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1. Introduction

It is instructive to compare the approach used by Boltzmann and Gibbs in
their treatments of statistical mechanics. Both started from the assumption
that they were dealing with systems of dimension d = 2s whose dynamics
were described by s position variables xi and s momentum variables pi.

Boltzmann considered the phase space to be a 2s dimensional space which
is usually called µ space. He then considered the evolution of a large number
N of identical particles, each with the same dynamics, in µ space. N is large
and typically on the order of Avagadro’s number, 6 × 1023. The limiting
case of N →∞ is the thermodynamic limit in which case the Boltzmann
approach is equivalent to studying the evolution of a density in µ space.

Gibbs also considered N identical particles operating with these 2s di-
mensional dynamics in a phase space (commonly called the Γ space) of
dimension 2sN . He then considered an infinite number of copies of this
original system, and gave this construct the name ensemble. Thus Gibbs
studies the evolution of the ensemble density, and Γ space has proved to be
the most useful in statistical mechanics.

The curious, and disturbing, fact is, however, that when we do exper-
iments we do Boltzmann experiments in the sense that we actually make
measurements on a single system. We no not make measurements on an
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ensemble! However, the puzzlement is that it is by following the Gibbs ap-
proach that we arrive at a sensible definition of equilibrium entropy and the
calculations using the Gibbs’ entropy are the ones that actually agree with
what is seen physically.

However, and this is a big however, when it comes to making predic-
tions about non-equilibrium behaviour we then revert to the use of another
construct of Boltzmann, namely the Boltzmann equation, and all of the at-
tendant transport equations (for mass, momentum, energy, etc.) that can be
derived from it.

So what is the origin of these paradoxes? How can they be resolved? Can
they be resolved?

1.1. A short calculation

Consider a gas containingN molecules per litre (i.e., per 103 cc), and each
molecule is of mass m and cross sectional area πσ2. According to (Reichl,
1980, page 459) the collision frequency Fc (units of collisions per unit time)
is given by

Fc =

√
2

2
N 2σ2

(
8πkT

m

)1/2

. (1)

Furthermore, from my notes of 1964, the frequency of collisions Fs (units of
collisions per unit area per unit time) with a surface in the gas is given by

Fs =
N
4π

(
8πkT

m

)1/2

. (2)

Now assume that we divide up our litre of N molecules (something on
the order of 1023) into M tiny little cubes (cubelets), so each one will contain
N = N /M particles in a cube of side L and volume of

L3 = Vε =
103

M
.

Then, the collision frequency within each little volume Vε will be given by

Fc,Vε =

√
2

2
N 2σ2L3

(
8πkT

m

)1/2

(3)

=

√
2

2
N 2σ2 103

M

(
8πkT

m

)1/2

(4)
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This value gives us a measure of the frequency of interaction between molecules
in each cubelet.

Furthermore, the collision frequency (collisions per unit time) with one
of the sides of the cube of cross-sectional area L2 will be given by

Fs,Vε =
N
4π
L2

(
8πkT

m

)1/2

=
102N

4πM2/3

(
8πkT

m

)1/2

. (5)

However, since there are 6 sides to the cube, the total collision frequency
with the sides will be given by

Fs,Vε,T oT =
6× 102N
4πM2/3

(
8πkT

m

)1/2

. (6)

This “side collision frequency” is, in point of fact, a measure of the fre-
quency with which one little cubelet interacts with its six adjacent neighbor-
ing cubelets.

With this preparation in hand, we can now look at the ratio between the
interior collision frequency Fc,Vε and the side collision frequency Fs,Vε,T oT :

R =
Fc,Vε

Fs,Vε,T oT
=

10
√

2N 2

2M
σ2

(
8πkT

m

)1/2

6× 102N
4πM2/3

(
8πkT

m

)1/2

=
10
√

2πNσ2

3M1/3
=

10
√

2π

3
Nσ2M−1/3. (7)

Thus, we can see that if we have particles with σ = 5 × 10−8 cm and
take M ' 109 then interactions between the approximately 1014 molecules in
the interior of the cubelet will occur about 2.25× 107 times more frequently
that will interactions with its six neighboring cubelets. Thus, maybe we can
consider each cubelet as a “quasi-particle” and the collection (ensemble) of
M quasi-particles is for all practical purposes the ensemble of Gibbs while
each of the cubelets is one of Boltzmann’s systems.

