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Abstract We review the basic characteristics of four periodic hematological disor-
ders (periodic auto-immune hemolytic anemia, cyclical thrombocytopenia, cyclical
neutropenia and periodic chronic myelogenous leukemia) and examine the role that
mathematical modeling and numerical simulations have played in our understanding
of the origin of these diseases and in the regulation of hematopoiesis.
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1 Introduction

Based on the analysis of simple mathematical models for Cheyne–Stokes respiration
and periodic hematological diseases, Mackey and Glass [70] speculated that there were
dynamical diseases “. . . characterized by the operation of a basically normal physiolo-
gical control system in a region of physiological parameters that produces pathological
behavior.” Their work suggested “. . . the following approaches: (i) demonstrate the
onset of abnormal dynamics in animal models by gradual tuning of control para-
meters;” (ii) gather sufficiently detailed experimental and clinical data to determine
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whether sequences of bifurcations . . . actually occur in physiological systems; and
(iii) attempt to devise novel therapies for disease by manipulating control parameters
back into the normal range.” This programme has been especially successful within a
hematological context over the past three decades.

Periodic hematological diseases are particularly interesting from a modeling point
of view, due to their dynamical behaviors. Mathematical models (and their numerical
simulations) of periodic hematological disorders have contributed substantially to the
understanding of general regulatory principles of hematopoiesis and also provided
insight into clinically relevant treatment strategies. In this paper, we review some of
the mathematical models that have been developed over the years and recount how
they have been of use. In Sect. 2, we first review the normal aspects of the regulation
and production of blood cells as well as the basic characteristics of some periodic
hematological disorders. Then, in Sect. 3, we present the different mathematical tools
that are typically useful for modeling in hematology. Section 4 reviews the approaches
used for modeling four periodic hematological diseases, namely periodic auto-immune
hemolytic anemia (AIHA), cyclical thrombocytopenia (CT), cyclical neutropenia (CN)
and periodic chromic myelogenous leukemia (PCML). For each of these diseases, we
review the mathematical models as well as the knowledge of the disease gained from
their mathematical analysis. The paper concludes with a discussion in Sect. 5.

2 Normo- and pathophysiological hematopoiesis

In this section, we briefly review normal hematopoiesis and provide a short description
of some hematological diseases that have helped to elucidate the regulatoiry mecha-
nisms of hematopoiesis.

2.1 Normal hematopoiesis

Hematopoiesis is the term used to describe the production of blood cells. This pro-
cess is initiated in the bone marrow by the hematopoietic stem cells (HSCs). These
cells are self replicating, and produce all types of blood cells. The HSC can produce
partially differentiated progenitor cells (assayted by the colony-forming units (CFU-
Mix)), which can then differentiate into committed cells that give rise to one of the
cell lineages: thrombocytes (platelets), erythrocytes (red blood cells (RBC)) or leuco-
cytes (white blood cells (WBC)) (see Fig. 1). Although all blood cells originate from
this common source, the mechanisms that regulate their production are not comple-
tely clear. Nevertheless, the production of erythrocytes (erythropoiesis) and platelets
(thrombopoiesis) appears to be regulated by specific cytokines via a negative feedback
mechanisms whereas granulopoiesis is perhaps more complicated and thus less clearly
understood. We briefly present these processes below.

The growth factor (cytokine) mainly involved in the regulation of erythrocyte pro-
duction is erythropoietin (EPO). EPO production adjusts to the demand of oxygen
in the body such that if there is a decrease in the O2 levels in tissues, there will be
an increase in EPO levels. This, in turn, will trigger increased production of
primitive erythrocytes precursors (colony-forming units-erythroid (CFU-E)) partially
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Fig. 1 Schema of the hematopoietic system, giving a schematic representation of the architecture and
control of platelet (P), red blood cell (RBC), and monocyte (M) and granulocyte (G) (including neutro-
phil, basophil and eosinophil) production. Presumptive control loops mediated by thrombopoietin (TPO),
erythropoietin (EPO), and the granulocyte colony stimulating factor (G-CSF) are indicated, as well as a
local regulatory (LR) loop within the pluripotent hematopoietic stem cell (HSC) population. CFU (BFU)
refers to the various colony (burst) forming units (Meg = megakaryocyte, Mix = mixed, E = erythroid, and
G/M = granulocyte/monocyte) which are the in vitro analogs of the in vivo committed stem cells (CSC).
Taken from Haurie et al. [47] with permission

mediated by interfering with apoptosis in these cells [45,58]. These cells will mature
and eventually (after a maturation delay) produce new erythrocytes. As a result, the
erythrocyte population will be increased and so will be the oxygen carrying capacity of
the blood. Hence, EPO mediates a negative feedback such that a decrease (increase) in
the number of erythrocytes leads to an increase (decrease) in erythrocyte production.

The regulation of platelet production (thrombopoiesis) involves similar feedback
mechanisms mediated by the cytokine thrombopoietin. If the circulating platelets count
is decreased, it triggers thrombopoietin production which then stimulates maturation
of the platelet progenitor cells (colony-forming units-megakaryocyte (CFU-Meg)).
This eventually leads to an increase in platelet production, again partially mediated
by a decrease in megakaryocyte apoptosis [89].

There are three types of leucocytes, namely the lymphocytes, the granulocytes
and the monocytes. We will focus our attention on granulopoiesis (production of
granulocytes) and more specifically on neutrophils, which constitute the most abun-
dant type of granulocyte, since cyclical neutropenia is the periodic hematological
disease on which the greatest amount of published clinical data exists. The mechanisms
regulating granulopoiesis involve the cytokine granulocyte-colony stimulating factor
(G-CSF), which is the main regulator of neutrophil production [53]. It stimulates the

123



288 C. Foley, M. C. Mackey

0 50 100 150
0

20

40
AIHA

Days

R

0 40 80 120 160 200
0

500

1000
CT

P

Days

0

2

4
CN

N

0

5

10

P

0 20 40 60 80 100
0

5

R

Days

0

20

40
PCML

W
B

C

0

5

10

P

0 100 200 300 400
0

10

20

R

Days

Fig. 2 Examples of data for four hematological diseases. AIHA: Reticulocyte numbers (×104 cells/µL)
in an AIHA subject. Adapted from [80] with permission. CT cyclical fluctuations in platelet counts
(×103cells/µL). From [112]. CN circulating neutrophils (×103cells/µL), platelets (×105cells/µL) and
reticulocytes (×104cells/µL) in a cyclical neutropenic patient. From [42] with permission. PCML White
blood cell (top) (×104cells/µL), platelet (middle) (×105cells/µL) and reticulocyte (bottom) (×104cells/µL)
counts in a PCML patient. From [20] with permission

formation of neutrophils from hematopoietic stem cells, accelerates the formation of
neutrophils in the bone marrow and stimulates their release from the bone marrow
into the blood. Although the exact mechanisms by which G-CSF acts are still unclear,
it has been shown to decrease the transit time through the neutrophil postmitotic pool
and increase maturation [63,84] while interfering with apoptosis [10]. Several studies
have shown an inverse relationship between the serum levels of G-CSF and the number
of circulating neutrophils [55,74,103,108].

2.2 Dynamical diseases in hematology

Periodic hematological disorders are classical examples of dynamical diseases [39,70].
Because of their dynamical properties, they offer an almost unique opportunity for
understanding the nature of the regulatory processes involved in hematopoiesis. Per-
iodic hematological disorders are characterized by oscillations in the number of one
or more of the circulating blood cells with periods on the order of days to months [47].
In this section, we briefly review the clinical aspects of four periodic hematological
disorders (see Fig. 2 for examples of experimental data for each disease). The first
two, periodic auto-immune hemolytic anemia (AIHA) and cyclical thrombocytopenia
(CT), involve oscillations in only one cell lineage. In the other two diseases, cycli-
cal neutropenia (CN) and periodic chronic myelogenous leukemia (PCML), there is

123



Dynamic hematological disease: a review 289

cycling in all of the major blood cell groups. This suggests that these disorders may
involve a dynamic destabilization at the stem cell level, leading to oscillations in all
cell lineages.

2.2.1 Periodic auto-immune hemolytic anemia

Auto-immune hemolytic anemia (AIHA) results from an abnormality of the immune
system that produces autoantibodies, which attack red blood cells as if they were
substances foreign to the body. It leads to an abnormally high destruction rate of the
red blood cells. Periodic AIHA is a rare form of hemolytic anemia in humans [87]
characterized by oscillatory erythrocyte numbers about a depressed level. The origin of
the disease is unclear. Periodic AIHA, with a period of 16–17 days in hemoglobin and
reticulocyte counts, has been induced in rabbits by using red blood cell auto-antibodies
[80].

