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Chaos in Neurobiology 
MICHAEL R. GUEVARA, LEON GLASS, MICHAEL C. MACKEY, AND ALVIN SHRIER 

Abstract—Deterministic mathematical models of neural systems can 
give rise to complex aperiodic ("chaotic") dynamics in the absence of 
stochastic fluctuations ("noise") in the variables or parameters of the 
model or in the inputs to the system. We show that chaotic dynamics are 
expected in nonlinear feedback systems possessing time delays such as are 
found in recurrent inhibition and from the periodic forcing of neural 
oscillators. The implications of the possible occurrence of chaotic dynamics 
for experimental work and mathematical modeling of normal and abnormal 
function in neurophysiology are mentioned. 

I. INTRODUCTION 

RECENTLY, a flurry of interest has arisen in period-
doubling bifurcations (in which the period of an 

oscillation doubles as a parameter is changed) and complex 
aperiodic ("chaotic'*) dynamics in simple deterministic 
mathematical models (for a general introduction see [1], 
[2]). Several reasons can be found for this interest. 1) To 
many, it is counterintuitive that complex dynamics can 
arise in simple mathematical models. 2) Many of the 
features of transitions from regular to chaotic dynamics 
have been shown to be independent of the details of the 
mathematical model, provided certain topological condi
tions are obeyed [3], [4]. 3) Experimental studies of chemi
cal oscillators [5], [6], hydrodynamic systems [7], [8], peri
odically forced electronic systems [9], and periodically 
forced biological oscillators [10], [11] have demonstrated 
transitions from regular to irregular dynamics displaying 
these theoretically predicted features. 

Although current interest in these problems was stimu
lated by the review by May [1], which discussed the possi
ble existence of chaotic dynamics in ecological systems, the 
impact on biological research has been limited. On the 
other hand, in the past few years, several hundred articles 
dealing with the mathematics of chaos and the observation 
of chaos in physical systems have appeared (for reviews, 
see [3], [12], [13]). 

This paper presents results on chaotic dynamics of direct 
relevance to neurobiology. In Section II complicated be
havior in neurobiological models with feedback and time 
delays is discussed. In Section III, we show that periodic 
forcing of models of neural oscillators can lead to chaos. In 
Section IV we discuss the relevance of this work for 
neurobiology, with special reference to experimental stud-
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ies, pathophysiology, and normal function. For recent re
views on related physiological topics see [14]-[16]. 

II . T I M E D E L A Y S AND C H A O T I C BEHAVIOR 

A. Background 

Many neurobiological processes have been modeled by 
systems of ordinary differential equations 

(1) 

with initial condition x(t0) = x0. Here χ is a vector giving 
the state variables (e.g., neural firing frequency, concentra
tion of transmitter, membrane voltage, membrane conduc
tance), and F represents the interactions among the state 
variables. Often, F depends not only on the value of χ at 
the present time but also on the past history of the system 
(e.g., due to finite conduction time along neural pathways). 
This may be formally represented by 

dx 
— = F(x(t)9x{n(t))9 t > t. (2) 

where x ^ denotes the variable x(t) at all - oo < / ' < /. 
In this case initial conditions must be specified in the form 
of a function u(t') for — oo < t' < t0. 

For some one-dimensional systems given by (2), the 
dependence on past history may be made explicit by 
writing 

%-F{x(t),y(t)), 

where the function 

y(')=f g(t - t')x(f) df 
— 

(3a) 

(3b) 

gives the prescription for calculating the total influence of 
the past history of the state variable χ on the present 
dynamics. The function g (the kernel) specifies the weight 
to be attached to x(t') at each point of time in the past. In 
the special case where the kernel has the form 

g U ) = , a>0, « = 1 , 2 , · · · , 

then (3a), (3b) are equivalent to 

dxx 

dt 
dx, 
dt 

F(xl' xn + l) 

L = σ ( χ ( _ ! - χ,), / = 2 , · · · , « + 1. (4) 

Equation (4) constitutes a set of (n + 1) ordinary differen-
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tial equations, η of which are linear and one of which may 
be nonlinear [17]. Thus, in this special case, general consid
eration of a system with dynamics dependent on its prior 
history is closely related to the behavior of a multidimen
sional system with no explicit prior history dependence. 