This, I think, offers a way in which we can reconcile the fact
that we do Boltzmann-like experiments but use a Gibbs approach
to compute thermodynamic quantities.
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1.2. Something from statistics to think about
Walecka (2000) presents the lecture notes of Felix Bloch, and he has a

very interesting approach to this entire subject that also avoids the issue of
ergodicity. This is a summary of notes that I took from his book while in
Cancun on our 25th anniversary, December, 2002. As one can see, it is merely
the use of the Chebyshev inequality but disguised!

Consider a system distributed with a density f on a phase space X , and
some functional φ on X , e.g. energy. Then the mean value of φ is defined by

φ =

∫
X
φ(x)f(x)dx, (8)

and the deviation is
∆φ(x) ≡ φ(x)− φ (9)

so the mean square deviation is given by

(∆φ)2 =

∫
X

[φ(x)− φ]2f(x)dx

=

∫
X
φ2(x)f(x)dx− 2

∫
X
φ(x)φf(x)dx+

∫
X
φ

2
f(x)dx

= φ2 − 2φ
2

+ φ
2

≡ φ2 − φ2 ≥ 0 (10)

since [φ(x)− φ]2 ≥ 0. Define the RMS (root mean square) deviation by

(∆φ)rms ≡
√

(∆φ)2. (11)

Now pick an arbitrary φ∗ ≡ φ(x∗) and consider the deviation

∆φ∗ ≡ φ(x)− φ∗ (12)

The average deviation

(∆φ∗) =

∫
X

[φ(x)− φ∗]f(x)dx (13)

vanishes if φ∗ = φ. Also, the mean square deviation

(∆φ∗)2 =

∫
X

[φ(x)− φ∗]2f(x)dx

=

∫
X
φ2(x)f(x)dx− 2

∫
X
φ(x)φ∗f(x)dx+ φ∗2

= φ2 − 2φφ∗ + φ∗2 (14)
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is minimized when φ∗ = φ.
To see the meaning of the mean φ we want some indication of the deviation

∆φ to be expected for a system.1 Now consider (∆φ)rms > 0, and pick a
constant C > 0 and Ω ⊂ X such that

|φ(x)− φ| ≥ C(∆φ)rms for all x ∈ Ω. (17)

Thus, Ω ⊂ X is the region where |φ(x)−φ| is C times greater than (∆φ)rms.
Square Equation 17, multiply by f(x) and integrate over Ω to give∫

Ω

|φ(x)− φ| ≥ C2(∆φ)2

∫
Ω

f(x)dx. (18)

However, by definition

(∆φ)2 =

∫
X

[φ(x)− φ]2f(x)dx

=

∫
X\Ω

[φ(x)− φ]2f(x)dx+

∫
Ω

[φ(x)− φ]2f(x)dx (19)

so

(∆φ)2 ≥
∫

Ω

[φ(x)− φ]2f(x)dx

≥ C2(∆φ)2

∫
Ω

f(x)dx. (20)

1

1. Note that the average deviation is

∆φ ≡
∫
X

[φ(x)− φ]f(x)dx = 0 (15)

but the RMS deviation might be a good measure.

2. However, note that

(∆φ)rms =

√∫
X

[φ(x)− φ]2f(x)dx (16)

will be identically zero only if f(x) is a delta function on a subset of X such that
φ(x) ≡ φ.

3. Therefore, if (∆φ)rms ≡ 0 =⇒ φ(x) ≡ φ.
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For (∆φ)2 finite we have

1 ≥ C2

∫
Ω

f(x)dx

≥ C2µ(Ω) (21)

so

µ(Ω) ≤ 1

C2
. (22)

That is, the measure of the region Ω in which

|φ(x)− φ| ≥ C(∆φ)rms (23)

holds is less than
1

C2
.

So what does this all really mean? Simply that for really large deviations
of φ(x) from φ (that is, large in absolute value), which would correspond to
C >> 1, then the measure (volume) of phase space for which this will occur
is very small (that is, ≤ 1/C2. Therefore, it is highly unlikely to find large
deviations of φ(x) from φ.