2.2.2 Cyclical thrombocytopenia

Platelets are blood cells whose function is to take part in the clotting process, and throm-
bocytopenia denotes a reduced platelet (thrombocyte) count. In cyclical thrombocyto-
penia (CT), platelet counts oscillate generally from very low values (1×109 cells/L) to
normal (150−450×109 platelets/L blood) or above normal levels (2000×109 cells/L)
[102]. These oscillations have been observed with periods varying between 20 and 40
days [21]. In addition, patients may exhibit a variety of clinical symptoms indica-
tive of impaired coagulation such as purpura, petechiae, epistaxis, gingival bleeding,
menorrhagia, easy bruising, possibly premenstrually, and gastrointestinal bleeding
[102]. There are two proposed origins of cyclical thrombocytopenia. One is of auto-
immune origin and most prevalent in females. The other is of amegakaryocytic origin,
more common in males.

Autoimmune cyclical thrombocytopenia is characterized by a shortened platelet
lifespan at the time of decreasing platelet counts [18]. This is consistent with normal
to high levels of bone marrow megakaryocytes and with an increased destruction rate
of circulating platelets [102]. Autoimmune CT has also been postulated to be a rare
form of idiopathic (immune) thrombocytopenic purpura (ITP) [18].

The amegakaryocytic form of CT is characterized by oscillations in bone marrow
megakaryocytes preceding the platelet oscillations [9,13,27,33]. In this second type
of CT, platelet oscillations are thought to be due to a cyclical failure in platelet produc-
tion [13,21,27,33,52,60]. The platelet lifespan is usually normal [60] and antibodies
against platelets are not detected [52]. Although it has been suggested that the failure
of platelet production could arise at the stem cell level [56], it is generally thought that
the cycling originates at the megakaryocyte level [27,52]. For a more detailed review
of CT, see [92,102].

It has been hypothesized that autoimmune and amegakaryocytic cyclical throm-
bocytopenia have a different dynamic origin [92]. This is supported by [102], who
noted that the patients diagnosed as having the autoimmune CT generally have shor-
ter periods (13–27 days) than those classified as amegkaryocytic (27–65). Moreover,
they reported that autoimmune patients typically show platelet oscillations from low
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to normal levels, whereas amegakaryocytic subjects generally show oscillations from
above normal to below normal levels of platelets.

2.2.3 Cyclical neutropenia

In a normal individual, the number of circulating neutrophils is relatively constant
with an average of about 2.0 × 109 cells/L. Neutropenia is a term that designates
a low number of neutrophils, thus indicating that the individual is less effective at
fighting infections. Cyclical neutropenia is characterized by oscillations in the number
of neutrophils from normal to very low levels (less than 0.5×109 cells/L). The period
of these oscillations is usually around 3 weeks for humans, although periods up to
45 days have been observed [46]. The period in which the absolute neutrophil count
(ANC) is very low (also called severe neutropenia) usually lasts for about a week
in humans. This period is associated with symptoms such as mouth ulcers, periodic
fever, pharyngitis, sinusitis, otitis and other infections, some of which can sometimes
be life-threatening. Fortunately, CN is effectively treated with daily administration of
the growth factor G-CSF, which has the effect of reducing the period of the oscillations
and increasing both the oscillation amplitude and the value of the ANC nadir. This
has the overall effect of decreasing the period of severe neutropenia. We will see in
Sect. 4.3.2 that mathematical modeling has been used to design cheaper and more
effective G-CSF treatment strategies.

Our understanding of CN has been greatly aided by the existence of a similar
disease in grey collies [49]. The canine disorder shows the same characteristics as in
humans, except that the period of the oscillations is usually between 11 and 15 days.
The existence of this animal model has allowed for the collection of a variety of data
that would have been difficult, if not impossible, to obtain in humans.

A major characteristic of CN is that the oscillations are not only present in neutro-
phils, but also in platelets, monocytes and reticulocytes [47], which is the reason CN
is sometimes referred to as periodic hematopoiesis [83]. This observation suggests
that the source of the oscillations may lie in the stem cell compartment. Although it
is a rare disorder, cyclical neutropenia is probably the most extensively studied per-
iodic hematological disorder. The availability of an animal model and its dynamical
properties makes it suitable for mathematical modeling and several modeling studies
have indeed aided our understanding of the basic mechanisms of this disease, as we
review in Sect. 4.3.

2.2.4 Periodic chronic myelogenous leukemia

Leukemia is a cancer of the blood or bone marrow characterized by an abnormal
proliferation of blood cells, usually leucocytes. Chronic myelogenous leukemia (CML)
is distinguished from other leukemias by the presence of a genetic abnormality in
blood cells, called the Philadelphia chromosome, which is a translocation between
chromosomes 9 and 22 that leads to the formation of the Bcr–Abl fusion protein [79].
This protein is thought to be responsible for the dysfunctional regulation of myelocyte
growth and other features of CML [73] (For more details about CML, see [41]).
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A dynamical disease of particular interest is periodic chronic myelogenous leukemia
(PCML), characterized by oscillations in circulating cell numbers that occur primarily
in leucocytes, but may also occur in the platelets and reticulocytes [38]. The leucocyte
count varies periodically, typically between values of 30 and 200×109 cells/L, with a
periods ranging from 40 to 80 days. In addition, oscillation of platelets and reticulocytes
may occur with the same period as the leucocytes, around normal or elevated numbers
[38,51]. As in cyclical neutropenia, the hypothesis that the disease originates from the
stem cell compartment is supported by the presence of oscillations in more than one
cell lineage.

3 Mathematical models of hematopoiesis

Mathematical models have been used for modeling biological processes for decades.
With the advances in technology and the increasing amount of available data,
mathematical models and simulation techniques provide ways of better understan-
ding the underlying mechanisms of biological processes. In hematological modeling,
several mathematical tools and computational methods are used: differential equations
(partial, ordinary or delay), stochastic processes, Boolean networks, Bayesian theory,
multivariate statistics, decision trees, etc. For a review, see [90] and [105]. The choice
of the mathematical tools often depends on the desired level of description of the
model. For instance, one could model processes at small scale (e.g. at the molecular
or the cellular levels), or on a larger scale (model the whole system). Mathematical
models of in vivo hematopoietic regulatory systems using a stochastic formulation
have not been extensively developed, primarily because of the lack of correspon-
ding data for stem cells and their progeny. Since they are widely used, we focus in this
paper on models that use differential equations: ordinary differential equations (ODE),
partial differential equations (PDE), or delay differential equations (DDE).

In this section, we first discuss the different types of delay differential equations and
show how some DDE systems could be reduced to an ODE system using the linear
chain trick. Second, we present a typical setting for a model, based on biological
aspects of hematopoiesis and show that this could be modeled by an age-structured
model (PDE). We then show that this PDE model can be reduced to a DDE model.
Finally, we briefly comment other types of models in Sect. 3.4.

3.1 DDE models

Delay-differential equations (DDEs) are a large and important class of dynamical
systems. They often arise in biological systems where time lags naturally occur [65].
In particular, in hematology several processes are controlled through feedback loops
and these feedbacks are generally operative only after a certain time, thus introducing
a delay in the system feedback. The general form of a DDE for x(t) ∈ Rn is

dx

dt
= f (t, x(t), xt ), (1)
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where xt is the delayed variable and f is a functional operator in R × Rn × C1. There
are different kinds of delay-differential equations: with discrete fixed delays, with
distributed delays and with state-dependent delays. In this section, we briefly discuss
these different types of DDEs and give some examples of how they have arisen in
modeling hematological problems.

3.1.1 DDE with constant delays

Delay differential equations with constant delays take the form

dx

dt
= f (x(t), x(t − τ1), x(t − τ2), . . . , x(t − τn)), (2)

where the quantities τi , i = 1, 2, . . . , n are positive constants. For simplicity, consider
the DDE with a single constant delay:

dx

dt
= f (x(t), x(t − τ)). (3)

To obtain a solution of Eq. 3 for t > 0, one needs to specify a history function on
[−τ, 0]. Indeed, recall that for an ordinary differential equation (ODE) system with n
variables, one would only need to specify the initial values x(0) for each of the n state
variables. In order to solve a DDE, one needs to specify not only the value at t = 0, but
also all the past values of x(t) over the interval [−τ, 0]. Since one needs on specify an
“infinite” number of values, DDEs are often viewed as infinite-dimensional systems.

Constant delay differential equations are often used in modeling in hematology
[14,17,47,69]. For example, let X (t) represent the circulating cell population of a
certain type of blood cell, assume that γ is the random rate of loss of cells in the circu-
lation and F is the flux of cells from the previous compartment. Then, the dynamics
of the number of circulating cells will have the generic form

d X

dt
= −γ X + F(X (t − τ)), (4)

where τ is the average length of time required to go through the compartment (time
delay). Typically, F is taken to be a monotone decreasing function of X to mimic the
negative feedback loops of the system.