In situations where the effects of prior history are con
fined to a short interval of time, the kernel g is sharply 
peaked about some previous time, say t - τ. In the limiting 
case where g(t - t') can be approximated by a delta 
function g(t - t') = 8{t - t' - τ ) , then (3) reduces to a 
time delay differential equation 

f = F(x(t),xT(t)), (5) 

where xT(t) = x(t - τ ) . Many applied problems [14], [15], 
[17]-[21] have been modeled by a single state variable x(t\ 
where the rate of change of χ at a time t is equal to the 
balance between the loss (-ax(t)) of χ at a rate a and the 
production (f(xT(t)) of χ at a rate dependent on the value 
of χ some time in the past (xT(t)), so that 

f = - « * ( 0 + / ( * T ( 0 ) . (6) 
If f(xT) is a monotone decreasing function of xT, then (6) 
describes a system with pure negative feedback; while if 
f(xT) is monotone increasing the system is a positive 
feedback system. Often, however, f(xT) may be a non
monotonic function of xT, and thus the system may display 
mixed positive and negative feedback characteristics. From 
numerical and analytic studies [14], [15], [18]-[24] it is 
known that when f(xT) is not monotonic, the solutions of 
(6) may have an extremely complicated evolution in time. 

An early application of (4) was a model for schizo
phrenia with piecewise linear negative feedback [25], [26]. 
The possibility of periodic or aperiodic dynamics was 
raised, although no simulations of the system were pre
sented. A recent paper suggests that schizophrenia may be 
associated with periodic and aperiodic dynamics in (4) and 
(6) [20]. The control functions, which are related to the 
control of dopamine synthesis, are not monotonic. Sparrow 
has examined nonmonotonic feedback in a system similar 
to that described by (4) and described both periodic and 
aperiodic dynamics [27]. Rapp has suggested that such 
feedback may operate on the level of a single nerve cell and 
give rise to chaotic dynamics [16], [28]. 

B. Model for Recurrent Inhibition [15], [21]. 

As a further example of the application of time delays to 
neurobiology we consider a model for recurrent inhibition 
developed by Mackey and an der Heiden [15], [21]. If a 
postsynaptic cell receives an excitatory input from a pre
synaptic cell and a recurrent inhibitory input from an 
inhibitory interneuron, resulting in excitatory postsynaptic 
potentials (EPSP's) and inhibitory postsynaptic potentials 
(IPSP's) E(t) and I(t), respectively, then it may be shown 
that the dynamics are approximated by 

where FT = F(t - τ ) , τ is the time required to transmit 
information around the recurrent inhibitory pathway, and 

F^={0F0[E(t)-I(t)-e], E-'ltl) W 

is the postsynaptic cell instantaneous firing rate. In (7) the 
second nonlinear term gives the rate of change of I(t) due 
to the recurrent inhibitory feedback. The amount of inhibi
tory transmitter released at the interneuron-postsynaptic 
cell synapse at time / is proportional to FT, and [K/(K + 
FT")] is the fraction of receptor sites available to be activated 
by that transmitter. In (7), a is the reciprocal of the 
postsynaptic cell membrane time constant, Κ is a constant 
related to the equilibrium constant of the inhibitory trans
mitter-receptor complex, η is the number of inhibitory 
transmitter molecules required to activate one receptor, 
and β is a constant proportional to the number of inhibi
tory receptors per cell. In (8), θ is the membrane threshold 
for the generation of action potentials, and F0 is a constant. 

An analysis of (7) and (8) shows that for constant 
presynaptic activity levels (E = constant), depending on 
parameter values, one, two, or three steady-state firing 
levels may exist in the postsynaptic cell [21]. These steady 
states may be stable or unstable, depending on parameter 
values, and extensive numerical studies of (7) and (8) 
indicate that a wide range of behavior may arise as even a 
single parameter is varied. 

To illustrate, consider the hippocampal recurrent inhibi
tory circuit consisting of the mossy fiber, CA3 pyramidal 
cell, basket cell complex. Here the CA3 pyramidal cells 
(the postsynaptic cell) receive excitatory presynaptic input 
from the mossy fibers and recurrent inhibitory input from 
the basket cells via what is generally considered to be a 
monosynaptic pathway. The inhibitory transmitter is γ-
aminobutyric acid (GABA) [29]. Many of the parameters 
in (7) and (8) can be estimated from existing data, and as 
discussed by Mackey and an der Heiden [21], we have 
τ = 100 ms, a'1 = 10 ms, Κ = 1 H z 3 , i = 4 m V , F 0 = 2.25 
H z / m V , η = 3, and β = 2.4Γ mV, where Τ is the average 
number of GABA receptors per CA3 pyramidal cell. 

