new proofs of the asymptotic stability for the Tyson
& Hannsgen and Tyrcha models of the cell cycle and also show new applications of
the Foguel alternative.

2 Perturbed Dynamical Systems

We consider a stochastically perturbed discrete time dynamical system of the
form
Tn41 :T(mrugn)) n:():]-)"' ) (21)

where x,, is the state variable of the system at time ¢ = n and the &,, are independent
random variables which represent the perturbations. Throughout we make the
following assumptions:

1. The transformation T : X x W — X is defined on a set X x W where
X C IR% is a closed set and W C IRF is Borel measurable. For every fixed
w € W the function T'(x,w) is continuous in x and for every fixed x € X it
is Borel measurable in w.

2. The random variables &g, &1, ... with values in W are independent and have
the same distribution,

v(B) =prob (¢, € B), BCW, B Borelian.

3. The initial vector zo with values in X is independent of {,}.

Our goal is to study the statistical properties of the trajectories {z,}. Thus
we define the corresponding sequence of distributions

pn(A) = prob (z,, € A), ACX, A Borelian,

and look for a recurrence relation that will give p,,41 in terms of p,,.
Let h be a real valued bounded Borel measurable function defined on X. Then
the mathematical expectation of h(z,+1) is given by the formula

E(h(zp11)) f h(z) i1 (dz). (2.2)
On the other hand, using (2.1), we have h(x,+1) = (T (xn, &) and consequently
E(h(zpny1)) f f WMT (x,w))pn (dx)v(dw). (2.3)

From equations (2.2), (2.3), in the special case where h = 14 is the indicator
function of a set A, we obtain

fins1 (A f f La(T (2, w) ) pn (dw)v(dw). (2.4)

This is the desired recurrence condltlon. If the p,, are absolutely continuous mea-
sures with densities f,(z) = du,/dz then equation (2.4) also allows us to calculate
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fny1 from f,. In this case we write f,+1 = Pf, and we call P the transition
operator corresponding to the dynamical system (2.1). We illustrate this situation
by two important examples.

Example 2.1 Additive Perturbations. Assume that X = W = IR? and that
T (z,w) is linear in w, so T'(z,w) = S(z) + w with a continuous S : IR? — IR?. In
this case (2.1) reduces to
Tpt1 = S(xn)+&, n=0,1,..., (2.5)
and (2.4) takes the form
pnsr(A) = [ [ 1a(S(2) + w)paa (de)v(duw).
IR? IR4
If in addition we assume that the measure v is absolutely continuous with a density
g, then

i (A) = [ { [ 14(S(@) + w)g(w)dw } un (do).

IR* “IR?
Substituting x = u, S(z) + w = y and changing the order of integration we obtain
i (4) = [{ [ gy = S(w)pun(du) }dy.
A “IRd

The function inside the braces is integrable with respect to y and consequently i, 41
is an absolutely continuous measure. Therefore the densities f,, = du,,/dz exist for
n > 1 and satisfy the recurrence relation f,,1 = Pf, with the transition operator

Pf() = [ glo S(u)f(wdu. 26)
IR
Example 2.2 Multiplicative Perturbations. Assume that X = W = [0, 00)
and that T'(z,w) = wS(z) with a continuous S : [0, 00) — (0,00). Then
Tpt1 = ES(xn), n=0,1,... (2.7)

and

pnt1(A) = | | 1a(wS(x))pn (dz)v(dw). (2.8)

Again assuming that v is absolutely continuous with dv/dz = g(z) and substituting
x = u, wS(r) =y we obtain

a1 (A) = 1{{ Zog(sgu)) “ggi? }dy-

Thus for n > 1 the p, are absolutely continuous and the densities f, = du,/dz
satisfy the relation f,, 11 = Pf, where

Pf@) = [ o5t ) F) . (2.9)

In these two special cases the transition operator P was derived under the mild
assumption that the distribution v of perturbations is absolutely continuous. An
analogous calculation can be carried out for the general form of T'(z,y). However,
in this general situation the derivation of P is less transparent and requires some
additional assumptions concerning the derivatives 07'/0w. In the next section we
will discuss the transition operators from a more abstract point of view.
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3 Markov Operators

Let (X, A,p) be a o-—finite measure space. By D we denote the set of all
normalized densities, i.e.

