
Fields Institute Communications
Volume ��� ����

Statistical Stability of Strongly Perturbed Dynamical

Systems

Andrzej Lasota
Institute of Mathematics

Silesian University
ul� Bankowa ��

������ Katowice� Poland

Michael C� Mackey
Departments of Physiology� Physics� and Mathematics

Centre for Nonlinear Dynamics in Physiology and Medicine
McGill University
	
�� Drummond

Montreal� Canada H	G �Y


Abstract� In this note we outline the study of the asymptotic behaviour

of randomly perturbed dynamical systems from a statistical point of

view� using four di�erent techniques� The results are formulated in

the language of Markov operator theory� Each technique is applied to a

typical biological model� We also show an extension of the last technique

� the Foguel alternative � to continuous time systems and its application

to the logistic equation with parametric noise�

� Introduction

It has been known for many years that randomly perturbed dynamical systems
can be e�ectively studied by the use of Markov operators� Recently discovered
methods in the theory of Markov operators facilitate this study� The purpose of
this lecture is to present a few of these techniques which� in our opinion� are of great
potential value� and to illustrate their use with applications to di�erent biological
models�

In Section � we start with a description of discrete time stochastically perturbed
systems� and derive the corresponding transition operators� Then in Section � we
review some basic facts from the theory of Markov operators� and outline four
techniques which allow one to determine the asymptotic behaviour of perturbed
systems from a statistical point of view� Sections � and � are devoted to the lower
bound function technique and its application to mathematical models of the cell
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cycle� In Section 	 we present the asymptotic decomposition theorem� and show
how it can be used to describe dynamical systems with additive and multiplicative
perturbations� In Section 
 we study integral operators having a positive invariant
density and we show an application to the Tyson�Hannsgen model of the cell cycle�
Finally in Sections � and  we present a new version of the Foguel alternative and
its application to the parametrically perturbed logistic equation� We also formulate
an open problem concerning the existence of a subinvariant function for integral
operators of Volterra type with advanced argument�

Most of the results discussed here are relatively new �e�g� Baron � Lasota
����� Lasota � Mackey ����� Malczak ����� or were especially prepared for this
note� In particular we present new proofs of the asymptotic stability for the Tyson
� Hannsgen and Tyrcha models of the cell cycle and also show new applications of
the Foguel alternative�

� Perturbed Dynamical Systems

We consider a stochastically perturbed discrete time dynamical system of the
form

xn�� � T �xn� �n�� n � �� �� � � � � �����

where xn is the state variable of the system at time t � n and the �n are independent
random variables which represent the perturbations� Throughout we make the
following assumptions�

�� The transformation T � X � W � X is de�ned on a set X � W where
X � IRd is a closed set and W � IRk is Borel measurable� For every �xed
w � W the function T �x�w� is continuous in x and for every �xed x � X it
is Borel measurable in w�

�� The random variables ��� ��� � � � with values in W are independent and have
the same distribution�

��B� � prob ��n � B�� B �W� B Borelian�

�� The initial vector x� with values in X is independent of f�ng�

Our goal is to study the statistical properties of the trajectories fxng� Thus
we de�ne the corresponding sequence of distributions

�n�A� � prob �xn � A�� A � X� A Borelian�

and look for a recurrence relation that will give �n�� in terms of �n�
Let h be a real valued bounded Borel measurable function de�ned on X � Then

the mathematical expectation of h�xn��� is given by the formula

E�h�xn���� �
R
X

h�x��n���dx�� �����

On the other hand� using ������ we have h�xn��� � h�T �xn� �n�� and consequently

E�h�xn���� �
R
X

R
W

h�T �x�w���n�dx���dw�� �����

From equations ������ ������ in the special case where h � �A is the indicator
function of a set A� we obtain

�n���A� �
R
X

R
W

�A�T �x�w� ��n�dx���dw�� �����

This is the desired recurrence condition� If the �n are absolutely continuous mea�
sures with densities fn�x� � d�n�dx then equation ����� also allows us to calculate
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fn�� from fn� In this case we write fn�� � Pfn and we call P the transition

operator corresponding to the dynamical system ������ We illustrate this situation
by two important examples�

Example ��� Additive Perturbations� Assume that X � W � IRd and that
T �x�w� is linear in w� so T �x�w� � S�x� � w with a continuous S � IRd � IRd� In
this case ����� reduces to

xn�� � S�xn� � �n� n � �� �� � � � � �����

and ����� takes the form

�n���A� �
R
IRd

R
IRd

�A�S�x� � w��n�dx���dw��

If in addition we assume that the measure � is absolutely continuous with a density
g� then

�n���A� �
R
IRd

n R
IRd

�A�S�x� � w�g�w�dw
o
�n�dx��

Substituting x � u� S�x� �w � y and changing the order of integration we obtain

�n���A� �
R
A

n R
IRd

g�y � S�u���n�du�
o
dy�

The function inside the braces is integrable with respect to y and consequently �n��
is an absolutely continuous measure� Therefore the densities fn � d�n�dx exist for
n � � and satisfy the recurrence relation fn�� � Pfn with the transition operator

Pf�x� �
R
IRd

g�x� S�u��f�u�du� ���	�

Example ��� Multiplicative Perturbations� Assume that X � W � �����
and that T �x�w� � wS�x� with a continuous S � ����� � ������ Then

xn�� � �nS�xn�� n � �� �� � � � ���
�

and

�n���A� �
�R
�

�R
�

�A�wS�x���n�dx���dw�� �����

Again assuming that � is absolutely continuous with d��dx � g�x� and substituting
x � u� wS�x� � y we obtain

�n���A� �
R
A

n�R
�

g
�

y
S�u�

�
�n�du�
S�u�

o
dy�

Thus for n � � the �n are absolutely continuous and the densities fn � d�n�dx
satisfy the relation fn�� � Pfn where

Pf�x� �
�R
�

g
�

x
S�u�

�
f�u� du

S�u� � ����

In these two special cases the transition operator P was derived under the mild
assumption that the distribution � of perturbations is absolutely continuous� An
analogous calculation can be carried out for the general form of T �x� y�� However�
in this general situation the derivation of P is less transparent and requires some
additional assumptions concerning the derivatives �T��w� In the next section we
will discuss the transition operators from a more abstract point of view�
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� Markov Operators

Let �X�A� �� be a 	��nite measure space� By D we denote the set of all
normalized densities� i�e�

D � ff � L� � f � �� kfk � �g�

where k �k stands for the norm in L� � L��X�A� ��� A linear mapping P � L� � L�

is called a Markov operator if P �D� � D�
An important class of Markov operators is given by stochastic kernels� We

say that a measurable function k � X �X � IR is a stochastic kernel if

k�x� z� � � and
R
X

k�u� z���du� � �� x� z � X� �����

Having k� we de�ne the corresponding integral Markov operator by the formula

Pf�x� �
R
X

k�x� u�f�u���du�� �����

Conditions ����� imply that P given by ����� is in fact a Markov operator�
The transition operators ���	� and ���� are typical examples of integral Markov

operators� Conversely� it is interesting that every integral Markov operator is a
transition operator of some stochastically perturbed dynamical system of the form
������ We may easily demonstrate this fact for operators de�ned on L��IR�� Thus
assume that an integral Markov operator

Pf�x� �
��R
��

k�x� u�f�u�du� �����

is given� Assume moreover that g � D�IR� is an arbitrary positive �g�x� 
 � a�e��
density� Having k and g we de�ne the function T � IR � IR � IR as follows� For
every �xed �x�w� � IR� the value T �x�w� is given as the smallest solution of the
equation�

T �x�w�R
��

f�u� x�du �
wR

��

g�u�du� �����

Since the integral on the right hand side of ����� has values in the open interval
��� �� and k is a stochastic kernel the solution T �x�w� always exists� An elementary
calculation shows that the dynamical system xn�� � T �xn� �n�� in which the �n are
independent random variables having the same density distribution function g� has
a transition operator of the form ������ Formula ����� was proposed by K� �Loskot�

From the above considerations it follows that in many cases the study of the
asymptotic behaviour of the perturbed dynamical system ����� can be replaced by
the examination of the iterates fPng of its transition operator P �

We introduce two simple de�nitions which describe the typical behaviour of
fPng� assuming that a 	��nite measure space �X�A� �� is given�

A Markov operator P � L� � L� is called asymptotically stable if there exists a
density f� such that Pf� � f� and

lim
n��

kPnf � f�k � � for f � D� �����

A density f� satisfying Pf� � f� is called stationary� Evidently ����� implies
that for an asymptotically stable operator there exists exactly one stationary den�
sity�
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Let a Markov operator P � L� � L� and a subfamily of measurable subsets
A� � A be given� We say that P is sweeping with respect to A� �or� simply�
sweeping� if

lim
n��

R
A

Pnf�x���dx� � � for A � A�� f � D� ���	�

We say that the family A� is regular if there exists a sequence An � A� such
that X �

S
nAn� Evidently an operator which is sweeping with respect a regular

family A� cannot be asymptotically stable�
In the following sections we will show four e�ective criteria for the determination

of asymptotic stability and sweeping� Namely we will discuss�

�� the lower bound function theorem�
�� asymptotic decomposition of constrictive operators�
�� integral operators satisfying a transitivity property�
�� the Foguel alternative�

Each criterion will be illustrated by an application to a dynamical system� In
particular we will examine some mathematical models of the cell cycle and the
logistic growth equation with parametric noise�

� Lower Bound Function

Let �X�A� �� be a 	��nite measure space and P � L� � L� a Markov operator�
We say that a function h � L� is a lower bound function if for every f � D there is
a sequence �n�f� � L� such that

Pnf � h� �n�f� and k�n�f�k � �� �����

A lower bound function h is nontrivial if h � � and khk 
 ��
At �rst glance conditions ����� look much weaker than condition ����� appear�

ing in the de�nition of the asymptotic stability� We have� however� the following
theorem from Lasota � Yorke ������

Theorem ��� A Markov operator P is asymptotically stable if and only if it

has a nontrivial lower bound function�

An e�cient condition to prove the asymptotic stability of integral Markov op�
erators can be formulated by a use of a Liapunov function� Let G � IRd be an
unbounded Borel measurable set� A continuous function V � G � IR is called a
Liapunov function if

V �x� � � for x � G and lim
jxj��

V �x� � ��

Consider on L��G� an integral Markov operator

Pf�x� �
R
G

k�x� y�f�y�dy� �����

From Theorem ��� it is easy to derive the following corollary which is a slight
generalization of a result of Tyrcha ������

Assume that there exists a Liapunov function V and constants � � ��  � �
such that R

G

V �x�Pf�x�dx 	 � � 
R
G

V �x�f�x�dx for f � D� �����

Assume moreover that R
G

inf
u�C

k�x� u�dx 
 � �����
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for every compact set C � G� Then the operator P de�ned by ����� is asymptoti�
cally stable�

� A Cell Cycle Model

As an example of the applicability of the lower bound function technique we
consider a model of cell cycle proposed by Tyrcha ����� which generalizes a model
of Lasota � Mackey ����� and the tandem model of Tyson � Hannsgen ���	��

In the Tyrcha model it is assumed that the cell cycle consists of two phases A
and B� Phase A begins at birth and lasts until the occurrence of a critical event
which is necessary for mitosis� Then the cell enters phase B� The end of phase
B coincides with cell division� The duration tB of phase B is constant while the
length tA of phase A is random� More precisely the probability that the critical
moment occurs in the interval �t� t� �t� is

prob �t 	 tA 	 t� �t j tA � t� � ��x�t���t � o��y�� �����

where x�t� is the size �or amount of mitogen� of the cell at time t and � is a given
nonnegative function� Further it is assumed that the cell size grows according to
the equation

dx

dt
� g�x�� x��� � r� �����

where g�x� for x 
 � and g��� � �� Denote by xn the initial size of cell in the n�th
generation� Evidently xn can be considered as a random variable� Using the above
assumptions it can be shown �see Lasota et al� ����� that

xn�� � ���fQ���Q�xn� � �n �g� �����

where

Q�x� �
xR
�

��y�
g�y� dy� ��x� � ���tB � �x�

and ��t� x� is the solution of equation ������ The random variables �n are indepen�
dent and have the common density distribution function g�x� � e�x� An elementary
calculation shows that the transition operator for the dynamical system ����� has
the form