Though the number of GABA receptors per cell is not 
known, Mackey and an der Heiden [21] conducted a 
numerical investigation of the effect of decreasing Τ start
ing from a value of Τ = 1900 and assuming that a constant 
level of presynaptic activity existed that gave Ε = 1.60 = 
8.4 mV. This is analogous to the experimental situation 
where the number of functional GABA receptors is titrated 
by the application of penicillin [21]. The results are shown 
in Fig. 1. 

Initially, with 1900 receptors per cell, the CA3 firing 
shows bursting behavior typical of these cells. The bursting 
in the model is due to the delays in the recurrent inhibitory 
network rather than intrinsic membrance properties of the 
cell. As the receptor density is decreased, the initially 
periodic firing pattern of the CA3 cells gives way to 
progressively more complicated firing patterns. At very low 
(T = 1100) receptor densities, the model predicts that the 
CA3 cells will fire in a sustained but erratic fashion. This § --«/(.) + « 7 ^ . <?> 
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Fig. 1. Simulated effect of decreasing number (Γ) of CA3 GAB A 
receptors in mossy fiber, CA3 pyramidal cell, basket cell complex. Each 
panel shows 1 s of simulated membrane potential [E - I(t)] of CA3 
pyramidal cell, obtained by solving (7) and (8), with superimposed 
vertical lines where action potentials occur. From top to bottom, 
receptor density falls from Τ = 1900 to Τ = 1100 in steps of 200. In 
each panel ordinate (membrane potential) ranges from - 5 to +10 mV 
relative to resting potential. 

sequence of events is qualitatively very similar to the 
behavior found following the application of penicilHn [30], 
and the model thus may offer some insight into the penicil
lin model for epilepsy. The examination of the effects of 
direct electrical synaptic connections in this specific case, 
as recently demonstrated by Taylor and Dudek [31], has 
not been carried out. Other theoretical models for epilepsy 
in which recurrent inhibition plays an important role have 
appeared [32]. 

Presently, the various models for chaos in neurobiology 
based on (4) and (6) must be viewed with caution. Sys
tematic manipulations of experimental systems described 
by (4) or (6) have not yet been undertaken. Experimental 
results are needed to guide further modeling efforts. 

III. PERIODIC F O R C I N G OF N E U R A L OSCILLATORS 

A. Background 

Oscillations in individual neurons, neural networks, and 
muscle cells underlie many of the main physiological func
tions (e.g., heartbeat, respiration, digestion, reproduction, 
mastication, locomotion). Since mathematicians have long 
known that the periodic forcing of nonlinear oscillators can 
give rise to complex phase-locking patterns, bifurcations, 
and aperiodic dynamics [33], [34], one anticipates that such 
behavior might be observable in forced physiological and 
neural oscillators. Consider the following examples. 1) 
Many experiments have been done on the entrainment of 
pacemaker and network neural oscillators to a periodic 
input. In these experiments, both phase-locked dynamics 
and irregular dynamics are often observed (see [10], [11], 
[35]-[43] for representative papers and references). 2) Phys
iological rhythms interact with one another and with exter
nal inputs, e.g., the heartbeat speeds up during inspiration 

(respiratory sinus arrhythmia [44]), and circadian rhythms 
in man are normally entrained to the l ight-dark cycle [45], 
[46]. 3) Periodic driving of the heart by an artificial pace
maker or of the respiratory rhythm by a mechanical venti
lator are often required in clinical situations. Lack of 
entrainment between the forcing and the autonomous 
rhythms can have serious consequences. 