D={felL': f>0, |fll=1},

where || - || stands for the norm in L' = L' (X, A, u). A linear mapping P : L' — L!
is called a Markov operator if P(D) C D.

An important class of Markov operators is given by stochastic kernels. We
say that a measurable function £ : X x X — IR is a stochastic kernel if

k(z,z) >0 and )j("k:(u,z),u(du) =1, zzeX. (3.1)

Having k, we define the corresponding integral Markov operator by the formula

Pf(x) :)}fk(:n,u)f(u)u(du). (3.2)

Conditions (3.1) imply that P given by (3.2) is in fact a Markov operator.

The transition operators (2.6) and (2.9) are typical examples of integral Markov
operators. Conversely, it is interesting that every integral Markov operator is a
transition operator of some stochastically perturbed dynamical system of the form
(2.1). We may easily demonstrate this fact for operators defined on L!(IR). Thus
assume that an integral Markov operator

Pi) = | ko)), (33)

is given. Assume moreover that g € D(IR) is an arbitrary positive (g(z) > 0 a.e.)
density. Having k and g we define the function T : IR x IR — IR as follows. For
every fixed (z,w) € IR? the value T(x,w) is given as the smallest solution of the
equation.

T(z,w) w

:f f(u,a:)duzif g(u)du. (3.4)

Since the integral on the right hand side of (3.4) has values in the open interval
(0,1) and k is a stochastic kernel the solution T'(z, w) always exists. An elementary
calculation shows that the dynamical system z,,+1 = T'(z,,&,), in which the &, are
independent random variables having the same density distribution function g, has
a transition operator of the form (3.3). Formula (3.4) was proposed by K. Loskot.

From the above considerations it follows that in many cases the study of the
asymptotic behaviour of the perturbed dynamical system (2.1) can be replaced by
the examination of the iterates {P™} of its transition operator P.

We introduce two simple definitions which describe the typical behaviour of
{P™}, assuming that a o—finite measure space (X, A, u) is given.

A Markov operator P : L' — L' is called asymptotically stable if there exists a
density f. such that Pf, = f. and

lim |P"f—f =0 for feD. (3.5)
n—o0
A density f. satisfying Pf. = f. is called stationary. Evidently (3.5) implies

that for an asymptotically stable operator there exists exactly one stationary den-
sity.
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Let a Markov operator P : L' — L' and a subfamily of measurable subsets

A. C A be given. We say that P is sweeping with respect to A, (or, simply,
sweeping) if

lim [P"f(z)u(dz) =0 for AeA,, feD. (3.6)

n—o0 A

We say that the family A, is regular if there exists a sequence A4, € A. such
that X =J,, An. Evidently an operator which is sweeping with respect a regular
family A, cannot be asymptotically stable.

In the following sections we will show four effective criteria for the determination
of asymptotic stability and sweeping. Namely we will discuss:

1. the lower bound function theorem,

2. asymptotic decomposition of constrictive operators,

3. integral operators satisfying a transitivity property,

4. the Foguel alternative.

Each criterion will be illustrated by an application to a dynamical system. In
particular we will examine some mathematical models of the cell cycle and the
logistic growth equation with parametric noise.

4 Lower Bound Function

Let (X, A, u) be a o—finite measure space and P : L' — L' a Markov operator.
We say that a function h € L' is a lower bound function if for every f € D there is
a sequence €, (f) € L' such that

P'f>h—en(f) and |[len(f)l = 0. (4.1)

A lower bound function h is nontrivial if A > 0 and ||h|| > 0.