3.1.2 DDE with distributed delays

Delays arise in biological systems because of properties inherent to the different pro-
cesses (time lag due to maturation, transmission of an impulse, etc.). Although constant
delays may be an excellent approximation of the time lag involved, one might want
to account for the distribution of time delay. Indeed, in a real system, it is much more
likely that events related to the delay (maturation time for example) are distributed
with a density that is not a delta function. A distribution of delays is then be more
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appropriate and the DDE becomes an integro-differential equation of the form

dx

dt
= f

⎛
⎝x(t),

t∫

−∞
x(τ )G(t − τ) dτ

⎞
⎠. (5)

The density G(u) of the distribution function is referred to as the memory function or
the kernel and is normalized, i.e.

∞∫

0

G(u) du = 1.

This type of model can also be interpreted as allowing for a stochastic element in the
duration of the delay [65]. Examples of such models in hematology are found in [19],
[46] and [50]. Also, we will see in Sect. 3.2 that for some densities G(u), Eq. 5 can
be equivalently viewed as a system of ordinary differential equations.

3.1.3 DDE with state-dependent delays

Another type of delay differential equation occurs when the delay depends on a state
variable. For example, one could imagine that the maturation time for a blood cell
depends on the amount of growth factor in the circulation as, for example, is the case
with the maturation time of neutrophil precursors in humans [84]. An example of a
model with a state-dependent delay can be found in [71], but it is fair to say that models
of hematopoietic regulation with state dependent delays have not appeared because of
the paucity of data for the analytic variation of delays with respect to state variables.

3.2 ODE models

Delay differential equations naturally arise in modeling biological systems. However,
since DDEs are infinite-dimensional systems, they are difficult to analyze analytically
and handle numerically. For some forms of delays, the so-called linear chain trick [65]
enables the model to be written as an equivalent finite-dimensional system of ordinary
differential equations. Next, we present a simple example of this method which is a
specific example of the more general considerations of Fargue [34,35].

Consider the following DDE system with a distributed delay:

dx1

dt
= f

⎛
⎝x1(t),

t∫

−∞
x1(τ )G(t − τ) dτ

⎞
⎠, (6)

with the special choice of the density of the gamma distribution for the memory
function
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G(u) = G p
a (u) = a p+1u p

p! e−au, (7)

where a is a positive number and p is a positive integer or zero. Note that the function
G(u) has a maximum at u = p/a and that, as a and p increase, keeping p/a fixed, the
kernel approaches a delta function and the distributed delay approaches the discrete
time delay with τ = p/a. Moreover, it is clear that the following three properties are
satisfied:

1. limu→∞ G p
a (u) = 0,

2. G p
a (0) = 0 for p �= 0,

3. G0
a(0) = a.

The central idea of the method is to replace the distributed delay by an extension of
the set of variables. Define p + 1 new variables as

x j+1 =
t∫

−∞
x1(τ )G j−1

a (t − τ) dτ j = 1, 2, . . . , p + 1, (8)

and set

x p+2 :=
t∫

−∞
x1(τ )G(t − τ) dτ.

Then, using the properties of G one can show that these new variables satisfy a sequence
of linear ODEs (see the Appendix for a detailed derivation). Solving the following
system is thus equivalent to solving the DDE problem 6, given that the new variables
are given appropriate initial values:

dx1

dt
= f (x1, x p+2)

dx j+1

dt
= a(x j − x j+1) j = 1, 2, . . . , p + 1,

dx p+2

dt
= a(x p+1 − x p+2).

(9)

The linear chain trick could be useful for numerical computations since it reduces
the problem to an ODE system, for which several numerical methods are available.
However, this method cannot be used for all sort of delays (for more details about the
method and some examples, see [65]). Within a hematological context Hearn et al.
[50] were unable to use this technique in their model of neutrophil production because
the estimated value of p in the experimentally determined distribution of delays was
not an integer. Other models [61,62,94–97] have used constructs somewhat analogous
to the system [50].
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Introducing a delay in a system could be thought of as a way of including
age-structure in the model. For instance, one could think setting up a detailed
model in which the population dynamics is described by several maturation stages. If
enough detail is known about the time spent in each stage, one could then associate
a differential equation (ordinary or delayed) with each stage. However, detailed data
such as these are often (usually) not available. Alternatively, one could lump together
all the stages and reduce the model to only one DDE where the delay is the total
maturation time. Another option would be to use partial differential equations, as we
will discuss in the next section.

3.3 Age-structured models

We now present a typical PDE model used in several applications. Based on Fig. 1,
one can see that the production of any of the cell types takes many steps. Indeed, a
cell starts from the hematopoietic stem cell and then its progeny go through a number
of stages before being released into the circulation. One could model this process by
associating a partial differential equation for the cell density function with each stage,
which describes the population in the compartment as a function of the variables age a
and time t [91]. The model also contains feedback control elements (rate of apoptosis,
rate of production, etc.) that regulate the release of cells from one compartment to the
other. The number of compartments depends on the data available which determines
the maximum level of detail appropriate for the model. For instance, a model of
erythropoiesis could have one compartment for each recognizable stage of erythrocytes
precursors, or alternatively merge some of the compartments together and thus reduce
the model dimensions. In the following, we will present some results using only a
generic compartment. The treatment for a larger model is the same. We then show
that by partial integration we can express this problem as a delay differential equation
model. Age-structured models provide a means of understanding the regulation of
hematopoiesis. Examples in the literature can be found in [1,6,7,12,30,66,71,81,82,
91] and [92].

Let x(t, a) be the the cell density at time t and age a in a generic compartment.
We assume that cells disappear (die) at a rate γ (t). We also assume that the cells in
the compartment age with a velocity V (t) and that a cell enters a compartment at age
a = 0 and exits this compartment at age a = τ . Therefore, the equation satisfied by
x(t, a) is an time–age equation (advection, or reaction–convection, equation):

∂x

∂t
+ V (t)

∂x

∂a
= −γ (t)x t > 0, a ∈ [0, τ ], (10)

The right hand side in this equation represents the rate at which cells in the age interval
a to a + δa disappear at time t. To represent the manner in which new cells enter the
compartment, we define the boundary condition (B.C.) x(t, 0) = H(t). Finally, to
fully represent the problem, we specify the initial condition (I.C.) x(0, a) = φ(a). In
the Appendix, we show that by partial integration of Eq. (10), we can reformulate this
problem as a delay differential equation. Using the method of characteristics [109],
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we obtain the following delay differential equation:

d X

dt
= V (t)

⎡
⎣H(t) − H(t − Tτ ) exp

⎛
⎝−

Tτ∫

0

γ (w) dw

⎞
⎠

⎤
⎦ − γ (t)X (t), (11)

where X (t) is the total number of cells (X (t) = ∫ τ

0 x(t, a) da) and Tτ satisfies τ =∫ t
t−Tτ

V (w) dw. Note that if γ is a constant, Eq. (11) reduces to

d X

dt
= V (t)

[
H(t) − H(t − Tτ )e

−γ Tτ

]
− γ X (t). (12)

In addition, if the aging velocity is constant (V (t) = V ), we have that Tτ satisfies

τ =
t∫

t−Tτ

V dw = V Tτ ,

which implies that Tτ = τ/V . Hence, if γ and V are constant, we obtain a delay
differential equation with constant delay:

d X

dt
= V (t)

[
H(t) − H(t − τ/V )e−γ τ/V

]
− γ X (t). (13)

3.4 Other models

In this section, we briefly discuss some other types of mathematical models. As men-
tioned above, several approaches have been used for modeling hematopoiesis (for
example DDE, ODE or PDE models). However, it is sometimes appropriate to com-
bine these approaches in one model as in [104]. In this work, the authors used a PDE
model which includes a distributed delay for the compartment transition time and a
constant delay for the cell cycle duration. Others have included probabilistic aspects
in the model, as in [59] where the authors used a probabilistic approach to model to
cellular maturation of proliferative cells.

Besides the PDE models presented in Sect. 3.3, other types of partial differential
equations have been used. For instance, a reaction–diffusion model for leukemia is
proposed in [15]. This type of model accounts for spatial variables, which are not
considered ODEs, DDEs and in the previously discussed PDE models. In [28], they
proposed a reaction–diffusion system of equations in a porous medium to describe
the evolution of leukemia in the bone marrow. They showed the existence of two
stationary solutions, one of them corresponds to the normal case and another one to
the pathological case.

Finally, a different technique has recently been used in [16]. In this work, the authors
used a multi agent approach and created a software to study hematopoiesis at the cell
population level with the individually based approach. This computational model is
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aimed at studying different features of hematopoiesis and may be useful as an interface
between theoretical work on population dynamics and experimental observations.

4 Modeling periodic hematological diseases

Based on the dynamical properties of the periodic hematological diseases, a number
of mathematical models have been put forward to better understand the mechanisms
responsible for the onset of the observed oscillations in blood cell counts. This mathe-
matical modeling of periodic hematological diseases has helped our understanding of
the mechanisms of hematopoiesis.