Recent studies on the periodic forcing of biological 
oscillators have been interpreted in the context of current 
work on chaotic dynamics. Periodic electrical sinusoidal 
stimulation of an internodal cell from Nitella leads to 
phase locking, subharmonic, quasi-periodic, and aperiodic 
dynamics [11]. As a second example, consider the effects of 
stimulation of spontaneously beating cardiac cells with 
brief duration current pulses [10]. Injection of a single 
pulse of current resets the rhythm of the oscillation to a 
degree that depends on the phase of the cycle at which the 
stimulus is delivered. If φ is the phase of the oscillator 
immediately before the perturbation (0 < φ < 1), and φ' 
the phase immediately after the perturbation, then the 
phase transition curve (PTC) 

φ' = Λ(φ) (9) 

can be experimentally determined by systematically inject
ing isolated current pulses at different points in the cycle 
[10]. In response to a train of stimuli, and assuming that 
rapid relaxation back to the limit cycle oscillation occurs 
after a perturbation, we have 

Φ / + ι = Λ ( φ , ) + τ , (10) 

where φ· is the phase of the oscillation immediately before 
the ith stimulus, τ is the time interval between successive 
stimuli (taking the intrinsic period of the oscillation = 1), 
and h is the PTC of (9) [10], [35], [47], [48]. Equation (10) is 
often called the Poincare map. Iteration of (10) can be used 
to predict the effects of periodic stimulation at any given 
frequency. In particular, iteration of the Poincare map for 
periodically stimulated aggregates of cardiac cells demon
strated the presence of period-doubling bifurcations and 
chaos at certain stimulation frequencies [10]. The fact that 
these dynamics were seen experimentally and that there 
was close agreement between theory and experiment gives 
a posteriori justification for the assumptions used in deriv
ing (10) [47]. Period-doubling bifurcations, bistability, and 
chaotic dynamics are also observed if other simple func
tional forms for Λ(φ) are assumed in (10) [47]-[49]. 

B. Periodic Forcing of Neural Models 

To illustrate the effects of periodic stimulation on neural 
oscillators, we have considered the effects of periodic 
stimulation of the Hodgkin-Huxley (HH) equations devel
oped to model electrical activity of the squid axon mem
brane [50], and of the Bonhoeffer-van der Pol (BVP) 
equations, a reduced analog of models of excitable mem
branes [51]. 

The squid giant axon can generate a periodic train of 
action potentials if placed in a low-calcium solution or 
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Fig. 2. Periodic stimulation of spontaneous oscillations in HH equa
tions with train of hyperpolarizing current pulses. Spontaneous activity 
is elicited using constant bias current of 8.75 μΑ/cm 2 . Pulse repetition 
rate is l / τ . Pulse amplitude is 150 μ A/cm 2 , and pulse duration 0.2 ms. 
First pulse is injected at t = 0 ms, with Vm{t = 0) = 5.0047 mV, 
m(t = 0) = 0.0277, h(t = 0) = 0.3813, n(t = 0) = 0.4637. All of pan
els show - Vm (in mV) plotted as function of time (in ms). Activity is 
only shown from / = 200 ms, to allow some time for transients to 
decay. Sharp downward deflections are synchronous with pulse train. 
(a) Spontaneous activity with period of oscillation equal to 15.39 ms. 
(b) 1:1 phase-locking (τ = 19.10 ms). Fixed latency exists from each 
stimulus to following action potential, (c) 2 : 2 phase-locking (τ = 19.35 
ms). Latency alternates between two fixed values, (d) 4 : 4 phase-lock
ing (τ = 19.37 ms). (e) 8 : 8 phase-locking (τ = 19.40 ms). (f) irregular 
patterns in which more action potentials exist than stimuli (τ = 19.75 
ms). (g) 3 :4 phase-locking (τ = 20.00 ms). Sharp downward deflection 
of every third stimulus is obscured by upstroke. 

subjected to a constant depolarizing current [52], [53]. This 
spontaneous activity is reproduced by appropriate modifi
cations in the H H equations [52], [53]. Fig. 2(a) shows a 
train of action potentials with period 15.39 ms generated in 
response to a constant depolarizing current of 8.75 μ A / c m 2 

in the H H equations. (The H H equations are as in Best [54] 
and were integrated using a first-order Euler method em
ploying the Rush-Larsen algorithm with a time increment 
of 0.001 ms [55].) 