Pf�x� � �
��x�R
�

n
�
�x exp�Q�y��Q���x���

o
f�y�dy� �����

The asymptotic properties of operator ����� can be studied under the quite
general assumptions that Q and � are absolutely continuous� nondecreasing and

lim
x��

Q�x� � lim
x��

��x� � �� ���� � �� �����

These condition imply by a straightforward calculation that P is an integral Markov
operator on L��������� The asymptotic behaviour of P is described by the follow�
ing�

Theorem ��� If

lim inf
x��

�Q���x�� �Q�x� � 
 �� ���	�

then P is asymptotically stable� and if

lim sup
x��

�Q���x�� �Q�x� � � �� ���
�

then P is sweeping with respect to compact subsets of ������
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Proof �outline�� First assume ���	� setting V �x� � exp��Q���x����
� � � � �� so using ����� it is easy to verify that

�R
�

V �x�Pf�x�dx � �
���

�R
�

f�x�e�Q�x�dx� �����

According to ���	�� there exists an x� 
 � and � 
 � such that
Q�x� 	 Q���x�� � � for x � x�� Using this and ����� we obtain

�R
�

V �x�Pf�x�dx 	 �
���

x�R
�

f�x�e�Q�x�dx � e���

���

�R
x�

V �x�f�x�dx

or
�R
�

V �x�Pf�x�dx 	 ���� � ���
�R
�

V �x�f�x�dx�

where � � e�Q�x��������� and ��� � e����������� The inequality � 
 � implies
that ��� � � for some � � ��� �� and consequently condition ����� of Corollary ���
is satis�ed� The veri�cation of ����� is elementary due to the speci�c �exponential�
form of the kernel in ������

Now assume ���
� and de�ne V �x� � w�Q���x�� � where

w�x� �

�
e��x� for x 	 x� �
e��x for x 
 x� �

Choosing x� su�ciently large and � 
 � su�ciently small it can be shown that
�R
�

V �x�Pf�x�dx 	 
�R
�

V �x�f�x�dx� for f � D� ����

where  � � is a constant� From ���� follows

lim
n��

�R
�

V �x�Pnf�x�dx � �

which implies sweeping�

The detailed proof is given in Gacki � Lasota ����� The proof presented here
is much shorter due to another choice of the Liapunov function V �x��

� Asymptotic Decomposition Theorem

In order to apply the lower bound function technique it is necessary to evalu�
ate the sequence fPnfg from below� The asymptotic decomposition theorem also
describes the behaviour of fPnfg in the case when the sequence fPnfg has an
integrable upper bound�

Let �X�A� �� be a 	��nite measure space� A Markov operator P � L� � L�

is called constrictive if there exists constant � � �� � 
 � and a set C � A with
the following property� For every f � D there is an integer n��f� such thatR

B��XnC�

Pnf�x���dx� 	 � for n � n��f�� ��B� 	 �� B � C� �	���

The constrictivness rules out the possibility that for large n the densities Pnf are
either concentrated on a set of very small measure or dispersed throughout the
entire space� In particular P is constrictive if there exists an integrable function
h � � such that

Pnf 	 h� �n�f� and lim
n��

k�n�f�k � ��
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The asymptotic behaviour of constrictive operators is described by the following
theorem due to Komornik � Lasota ���
��

Theorem ��� The iterates of a constrictive operator P can be written in the

form

Pnf �
rP
i�

�i�f�g�n�i� �Qnf� for f � L�� �	���

where�

�� g�� � � � � gr are densities with disjoint supports�

�� ��� � � � �r are linear functionals on L��

�� � is a permutation of numbers �� � � � � r such that Pgi � g��i� and �
n denotes

the nth iterate of ��
�� Qn is a sequence of operators such that lim

n��
kQnfk � � for f � L��

The terms under the summation in �	��� are just permuted with each applica�
tion of P and since r is �nite this sum is periodic with a period smaller than or
equal to r�� Thus for every f � L� the sequence fPnfg is asymptotically periodic�
From Theorem 	�� it is easy to derive a simple criterion for asymptotic stability�

Let P be a constrictive Markov operator� Assume there is a set A � A of
positive measure with the following property� For every f � D there exists an
integer n��f� such that

Pnf�x� 
 � for x � A a�e� and n � n�� �	���

Then P is asymptotically stable�
Theorem 	�� and Corollary 	�� can be easily applied to dynamical systems with

additive and multiplicative perturbations� We show this application in the following
two examples�

Example ��� Again consider the dynamical system ����� and the correspond�
ing transition operator ���	�� Assume that there is a number M 
 � such that for
every initial vector x� the sequence fxng satis�es

lim sup
n��

E�jxnj� � M� �	���

Then by the Chebyshev inequalityR
jxj��M

Pnf�x�dx 	 E�jxnj�
�M 	 �

�

for f � D and n su�ciently large� say n � n��f�� Moreover for f � D we haveR
B

Pnf�x�dx �
R
B

n R
IRd

g�x� S�u��Pn��f�u�du
o
dx

	 sup
z�IRd

R
B�z

g�x�dx�

Since g is Lebesgue integrable� there exists a � 
 � such that the last integral is
smaller than � � ��� whenever ��B� 	 �� Setting C � fx � jxj 	 �Mg we have

R
B��IRdnC�

Pnf�x�dx 	
R
B

Pnf�x�dx �
R

jxj��M

Pnf�x�dx 	 �
�

for f � D and n � n��f� which implies constrictivness� Thus� using Theorem 	��
we obtain the following conclusion� Every dynamical system with additive per�
turbations is either asymptotically unbounded ��	��� is not satis�ed with any M
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independent of x�� or the sequence of densities fPnfg is asymptotically periodic�
If �	��� is satis�ed and in addition g�x� 
 � for x � IRd� then condition �	��� is also
full�lled and fPnfg converges to a unique stationary density�

Example ��� Now consider the dynamical system ���
� with the transition
operator ����� Assume that the transformation S is linearly bounded� i�e�

� � S�x� 	 �x � � for x � �� �	���

and that the perturbations �n have a common density distribution function g with
a �nite �rst moment

m �
�R
�

xg�x�dx ��� �	�	�

Horbacz ���� has shown that for �m � � the operator P given by ���� is con�
strictive� A simpli�ed version of her proof goes as follows� Setting V �x� � x it is
easy to verify that

�R
�

V �x�Pf�x�dx � m
�R
�

f�x�S�x�dx

	 �m
�R
�

V �x�f�x�dx � �m�

which shows that condition ����� of Corollary ��� is satis�ed� This� by the Cheby�
shev inequality� implies

cR
�

Pnf�x�dx � �
� for n � n��f��

where c is a su�ciently large number� Since g is integrable there must be a �� 
 �
such that R

A

g�x�dx 	 �
� for ��A� 	 ���

De�ne � � �� min
��u�c

S�u�� Then for ��B� 	 � and � 	 u 	 c we have

��B�S�u�� 	 ��� ConsequentlyR
B

Pnf�x�dx �
�R
�

Pn��f�u�
nR
B

g
�

x
S�u�

�
dx
S�u�

o
du

	
�R
c

Pn��f�u�du�
cR
�

Pn��f�u�
nR
B

g
�

x
S�u�

�
dx
S�u�

o
du

	 �
� � �

�

cR
�

Pn��f�u�du 	 �
� for n � n��f� � ��

Setting X � ������ C � ��� c� we have X n C � �c��� andR
B��XnC�

Pnf�x�dx 	
R
B

Pnf�x�dx �
�R
�

Pnf�x�dx 	 �
� � �

�

which again shows that P is constrictive� If in addition g�x� 
 � for x 
 � then
Pf�x� 
 � for x 
 � and condition �	��� is automatically satis�ed� In this case P
is asymptotically stable�

In the above argument� the conditions S�x� 
 � for x � � and g�x� 
 � for
x 
 � play an important role� A more sophisticated argument given by Horbacz
���� shows that P remains asymptotically stable if

S��� � �� S�x� 
 � for x 
 �� g�x� 
 � for x su�ciently large�
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However in this case it is assumed not only that �m � � but also that
�R
�

g�x�
�	x��

� ��  � S	��� �	�
�

for some � 
 �� The Horbacz result can be applied to the �bottleneck� model of
annual plants with �seedbank� studied by Watkinson ����� and Ellner ������ The
dynamical system describing this model can be written in the form

xn�� �
�nxn

�� � �k � p�xn���� � pxn����
�

where �� k� p are positive constants and xn is the size of the population in the nth

generation� According to Horbacz the bottleneck model is asymptotically stable if
the density g�x� of perturbation �n is positive for large x and