These models fall into two major categories and reference to Fig. 1 will help place
these in perspective. The first broad group identifies the origin of the oscillations as
a destabilization of the peripheral control loops. In this case, the cell production is
adjusted relative to the number of mature cells in the blood and mediated by one the
three cytokines (EPO, TBO and G-CSF). The second group of models focuses on the
existence of oscillations in many of the peripheral cell lineages (neutrophils, platelets
and erythroid precursors, see Fig. 1). It assumes that oscillations arise in the common
stem cell populations through a loss of stability in the stem cell population that is
hypothesized to be independent of feedback from peripheral circulating cell types.
Thus, this would represent a relatively autonomous oscillation driving the three major
lines of differentiated hematopoietic cells [22].

In this section, we review a number of mathematical models of the hematopoietic
system and show how dynamical disorders have helped understanding the mecha-
nisms involved. First, we review modeling of erythropoiesis guided by the dynamics
of periodic auto-immune hemolytic anemia, and then turn to a consideration of throm-
bopoiesis drawing on the features of cyclical thrombocytopenia. Recall that each of
these two disorders only involve oscillations in one cell line. Then, we turn to a review
of large scale models drawing inspiration from the data and characteristics of cyclical
neutropenia and periodic chronic myelogenous leukemia.

4.1 Modeling periodic autoimmune hemolytic anemia

In an early model of erythropoiesis, Mackey [69] examined the role of peripheral
erythrocyte destruction rate on the onset of AIHA using a simple constant delay diffe-
rential equation model for the regulation of erythrocyte production. The model defines
the rate of change of the circulating density of erythrocytes (E (cells/kg)) by

d E

dt
= −γ E + β(Eτ ), (14)

where β is the cellular production rate in the early erythroid series cells and γ (day−1)
is the peripheral erythrocyte destruction rate. The delay τ represents the total average
number of days between the entrance of a cell into the erythroid series and the release
of a mature erythrocyte into the blood. As mentioned in Sect. 2, erythropoiesis is
regulated by a negative feedback mediated by the cytokine erythropoietin (EPO). This
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is modeled by using a monotone decreasing Hill function for the production rate β:

β(E) = β0
θn

θn + En
, (15)

where β0 (cells/kg day−1) (the maximum production rate), θ (cells/kg), and n are
parameters (Hill functions are often used for regulatory feedback expressions since
they frequently can be fit to existing clinical or laboratory data, and offer a form that
is easy to deal with analytically). Mackey [69] performed a linear stability analysis of
this model and showed that a supercritical Hopf bifurcation occurs when the death rate
of circulating erythrocytes is increased above a certain critical value. This transition
from damped to stable oscillations would characterize the onset of periodic AIHA and
account for the experimentally observed characteristics of AIHA.

In their study, Bélair et al. [12] developed an age-structured model that incorporates
the fact that the population of precursor cell matures at differing rates depending on
the EPO concentration, which itself varies according to the amount of oxygen carried
in blood. They developed a PDE model similar to the one presented in Sect. 3. They
assumed constant maturing velocity and were then able to reduce their model to a
threshold-type DDE with two constant delays, using the method we presented in
Sect. 3.

Even though the bifurcation analysis performed on this model agreed surprisingly
well with experimental observations in an induced autoimmune hemolytic anemia,
this model was less than satisfactory in predicting the response of a normal patient
to a blood loss as in a blood donation. In their paper, Mahaffy et al. [71] expanded
the previous model of [12] to account for the active degradation of older cells and to
include the possibility of significant apoptosis. Next, we present the equations of this
extended age-structured model for hematopoiesis that includes apoptosis and active
degradation of the oldest mature cells.

The precursor cells begin from a pool that have differentiated into a self-sustaining
population which eventually leads to the production of mature erythrocytes. The model
considers two populations of cells: the precursor cells, denoted by p(t, µ) (see below),
and the mature non-proliferative cells, denoted by m(t, u). Figure 3 shows a cartoon
representation of the model.

Let p(t, µ) denote the population of precursor cells at time t and age µ, and let V (E)

be the velocity of maturation, which may depend on the hormone (EPO) concentration,
E . If S0(E) is the number of cells recruited into the proliferating precursor population,
then the entry of new precursor cells into the age-structured model will satisfy the
boundary condition

V (E)p(t, 0) = S0(E). (16)

Let the birth rate for proliferating precursor cells be β(µ, E) and α(µ, E) represent
the death rate through apoptosis. Let h(µ − µ̄) be the density of the distribution of
maturity levels of the cells when released into the circulating blood, where µ̄ represents
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Fig. 3 Schematic representation of the age-structured model of erythropoiesis, taken from [71] with
permission

the mean age of mature precursor cells and

µF∫

0

h(µ − µ̄)dµ = 1.

The disappearance rate function is given by:

H(µ) = h(µ − µ̄)∫ µF
µ

h(s − µ̄)ds
.

With these conditions the age-structured model for the population of precursor cells
with t > 0 and 0 < µ < µF satisfies:

∂p

∂t
+ V (E)

∂p

∂µ
= V (E)[β(µ, E)p − α(µ, E)p − H(µ)p]. (17)

Now, let m(t, ν) be the population of mature non-proliferating cells at time t and age
ν. Assume that the mature cells age at a rate W , which is considered to be a constant
for erythropoiesis since the aging process appears to depend only on the number of
times that an erythrocyte passes through the capillaries. From the disappearance rate
function, the boundary condition for cells entering the mature population is given by

W m(t, 0) = V (E)

µF∫

0

h(µ − µ̄)p(t, µ)dµ, (18)

where the maturity level µF represents the maximum age for a cell reaching maturity.
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The authors assumed that destruction of erythrocytes occurs by active removal
of the oldest cells. The immune system recognizes erythrocytes that are no longer
efficient and tags them with special markers, which then signals macrophages (white
blood cells) to degrade them. For erythrocytes, if one assumes either a finite source of
markers or a fixed number of macrophages, then there is a constant flux of the oldest
erythrocytes that are dying. From a modeling point of view, this results in a moving
boundary condition with the age of the oldest erythrocyte, νF (t), varying in t . The
boundary condition is then given by

(W − ν̇F (t))m(t, νF (t)) = Q, (19)

where Q is the fixed erythrocyte removal rate (for a full derivation, see [71]). If γ (ν)

is the death rate of mature cells (depending only on age), then the partial differential
equation describing m(t, ν) is given by:

∂m

∂t
+ W

∂m

∂ν
= −Wγ (ν)m, t > 0, 0 < ν < νF (t), (20)

where the maximum age, νF (t), is determined by (19).
As in the simple DDE model of [69], the EPO level E is governed by a differential

equation with a negative feedback, depending on the total population of mature cells,
M(t), defined by

M(t) =
νF (t)∫

0

m(t, ν)dν. (21)

The differential equation for E is thus:

d E

dt
= a

1 + K Mr
− k E, (22)

where k is the decay constant for the hormone and the rate of EPO production is given
by a monotone decreasing Hill function.

The partial differential equations and their boundary conditions given by Eqs. (16)–
(20) describe the age-structured model for erythropoiesis. The hormone EPO exerts
control in the model through the boundary conditions, the birth and death of precursor
cells, and the velocity of aging. Using the method of characteristics and the techniques
presented in Sect. 3, one can reduce this system of equations to a system of threshold
delay equations. Moreover, if one make some simplifying assumptions (see [71] for
the details), it further reduces this system to a system of delay differential equations
with a fixed delay and one state dependent delay and it transform the constant flux
boundary condition (19) to

Q = (1 − ν̇F (t))eβµ1e−γ νF (t)S0(E(t − T − νF (t))). (23)
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The following system of delay differential equations with a fixed delay T and a state
dependent delay occurring in the equation governing the age at which mature cells die
is obtained:

d M(t)

dt
= eβµ1 S0(E(t − T )) − γ M(t) − Q,

d E(t)

dt
= f (M(t)) − k E(t), (24)

dνF (t)

dt
= 1 − Qe−βµ1 eγ νF (t)

S0(E(t − T − νF (t))
.

Analysis of the characteristic equation for the linearized model demonstrated the
existence of a Hopf bifurcation when the destruction rate of erythrocytes is increased,
as in the previous models by [12] and [69]. Parameters of the model have been estimated
from experimental data. Numerical simulations were performed for both periodic auto
immune hemolytic anemia in rabbits and blood donation in humans and compared
with experimental data. Even though the extension of the model presented in [71]
leads to the same conclusion about the origin of periodic AIHA, the moving boundary
condition has the advantage of better capturing the physiological reality of apoptosis
in circulating cells. Moreover, the model is sufficiently general to characterize other
hematopoietic lines. In particular, a similar age-structured model has been used for
modeling cyclical thrombocytopenia, as we will see in the next section.