Now consider the effect of periodic stimulation at fre
quencies lower than the frequency of spontaneous activity. 
The stimulus is a brief hyperpolarizing current pulse of 
amplitude 150 μ A / c m 2 and duration 0.2 ms. For a period 
of stimulation ( τ ) sufficiently close to the spontaneous 
period, 1 :1 phase locking results (Fig. 2(b), τ = 19.10 ms). 
In Ν: Μ phase locking, Μ action potentials exist for each 
Ν stimuli, and the pattern is periodic in time with period 
Nr. For τ slightly greater than the largest value of τ at 
which 1 :1 locking can be maintained, 2 : 2 phase locking 

occurs, with the latency (the time from the beginning of a 
stimulus to the upstroke of the subsequent action potential) 
now strictly alternating between two values (Fig. 2(c), 
τ = 19.35 ms). Locking is also observed in 4 : 4 (Fig. 
2(d), τ = 19.37 ms) and 8 : 8 (Fig. 2(e), τ = 19.40 ms) 
ratios. As τ is increased, patterns are observed in which one 
action potential still exists for each stimulus but no obvi
ous periodicity of low order. With further increases in τ , a 
region is encountered in which an occasional extra or 
"escape" action potential exists not immediately preceded 
by a stimulus (Fig. 2(f), τ = 19.75 ms). This escape can be 
periodic, as in 3 : 4 phase locking (Fig. 2(g), τ = 20.0 ms). 
The above catalog of the dynamics as the period of the 
stimulation is increased is not exhaustive, as other behav
iors can be seen. 

To analyze the dynamics, we consider the Poincare map, 
which can be directly computed from the system equations 
as follows. The point χ = (Vm, m, n, h) = (5.0047 mV, 
0.02770, 0.3813, 0.4637) is on the limit cycle and is arbi-
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trarily assigned a phase of zero. The H H equations are 
then integrated from this initial condition at / = 0 until 
/ = 15.40 ms using a time increment of 0.01 ms. 

The phase of each point x(t) is defined to be t/T0y 

where Τ = 15.39 ms is the period of the spontaneous 
oscillation. Thus a phase is assigned to each of 1540 points 
on the limit cycle. A second numerical integration is then 
carried out, with a single stimulus being applied at t = 0 
and initial conditions on the limit cycle. The equations are 
then integrated forward in time using a time increment of 
0.01 ms for a time τ. The point χ is selected from the 1540 
points initially determined, so that its distance from 
x(t = τ ) as given by 

p(i, *)= [ 0 . 0 l ( K M - Vm)2+(m-m)2 

+ (h- h)2 +(٤- η)2]^ 

is a minimum. We then approximate the phase of x(t - τ ) 
to be the phase of x. Repeating this second integration in 
turn with each of the 1540 points to which a phase was 
initially assigned as starting point x(t = 0) leads to the 
Poincare maps of Fig. 3. The details of the map in the 
region 0.562 < φ < 0.564 have not been resolved in this 
computation and can be rather complex (see [54] for fur
ther details). 

Determination of the Poincare map in this manner for 
τ > 19 ms yields maps which are very close to being simple 
vertical translations of each other by an amount Δ τ / Γ 0 , 
where Δτ is the difference in τ for two such maps and T0 is 
the period of the spontaneous oscillation. This is a conse
quence of the fact that the relaxation back to the limit 
cycle is rapid, relative to the period of the oscillation [48]. 
Although it is, in principle, easy to iterate the Poincare 
map in order to determine the dynamics resulting from 
periodic stimulation, even very simple models for phase-
locking reveal complex bifurcations as stimulation ampli
tude and frequency are changed [47]-[49]. Consequently, 
we do not discuss in detail the bifurcations of the Poincare 
map at the one level of stimulus amplitude and duration 
used but instead show how the map accounts for the 
features of the dynamics presented in Fig. 2. 

If a point exists on the Poincare map where φ ί + 1 = φ, = 
φ*, then φ* is said to be a steady state or a period 1 orbit. 
If |(3φ/+ι/#Φι)Ιφ*| < I* t r i e steady state is stable (Fig. 
3(a)), as in stable 1 :1 phase locking (Fig. 2(b)). For τ = 
19.35 ms, the steady state becomes unstable, since 
(3φΐ+ι/ΰΦί)\φ* < — 1> leading to a period doubling or 
"f l ip" bifurcation [1] and 2 : 2 phase locking (Fig. 2(c)). 
The period-doubling bifurcation produces a stable period 2 
orbit on the Poincare map, with two stable period 2 points 
φχ and φ 2 such that if φ / = φ χ , then φ / + 1 = φ 2 , φ / + 2 = 
φΐ9 - - -. As τ is increased beyond τ ~ 19.35 ms, a sequence 
of period-doubling bifurcations to orbits of periods 4 ,8 , · · · 
results. These bifurcations produce the 4 : 4 and 8 : 8 
phase-locking patterns of Fig. 2(d) and Fig. 2(e), respec
tively. Though we have not examined the possibility, fur
ther increase of τ will presumably result in the appearance 

