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THOUGHTS ON QUANTUM MECHANICS 

\Ve have a variety of experimental facts to account for. Minimal list is [see Tomonga]: 

(1) Emmision (or absorption) of EM radiation at (?) discrete [or at least bunched] frequencies. 
(2) Planck black body radiation spectrum. 

Why is this independent of the material used? Is it really? The specific heats aren't. 
How is spectrum related to power? Can it be used to ===> autocorrelation function? 

(3) Variation of specific heats with temperature. 
This is related to (2), and its important to note that there are differences (though small) with the material. 

( 4) Photoelectric effect. 
(5) Compton effect. 

IDEA. We need to find a SDS with a discrete set of allowed frequencies ( or energies?) vi (a) [or E; (a)], a = 1, 2, · · ·. 
a plays the role of a bifurcation parameter 3 for given a :3 only one globally stable solution v.; (a) 
or 
Maybe as a varies the solutions are chaotic but for a given a :3 a characteristic < vi > [< · > denotes average 

over path]. 
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How TO JUSTIFY USE OF THE MAXIMAL ENTROPY PRINCIPLE 

(1) Note that by use of the MEP its possible to derive a variety of the existing definitions used in SM and QM. This 
seems important because this only requires that we use the facts from QM that are experimentally observed, 
e.g., discrete frequency of radiation, etc. Furthermore, e.g., if derive the density appropriate for discrete 
frequencies [Plank form, see later] then by calculating the maximal entropy we get the Einstein equation for 
specific heat (heat capacity). 

(2) Therefore, in searching for a possible QM alternative it might by important to delineate the systems for which 
max entropy will be reached, i.e. if could show that a system -, Hmax then we have a justification for the 
MEP. 

(3) Note for finiteµ. space and S invertible and measure preserving then (T9.:3.l) H is constant. Further, using 
the arguments on pp. 263-4, if Sis not µ preserving can have a new space with µ and again He is constant. 
Therefore we have the important and general fact that: 

Dynamical Systems (reversible) • Hconstant • DS not the answer 

This is the basis of the objections raised by Loschmidt (Umkehreinwand) against Boltzmann. Other objection 
to Boltzmann by Zermelo (Wiederkehreinwand) was based on the Poincare recurrence theorem for ergodic 
systems. 

(4) (T9.3.2 + T9.4.2) ===> SDS Exact ~ H(Pt f)-, 0. 
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Discussion pp263-4 ~ SDS is AS ¢=} Hc(Ptflg)--, 0. 
Therefore there are 2 classes of SDS in which Hor He goes to 0 as t --. oo. 

(5) What about SDS in general? SDS are irreversible. From T9.9.2, for any Markov operator P we have 

so at least He can't decrease for SDS. 
Further, from T5.3.2 if we have a constrictive MO then P is AP and therefore AP SDS have constant or 
increasing He, but never decreasing. However, note that the increase in He could be only due to the E part of 
pnj--, 0. In general the maximum entropy will depend on the initial density Jo. 

(6) Also from T9.4.1 if P is a MO with Pl = 1 then if :le> 0 3 

H(Pnf) 2: -c '</ n sufficiently large~ P constrictive. 

(7) DS: K flow, Mixing, Weakly mixing, Ergodic, All ODE, some PDE. 
SDS: K flow, Mixing, Weakly mixing, Ergodic, PLUS Asymptotically stable, exact, asymptotically periodic 
(some), Some PDE,?? DDE 

(8) Take trace of a DS. If trace is intersecting and nonperiodic, then entropy of trace is constant or increasing in 
spite of fact that entropy of parent system was constant. 
Idea of Proof: Trace intersecting and periodic ~fora given x :lt 3 5-t(x) is not unique ~ Snot invertible 
~ Trace is a SDS ~ result by item 5 above. Therefore, taking away information may ~ that get an 
increase in H. 

(9) In justifying the MEP forget about DS ~ no point in dealing with systems of ODE's, whether they have 
stable SS's, LC's, or "chaotic" behaviour. 

(10) Therefore, to justify the MEP we need to concentrate on SDS and have an H theorem where we can prove 

This goes back to Andy's idea of using He to get an H theorem. 