At first glance conditions (4.1) look much weaker than condition (3.5) appear-
ing in the definition of the asymptotic stability. We have, however, the following
theorem from Lasota & Yorke [1982].

Theorem 4.1 A Markov operator P is asymptotically stable if and only if it
has a nontrivial lower bound function.

An efficient condition to prove the asymptotic stability of integral Markov op-
erators can be formulated by a use of a Liapunov function. Let G C IR? be an
unbounded Borel measurable set. A continuous function V' : G — IR is called a
Liapunov function if

V(z)>0 for z€G and lim V(z)=o0.

|z]— 00
Consider on L!(G) an integral Markov operator

Pf(x) ZCJ;k(w,y)f(y)dy- (4.2)

From Theorem 4.1 it is easy to derive the following corollary which is a slight
generalization of a result of Tyrcha [1988].

Agsume that there exists a Liapunov function V' and constants § > 0, v < 1
such that

gV(x)Pf(:r)d:r < 5+7(£V(x)f(:r)d;r for feD. (4.3)

Assume moreover that

E;fqirelgk(:v,u)da: >0 (4.4)
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for every compact set C C G. Then the operator P defined by (4.2) is asymptoti-
cally stable.

5 A Cell Cycle Model

As an example of the applicability of the lower bound function technique we
consider a model of cell cycle proposed by Tyrcha [1988] which generalizes a model
of Lasota & Mackey [1984] and the tandem model of Tyson & Hannsgen [1986].

In the Tyrcha model it is assumed that the cell cycle consists of two phases A
and B. Phase A begins at birth and lasts until the occurrence of a critical event
which is necessary for mitosis. Then the cell enters phase B. The end of phase
B coincides with cell division. The duration tg of phase B is constant while the
length t4 of phase A is random. More precisely the probability that the critical
moment occurs in the interval [t,t + At] is

prob (t <ta <t+ At |ta >t) = p(x(t)) At + o(Ay), (5.1)

where z(t) is the size (or amount of mitogen) of the cell at time ¢ and ¢ is a given
nonnegative function. Further it is assumed that the cell size grows according to
the equation

d

= =9@), =0 =r, (52)
where g(z) for z > 0 and g(0) = 0. Denote by ), the initial size of cell in the n—th
generation. Evidently x,, can be considered as a random variable. Using the above

assumptions it can be shown (see Lasota et al. [1992]) that
Tn+1 = A_l{Q_l[Q(xn) + En]}) (53)
where

Q) = [ S8y, M) = n(~ts,20)

and 7 (¢, ) is the solution of equation (5.2). The random variables &, are indepen-
dent and have the common density distribution function g(z) = e~*. An elementary
calculation shows that the transition operator for the dynamical system (5.3) has
the form

A(z)

Pie) == [ {#ewlQw) - QU@I} W)y (5.4)

The asymptotic properties of operator (5.4) can be studied under the quite
general assumptions that () and A are absolutely continuous, nondecreasing and

ILm Q(z) = ILm A(z) =00, A(0)=0. (5.5)
These condition imply by a straightforward calculation that P is an integral Markov

operator on L!([0,00)). The asymptotic behaviour of P is described by the follow-
ing.

Theorem 5.1 If

liminf[ Q(A(z)) — Q(=)] > 1, (5.6)
then P is asymptotically stable, and if
lim sup[ Q(A(z)) = Q(=)] <1, (5.7)

then P is sweeping with respect to compact subsets of [0, 00).
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Proof (outline). First assume (5.6) setting V(z) = exp(aQ(A(x))),
0 < a <1, so using (5.4) it is easy to verify that

:fo V(e)Pi)dr = =5 af f(z)e@)q (5.8)

According to (5.6), there exists an xg >0 and ¢ >1 such that
Q(z) < Q(A\(z)) — o for = > zy. Using this and (5.8) we obtain

[V(z)Pf(z)dr < 11 ff )@@ dy + ¢ fV (z)dx
0 zo

or
fV x)dr < §(a fV

where § = e"Q(“)(l—a) and y(a) = e 2¥(1—a) . The inequality ¢ > 1 implies
that y(a) < 1 for some « € (0,1) and consequently condition (4.3) of Corollary 4.1
is satisfied. The verification of (4.4) is elementary due to the specific (exponential)
form of the kernel in (5.4).