2. The Gibbs’ entropy

With a dynamics S and initial density f0(x) = f(0, x) of states, the
evolution of the density f(t, x) is given by

f(t, x) = P t
Sf0(x), (24)

wherein PS is the transfer operator corresponding to S. If the dynamics are
described by a system of ordinary differential equations

dxi
dt

= Fi(x) i = 1, . . . , d, (25)

then the evolution of f(t, x) ≡ P tf0(x) is governed by the generalized Liou-
ville equation

∂f

∂t
= −

∑
i

∂(fFi)

∂xi
. (26)
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We define a fixed point f∗ of the transfer operator as a stationary density
with P tf∗ ≡ f∗ for all t. A stationary density is important since it corre-
sponds to a state of thermodynamic equilibrium. Note in particular that
there is absolutely no requirement for a stationary density to be uniform
across the phase space X . For the system of ordinary differential equations
(25), f∗ is given by the solution of∑

i

∂(f∗Fi)

∂xi
= 0. (27)

Note that the uniform density f∗ ≡ 1 is a stationary density of Equation 26
if and only if ∑

i

∂Fi
∂xi

= 0. (28)

Having postulated that a thermodynamic system has a state characterized
by a density f , we are now in a position to develop the physically useful
concept of Gibbs’ entropy.

First we define an observable O(f) to be a functional of the thermody-
namic state characterizing some aspect of a system, for example the energy,
pressure, or temperature. As such, an observable corresponds to a map
O : D(X ) → R. The expected, or average, value of the observable O(f)
is given by weighting O(f) with the system state density f and integrating
over the entire phase space:

E(O) =< O >=

∫
X
O(f(x))f(x) dx. (29)

In his seminal work Gibbs (1962), assuming the existence of a system
state equilibrium density f∗ on the phase space X , introduced the concept
of the index of probability given by log f∗(x) where “log” denotes the nat-
ural logarithm. He then identified − log f∗ with the entropy. We identify
the entropy H in an equilibrium situation with the average of the index of
probability

HG(f∗) = −
∫
X
f∗(x) log f∗(x) dx, (30)

and call this the Gibbs’ entropy. It can be shown that −∞ < H(f) ≤ 0 for
all densities f .

If entropy is to be an extensive quantity (in accord with practical experi-
ence) then this definition is unique up to a multiplicative constant (Khinchin,
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1949; Skagerstam, 1974). Furthermore, (30) has repeatedly proven to yield
correct results when applied to a variety of equilibrium situations. This
is why it is the gold standard for equilibrium computations in statistical
mechanics and thermodynamics. Thus we identify the equilibrium Gibbs’
entropy HG(f∗) with the thermodynamic entropy S∗TD.

Other contenders for the definition of entropy, such as one version of the
Boltzmann entropy (Jaynes, 1965), fail to give proper answers for equilibrium
calculations unless all particles are non-interacting.

The uniqueness of the entropy definition (30) (under the assumption that
the entropy is an extensive quantity) is so important that it is worthwhile to
give the proof. It is short.2

2Consider two systems A and B operating in the phase spaces XA and XB respectively,
and each having the densities of states fA and fB . We combine the two systems to form
a new system C operating in the product space XC = XA × XB , so system C will have
a density of states fC(x, y) = fA(x)fB(y) if A and B do not interact. On experimental
grounds we require that when the two systems are combined into a larger system C, then
the entropy of system C should equal the sum of the individual entropies of A and B, since
entropy is an extensive (additive) system property. We wish to show that the Gibbs’ choice
for the index of probability is the only choice (up to a multiplicative constant) that will
ensure this. Assume that the index of probability is left as an unspecified observable O(f).
If the observable O(f) is such that it transforms products to sums, O(fC) = O(fAfB) =
O(fA) +O(fB), then the relation H(fA) +H(fB) = H(fC) holds. It is clear that picking
O(w) = d logw, where d is any arbitrary non-zero constant, will work but are there any
other functions O with the requisite property? Assume there exists a second continuous
observable Õ(f) such that

Õ(fAfB) = Õ(fA) + Õ(fB). (31)

Define two new functions vA(a) and vB(b) through

fA(a) = evA(a) and fB(b) = evB(b). (32)

Then we have
Õ(evA+vB ) = Õ(evA) + Õ(evB ), (33)

or with h(w) ≡ Õ(ew) this becomes

h(vA + vB) = h(vA) + h(vB). (34)

This is the Cauchy functional equation that has the unique solution h(w) = δw with δ an
arbitrary constant (Kuczma, 1985). This implies that Õ(ew) = δw so

Õ(w) = δ logw. (35)
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An examination of the proof of the uniqueness of the Gibbs definition of
entropy shows that the proof applies equally well in equilibrium and non-
equilibrium situations. It is for this reason that we extend the definition of
the equilibrium Gibbs’ entropy to non-equilibrium situations and say that
the non-equilibrium Gibbs’ entropy of a density f(t, x) is defined by