For Maps. 
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ENTROPY AND ADDED NOISE 

(1) Randomly Applied Stochastic Perturbations, pp. 227 et seq. 
S non-singular, Ps +noise--, Pc. Then {P;'} is AS ~ by Result 4 above [pp263-4] that 

Therefore, adding noise to any system (constant entropy or not) ~ get increasing entropy. [BUT, adding 
noise can give AP too, with different entropy behaviour.] 
Ifµ. space is finite and S is measure preserving, then Tl0.4.2 ~ 

1 
limiting density = f, = µ(X) ~ H--, Hmax 

(see Chapter 9). 
(2) Constantly Applied Stochastic Processes, pp282 et seq. 

From Cl0.5.1 (p287) if :la Liapunov function for P then {Pn} is AS ~ again that entropy --. 0. 

For Continuous Time Systems. 

(1) For the Fokker Planck equation Tll.9.1 (p330) gives conditions for the AS of {Pt}. 
Does AS in a continuous time system ~ He --, 0? YES. 

(2) Look at Andy Lasota and J. Traple results for continuous time systems with noise. 

13 OCTOBER, 1986: OXFORD 
THE MAXIMAL ENTROPY PRINCIPLE 

******************************************************************************* 
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CHAPTER 2. 
MAXIMAL ENTROPY PRINCIPLES. 

In this chapter we examine the surprising consequences of maximizing the Boltzmann Gibbs entropy subject to 
various constraints. In Section A we show that for a system operating in a phase space of finite measure with no other 
constraints, the entropy will assume a maximal value if and only if the density (in the terminology of Gibbs) is the 
density of the microcanonical ensemble. Further, in Section B for a general phase space it is demonstrated that given 
the expectation value of a particular observable, the Boltzmann-Gibbs entropy of a density will attain its maximum if 
and only if the density is a generalization of the density of the canonical ensemble. 

In Section C we show that the mathematical definition of the Boltzmann-Gibbs entropy of a density can be 
plausibly argued to coincide with the thermodynamic entropy of a system characterized by that density, and that all 
of equilibrium thermodynamics follows. 

Section D shows how other constraints, coupled with the maximal entropy principle, yield the densities of the 
Maxwell Boltzmann or other distributions. Section E shows how the use of a maximal entropy principle can be used 
to derive the Planck blackbody radiation law. Section F briefly considers how the maximal entropy principle can be 
extended to situations in which there are known expectation values of several observables. 

A. MICROCANONICAL ENSEMBLES. 
Armed only with the integrated version of the Gibbs inequality (1.5) we may immediately understand the origin 

of the classical Gibbs microcanonical ensemble as reflecting a manifestation of extremal properties of the entropy. 
Consider a given space X with finite Lebesgue measure, µL(X) < oo (forgo the normalization µL(X) = 1 temporarily), 
and all possible densities .f. Then the only density that maximizes the entropy is the (uniform) density of the Lebesgue 
measure of X. More precisely, 

Theorem 2.1. When µL(X) < oo, the density that maximizes the Boltzmann-Gibbs entropy is the uniform density 

For any other density .f-=/- .f., H(.f) < H(.f.). 

1 
f.(x) = µL(X). 

Proof. Pick an arbitrary density .f so, by definition, the entropy of .f is 

H(.f) = - ix f(x) log(f(x)) dx. 

However, with g(x) = 1/ µL(X) the integrated Gibbs inequality (1.5) gives 

H(f):::; - ix f(x) logg(x) dx = - log [µ}X)] ix f(x) dx, 

(2.1) 

or H(f) :::; - log [µL~X)] since f is a density. The equality holds if and only if f = J •. However, the entropy of J. is 

easily calculated to be 

H(f.) = - ix µL~X) log [µL~x)] dx = -log [µL~x)]' 

so H(f) :::; H(.f.) for any density J, or H(f) < H(f.) for f -=/- J •. Clearly, if X is normalized so µ.L(X) = 1, then 
H(f):::; 0. • 
Example 2.1. The uniform density J. defined by (2.1) is a generalization of the density of the microcanonical ensemble 
introduced by Gibbs in his work on the foundations of thermodynamics. 

Specifically, Gibbs considered the special case of a conservative mechanical system, i.e. one in which the forces 
are such that the work W(x1, x2) required to move a particle between two points x 1 and x 2 in the phase space Xis 
independent of the path connecting X1 and x2. For conservative systems the energy U is a constant of the motion, 
which simply means U is constant along any given trajectory. Furthermore, any density f which is a function of the 
energy U alone, f (U), will also be a constant of the motion. (This invariance of the density along trajectories is what 
Gibbs referred to as conservation of extension in phase.) Inasmuch as it is necessary to have an ensemble with an 
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(ultimately) time independent density to describe the behaviour of a system in thermal equilibrium, Gibbs reasoned 
that a natural first choice would be to pick an ensemble characterized by the density 

where the energy U0 is to be specified. 