Now assume (5.7) and define V(z) = w(Q(\(z))) where

w(z) = e~ oo for © <=z,
Tl eTo® for = >z .

Choosing xg sufficiently large and a > 0 sufficiently small it can be shown that
JV(z)Pf(zx)de <~ [V(z)f(z)dz, for feD, (5.9)
0 0

where v < 1 is a constant. From (5.9) follows

lim fV VP f(x)dr =0

n—o0 0
which implies sweeping. (|

The detailed proof is given in Gacki & Lasota [1990]. The proof presented here
is much shorter due to another choice of the Liapunov function V(x).

6 Asymptotic Decomposition Theorem

In order to apply the lower bound function technique it is necessary to evalu-
ate the sequence {P"f} from below. The asymptotic decomposition theorem also
describes the behaviour of {P™f} in the case when the sequence {P"f} has an
integrable upper bound.

Let (X, A, 1) be a o-finite measure space. A Markov operator P : L' — L!
is called constrictive if there exists constant k < 1, § > 0 and a set C' € A with
the following property: For every f € D there is an integer ng(f) such that

| P'f(x)u(de) <k for n>ne(f), u(B)<d BcCC.

BU(X\C) (6.1)

The constrictivness rules out the possibility that for large n the densities P™ f are
either concentrated on a set of very small measure or dispersed throughout the
entire space. In particular P is constrictive if there exists an integrable function
h > 0 such that

P'f <h+ey(f) and lim |le,(f)] = 0.

n—o0
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The asymptotic behaviour of constrictive operators is described by the following
theorem due to Komornik & Lasota [1987].

Theorem 6.1 The iterates of a constrictive operator P can be written in the
form

T
P f =% Xi(f)gan(iy + Quf,  for fe L, (6.2)
i=1
where:
1. g1,-..,9- are densities with disjoint supports;
2. Ai,... A\, are linear functionals on L';
3. ais a permutation of numbers 1, ... ,r such that Pg; = g,(;) and o™ denotes

the nth iterate of a;
4. @, is a sequence of operators such that lim |Q.f| =0 for f € L*.
n— 00

The terms under the summation in (6.2) are just permuted with each applica-
tion of P and since r is finite this sum is periodic with a period smaller than or
equal to r!. Thus for every f € L! the sequence {P"f} is asymptotically periodic.
From Theorem 6.1 it is easy to derive a simple criterion for asymptotic stability.

Let P be a constrictive Markov operator. Assume there is a set 4 € A of
positive measure with the following property: For every f € D there exists an
integer ng(f) such that

P'f(z)y>0 for z€ A ae. and n > ng. (6.3)

Then P is asymptotically stable.

Theorem 6.1 and Corollary 6.1 can be easily applied to dynamical systems with
additive and multiplicative perturbations. We show this application in the following
two examples.

Example 6.2 Again consider the dynamical system (2.5) and the correspond-
ing transition operator (2.6). Assume that there is a number M > 0 such that for
every initial vector xy the sequence {x,} satisfies

limsup E(|z,|) < M. (6.4)
n—o0

Then by the Chebyshev inequality

[ Pf(a)de < 2D <
le|>2M

[N

for f € D and n sufficiently large, say n > no(f). Moreover for f € D we have

[P f(z)dx = f{ J g(z— S(u))P"_lf(u)du}dm
B B

IR?
< sup [ g(z)dz.
2€R? B+z

Since g is Lebesgue integrable, there exists a § > 0 such that the last integral is
smaller than € = 1/4 whenever p(B) < 4. Setting C = {z : || < 2M} we have