HG
t (f) = −

∫
X
f(t, x) log f(t, x) dx. (36)

We identify Ht(f) with the non-equilibrium entropy STD(t).
Finally, we extend these notions and define the non-equilibrium condi-

tional entropy of the density f(t, x) with respect to a stationary density
f∗(x):

HG,c
t (f |f∗) = −

∫
X
f(t, x) log

[
f(t, x)

f∗(x)

]
dx. (37)

As before it is the case that −∞ < Hc
t (f |f∗) ≤ 0 for all densities f and f∗.

Notice that if the phase space X is finite and the stationary density is uniform
on X so f∗(x) = 1/µ(X ) for all x ∈ X [this is a generalization of the density
of the microcanonical ensemble], then (37) reduces to HG,c

t (f |f∗) = H(f) −
log µ(X ). If the space X is normalized then f∗ = 1 and HG,c

t (f |1) = Ht(f)
as defined in (36). Furthermore, we can write (37) in the form

HG,c
t (f |f∗) = H(f)−H(f∗) +

∫
X

[f(t, x)− f∗(x)] log f∗(x) dx. (38)

Thus it is clear that if there is a convergence limt→∞ f(t, x) = f∗(x) in some
sense, then limt→∞H

G,c
t (f |f∗) = 0. It is for this reason that we identify the

convergence of HG,c
t (f |f∗) to zero [limt→∞H

c
t (f |f∗) = 0] with the convergence

of the entropy difference ∆S(t) to zero.
Most importantly for our considerations here, the conditional entropy of

any invertible system is constant and uniquely determined by the method
of system preparation. In particular, for the system of ordinary differential
equations (25) whose density evolves according to the Liouville equation (26)

Thus the observable that gives the requisite additive property for the Gibbs’ entropy is the
logarithmic function and it is unique up to a multiplicative constant. The question of how
a non-equilibrium entropy should be defined has plagued investigators for over a century.
However, what is clear is that the definition of non-equilibrium entropy must agree with
the Gibbs definition at equilibrium.
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we can assert that the entropy of the density P tf0 will be constant for all
time and will have the value determined by the initial density f0 with which
the system is prepared. This result can also be proved directly by noting
that from the definition of the entropy we may write

HG,c
t (f |f∗) = −

∫
Rd
f(x)

[
log

(
f

f∗

)
+
f∗
f
− 1

]
dx (39)

when the stationary density is f∗. Differentiating with respect to time gives

dHG,c
t

dt
= −

∫
Rd

df

dt
log

[
f

f∗

]
dx (40)

or, after substituting from (26) for (∂f/∂t), and integrating by parts under
the assumption that f has compact support,

dHG,c
t

dt
=

∫
Rd

f

f∗

∑
i

∂(f∗Fi)

∂xi
dx. (41)

However, since f∗ is a stationary density of P t, it is clear from (26) that

dHG,c
t

dt
= 0, (42)

and we conclude that the conditional entropy HG,c
t (P tf0|f∗) does not change

from its initial value when the dynamics evolve in this manner. This is
a specific example of the more general conclusion that entropy can never
evolve away from its initial value in systems with invertible (time reversal
invariant) dynamics.

3. Coarse graining

To examine the effect of imprecision in our knowledge of dynamical vari-
ables on entropy calculations, we introduce the concept of the entropy of a
coarse grained density, or more briefly, the coarse grained entropy. This
concept seems to have been first qualitatively discussed by Gibbs (1962), and
quantified by Ehrenfest and Ehrenfest (1959). Denbigh and Denbigh (1985)
have considered aspects of the effects of coarse graining on the behaviour of
entropy.
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Coarse graining is carried out by first partitioning the phase space X
(finite and normalized) into discrete cells Ai that satisfy⋃

i

Ai = X and Ai
⋂
i 6=j

Aj = ∅. (43)

Obviously, there is no unique way in which such a partition {Ai} may be
formed, but we require that the partition is nontrivial with respect to the
Lebesgue measure µL so 0 < µL(Ai) ≤ µL(X) = 1 for all values of i. For
every density f , within each cell Ai of this partition we denote the average
of f over Ai by < f >i,

< f >i=
1

µL(Ai)

∫
Ai

f(x) dx, (44)

so the density f coarse grained with respect to the partition Ai is given by

f cg(x) =
∑
i

< f >i 1Ai(x). (45)

Thus, f cg is constant within each cell Ai. Clearly
∑

i < f >i µL(Ai) = 1.
Therefore, given a partition Ai satisfying (45) (nontrivial with respect to

Lebesgue measure), a density f , and a coarse grained density f cg defined by
(44)-(45), then the Gibbs’ entropy of the coarse grained density f cg is given
by3

HG(f cg) = −
∑
i

< f >i µL(Ai) log < f >i .