(b) 

Fig. 3. Poincare map for HH oscillator for pulse amplitude of 150 
μ A/cm 2 and pulse duration of 0.2 ms. Details of map in region 
0.562 < φ, < 0.564, have not been resolved in this computation, φ, = 0 
is point Vm = 5.0047 mV, m = 0.0277, h = 0.3813, and η = 0.4637. (a) 
τ = 19.10 ms: intersection of map with diagonal line (Φ< + 1 = φ,) gives 
steady-state φ* * 0.5, which is stable, since - 1 < (<9φ, + ι/<9φ ;)|φ* < 
+ 1. This stable period 1 orbit corresponds to 1:1 locking shown in 
Fig. 2(b). (b) τ = 20.00 ms, with stable period 3 orbit corresponding to 
3 : 4 locking pattern of Fig. 2(g). 

of orbits with higher order even (Φ 2") and odd periodici
ties [1]. For τ greater than approximately 19.55, period Ν 
orbits corresponding to Ν: AT phase-locking patterns with 
Ν/Μ Φ 1 can be seen (Fig. 3(b) corresponding to Fig. 
2(g)), as well as more complex behavior corresponding to 
Fig. 2(0. 

Next we consider the effects of periodic input to the 
BVP equations 

χ = c^x - ^- + y + z j 

j = ±(-x-by + a). (11) 

In these equations "x shares the properties of both mem
brane potential and excitability, while y is responsible for 
accommodation and refractoriness" [51]. The parameter ζ 
is the stimulus current while a, ft, and c are constants. This 
model displays phenomena characteristic of electrically 
excitable cells such as regenerative excitability, refractori
ness, quasi-threshold behavior, and anodal break excitation 
[51]. 

To investigate the response of the BVP equations to a 
periodic input, a predictor-corrector Euler integration 
scheme with a time increment of 0.001 was used [56]. For 
a = - 0 . 5 , b = - 0 . 8 , c = 3, and ζ = 0 the BVP equations 
possess a limit cycle, the period of which is 11.83 (Fig. 
4(a)). The periodic input is a pulse train in ζ with ampli
tude 5.0, duration 0.2, and repetition frequency l / τ . There 
are 1 : 1 (Fig. 4(b), τ = 12.0), 2 : 2 (Fig. 4(c), τ = 12.4), and 
4 : 4 (Fig. 4(d), τ = 12.6) phase-locked patterns, as well as 
complex behavior in which one event exists for each 
stimulus (Fig. 4(e), τ = 12.9). As τ is increased further, a 
1 :1 pattern is again encountered (Fig. 4(f), τ = 13.0), 
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Fig. 4. Effect of periodic perturbation of BVP equations, with pulse of 
amplitude 5.0, duration 0.2, and repetition rate l / τ . First pulse is 
injected at t = 0, with x(t = 0) = -2.2127, y(t = 0) = -1.4652. All 
panels of this figure show χ as function of time, starting at t = 100 to 
allow some time for decay of transients, (a) Spontaneous unperturbed 
activity with period T0 = 11.83. (b) 1:1 phase-locking (τ = 12.0). (c) 
2 : 2 phase-locking (τ = 12.4). (d) 4 : 4 phase-locking (τ = 12.6). (e) 
Irregular activity (τ = 12.9). (f) 1:1 phase-locking (τ = 13.0). (g) 3 : 3 
phase-locking (τ = 15.0). 

which undergoes a sequence of period doubling bifurca
tions as τ is increased. Finally, 3 : 3 phase locking occurs 
(Fig. 4(g), τ = 15.0). 