[ Pf(x)de < [P"f(z)de+ [ P f(z)de<3
BU(R4\0) B |z|>2M

for f € D and n > no(f) which implies constrictivness. Thus, using Theorem 6.1

we obtain the following conclusion: Every dynamical system with additive per-

turbations is either asymptotically unbounded ((6.4) is not satisfied with any M
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independent of xy) or the sequence of densities {P™f} is asymptotically periodic.
If (6.4) is satisfied and in addition g(z) > 0 for x € IR?, then condition (6.3) is also
fullfilled and {P"f} converges to a unique stationary density.

Example 6.3 Now consider the dynamical system (2.7) with the transition
operator (2.9). Assume that the transformation S is linearly bounded, i.e.

0<S(z)<azx+p for x>0, (6.5)

and that the perturbations &, have a common density distribution function g with
a finite first moment

oo

m = [ zg(z)de < co. (6.6)

0
Horbacz [1989] has shown that for am < 1 the operator P given by (2.9) is con-
strictive. A simplified version of her proof goes as follows. Setting V(z) = x it is
easy to verify that

V()Pf(zx)de = m Zfof(a;)S(a:)da:

< am ?V(m)f(a:)da: + Bm,
0

which shows that condition (4.3) of Corollary 4.1 is satisfied. This, by the Cheby-
shev inequality, implies

C

[P f(z)de > 2 for n>no(f),
0

where ¢ is a sufficiently large number. Since g is integrable there must be a §; > 0
such that

Jy(x)dz <1 for p(A) <di.
A

Define § = 6 0r<nir<1 S(u). Then for u(B) < § and 0 < u < ¢ we have
<u<e
u(B/S(u)) < 6;. Consequently

gP”f(a:)da: = ZoPnflf(u){gg(%) S”éi) }du

< :fOP"_lf(u)du + Ofpn—lf(u){i!g(sfu))%}du

< R [P fwde < g for > mno(f) +1.

Setting X = [0,00), C' =[0,¢] we have X \ C' = [¢,00) and

o0
[ P'f(x)de < [P"f(z)dx+ [ P"f(z)de <1 +1
BU(X\C) B 0
which again shows that P is constrictive. If in addition g(z) > 0 for z > 0 then
Pf(z) > 0 for x > 0 and condition (6.3) is automatically satisfied. In this case P
is asymptotically stable.

In the above argument, the conditions S(z) > 0 for x > 0 and g(z) > 0 for
z > 0 play an important role. A more sophisticated argument given by Horbacz
[1989] shows that P remains asymptotically stable if

S(0)=0, S(z) >0 for >0, g(z) >0 for = sufficiently large.
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However in this case it is assumed not only that am < 1 but also that

(yz)

JAS <1, 4 =5'(0) 6.7)
0

for some A > 0. The Horbacz result can be applied to the “bottleneck” model of
annual plants with “seedbank” studied by Watkinson [1980] and Ellner [1984]. The
dynamical system describing this model can be written in the form

EnTn
(14 (k + p)zn)* (1 + pza)t
where o, k, p are positive constants and z,, is the size of the population in the n'"

generation. According to Horbacz the bottleneck model is asymptotically stable if
the density g(z) of perturbation &, is positive for large z and

Tn+1 =

o0

I %dw <1
0
for some \ > 0.

7 Transitive Integral Operators

In this section we discuss Markov operators defined by the integral equation
(3.2), i.e.