4.2 Modeling cyclical thrombocytopenia

A number of studies have presented models for the regulation of thrombopoiesis.
Some considered only a simple thrombopoiesis feedback [11,40,107] whereas other
models are more physiologically detailed [8,31,43,110]. Nevertheless, they all assume
that the production of platelets is regulated by a negative feedback loop mediated
by thrombopoietin (TPO). In their study, [107] suggested that the normal platelet
control system was biased close to a stability boundary and that this was the origin of
the oscillatory platelets counts observed in some normal individuals [75]. Bélair and
Mackey [11] specifically considered the case of cyclical thrombocytopenia. Based on
the analysis of their model, they hypothesized that an increased destruction rate of
circulating platelets could give rise to the characteristic oscillations in the circulating
platelet counts seen in CT, an hypothesis that has recently been modified in [8] using
a more comprehensive model. In [92], they developed an age-structured model for the
regulation of platelet production that we briefly present.

The development of the mathematical model for thrombopoiesis from [92] fol-
lows an earlier age-structured mathematical models for erythropoiesis [12], bearing in
mind that the primary difference between the processes of erythropoiesis and throm-
bopoiesis is in the development of the precursor cells. In erythropoiesis, the stem cells
undergo rapid proliferation and differentiation until they reach the stage of
reticulocytes, where the cells simply mature to become circulating erythrocytes. In
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thrombopoiesis, the stem cells proliferate, then become megakaryocytes that no lon-
ger proliferate, but undergo nuclear endoreduplication. These megakaryocytes have
different ploidy values at maturation and release differing numbers of platelets. In or-
der to simplify calculations and based on the relative frequencies of megakaryocytes
in various ploidy classes, the authors chose to divide the megakaryocyte populations
into three classes, denoted by mi (t, µ), i = 0, 1, 2. As before, t represents time and
µ represents the age of the megakaryocyte.

The partial differential equations describing the development of the megakaryocytes
are given by:

∂m0

∂t
+ ∂m0

∂µ
= −k0(T )m0, (25)

∂m1

∂t
+ ∂m1

∂µ
= k0(T )m0 − k1(T )m1, (26)

∂m2

∂t
+ ∂m2

∂µ
= k1(T )m1, (27)

where ki (T ) is the transfer rate from ploidy class i to ploidy class i + 1. The domain
for these partial differential equations is t > 0 and 0 < µ < µF .

Relevant boundary conditions for each population were included. The remaining
equations for the circulating platelets p(t, µ) and its boundary condition are similar
to the ones presented in Sect. 4.1 for erythrocytes and will not be presented here. They
used a constant flux boundary condition as derived in [71] and a negative feedback
ODE for regulation of thrombopoietin.

Despite some difficulties in estimating parameters of this age-structured model,
the model numerically reproduced the normal human response to a bolus injection of
TPO. They also reproduced the dynamic characteristics of the autoimmune version of
cyclical thrombocytopenia if the rate of platelet destruction in the circulation is elevated
to more than twice the normal value. They hypothesized that the amegakaryocytic
version of cyclical thrombocytopenia, with its longer periods and different dynamic
clinical presentation could potentially find an explanation in considerations of the
dynamics of the hematopoietic stem cell.

Recently, a more comprehensive mathematical model was used to understand the
clinical data of patients with cyclical thrombocytopenia [8]. This model is based on the
work of [26] (presented in Sect. 4.3 and Fig. 5) and accounts for all cell lineages (ery-
throcytes, leucocytes and platelets). The authors found that it was not possible to induce
oscillations in the platelet compartment without destabilizing the neutrophil compart-
ment using the model of [26]. They found that using a constant platelet differentiation
rate (instead of a rate depending on the circulating platelet levels), the hematopoietic
model was then able to generate oscillations in platelets while maintaining the other
cells lines at their steady state values. Their model successfully duplicates the platelets
counts in CT patients and agrees qualitatively with clinical data. However, it supports
only partially the conclusions drawn from the previous modeling study of [92], where
CT was hypothesized to be due to an increased platelet destruction rate. Indeed, their
numerical experiments showed that more than one parameter had to be modified to
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reproduce clinical data. Using a simulated-annealing method, they concluded that a
variation in the megakaryocyte maturity, a slower relative growth rate of megakaryo-
cytes, as well as an increased random destruction of platelets are the critical elements
generating the platelet oscillations in CT. Moreover, the authors believe that both types
of CT are due to a Hopf bifurcation in the platelet dynamics, but that the parameter
change inducing the bifurcation might depend on the type of cyclical thrombocytope-
nia. Their model raises a number of clinical issues that will have to be resolved in the
future.

4.3 Modeling cyclical neutropenia

Due to its interesting dynamics and its clinical and laboratory manifestations, cyclical
neutropenia is probably the most studied periodic hematological disease. A number
of mathematical models have been put forward to attempt to model this disorder, and
they fall into two major categories (see Fig. 1 to place them in perspective). For other
reviews, see [22,29,36,47].

The first group of models identifies the origin of CN with a loss of stability in the
peripheral negative feedback control loop. Typical examples of models of this type
which have specifically considered CN are [54,57,64,76–78,88,93–97,99,106], and
[111].

The second group of models builds upon the existence of oscillations in many of
the peripheral cellular elements (neutrophils, platelets, and erythroid precursors, see
Fig. 1) and postulates that the origin of CN is in the common hematopoietic stem
cell (HSC) population. A loss of stability in the stem cell population is hypothesized
to be independent of feedback from peripheral circulating cell types and would thus
represent a relatively autonomous oscillation driving the three major lines of diffe-
rentiated hematopoietic cells. In their study, [50] concluded that there is no consistent
way in which a destabilization of the peripheral loop alone can give rise to the cha-
racteristics of CN. It seemed more likely that the oscillations of CN originate from
the hematopoietic stem cell population as was originally proposed in earlier work by
Mackey [67,68]. Some mathematical models coupled a stem cell compartment with
the peripheral loop for granulocytes [14,46,50] whereas others present a more complex
model showing the stem cells coupled to all major cell lines [23,26]. For a complete
review, see [22].

We present two of these models that have given significant insight into the origin
of cyclical neutropenia. Then, we show how these models have been used to improve
existing treatment for CN.

4.3.1 Origin of CN

Bernard et al. [14] presented a two variable delay differential equation (DDE) system
that has negative feedback loops in both the peripheral loop and the stem cell loop.
Figure 4 illustrates the two compartments of the model: the hematopoietic stem cell
(HSC) compartment (denoted S) and the neutrophil compartment (denoted N ). The
HSCs are assumed to be self-renewing, and thus cells in the resting (G0) phase can
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Fig. 4 Schematic representation
of the mathematical model of
[14]. Two feedback loops
control the entire process
through the proliferation rate
K (S) and the differentiation rate
F(N ). Taken from Bernard et al.
[14] with permission
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either enter the proliferative phase at rate K (S) or differentiate into neutrophils (N ) at
rate F(N ). As the neutrophil precursors differentiate, their numbers are amplified by
a factor A, which accounts for both successive divisions and cell loss due to apoptosis.
It is also assumed that apoptosis occurs during the proliferative phase at rate γs and
that mature neutrophils die at rate α. As can be seen in Fig. 4, the system is controlled
by two negative feedback loops. The first one regulates the rate K (S) of reentry of
HSCs to the proliferative cycle, and it operates with a delay τs (the cell cycle time) that
accounts for the time required to produce two daughter cells from one mother cell. The
second loop regulates the rate F(N ) of HSC differentiation into mature neutrophils.
It operates with a delay τN that accounts for the transit time through the neutrophil
precursor compartment.

Mathematically, this model translates into the following two variable delay diffe-
rential equation (DDEs) form. The equations for the two variables N and S can be
derived from a time–age maturation formulation, or written directly from consulting
Fig. 4. For the compartment N , the loss is the efflux to death αN and the production
of mature neutrophils is equal to the influx F(N )S from the HSC compartment times
the amplification A. Since one needs to take into account the transit time τN , the
total production of mature neutrophils is AF(N (t − τN ))S(t − τN ), or equivalently
AF(NτN )SτN (recall that NτN = N (t − τN )). This leads to the total rate of change of
N given by

d N

dt
= −αN + AF(NτN )SτN . (28)
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For the second variable, the loss from the compartment S is the flux reentering
the proliferative phase, K (S)S, plus the efflux going into differentiation, F(N )S. The
production of S is equal to the flux of cells reentering and surviving the proliferative
phase, given by K (SτS )SτS e−γSτS , times the cell division factor 2. The dynamics of S
is then described by

d S

dt
= −F(N )S − K (S)S + 2K (SτS )SτS e−γSτS . (29)

The feedback functions F(N ) and K (S) are monotone decreasing Hill functions,
similar to the one used in [69]:

F(N ) = f0
θn

1

θn
1 + N n

, (30)

and

K (S) = k0
θ s

2

θ s
2 + Ss

. (31)

F(N ) controls the number of neutrophils (N ) while K (S) regulates the level of
HSCs (S).