3The demonstration is almost trivial since, from (45) and the definition of the entropy,
we have

HG(f cg) = −
∫
X

[∑
i

< f >i 1Ai(x)

]
log

[∑
i

< f >i 1Ai(x)

]
dx

= −
∑
i

< f >i

∫
X

1Ai
(x) log

[∑
i

< f >i 1Ai
(x)

]
dx

= −
∑
i

< f >i

∫
Ai

log

[∑
i

< f >i 1Ai
(x)

]
dx

= −
∑
i

< f >i µL(Ai) log < f >i . (46)
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It is noteworthy that for any density f , the Gibbs’ entropy of the coarse
grained density f cg may be greater than the entropy of f , or more specifically:

Theorem 1. For any density f and any nontrivial partition Ai of the phase
space X, HG(f) ≤ HG(f cg). 4

Thus, the effect of any error in the estimation of a density f characterizing
a system, no matter what the origin, will be to either increase the Gibbs’
entropy of the estimated (coarse grained) density HG(f cg) above its actual
value HG(f), or leave it unchanged.

Precisely analogously to the way in which the entropy of the coarse
grained density was derived, it is easy to show that the conditional entropy
of f cg with respect to a second density g, also coarse grained with respect to
the partition Ai, is given by

HG,c(f cg|gcg) = −
∑
i

< f >i µL(Ai) log

[
< f >i

< g >i

]
.

It is equally easy to show that HG,c(f |g) ≤ HG,c(f cg|gcg) for all densities f
and g, and nontrivial partitions Ai of the phase space X.

4Proof This is quite straightforward to prove using the integrated form of the Gibbs’
inequality. First, by use of the indicator function 1A(x) we may write

HG(f) ≡ −
∫
X

f(x) log f(x) dx

= −
∑
i

∫
X

f(x)1Ai
(x) log f(x) dx

≤ −
∑
i

∫
X

f(x)1Ai(x) log g(x) dx, (47)

for g(x) an integrable density. Pick g(x) =< f >i so

HG(f) ≤ −
∑
i

log < f >i

∫
X

f(x)1Ai(x) dx

= −
∑
i

log < f >i

∫
Ai

f(x) dx

= −
∑
i

< f >i µL(Ai) log < f >i

= H(f cg), (48)

and the assertion is proved.
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Therefore, in general, coarse graining of the phase space, and the conse-
quent coarse graining of a density, will either increase the Gibbs’ entropy or
leave it equal to its value before coarse graining.

Now assume that an initial density f evolves under the action of a Markov
operator to give the sequence {P tf}. In analogy with (45), the coarse grained
P tf is given by

(P tf(x))cg =
∑
i

< P tf >i 1Ai(x)

where

< P tf >i=
1

µL(Ai)

∫
Ai

P tf(x) dx.

It is important to realize that we are assuming that the Markov operator
operates without any error on the density f , and that the coarse graining
arises because of our inability to precisely measure dynamical variables, and
consequently densities, for whatever reason.

4. Boltzmann entropy

4.1. Version 1

In any reading of Boltzmann’s work, the incredibly good article by Uffink
(2004) is really indispensable in trying to follow the twists and turns in
Boltzmann’s thinking and logic. Other sources that have been helpful include
Butterfield (2000), Grandy (1988), Schrödinger (1952), and Tolman (1950).

This part that follows is taken pretty much from Jaynes (1965). If we
just think of the Gibbs’ entropy in the case that f∗ ≡ 1 (invariant Lebesgue
measure) then

HG
t (f) = −

∫
X
f(t, x) log f(t, x) dx. (49)

If the system consists of N particles, then X = <6N , and dx = dx1 · · · dxN .
Now define a reduced density

f̃i(t, xi) =

∫
Xi

f(t, x)dx−i (50)

wherein dx−i = dx1 · · · dxi−1dxi+1 · · · dxN . Then the Boltzmann entropy
(first version) is given by

HB,1
t (f) = −N

∫
Xi

f̃i(t, xi) log f̃i(t, xi) dxi. (51)

13



Theorem 2. HG
t ≤ HB,1

t except when particles do not interact (then HG
t ≡

HB,1
t ). 5

Now Boltzmann originally developed an evolution equation for his version
of entropy defined in Equations 51, and this equation is now known as the
Boltzmann equation. Using this equations he proved that

dHB,1
t

dt
≥ 0 (61)

and he claimed that this was a dynamical version of the Second Law of
thermodynamics.6

5Proof.