PS(r) = [ k) f(u) (i), (7.1)

where, as before, (X, A, 1) is a o— finite measure space and k : X x X — IR is a
stochastic kernel. Integral Markov operators have some specific properties which
simplify the conditions for the convergence of iterates. Namely, the existence of an
invariant density and a simple transition property imply asymptotic stability. To
formulate this criterion precisely, recall that in the theory of Markov operators the
support of an f € L' is defined by

supp f = {z € X : f(z) # 0}
We say that an operator P : L' — L' overlaps supports if for every f,g € D there
is an ng(f, g) such that

w(supp P f Nsupp P™g) > 0. (7.2)
Baron & Lasota [1993] have proved the following

Theorem 7.1 An integral Markov operator which overlaps supports and has a
positive stationary density (f.(x) > 0 a.e.) is asymptotically stable.

Using Theorem 7.1 it is possible to find a sharp sufficient condition for the
asymptotic stability of the operator
A(z)

Pf(x)= [ {-FZH(QM\(2)) - Qu))}f(u)du (7.3)

0

which appears in the general model of irregular biological events proposed by Lasota
et al. [1992]. Formula (7.3) represents the transition operator for dynamical system
of the form (5.3) in which the perturbations &, have the common survival function

prob (&, > ) = H(z).

This application is, however, quite complicated and we are not going to present it
here. For the sake of simplicity we show how Theorem 7.1 can be applied to the
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Tyson & Hannsgen model of the cell cycle. In this model the transition operator
P : L'([o,00)) = L'([o,0)) has the form

z/o
Pf(z) = [ K(z,u)f(u)du, (7.4)
where
K( ’u):{ (a/a)(m/a)::z ) for o <u<1, 75)
(a/o)(z/o) u for 1<o<z/o.

and a > 0,0 < ¢ < 1 are constants. The operator (7.4) evidently overlaps supports,
since for every f € D the values P f(z) are positive if z is sufficiently large. Further
an immediate calculation shows that the function

¢
felz) = B ¢ >0 (7.6)

is invariant with respect to P if 3 is a solution to the transcendental equation
w(B) :=0" + B/a=1. (7.7)

Such a solution § > 0 exists if w’(0) < 1 or
1

. 7.8
@> Ino (7.8)

In this case (7.6) with a properly chosen c is a positive invariant density on [o, 00)
and according to Theorem 7.1 the operator P defined by (7.4), (7.5) is asymptoti-
cally stable.

The fact that condition (7.8) implies asymptotic stability of P was already
predicted by Tyson & Hannsgen [1986]. They also found the stationary density
(7.6) and proved the asymptotic stability under more restrictive condition a > 1/
(1 — o). The first proof that (7.8) actually implies asymptotic stability was given
by Tyrcha [1988]. Another proof follows from the result of Gacki & Lasota [1990].
This short history of stability conditions for operator (7.4), (7.5) shows the utility
of Theorem 7.1. Once a positive stationary density is found the proof of stability
is easy. It remains only to verify the “overlapping support” property.

In the next section we present a theorem which can be used not only to prove
asymptotic stability, but also sweeping.

8 The Foguel Alternative

Let a o—finite measure space and a regular family A, C A be given. In order
to formulate the main result of this section — the Foguel alternative — we need to
introduce a few notions.

A measurable function f: X — IR is called locally integrable if

[ f(@)p(de) < oo for A€ A,.
A

A Markov operator P is called expanding if
ILm w(A\suppP"f)=0 for feD, u(A) <oo. (8.1)

Finally, a measurable nonnegative function h : X — IR is called subinvariant
with respect to an integral operator P given by (7.1) if

Ph(zx) ::){k(a:,u)h(u)u(du) < h(z) ae.
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Using the result of Komorowski & Tyrcha [1989] and Malczak [1992] the fol-
lowing version of the Foguel alternative (Foguel [1966], Lin [1971]) can be stated.

Theorem 8.1 Assume that P is an expanding integral operator and that there
is a locally integrable positive subinvariant function h (h > 0,Ph < h a.e.). Then
either P is asymptotically stable or P is sweeping.