This model was sufficiently simple that it was possible to perform a complete
bifurcation analysis that highlighted the dynamical features of CN [14]. Using a com-
bination of mathematical analysis and computational tools, Bernard et al. [14] showed
that the origin of cyclic neutropenia is probably due to an increased apoptosis rate
in the recognizable and committed neutrophil precursors, leading to a destabilization
of the hematopoietic stem cell compartment through a supercritical Hopf bifurcation.
This has the effects of generating oscillations in the HSC population. This result was
in accordance with previous modeling studies [46] and agrees with experimental data
on grey collies. This model could also be used to study the effects of G-CSF treatment
on CN, as we will see in the next section. First we present a more sophisticated model
of the hematopoietic system that has also been used to study cyclical neutropenia.

As mentioned, CN is characterized by oscillations in all major cell lines (neutro-
phils, reticulocytes and platelets). This motivated the development of a comprehensive
mathematical model that includes not only the neutrophils and HSC, but also the pla-
telets and red blood cells. This allowed a more realistic approach since one could
then study the response of the hematopoietic system when considering all cell lines.
In addition, the model simulations could thus be compared with data for platelets
and erythrocytes. Colijn and Mackey [25] developed a comprehensive model that
contains four compartments: the HSC (Q), the neutrophils (N ), the erythrocytes (R)
and the platelets (P). This model combines a number of compartmental models we
have reviewed in previous sections: the stem cell and neutrophil dynamics are based
on the model in Bernard et al. [14], and the erythrocyte and platelet compartment
are simplified models based on [71] and [92] respectively. The circulating cells are
coupled to each other via their common origin in stem cell compartment. Regulatory
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Fig. 5 Schematic representation of the comprehensive mathematical model of [26] including the HSC and
the three differentiated cell lines. Each cell lineage is controlled by a negative feedback loop. Taken from
[26] with permission

negative feedback loops determine how much differentiation from the stem cells each
cell line will undergo. Since it takes several days to produce a mature cell from a newly
differentiated cell, time delays appear in the equations. The model consists of a set of
four coupled delay differential equations. Their derivation is similar to Eqs. (28) and
(29) from Bernard et al.’s model [14] and is based on Fig. 5:

d Q

dt
= −β(Q)Q − (κN + κR + κP )Q + 2e−γSτS β(QτS )QτS ,

d N

dt
= −γN N + AN κN (NτN )QτN ,

d R

dt
= −γR R + AR

{
κR(RτRM )QτRM − e−γRτRS κR(RτRM +τRS )QτRM+τRS

}
,

d P

dt
= −γP P + AP

{
κP (PτP M )QτP M − e−γP τP S κP (PτP M +τP S )QτP M +τP S

}
.

(32)

123



Dynamic hematological disease: a review 307

Analogous to Eqs. (30) and (31) we have

β(Q) = k0
θ s

2

θ s
2 + Qs

, κN (N ) = f0
θn

1

θn
1 + N n

,

κP (P) = κ̄p

1 + K p Pr
, κR(R) = κ̄r

1 + Kr Rme
,

(33)

where the first two functions are the same as in [14]. For a complete derivation, see
[25]. This model was applied to both PCML (Sect. 4.4) and CN.

The authors used a simulated annealing approach and clinical data from dogs and
humans to estimate the model parameters. The model supported the hypothesis on the
origin of CN put forward in [14] and showed that realistic CN oscillations in neutrophils
and platelets can result from an increased apoptosis rate in the neutrophil precursors.
Interestingly, in order to mimic clinical data, it was also necessary to decrease the rate
of differentiation into the neutrophil line and the maximal rate of re-entry of the stem
cells into the proliferative phase.

A bifurcation analysis was performed on this model. This analysis predicted that
changes in the platelet compartment can have long-term effects on the nature of the
oscillations. Simulations show that temporarily increasing the platelet amplification
factor AP will often induce the simulations to jump from an oscillating solution to
the coexisting stable solution. Oscillations were thereby abolished. While there are
limitations to the clinical applicability of these results because of the difficulties in
administering a drug such as thrombopoietin, the ability of the platelet dynamics
to affect the long-term behavior of the whole hematopoietic system is theoretically
intriguing.

In the next section, we show how both Bernard et al. [14] and Colijn and Mackey’s
models [25] could be used to explore different G-CSF treatment strategies for CN.

4.3.2 Treatment of CN with G-CSF

Treatment for cyclical neutropenia typically involves daily G-CSF administration.
This is an effective treatment since it has the overall effect of decreasing the period of
severe neutropenia by increasing the nadir and the amplitude of the oscillations as well
as decreasing their period [47]. However, G-CSF is expensive (about $40,000 per year
for a 70 kg adult treated daily) and may cause undesirable side effects (see Sect. 2).
In this section, we show how mathematical modeling can illuminate the effects of
different G-CSF treatment schemes.

Foley et al. [37] used the model of Bernard et al. [14], presented earlier, to analyze
alternate G-CSF treatment schemes. Even though the effects of G-CSF have been
included implicitly in the model through the feedback function F(N ), it can be shown
that by using physiologically relevant parameter values, this model can replicate the
characteristics of CN and the effects of G-CSF administration. Mimicking CN can
be achieved by increasing the rate of apoptosis for the neutrophil precursors, i.e.
decreasing the amplification parameter A (which accounts for cell death). To simulate
the effects of G-CSF in CN the authors modified five of the eleven parameters of
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the model: decrease apoptosis in both the HSC (decrease γs) and in the neutrophil
precursors compartment (increase A), decrease the duration of both the proliferative
and differentiating phases (τn and τs) as well as increasing the parameter θ1 in the
feedback function. This yields two sets of parameters of interest (for untreated CN and
CN under G-CSF treatment). Assuming that the five parameters vary linearly between
the untreated CN state and the G-CSF treated values, the authors expressed the five
relevant parameters as a function of a new parameter T , in such a way that T = 0
corresponds to untreated CN and T = 1 corresponds to the treated state. Increasing T
was therefore associated with increasing G-CSF concentration. A complete bifurcation
analysis was then performed using this G-CSF parameter (T ).

Interesting dynamical features of the model were found. The bifurcation analy-
sis agreed with the clinical aspects of G-CSF administration (increased amplitude
and decreased period of the oscillations [48,49]), as expected. However, some cases
have been reported in the literature in which G-CSF treatment abolished significant
oscillations [44,47,48]. Interestingly, the model also accounts for this effect of G-CSF
administration. Indeed, for T = 1 (G-CSF treatment), a stable steady state (correspon-
ding to annihilation of oscillations) coexists with a stable large amplitude oscillation.
This bi-stability in the system is interesting since it suggests that by properly desi-
gning the treatment administration scheme, one might stabilize the neutrophil count
to a desirable level and could potentially reduce the amount of G-CSF required in
treatment. In Foley et al. [37], the authors exploited this bi-stability and showed that,
depending on the starting time of the G-CSF treatment, the neutrophil count could
either be stabilized or show large amplitude oscillations. Using computer simulations,
they also showed that other G-CSF treatment schemes (such as administering G-CSF
every other day) could be effective while using less G-CSF, hence reducing the cost
of treatment and side effects for patients.

The model of Bernard et al. [14] grasped the essential features of the system while
being simple enough to carry out the detailed analysis and simulations presented in
Foley et al. [37]. It gave insight into the dynamics of the system but it had two major
shortcomings. First, the model included neither erythrocyte nor platelet dynamics
even though clinical data indicates oscillations in those cell lines in CN patients.
Thus it is not known if the results would be consistent with observed platelet and
reticulocyte data. Second, G-CSF kinetics are implicitly included in the model and
are based on a pseudo-equilibrium assumption on the kinetics of G-CSF clearance,
which is a simplification. Therefore, the simulations did not take into account the
pharmacokinetics of G-CSF.

In [23], the authors used the comprehensive model of [26] and they coupled it with
a two-compartment model for G-CSF pharmacokinetics. They fitted their model with
clinical data for neutrophils and platelets and explored the effects of different treatment
schedules in this new model. They found that the bi-stability of periodic solutions and
stable solution observed in [37] was preserved when the G-CSF pharmacokinetics was
taken into account. In fact, due to the complexity of the model, there are a number
of coexisting stable solutions for a given set of parameters. Hence, different initial
conditions or temporary interventions may lead to dramatically different long-term
behaviors. In particular, in Colijn et al. [23], the authors explore changing the period
of G-CSF treatment (daily, every other day, and every third day). They also explore
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changing only the time at which treatment is first initiated. They found that both can
significantly change the nature of the oscillations. In particular, there was one dog for
whom varying only the time within the neutropenic cycle that treatment was initiated
significantly reduced the amplitude of oscillations.

In summary, both of the studies [23] and [37] indicate that the dynamical properties
of the comprehensive mathematical model system could be used to design new efficient
and cheaper G-CSF treatment strategies for cyclical neutropenia.