HB,1
t (f) ≡ −N

∫
Xi

f̃i(t, xi) log f̃i(t, xi) dxi (52)

= −N
∫
X

f(t, x) log f̃i(t, xi) dx (53)

= −
∫
X

f(t, x) log[

N∏
i=1

f̃i(t, xi)] dx (54)

From the integrated Gibb’s inequality

HG
t (f) ≡ −

∫
X

f(t, x) log f(t, x) dx (55)

≤ −
∫
X

f(t, x) log g(t, x) dx ∀f, g ∈ D (56)

= −
∫
X

f(t, x) log[

N∏
i=1

f̃i(t, xi)] dx (57)

= HB,1
t (f) QED. (58)

Thus

HG
t −H

B,1
t = −

∫
X

f log fdx+

∫
X

f log

N∏
i=1

f̃idx (59)

= −
∫
X

f log[
f∏N

i=1 f̃i
] dx (60)

6Additionally, the Boltzmann equation has formed the basis of highly successful treat-
ments of a variety of transport phenomena in gases and plasmas, and extensions of the
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However, this was quite a surprising result in light of the constancy of the
entropy for the specific example of dynamics described by the time invertible
system of ordinary differential equations. The most general conclusion is that
noninvertibility in system dynamics, as reflected in an evolution of densities
via a noninvertible Markov operator, is necessary for the entropy to increase
as the system evolves (Mackey, 2001). We cannot, however, assert that
noninvertibility is sufficient to guarantee this, and indeed it is not the case.

Based on much more specific assumptions, this result concerning the ne-
cessity of noninvertibility seems to have been known to Clausius (1879).
How, then, did Boltzmann arrive at his conclusion that the entropy would
increase to a maximum in a collection of particles moving under the action
of (invertible) Hamiltonian dynamics? He managed (probably quite unwit-
tingly) to circumvent this clear problem [the use of invertible (Hamiltonian)
dynamics] by his Stosszahlansatz (molecular chaos) postulate in the deriva-
tion of the Boltzmann equation. This reduces, quite simply, to a postulate of
noninvertibility7.

Following the objections of Loschmidt (1876) to Boltzmann’s attempt to
justify thermodynamics using (invertible) classical mechanics, a recurrence
result was used by Zermelo (1896) as the basis for an attack on Boltzmann’s
celebrated “H theorem” concerning the behaviour of the entropy. In what has
become known as the Wiederkehreinwand (objection based on recurrence).
Zermelo argued that, because of recurrence, almost all points would con-
stantly revisit the same areas of phase space and thus it would be impossible
for the entropy to ever monotonically increase to its maximum.

4.2. Version 2

To understand how Boltzmann thought of his second version of entropy,
think of dividing up the µ space into little “cells”, or cubes Al (2s dimen-
sional), each of volume ω. (For concreteness you could think of each cube as
corresponding to a given energy range.) Then the corresponding Γ space for
our N microsystems or particles consists of a large 2sN dimensional array
of these cubes, each with volume or measure ωN . Label the cells Al in µ

Boltzmann transport equation have been successfully used in treating transport in fluids.
However, this will not be of further concern to us here.

7This non-invertibility comes, I believe, because the Stosszahlansatz (which assumes a
lack of correlation between colliding particles, has to arrise because of some mechanism
destroying that correlation–which is the way in which non-invertibility is brought in.
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space sequentially from l = 1 to l = P . Call the number of the N systems
(particles) that are in each of the cells (no matter which of the µ spaces they
are in) n1, n2, up to nP (clearly,

∑P
l=1 nl = N). If we have a state specified

by
{nl} ≡ {n1, n2, · · · , nP} (62)

then we will call this a macrostate. Boltzmann’s insight was to note that
there a shit load of ways that you can arrange these microsystems between
the cells from l = 1 to l = P and still have the same macrostate. Specifically,
there are