A simple example of an operator P for which all the assumption of Theorem 8.1
are satisfied is given by the Tyson & Hannsgen equations (7.4), (7.5). In this case
it is natural to assume that A, consists of all compact subsets of [0, 00). Since for
every positive o and « equation (7.7) has a solution 8 = 0, we may choose h(z) = 1/
x as an invariant locally integrable function. Finally condition (8.1) follows from
the fact that o < 1 and K given by (7.1) is positive.

The arguments used in the above example can be extended to a large family of
Markov operators of the form

A(z)
Pf@)= | K(x,u)f(u)du
in which K(z,u) > 0 for a < u < A(z), x > a and A(z) > z for z > a (a > 0).
The only difficulty lies in the proof of the existence of a positive locally integrable
subinvariant function. Thus, it is an important and open problem to characterize
the class of kernels K and bounds A for which such a function exists.

9 Foguel Alternative for Continuous Time Semigroups

The Foguel alternative may be easily extended to continuous time systems and
applied to differential equations with stochastic perturbations. We are going to
show such applications using the formalism of stochastic semigroups. As before we
assume that (X, 4, u) and a regular A, are given.

A family {P;}+>o of Markov operators is called a (continuous) stochastic
semigroup if the following conditions are satisfied.

1° PBpf=f for feL;
2° PtJrsf:Pt(Psf) for t,SZO, fELl;
3% lim |Pf — fll=0 for fe L'

0

A stochastic semigroup is called asymptotically stable if there exists an f, € D such
that P;f. = f« (stationary density) and if

lim |Pf — f«]| =0 for feD.
t—o0
A semigroup {P;};>¢ is called sweeping if

lim [P f(z)u(dz) =0 for feD, AeA,.
t—>ooA

Stability and sweeping of a stochastic semigroup {P;}:>0 and a single operator
P, with a fixed t are closely related. It can be proved (Lasota & Mackey [1994])
that asymptotic stability of P, with ¢, > 0 implies the asymptotic stability of
{P;}+>0 with the same stationary density f., and analogously that the sweeping of
P,, implies the sweeping of {P;};>o. The inverse implications are obvious. Using
this it is easy to derive from Theorem 8.1 the following.

Let {P;}+>0 be a continuous stochastic semigroup. Assume that for some ty > 0
the operator P, is expanding and given by a stochastic kernel. Assume moreover
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that there exists for P, a positive locally integrable subinvariant function. Then
either the semigroup {P;};>¢ is asymptotically stable or {P;};>¢ is sweeping.
As an example consider the logistic equation
dz
dt
where a, o are positive constants and & is a normalized white noise. The density
distribution function u(t,z) of x(t) satisfies the Fokker—Planck equation
ou o% 0%(z%u) O
= == 5 — 7 wla—1)u 9.2
ot 2 Oz 69:[ ( Ju] (92)
and the corresponding stochastic semigroup is defined by

In order to study the asymptotic behaviour of {P;};>¢ it is not necessary to solve
(9.2). Tt is enough to know that (¢, ) is given by an integral formula

u(t, z) = T T(t,2,9) f(4)dy

=z(a; —z), with a =a+0&, (9.1)

with a stochastic kernel (Green’s function) I'. We obtain the stationary density by
solving the stationary equation
o d?(z%u(z)) d

o T Az %[w(a —z)u(z)] =0

which gives

u(z) = fu(z) = cxve /7" (9.3)

where v = 2(a/0?) — 2. This function is, for every -, locally integrable with respect
to the family

A ={le,0): e>0} . (9.4)

If v > —1 50 a > 307, the function (9.3) can be normalized and {P;};>o has a

stationary density. In this case {P;};>0 cannot be sweeping and by the Foguel
alternative it is asymptotically stable. If the inverse inequality a < %02 holds, then
{P;}+>0 has no stationary density and cannot be asymptotically stable. According
to the Foguel alternative the semigroup {P;};>o must be sweeping with respect
to (9.4). This means that for large ¢, the density w(¢,z) is concentrated in a
neighborhood of = 0. A large parametric perturbation can kill the population.
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