�R
�

g�x�
x� dx � �

for some � 
 ��

	 Transitive Integral Operators

In this section we discuss Markov operators de�ned by the integral equation
������ i�e�

Pf�x� �
R
X

k�x� u�f�u���du�� �
���

where� as before� �X�A� �� is a 	� �nite measure space and k � X �X � IR is a
stochastic kernel� Integral Markov operators have some speci�c properties which
simplify the conditions for the convergence of iterates� Namely� the existence of an
invariant density and a simple transition property imply asymptotic stability� To
formulate this criterion precisely� recall that in the theory of Markov operators the
support of an f � L� is de�ned by

supp f � fx � X � f�x� 
� �g�

We say that an operator P � L� � L� overlaps supports if for every f� g � D there
is an n��f� g� such that

��suppPn�f � suppPn�g� 
 �� �
���

Baron � Lasota ���� have proved the following

Theorem 	�� An integral Markov operator which overlaps supports and has a

positive stationary density �f��x� 
 � a�e�� is asymptotically stable�

Using Theorem 
�� it is possible to �nd a sharp su�cient condition for the
asymptotic stability of the operator

Pf�x� �
��x�R
�

�
� �
�xH�Q���x�� �Q�u� �

�
f�u�du �
���

which appears in the general model of irregular biological events proposed by Lasota
et al� ����� Formula �
��� represents the transition operator for dynamical system
of the form ����� in which the perturbations �n have the common survival function

prob ��n 
 x� � H�x��

This application is� however� quite complicated and we are not going to present it
here� For the sake of simplicity we show how Theorem 
�� can be applied to the
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Tyson � Hannsgen model of the cell cycle� In this model the transition operator
P � L���	���� � L���	���� has the form

Pf�x� �
x
�R
�

K�x� u�f�u�du� �
���

where

K�x� u� �

�
���	��x�	����� for 	 	 u 	 ��

���	��x�	�����u� for � � 	 	 x�	�
�
���

and � 
 �� � � 	 � � are constants� The operator �
��� evidently overlaps supports�
since for every f � D the values Pf�x� are positive if x is su�ciently large� Further
an immediate calculation shows that the function

f��x� �
c

x���
� x � 	 �
�	�

is invariant with respect to P if � is a solution to the transcendental equation

w��� �� 	� � ��� � �� �
�
�

Such a solution � 
 � exists if w	��� � � or

� 
 �
�

ln	
� �
���

In this case �
�	� with a properly chosen c is a positive invariant density on �	���
and according to Theorem 
�� the operator P de�ned by �
���� �
��� is asymptoti�
cally stable�

The fact that condition �
��� implies asymptotic stability of P was already
predicted by Tyson � Hannsgen ���	�� They also found the stationary density
�
�	� and proved the asymptotic stability under more restrictive condition � 
 ��
�� � 	�� The �rst proof that �
��� actually implies asymptotic stability was given
by Tyrcha ������ Another proof follows from the result of Gacki � Lasota �����
This short history of stability conditions for operator �
���� �
��� shows the utility
of Theorem 
��� Once a positive stationary density is found the proof of stability
is easy� It remains only to verify the �overlapping support� property�

In the next section we present a theorem which can be used not only to prove
asymptotic stability� but also sweeping�


 The Foguel Alternative

Let a 	��nite measure space and a regular family A� � A be given� In order
to formulate the main result of this section � the Foguel alternative � we need to
introduce a few notions�

A measurable function f � X � IR is called locally integrable ifR
A

f�x���dx� �� for A � A��

A Markov operator P is called expanding if

lim
n��

��A n suppPnf� � � for f � D� ��A� ��� �����

Finally� a measurable nonnegative function h � X � IR is called subinvariant

with respect to an integral operator P given by �
��� if

Ph�x� ��
R
X

k�x� u�h�u���du� 	 h�x� a�e�
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Using the result of Komorowski � Tyrcha ���� and Malczak ���� the fol�
lowing version of the Foguel alternative �Foguel ��		�� Lin ��
��� can be stated�

Theorem 
�� Assume that P is an expanding integral operator and that there

is a locally integrable positive subinvariant function h �h 
 �� Ph 	 h a�e��� Then

either P is asymptotically stable or P is sweeping�

A simple example of an operator P for which all the assumption of Theorem ���
are satis�ed is given by the Tyson � Hannsgen equations �
���� �
���� In this case
it is natural to assume that A� consists of all compact subsets of �	���� Since for
every positive 	 and � equation �
�
� has a solution � � �� we may choose h�x� � ��
x as an invariant locally integrable function� Finally condition ����� follows from
the fact that 	 � � and K given by �
��� is positive�

The arguments used in the above example can be extended to a large family of
Markov operators of the form

Pf�x� �
��x�R
a

K�x� u�f�u�du

in which K�x� u� 
 � for a � u � ��x�� x 
 a and ��x� 
 x for x 
 a �a � ���
The only di�culty lies in the proof of the existence of a positive locally integrable
subinvariant function� Thus� it is an important and open problem to characterize
the class of kernels K and bounds � for which such a function exists�

� Foguel Alternative for Continuous Time Semigroups

The Foguel alternative may be easily extended to continuous time systems and
applied to di�erential equations with stochastic perturbations� We are going to
show such applications using the formalism of stochastic semigroups� As before we
assume that �X�A� �� and a regular A� are given�

A family fPtgt�� of Markov operators is called a �continuous� stochastic

semigroup if the following conditions are satis�ed�

�o P�f � f for f � L� 

�o Pt�sf � Pt�Psf� for t� s � �� f � L� 

�o lim
t��

kPtf � fk � � for f � L��

A stochastic semigroup is called asymptotically stable if there exists an f� � D such
that Ptf� � f� �stationary density� and if

lim
t��

kPtf � f�k � � for f � D �

A semigroup fPtgt�� is called sweeping if

lim
t��

R
A

Ptf�x���dx� � � for f � D� A � A� �

Stability and sweeping of a stochastic semigroup fPtgt�� and a single operator
Pt with a �xed t are closely related� It can be proved �Lasota � Mackey �����
that asymptotic stability of Pt� with t� 
 � implies the asymptotic stability of
fPtgt�� with the same stationary density f�� and analogously that the sweeping of
Pt� implies the sweeping of fPtgt��� The inverse implications are obvious� Using
this it is easy to derive from Theorem ��� the following�

Let fPtgt�� be a continuous stochastic semigroup� Assume that for some t� 
 �
the operator Pt� is expanding and given by a stochastic kernel� Assume moreover
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that there exists for Pt� a positive locally integrable subinvariant function� Then
either the semigroup fPtgt�� is asymptotically stable or fPtgt�� is sweeping�

As an example consider the logistic equation

dx

dt
� x�a� � x�� with a� � a� 	�t� ����

where a� 	 are positive constants and �t is a normalized white noise� The density
distribution function u�t� x� of x�t� satis�es the Fokker�Planck equation

�u

�t
�
	�

�

���x�u�

�x�
�

�

�x
�x�a� x�u� ����

and the corresponding stochastic semigroup is de�ned by

Ptf�x� � u�t� x�� u��� x� � f�x� �

In order to study the asymptotic behaviour of fPtgt�� it is not necessary to solve
����� It is enough to know that u�t� x� is given by an integral formula

u�t� x� �
�R
�

!�t� x� y�f�y�dy

with a stochastic kernel �Green"s function� !� We obtain the stationary density by
solving the stationary equation

	�

�

d��x�u�x��

dx�
�

d

dx
�x�a� x�u�x�� � �

which gives

u�x� � f��x� � cx	e�x
�
�

� ����

where  � ��a�	����� This function is� for every � locally integrable with respect
to the family

A� � f ����� � � 
 � g � ����

If  
 �� so a 
 �
�	

�� the function ���� can be normalized and fPtgt�� has a
stationary density� In this case fPtgt�� cannot be sweeping and by the Foguel
alternative it is asymptotically stable� If the inverse inequality a 	 �

�	
� holds� then

fPtgt�� has no stationary density and cannot be asymptotically stable� According
to the Foguel alternative the semigroup fPtgt�� must be sweeping with respect
to ����� This means that for large t� the density u�t� x� is concentrated in a
neighborhood of x � �� A large parametric perturbation can kill the population�
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