Ω({nl}) =
N !

n1! · · ·nP !
(63)

ways of doing so. Also, the “thermodynamic probability” (which is no prob-
ability) is defined by

W = Ω({nl})ωN . (64)

(I really don’t understand why this is done. See Lavis (2004) (spin echo paper
and other references above to try to sort out. Also Sears book.) Following
this, Boltzmann then defines the second version of the Boltzmann entropy
by

HB,2 ≡ lnW
= ln[Ω({nl})ωN ]

= ln Ω({nl}) +N lnω

= lnN !− ln[n1! · · ·nP !] +N lnω

= lnN !−
P∑
l=1

lnnl! +N lnω. (65)

Now Stirling’s formula gives us

n! ' nne−n
√

2πn, (66)

so

lnn! ' n lnn− n+
1

2
ln(2πn) (67)

and thus we have

HB,2 ' −N
P∑
l=1

nl
N

ln
(nl
N

)
+N lnω (68)
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when N is large and when all of the nl are also large which means, I think,
that the nl are pretty uniformly spread out!

Now what is the connection between this version of the Boltzmann en-
tropy and the Gibbs’ entropy? First of note that if all of the microsystems
are the same and not interacting with each other, then the density factors in
the following way:

f(x1, · · · , xN , t) =
P∏
l=1

fl(xl, t) =
P∏
l=1

f(xl, t) (69)

Then the Gibbs’ entropy just takes the form

HG
t (f) = −N

∫
X
f(t, x) log f(t, x) dx. (70)

Now the notation above is really screwed up, but the bottom line (which
has to be cleaned up later) is that this version of the Boltzmann entropy
is, once again going to converge to a coarse grained Gibbs’ entropy in the
limit of large N when the distribution of microsystems is close to uniform.
I have to consult with the Lavis (2004) spin-echo paper, pages 2
through 4, as well as Mackey (1992) to sort out my notation and
the argument.

5. Equilibrium entropies: Gibbs versus Boltzmann

5.1. My take on the situation: From Oxford, 2002

5.1.1. Formulation

We consider an “ensemble” of M simple systems, and each of these M
simple systems consists of N particles. Then, for the jth simple system. the
activity at any time is described by the vector

xj = (xj1, · · · , x
j
N), j = 1, · · · ,M. (71)

Suppose, for the sake of argument, that the state space of each of the N
elements of the simple system is X and is finite. In the terminology of
Boltzmann X is µ space. Then the state space of one of the simple systems
in our ensemble is just given by

X = XN , (72)

which, as for Gibbs, would be our Γ space.
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5.1.2. A Histogram of State Variables in One Simple System

Form a partition {Al}Pl=1 on X (remember that this is µ space) such that

∪Pl=1Al = X Al ∩ Al‘ = ∅, l 6= l‘. (73)

Now note that the fraction of the N particles of the jth simple system in Al
is given by

F j
P,l =

1

N

N∑
i=1

1Al(x
j
i ). (74)

As a check notice that

P∑
l=1

F j
P,l =

P∑
l=1

1

N

N∑
i=1

1Al(x
j
i )

=
1

N

N∑
i=1

(
P∑
l=1

1Al(x
j
i )

)

=
1

N

N∑
i=1

(1)

=
1

N
×N

= 1. (75)

Using this idea and notation, we could write a histogram approximation to
the “collapsed density” of the jth simple system as

F jP (x) =
P∑
l=1

F j
P,l

1Al(x)

µ(Al)
(76)

=
P∑
l=1

{
1

N

N∑
i=1

1Al(x
j
i )

}
1Al(x)

µ(Al)
, x ∈ X, (77)

where µ(Al) is the measure of Al. Again, as a check, note that∫
X

F jP (x)dx =
P∑
l=1

F j
P,l

1

µ(Al)

∫
X

1Al(x)dx (78)

=
P∑
l=1

{
1

N

N∑
i=1

1Al(x
j
i )

}
1

µ(Al)
µ(Al) = 1. (79)
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By Bernoulli’s theorem8, we know that F j
P,l is a random variable and limN→∞ F

j
P,l

converges in mean to the probability ξ̃l of being in Al, or

lim
N→∞

F j
P,l = ξ̃l. (80)

Thus we have for large N :

lim
N→∞

F jP (x) =
P∑
l=1

ξ̃l
1Al(x)

µ(Al)
, x ∈ X. (81)