The Poincare map was also numerically computed for 
the BVP equations using the same procedure as described 
earlier for the H H equations. The point (x, y) = 
( — 2.2127,-1 .4652) has phase zero. For τ = 12.4, two 
stable fixed points of period 2 exist (Fig. 5(a)), correspond
ing to 2 : 2 phase locking (Fig. 4(c)). As τ increases, further 
period-doubling bifurcations eventually lead to the com
plicated dynamics of Fig. 4(e) ( τ = 12.9). At still higher 
values of τ, a stable period 1 orbit exists, corresponding to 
the 1 :1 pattern of Fig. 4(0- Finally, at τ = 15.0, the 
Poincare map yields an orbit of period 3 (Fig. 5(b)), 
corresponding to 3 : 3 phase locking (Fig. 4(g)). A phe
nomenon often seen in the iteration of nonmonotonic 
maps is that different starting conditions can lead to 
different asymptotic behaviors [48], [49]. For example, at 
τ = 12.9, in addition to the complex pattern of Fig. 4(e), 
1 :1 phase locking can also be seen for some other initial 
conditions. For τ slightly less than about 12.7, intermittent 
behavior with a long laminar phase can be observed. 

We have only shown the Poincare map for one level of 
stimulus amplitude and duration. As these two parameters 

(b) 
Fig. 5. Poincare map for BVP oscillator for pulse amplitude of 5.0 and 

pulse duration of 0.2. (a) τ = 12.4, with period 2 orbit, corresponding to 
2 : 2 locking shown in Fig. 4(c). (b) τ = 15.0, with period 3 orbit 
corresponding to 3 : 3 locking shown in Fig. 4(g). 

are changed, the topology of the Poincare map also changes 
[48]. Thus the sequence of bifurcations that occurs as τ is 
changed (for a fixed stimulus amplitude and duration) 
depends on these two stimulus parameters. 
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On the basis of our experiments [10], theoretical work 
[47]-[49], and the numerical studies described earlier, we 
predict that period-doubling bifurcations, intermittency 
[57], bistability [49], and chaotic dynamics arising from the 
periodic forcing of neural oscillators will be widespread. 
Since the bifurcations often occur over small ranges in 
parameter space the phenomena can only be observed if 
one performs systematic studies on the effects of changing 
the amplitude, duration, and frequency of periodic pulsa
tile stimulation. The relevance, if any, of such phenomena 
to information processing in vivo in neural systems re
mains to be clarified. 

IV. R E L E V A N C E TO N E U R O P H Y S I O L O G Y 

We have given several examples in which deterministic 
models give rise to chaotic dynamics (which can even be 
aperiodic in the absence of any stochastic variation in 
inputs or control parameters). These observations raise the 
possibility that some of the observed variability in neural 
electrical activity may be a reflection of intrinsically chaotic 
dynamics. Theoretical techniques currently being de
veloped should be capable of distinguishing the relative 
contributions of intrinsic "chaos" and "noise" (generated 
externally by the environment or internally by the system 
itself) to the aperiodic behavior experimentally observed 
[58]. To date, these techniques have not been applied in 
concrete situations. Bearing in mind that all irregular neu
ral dynamics which can be observed are not necessarily 
associated with chaos in deterministic systems, we briefly 
discuss several examples in which chaotic dynamics may 
play a role. 

A. Experimental Work 

1) The properties of neurons depend on the chemical 
environment of the neuron. Consequently, abnormal elec
trolyte concentrations or the presence of hormonal or 
pharmacological agents may have strong effects on pace
maker neurons. In a recent study, the effects of 4-amino-
pyridine (4AP) on an identified molluskan pacemaker 
neuron were analyzed [59]. Under prolonged exposure to 
4AP, an irregular bursting pattern developed. The proper
ties of the pacemaker neuron were well-described by a 
modified Hodgkin-Huxley equation, and it was conjec
tured that the irregular dynamics reflected a chaotic trajec
tory in the deterministic system. The observed fluctuations 
bear a superficial resemblance to irregular dynamics attri
buted to chaos in chemical oscillations [5], [6] and to 
chaotic dynamics in simple chemical kinetic schemes [60]. 
However, a detailed experimental study of the transitions 
in dynamic behavior, in response to 4AP, and an interpre
tation in terms of bifurcations in the underlying equations 
was not made. The generation and transmission of periodic 
and chaotic firing activity in modified H H equations has 
been described by Carpen te r [61]. Fu r the rmore , 
period-doubling bifurcations of unstable limit cycles in the 
H H equations have been demonstrated [62]. These exam

ples suggest that spontaneously chaotic dynamics may be 
observable in neural systems. 