4.4 Modeling periodic chronic myelogenous leukemia

As for cyclical neutropenia, periodic chronic myelogenous leukemia (PCML) is an
interesting dynamical disease of the hematopoietic system in which oscillating levels
of circulating leukocytes, platelets and/or reticulocytes are observed. Typically all of
these three differentiated cell types have the same oscillation period, but the relation
of the oscillation mean and amplitude to the normal levels is variable. The hypothesis
that oscillations originate in the stem cells is related to the fact that oscillations of the
same period occur in different cell lines. However, in several mathematical models,
only one cell line, or one line coupled to the stem cells, is represented. In particular,
[85] explored how long-period oscillations (as seen in PCML) could arise within the
context of a G0 stem cell model. They used a two-dimensional DDE model and they
performed a careful mathematical analysis. They studied when stability was lost and
oscillations occur, and how various parameters modify the period of these oscillations.
They also considered a limiting case of the original model in order to compute an
explicit solution and give an exact form of the period and the amplitude of oscillations.
They showed that the main parameters controlling the period are the cellular loss (the
differentiation rate δ and the apoptosis rate γ ), while the cell regulation parameters
(proliferation rate β and cell cycle duration τ ) mainly influenced the amplitude. In
[86], the authors used the same model and determined the local stability conditions
and showed under what conditions a Hopf bifurcation may occur. They interpreted the
role of each parameter in the loss of stability, and then examined a simpler model to
try to deduce possible changes at the stem-cell level that might be responsible for the
characteristics of PCML.

In these papers, the models assumed a constant cell cycle duration, leading to a sys-
tem of nonlinear differential equations with discrete delays. In [3] and [5], the authors
assumed that all cells do not divide at the same age, introducing a distributed de-
lay in the two-dimensional nonlinear differential equation system. The dynamics and
stability of this model was analyzed in [3–5]. In particular, the authors showed the exis-
tence of a Hopf bifurcation and applied their results to periodic chronic myelogenous
leukemia. They showed that their model can display long periods of peripheral cell
oscillations (as seen in PCML) for relatively short cell cycle duration. Adimy et al. [5]
studied the action of growth factors on the hematopoietic system using a DDE model.
They assumed growth factors act on the rate of introduction in the proliferative phase
and applied their model to PCML. Then, in [2] they considered the action of growth
factors on apoptosis using a three-dimensional DDE system with distributed delay,
concluding that the action of growth factors can lead to the existence of oscillating
solutions in the stem cell population.
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All these models only consider one cell line coupled with the stem cells and did
not include platelet and erythrocyte regulation. Thus, it was not clear whether their
hypothesis would be consistent with observed platelet and erythrocyte data in PCML.
For this reason, the comprehensive model for the regulation of the hematopoietic sys-
tem [25] presented in Sect. 4.3 was used to examine the possible origins of of PCML.
Based on estimates of parameters for a typical normal human, the authors systema-
tically explored the changes in some of these parameters necessary to account for
the quantitative data on leukocyte, platelet and reticulocyte cycling in 11 patients with
PCML, using two different fitting procedures (the Marquardt–Levenberg procedure as
well as simulated annealing). Both methods gave qualitative and quantitative agree-
ment with the published data on PCML in reproducing the period, amplitudes and
mean values of the oscillating cell types as well as the relative phase differences bet-
ween them. This indicates that the model is capable of duplicating the overall features
of the coupled oscillations of the different cell lines.

Based on their analysis and numerical simulations, the oscillatory nature of PCML
could be generated through a bifurcation in the dynamics of the coupled HSC com-
partment and the regulation of differentiated leukocytes. The critical model parameter
changes required to simulate the periodic chronic myelogenous leukemia patient data
were the amplification in the leukocyte line (AN ), the differentiation rate from the stem
cell compartment into the leukocyte line ( f0), and the rate of apoptosis in the stem
cell compartment (γS). In particular, their model system was very sensitive to changes
in γS , suggesting that changes in the numbers of proliferating stem cells might be
important in generating PCML. Note also that a high-frequency oscillation on top of
the typical long time periods oscillations was often seen in their numerical simulations.
In [24], they analyzed a two-compartment DDE model for stem cell and neutrophil
populations and showed how such oscillations can be understood in the context of
slow periodic stem cell oscillations. They suggested that these observed intermittent
high frequency oscillations are likely to be partially due to the system dynamics, and
not simply result from noise and fluctuations in the biological parameters.

5 Discussion

Due to their interesting dynamical characteristics, hematological periodic diseases
are good candidates for using mathematical modeling and bifurcation theory to bet-
ter understand the underlying mechanisms of hematopoiesis and even to potentially
understand how clinical treatment affects dynamics.

We have reviewed four dynamical diseases and presented different mathematical
models that have aided our understanding of the origin and features of these diseases.
Several types of mathematical models have been used and the choice typically
depends on the availability of data and the overall objective of the study. Due to
advances in measurement technology, an increasing amount of cellular and molecular
data is being generated. Their analysis and the complexity of the underlying mecha-
nisms require the contribution of mathematical models and computational methods.
Indeed, mathematical modeling and simulation techniques contribute to the disco-
very of regulatory principles and may also provide clinical predictions. In particular,
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we illustrated how one could use mathematical models to optimize standard G-CSF
treatment for cyclical neutropenia. The same ideas may be used for other diseases if
enough clinical data are made available for appropriate parameter estimations. Indeed,
despite major advancement in new technologies, some quantities are still difficult to
measure or estimate, making the parameter estimation a limitation for mathematical
modeling.

In conclusion, we also mention three other recent studies who have used computa-
tional methods for specific clinical applications. First, Engel et al. [32] used an ODE
model for studying the effects of ten different multi-cycle poly-chemotherapies on
leucocytes in lymphoma patients. Their model provides quantitative predictions for
different G-CSF chemotherapy schedules [32,98]. Second, the PDE model in Ostby
et al. [81,82] was successfully applied to clinical results for granulocyte reconstitu-
tion after high-dose chemotherapy with stem cell and G-CSF support in breast cancer
patients. Finally, we mention the work of Skomorovski et al. [100,101], who develo-
ped a computer tool that simulates thrombopoietin (TPO) administration schedules on
the platelets number and on the cell counts of different bone marrow compartments.
This tool is aimed at suggesting improved drug protocols for patients suffering from
low blood platelet levels. In our opinion, these are other examples that clinical biology
and dynamical modeling should not be regarded as independent fields, but rather as
complementary parts of biology.

We hope that readers of this paper will appreciate that mathematical modeling is
a process that constantly evolves as the predictions of the models are iterated against
data and clinical findings, and the results of the past three decades in modeling of
dynamical hematological diseases is an example of this. For example, the original
model for PCML in [70] bears little resemblance to the more recent model of [25]
and indeed the original model of [70] is inconsistent with the currently available clini-
cal data. Likewise, the earlier model of [67] identified apoptosis within the stem cell
compartment as the likely culprit in the generation of the oscillations of CN. This led,
in turn, to laboratory and clinical investigations that did, indeed, identify significantly
higher than normal levels of apoptotic cells in the bone marrow but the apoptosis was
occurring in the committed neutrophil precursors! This model has been revisited a
number of times [11,14,25,26,66,72,85,86,92] as knowledge improved, and conclu-
sions drawn from subsequent models has led to an evolution of our understanding of
this disease as well as the treatment of it using G-CSF.

The reader will, no doubt, also realize that each model has its positive and negative
aspects. The level of detail of the model depends on the availability and quality of
the data and also on the questions we want to address. The more detail, the more
complicated the model will be. A mathematical analysis might then be hard to under-
take and the conclusions may only be based on numerical experiments which many,
including us, find less than satisfactory. On the other hand, a simple model may be
easier to analyze and mathematical analysis can give more insights into the dynamical
properties or the underlying system, but it may oversimplify and fail to capture some
important features of the reality.

The issue of model complexity is intimately tied to the issue of the dimensionality
of the parameter space, and this is tied directly to one of the quandaries that faces every
modeler. The more complex the model, the more parameters that must be estimated.
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It is a virtual truism in mathematical biology that one is almost never able to obtain
all of the parameters in a model from the same laboratory or clinical setting using the
same procedures and techniques and subjects. So, as mathematical model construction
is something of an art in itself the same can be said for parameter estimation. The
experience of the senior author (MCM) based on over 45 years of experience in
mathematical biology suggests that the hardest part of the modeling exercise is in
obtaining decent parameter estimations.
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Appendix

Method for converting a PDE model into a DDE model

As presented in Sect. 3.3, we consider the cell density x(t, a) at time t and age a
in a generic compartment. We assume that x(t, a) satisfies the following time–age
equation (advection, or reaction–convection, equation):

∂x

∂t
+ V (t)

∂x

∂a
= −γ (t)x t > 0, a ∈ [0, τ ], (34)

with boundary condition (B.C.):

x(t, 0) = H(t) (35)

and initial condition (I.C.)

x(0, a) = φ(a). (36)

Next, we show that by partial integration of Eq. (34), we can reformulate this problem
as a delay differential equation.