5.1.3. Histogram of State Variables in an Ensemble of Simple Systems

Now lets consider M copies of this single system, j = 1, · · ·M , and we
assume that each of these copies is independent of all others. Form a second
partition {Bq}Qq=1 on X (remember that this is Γ space) such that

∪Qq=1Bq = X = XN Bq ∩Bq‘ = ∅, q 6= q‘. (82)

Now note that the fraction of the M copies of the single system that are in
Bq is given by

FQ,q =
1

M

M∑
j=1

1Bq(x
j). (83)

As a check notice that
Q∑
q=1

FQ,q =

Q∑
q=1

1

M

M∑
j=1

1Bq(x
j) =

1

M

M∑
i=1

(
Q∑
q=1

1Bq(x
j)

)
=

1

M

M∑
i=1

(1) =
1

M
×M = 1.

(84)
I will use the argument y ∈ X = XN to avoid confusion, and construct a
histogram approximation to the coarse grained density of the M copies of the
original system as:

F jQ(y) =

Q∑
q=1

F j
Q,q

1Bq(y)

µ(Bq)
(85)

=

Q∑
q=1

{
1

M

M∑
i=1

1Bq(x
j)

}
1Bq(y)

µ(Bq)
, y ∈ X ≡ XN , (86)

8The relative frequency h[E] = nE/n of realizing the event E in n independent trials
is a random variable which converges to P [E] in mean, and thus also in probability, as
n→∞.
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where µ(Bq) is the Lebesgue measure of Bq. Again, as a check, note that∫
X
F jQ(y)dy =

Q∑
q=1

F j
Q,q

1

µ(Bq)

∫
X

1Bq(y)dy (87)

=

Q∑
q=1

{
1

M

M∑
i=1

1Bq(x
j)

}
1

µ(Bq)
µ(Bq) = 1. (88)

By Bernoulli’s theorem, we know that FQ,q is a random variable and limM→∞ F
j
Q,q

converges in mean to the probability ξ̂q of being in Bq, or

lim
M→∞

F j
Q,q = ξ̂q. (89)

Thus we have for large M (the ensemble limit):

lim
M→∞

F jQ(y) =

Q∑
q=1

ξ̂q
1Bq(y)

µ(Bq)
, y ∈ X ≡ XN . (90)

5.1.4. “Collapsed” Density from an Ensemble Density

Suppose we know that the ensemble density for our system is given by
f̂(x1, · · · , xN). Then we could define a collapsed density by

f̂collapsed(x) =

∫
X

· · ·
∫
X

f̂(x1, · · · , xN)
N∏
i=1

δ(xi − x)dxi (91)
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as in Mackey and Milton and Kaneko. Suppose we apply this idea to our
ensemble histogram (86) to give∫

X
lim
M→∞

F jQ(y)dy =

∫
X

· · ·
∫
X

F jQ(x1, · · · , xN)
N∏
i=1

δ(xi − x)dxi (92)

=

Q∑
q=1

ξ̂q

∫
X

· · ·
∫
X

1Bq(x1, · · · , xN)

µ(Bq)

N∏
i=1

δ(xi − x)dxi(93)

=
P∑
l=1

ξ̃l
[µ(Al)]

N−11Al(x)

[µ(Al)]N
(94)

= lim
N→∞

F jP (95)

=
P∑
l=1

ξ̃l
1Al(x)

µ(Al)
(96)

= lim
N→∞

F jP (x) (97)

where we have taken Q = P and q = l so µ(Bq) = [µ(Al)]
N and ξ̂q = ξ̃l (since

the probablility of being in Bq is just the same as the probability of being in
Al after collapse).

This, it would seem, offers the justification for understanding why we can
make a measurement on a single system (equivalent to looking at quantities
averaged with respect to f̃(x), e.g. Equation 81) but use Gibbsian ensem-
ble techniques to make calculations (Equation 97, equivalent to looking at
quantities averaged with respect to f̂(x)).

5.1.5. Passage to Continuous Densities

Up to now we have been representing limM→∞FMQ (x) and limN→∞F jP (x)
as simple functions. However, by the convergence of simple functions and
the Lebesgue dominated convergence theorem we know that in the limit of
Q or P →∞ we can recover integrable functions (densities) from these:

f̃(x) = lim
P→∞

lim
N→∞

F jP (x) x ∈ X (98)

and
f̂(y) = lim

Q→∞
lim
M→∞

FMQ (y) y ∈ X ≡ XN . (99)
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