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I. STATEMENT OF THE PROBLEM. 
Retarded functional differential equations with distributed delay have been investigated by Hale (1977), Kol

manovskii and Nosov (1980), Stepan (1989), Kuang (1993) , Anderson (1991), Walther (1975), McDonald (1989). Let 
us review some known results. 

For processes with aftereffect the case of distributed retardation is often encountered. It means that the derivative 
x(t) depends not on the values of unknown function at some fixed moments of time t - Ti (t) , but on all values x( s) for 
s varying over a segment at '.S s '.S bt. For example 

x(t) = f (t ,x(t) , 1~• K(t,s)x(s)ds) 

Thus we come to consider integrodifferential equations. 
The theory of differential equations with aftereffect is often set forth in such a way as to include both the case of 

concentrated and distributed delay by considering integrodifferential equations containing the Stieltjes integral. For 
example the theory of linear equations may be represented by equations of the form 

x(t) = 1= x(t - s)dsK(t, s) + f(t) , 

or for the system of equations 

as Myshkis (1966) has considered. 
If the function K(t, s) or Kij(t , s) with finite variation with respect to s is piecewise constant ins, then we will 

have linear equation (or system) with concentrated delay. 
In particular, if the kernel K(t, s) (or Kij(t, s)) is independent oft, the equation is a generalization of a linear 

equation with constant coefficients, and particular solutions corresponding to their homogeneous equations may be 
sought in the form of exponential functions. For instance the equation 

x(t) = 1= x(t - s)dK(s) 

has a solution of the form ekt where k satisfies t he characteristic equation 

With respect to the kernel classification the following types of kernels were considered: 
1. K(s) is nonincreasing and non-constant [Stepan, 1989, p.87, equation (3.36)]. 
2. K(s) is nondecreasing. 
3. K(s) is convex. 
4. Results are given in the terms of kernel 's moments (Kolmanovskii). 
e)? 
Following Stepan (1989, p.4), the general form of a linear autonomous (and homogeneous) retarded functional 

differential equation (RFDE) is 
x(t) = L(xt) (1) 
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where the functional L : B - Rn is a continuous and linear. Here B denotes the vector space of continuous and 
ounded functions mapping the interval [-h, 0] into Rn. With the norm given by 

114>11 = sup 1¢(0)1, 
0 E[- r,O] 

B is a Banach space. 
By Xt we understand Xt = x(t + 0), 0 E [-T, 0]. According to the Rietz Representation Theorem, the equation 

can be represented as 

x(t) = f0
CXJ [dµ(0)]x(t + 0) (2) 

where µ is n-dimensional matrix of functions of bounded variation on ( -oo, 0] and the integral is a Riemann-Stieltjes 
one. Let C denote the set of complex numbers. By substitution x(t) '.::::'. e>-t into (2) or by means of Laplace transfor
mation of (2) we can obtain the characteristic equation 

0 . 

D(>-.) = det(>-.I - ! CXJ e>-0dµ(0)), (3) 

where I is the unit matrix. 

Definition. The characteristic function D of RFDE is called stable if 

{>-.EC: Re>-.~ 0, D(>-.) = 0} = 0 

where D is given by (3). 

The linear equation (2) can represent the case of finite delay as well. The delay has a finite length T when µ or 
µo are constants in (-oo, -T). 

II. DIFFERENT KINDS OF KERNELS. 

1. Kernel µ( s) is non-increasing and non-constant ~ kernel is decreasing. 

Stepan (1989, p. 87, eq. (3.36)) investigated the first order scalar equation 

x(t) = f0
CXJ x(t + 0)dµ(0) (4) 

where x E R, µ is a scalar function of bounded variation and it is satisfied the condition 

Theorem 1. ( Theorem 3.28 in Stepan ) Suppose that µ is a non-constant and non-increasing function in ( 4). 
The trivial solution of (4) is asymptotically exponentially stable if 

J0
CXJ 0dµ(0) < 1. (5) 

For proof see p. 87-88 in Stepan (1989). 
In [4, p.94] Kuang considered the more general case of a scalar equation 

x(t) = -ax(t) + b loCXJ x(t + 0)dTJ(0), (6) 

a, b > 0, TJ(0) is non-constant and non-increasing. 



FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DISTRIBUTED DELAY VERSION OF 6 FEBRUARY, 1994 WITH MINOR CHANGES 0 

Theorem 2 ( Theorem 5.3 in Kuang (1993). The trivial solution. of (6) is uniformly asymptotically stable if 

a;:::: 0, b lo= 0dry(0) < 1 

and there exists a constant v > 0 such that 

For proof see Kuang [1993, p.94J. 