2) A second class of examples in which chaos may be 
important is in the periodic forcing of neural oscillators, as 
discussed above. The irregular dynamics which have been 
observed in these experiments are generally attributed to 
stochastic fluctuations of input or system parameters rather 
than to the presence of intrinsic chaos [37], [42], [43]. Since 
periodically forced nonlinear oscillators show period-dou
bling bifurcations and chaos, experimental studies of peri
odically forced neural oscillators bear reexamination in this 
light. 

B. Dynamical Disease 

A dynamical disease is defined as a disease that occurs 
in an intact physiological control system operating in a 
range of control parameters that leads to abnormal dy
namics [14], [15], [18]. The signature of a dynamical disease 
is a change in the qualitative dynamics of some observable 
as one or more parameters are changed. These changes 
would correspond mathematically to bifurcations in non
linear equations describing the physiological system. Theo
retical analyses of Cheyne-Stokes respiration [14], [15], 
[18], schizophrenia [20], [25], [26], insomnia [45], [46], epi
lepsy [15], [21], [32], dyskinesia [16], AV heart block [47], 
[63], and some hematological disorders [14], [15], [18], [19], 
[64]-[66] suggest that these diseases may be classified as 
dynamical diseases. Since many neural disorders are char
acterized by changes in the normal patterns of behavior, it 
is tempting to propose that such diseases arise from bifur
cations that may eventually result in "chaotic" dynamics. 
However, before such associations can be justified, it will 
be necessary to clinically observe changes in the qualitative 
dynamics and identify these changes with corresponding 
changes in the qualitative dynamics of mathematical mod
els. Analysis of qualitative dynamics as a function of 
control parameters may lead to new therapies directed 
towards restoring normal dynamics. Thus the theoretical 
analysis is of potentially powerful diagnostic and ther
apeutic value. It will not be easy to convince a clinician to 
try a novel therapy suggested by a theoretician, and col
laboration between mathematicians, clinicians, and basic 
scientists will be needed. 

C. Normal Function 

Neurophysiological systems are characterized by nonlin
ear feedback, oscillation, and coupling of oscillators. Why 
are the phenomena of chaotic dynamics so rarely observed 
in normal physiology? Two possible reasons, which are not 
mutually exclusive, bear consideration. 

1) The construction of normal physiological control sys
tems has a large range of control parameters which give rise 
to stable dynamics (either steady-state equilibria or stable 
oscillations). The coupling between oscillations is normally 
sufficiently weak (respiratory sinus arrhythmia [44]) so that 
perturbation of one rhythm by the other does not lead to 
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pathology, or sufficiently strong (in locomotion [40]) that 
1 :1 entrainment is found. 

2) Chaotic behavior normally occurs, but this is not now 
recognized. Even cursory examination of data from many 
neural systems shows that variations in dynamics, from 
regular (periodic) to irregular (aperiodic) are possible and 
represent "norma l" behavior. For example, spontaneous 
changes occur in the respiratory rhythm from very regular 
to irregular during different states of sleep and wakeful
ness. The mechanisms underlying these transitions are not 
well understood. The coding of sensory input gives a 
second example of the possible importance of chaotic 
dynamics in normal function. It is believed that the coding 
of the intensity of periodic sensory input may be accom
plished by variable degrees of entrainment between the 
sensory input and the firing of the receptor [37], [38], [67]. 
If a given receptor is not in 1 :1 synchronization with the 
input, it may have an extremely irregular firing pattern (for 
example, see [38, fig. 5]). Although it has been proposed 
that such irregular patterns are due to "noise" in the 
system [37], [42], the possibility of deterministic chaos 
should not be ignored. It has been proposed that complex 
EEG patterns which occur normally arise from interactions 
between a large number of neural relaxation oscillators 
[68]. As well, chaotic dynamics may occur in neuroendo
crine systems with nonlinear feedback [69], [70]. Finally, 
since neurophysiological control systems are nonlinear sys
tems with time delays due to sensory input, neural infor
mation processing and motor output, and since hormonal 
systems also possess inherent time delays, chaotic behavior 
is expected to occur in both neural and neurohumoral 
control systems. 

The concept of chaos introduces a new perspective for 
the analysis of neural dynamics. We have discussed the 
implications of chaos for neural systems amenable to 
experimental electrophysiological study and theoretical 
modeling. We leave to others to analyze the relevance of 
chaos to higher cognitive function, originality, and free 
will. 
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