Integrating with respect to the age variable a, we obtain

τ∫

0

∂x(t, a)

∂t
da +

τ∫

0

V (t)
∂x(t, a)

∂a
da = −

τ∫

0

γ (t)x(t, a) da

�⇒ d X

dt
+ V (t) [x(t, τ ) − x(t, 0)] = −γ (t)X (t),
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where X (t) is the total number of cells:

X (t) =
τ∫

0

x(t, a) da.

We can then substitute the boundary condition x(t, 0) = H(t) to give

d X

dt
= V (t)[H(t) − x(t, τ )] − γ (t)X (t). (37)

We next need to find an expression for x(t, τ ). This can be done by directly solving
Eq. (10) using the method of characteristics. We define a new (dummy) independent
variable s and let x(s) = x(t (s), a(s)). Thus, we obtain

dx

ds
= ∂x

∂t

dt

ds
+ ∂x

∂a

da

ds
= −γ (t)x .

This defines a set of three ODEs for t > 0 and a ∈ [0, τ ] as follows:

dt

ds
= 1 �⇒ t (s) = t (0) + s (38)

da

ds
= V (t) �⇒ a(s) = a(0) +

s∫

0

V (w) dw (39)

dx

ds
= −γ (t)x �⇒ x(s) = x(0) exp

⎛
⎝−

s∫

0

γ (t (w), a(w)) dw

⎞
⎠ . (40)

Denote by C the curve emanating from the point (t, a) = (0, 0), and separating the
t − a plane into two distinct regions R1 and R2 (cf. Fig. 6). The curve C is defined by

C =
⎧⎨
⎩(t, a)|t (s) = s and a(s) =

s∫

0

V (w) dw for s ∈ [0, sT ]
⎫⎬
⎭ , (41)

where the value of sT corresponds to the value of s required to reach age a = τ . Thus,
sT must satisfy

τ =
sT∫

0

V (w) dw. (42)
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0
0

a C

R
1

R
2

t
(t(0),0)

(0,a(0))

τ
(t(s),a(s))

(t(s),a(s))

Fig. 6 Generic example of the curve C that separates the a − t plane into regions R1 and R2

The solution x(t, a) takes a different form depending on whether it lies in region
R1 or region R2. Recall that the general solution is given by Eq. (40)

x(s) = x(0) exp

⎛
⎝−

s∫

0

γ (t (w), a(w)) dw

⎞
⎠.

Therefore, we need to find an expression for x(0) and s as a function of a and t in
order to obtain the expression for x(t, a) := x(t (s), a(s)). Recall also that we are
interested in the value x(t, τ ).

1. If (t (0), a(0)) ∈ R1: Then, it can be seen from Fig. 6 that t (0) = 0. Hence, we
have t (s) = s and a(s) = a(0)+∫ s

0 V (w) dw with 0 < a(0) < τ . Using the initial

condition (36), this implies that x(0) = φ
(

a − ∫ t
0 V (w) dw

)
and therefore, we

obtain

x(t, τ ) = φ

⎛
⎝τ −

t∫

0

V (w) dw

⎞
⎠ exp

⎛
⎝−

t∫

0

γ (w) dw

⎞
⎠.

2. If (t (0), a(0)) ∈ R2: Then, from Fig. 6, one can see that a(0) = 0 and thus
a(s) = ∫ s

0 V (w) dw and t (s) = t (0) + s. Hence, using the boundary condition
(35), we have x(0) = H (t − s). Now, we need to find an expression for s. This is
defined implicitly using the expression for a(s). Indeed, we have that s represents
the time required for age a to increase from 0 to a(s). Moreover,

a(s) =
s∫

0

V (t (w)) dw =
s∫

0

V (t (0) + w) dw =
t (0)+s∫

t (0)

V (σ ) dσ.
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Recall also that we are interested in x(t, τ ). Thus, let us define by Tτ the time
needed for the age variable to go from 0 to τ , i.e.:

τ =
Tτ∫

0

V (w) dw. =
t∫

t−Tτ

V (w) dw. (43)

Therefore, the expression for x(t, τ ) reads as follows:

x(t, τ ) = H(t − Tτ ) exp

⎛
⎝−

Tτ∫

0

γ (w) dw

⎞
⎠ ,

where Tτ satisfies Eq. (43).

Therefore, from the method of characteristics the solution x(t, τ ) is

x(t, τ ) =

⎧⎪⎨
⎪⎩

φ
(
τ − ∫ t

0 V (w) dw
)

exp
(
− ∫ t

0 γ (w) dw
)

if (t, a) ∈ R1

H(t − Tτ ) exp
(
− ∫ Tτ

0 γ (w) dw
)

if (t, a) ∈ R2,

with Tτ satisfying τ = ∫ t
t−Tτ

V (w) dw. Since we are interested in long term behaviour,
we consider only the case where (t, a) ∈ R2 (from Fig. 6, one can see that region R2
includes the t-axis whereas R1 is bounded by a = τ ). We obtain

x(t, τ ) = H(t − Tτ ) exp

⎛
⎝−

Tτ∫

0

γ (w) dw

⎞
⎠ .

Substituting in Eq. (37), this yields the general solution for X (t)

d X

dt
= V (t)

⎡
⎣H(t) − H(t − Tτ ) exp

⎛
⎝−

Tτ∫

0

γ (w) dw

⎞
⎠

⎤
⎦ − γ (t)X (t). (44)

Note that if γ is a constant, Eq. 44 reduces to

d X

dt
= V (t)

[
H(t) − H(t − Tτ )e

−γ Tτ

]
− γ X (t). (45)

In addition, if the aging velocity is constant (V (t) = V ), we have that Tτ satisfies

τ =
t∫

t−Tτ

V dw = V Tτ ,
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which implies that Tτ = τ/V . Hence, if γ and V are constant, we obtain the following
delay differential equation with constant delay:

d X

dt
= V (t)

[
H(t) − H(t − τ/V )e−γ τ/V

]
− γ X (t). (46)

The linear chain trick

In this section, we present the derivation of the ODE system obtained using the linear
chain trick (see [65] for more details and examples). Consider the following DDE
system with a distributed delay:

dx1

dt
= f

⎛
⎝x1(t),

t∫

−∞
x1(τ )G(t − τ) dτ

⎞
⎠ , (47)

with the special choice of the density of the gamma distribution for the memory
function

G(u) = G p
a (u) = a p+1u p

p! e−au, (48)

where a is a positive number and p is a positive integer or zero. It can be shown that
the following three properties are satisfied:

1. limu→∞ G p
a (u) = 0,

2. G p
a (0) = 0 for p �= 0,

3. G0
a(0) = a.

Let us define p + 1 new variables as

x j+1 =
t∫

−∞
x1(τ )G j−1

a (t − τ) dτ j = 1, 2, . . . , p + 1, (49)

and set

x p+2 :=
t∫

−∞
x1(τ )G(t − τ) dτ.

Next, we show that using these definitions, we can express the DDE problem (47) as
the following (p+2)-dimensional ODE system:
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dx1

dt
= f (x1, x p+2)

dx j+1

dt
= a(x j − x j+1) j = 1, 2, . . . , p + 1,

dx p+2

dt
= a(x p+1 − x p+2).

(50)

First, substituting the definition of x p+2 into Eq. (47) directly leads to the first diffe-
rential equation

dx1

dt
= f (x1, x p+2).

Next, we derive the expression for
dx j+1

dt , j = 1, . . . , p +1. From the Leibniz integral
rule, we have that

dx j+1

dt
= d

dt

⎛
⎝

t∫

−∞
x1(τ )G j−1

a (t − τ) dτ

⎞
⎠

= x1(t)G
j−1
a (0) + lim

u→∞ G j−1
a (u) +

t∫

−∞
x1(τ )

d

dt
G j−1

a (t − τ) dτ. (51)

From the three properties of G j−1
a (u) presented above, the first and second terms on

the right hand side vanish, except for the case j = 1 where the first term is equal to
ax1. Also, one can easily show that the derivatives of G j−1

a (t − τ) are given by

d

dt
G0

a(t − τ) = −aG0
a(t − τ),

d

dt
G j−1

a (t − τ) = a
[
G j−2

a (t − τ) − G j−1
a (t − τ)

]
( j = 2, 3, . . . , p + 2).

Hence, substituting in Eq. (51) and using definition (49), we obtain the required set of
differential equations for x j ( j = 2, 3, . . . , p + 2):

dx2

dt
= ax1 − a

0∫

−∞
x1(τ )G0

a(t − τ) dτ = ax1 − ax2, (52)

dx j+1

dt
= a

⎡
⎣

t∫

−∞
x1(τ )

(
G j−2

a (t − τ) − G j−1
a

)
dτ

⎤
⎦ = ax j − ax j+1. (53)
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