2. Kernel µ( s) is non-decreasing ~ is constant or increasing. 

Stepan gives an example of a scalar equation ( Theorem 3.30, p.89) 

x(t) = -µ0 x(t) + 1°= x(t + 0)dµ(0) 

where µ( 0) is non-decreasing and satisfied t he condition 

Theorem 3. The trivial solution. of (8) is exponentially asymptotically stable if and only if 

For proof see Stepan [1989, p.89J. 

(7) 

(8) 

(9) 

Kuang (1993) cites t he result of Walther (1975) who studied the stability of the solution of t he equation with 
distributed delay over the finite segment 

x(t) = -a 1: x(t + 0)dry(0) , a > 0, T > 0, (10) 

where rJ: [- r, OJ -, R is increasing and has total variation V(ry) not exceeding unity. The following t heorem is due 
to Walther (1975). 

Theorem 4. Let a > 0 and T > 0. Assume that rJ : [-r, OJ -, R is non.constant in.creasing function. such that 
ry(O) - ry(-r) ::S; 1 and ar < 7r / 2. Then equation. (9) is uniformly asymptotically stable. 

For proof see Kuang (1993, p.99 or original paper of Walther). 

3. Kernel is convex. 
R. Anderson ( 1991) referred to t he results of Walther (1976) and Cushing (1977) t hat for certain kinds of 

dynamical systems t he introduction of a distributed delay that has a convex density function preserves stability. 
I DID NOT TAKE YET ORIGINAL RESULTS. 

3. Stability results given in terms of the kernel's moments (Kolmanovskii). 
Kolmanovskii (1981, p. ) considers t he equation 

x(t) = 1= x(t - s)dK0 (s), (11) 

which characteristic equation is 

Denote 

/300 = 1= dKo(s), (12) 



lfUNCTIONAL DIFFERENTIAL EQUATIONS WITH DISTRIBUTED DELAY VERSION OF 6 FEBRUARY, 1994 WITH MINOR CHANGES 0 

Lemma 1. Let the conditions 
/300 < 0, 

be satisfied. Then the characteristic polynomial does not have a root with Re>,. 2: 0). 

Lemma 2. Let the conditions (13) be satisfied 
1. K 0 ( s) is monotonic, nonincreasing and /300 < 0 
2. K0 (s) = const for s 2: h > 0. 
3. haoo < ½, (i.e. h fa°° ldKo(s)I < 1'· 

Then the equation 

does not have roots with Re).. 2: 0. 

III. RANDOM DELAY. 

(i.e. fa°° dKo(s) < 0 ). 

(13) 

1. Concentrated delay. Consider the equation (MCM thinks that need to be careful cuz could give problems with 
consistency) 

x(t) = ax(t) + bx(t - u), u > o. 

Here we suppose that u is random with given mathematical expectation 

Eu= fo 00 uf(u)du < oo, 

where f(u) denotes the probability density of u. Let us seek a solution x(t) = Ae>.t where A is random variable with 
finite mathematical expectation EA < oo. 

The solution is 

x(t) = x(0) + a lat x(s)ds + b lat x(s - u)ds. 

taking the mathematical expectation we have 

Substitute x(t) = Ae>.t_ 

We have 

Ex(t) = Ex(0) + a lat Ex(s)ds + b lat Ex(s - u)ds. 

E{Ae>.t} = E{A} + a lat E{Ae>.s}ds + b lat E{Ae>.se- >.u}ds. 

e>.t E{A} = E{A} + a lat E{A}e>.s + b lat E{A}E{e>.se->.u}ds. 

e>.t = 1 + a lat e>. 8 ds + b lat e>.s E{ e- >.u}ds. 

Differentiating with respect to t we obtain the characteristic equation 

2. Distributed random delay. 
Let us investigate the equation 

or 

dx(t) = ax(t) + b 1: x(t + s)dK(s) 

dx(t) = ax(t) + b 1°
00 

x(t + s)dK(s). 
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Now let dK(s) = f(s)ds, 

dx(t) = ax(t) + b 1°
00 

x(t + s)f(s)ds. 

or we can rewrite this equation as 

dx(t) = ax(t) + b 100 
x(t - s)f(s)ds. 

Suppose x(t) ~ e>.t. Then we have the characteristic equation 

Actually we have the same characteristic equation as for the case of concentrated random delay. 
Suppose that ,,\ = iw. Substituting into the characteristic equation gives us 

iw - a - b 100 
cos(ws)f(s)ds + ib 100 

sin(ws)f(s)ds = 0. 

Separating real and imaginary parts we get 

-a= b 100 
cos(ws)f(s)ds, 

w = -b 100 
sin(ws)f(s)ds. 

For the second equation we can make an estimation 

From this we have that 

Consequently · the condition 

w = -b 100 
sin(ws)f(s)ds ~ -b 100 

wsf(s)ds. 

w(l + b 10() sf(s)ds) > 0. 

100 1 
sf(s)ds < -

o b 

which assumes b < 0. In terms of mathematical expectation we have the condition 
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