) { 
Constant 

f(U = 
0 

U=Uo 

otherwise, 
(2.2) 

The density in equation (2.2) is the density of what Gibbs called the microcanonical ensemble, and it is 
clearly a special case of the uniform density (2.1) which maximized the entropy of a finite space. In the microcanonical 
ensemble the phase space X is taken to be the space X * of conjugate position and momenta ( q, p) restricted by the 
requirement that U(p, q) = U0 • The constant appearing in the density (2.2) is simply related to the measure of the 
restricted space X* by Constant= 1/µL(X*). • 

Notice that in the derivation of the density (2.1) maximizing the entropy on a finite space, there was no reference 
to the nature of the dynamics of the system generating the density. This is in sharp contrast to the usual approach in 
thermodynamics in which the dynamics are quite specifically used to argue for the plausibility of the microcanonical 
density (2.1). The fact that a generalization of this density appears in such a natural way merely illustrates the gener­
ality of both the density and the method used to obtain it, and that the existence of the density of the microcanonical 
ensemble is independent of the system dynamics. 

B. CANONICAL ENSEMBLES. 
Even more fascinating consequences can emerge from the extremal properties of entropy that offer insight into 

the basic foundation of thermodynamics of both classical and quantum systems. In this section we state and prove a 
theorem that is used to deduce all of conventional equilibrium thermodynamics in the next section. 

Theorem 2.2. Assume that an (observable) nonnegative measurable Function O(x) is given as well as the average 
< 0 > of that function over the entire space X, weighted by the density f: 

< 0 >= fx O(x)f(x) dx. (2.3) 

(Note that < 0 > is nonnegative and may be time dependent.) Then the maximum of the entropy H(.f), subject to 
the constraint (2.3), occurs for the density 

where Z is defined by 

Z = L e-vO(x) dx, 

and v is implicitly determined from 

< 0 >= z-l L O(x)e-vO(x) dx. 

Proof. The proof again uses the integrated Gibbs inequality. From {1.5), for densities f and J., 

However it is easy to show that 

H(.f) '.S - fx f(x)logf.(x)dx 

= - L f (x)[- log Z - vO(x)] dx 

= log Z + v L f (x)O(x) dx 

= log Z + v < 0 > . 

(2.4) 

(2.5) 

(2.6) 

H(.f.) = logZ + v < 0 > {2.7) 

and therefore H(.f) '.S H(.f.), with the equality holding if and only if f = J.. • 
The choice of notation in {2.4) and {2.5) was intentional to draw the connection with the density of the Gibbs 

canonical ensemble. 
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Example 2.2. If X* is the conjugate position-momentum (q,p) space, O(x) is the system energy functional, and 
< ('.) > the average (over the phase space) energy of the system, then Z as given by (2.5) can be identified directly 
with the partition function and the density J. given in (2.4) that maximizes the entropy is to be identified with the 
density of the Gibbs canonical ensemble. 

In deriving the density of the Gibbs canonical ensemble, it is implicit in the writing of the average < ('.) >, 
given by equation (2.3), over the entire phase space that if the density (2.4) is to describe a state of thermodynamic 
equilibrium then the quantity O(x) must eventually be independent of time at long times. An even more restrictive 
requirement would be that O(x) is a constant of the motion. If O(x) is identified with the system energy U, then we 
are dealing with a system in which the energy is conserved. • 

Example 2.3. As another illustration of the application of Theorem 2.2, consider the family of densities f with a 
given variance, i.e. 

c,2 = 1: x2 f(x) dx. 

Under this constraint, the maximal Boltzmann Gibbs entropy is attained when the density is Gaussian, 

f ( ) - _1_ -x2/2a2 
* X - ~ e 

v2ncr2 

This is quite easy to show, since for an arbitrary density f, 

H(f) :S -1= f(x) log { ~e-x2 
/ 20-

2
} dx 

-= v2ncr2 

= log { ~} +-\ 1= x 2 f(x) dx 
v 2ncr2 2cr _ = 

= ~ - log { ~} = H(f.). • 
2 v2ncr2 

C. THE THERMODYNAMIC CONNECTION. 
All of conventional equilibrium thermodynamics can be deduced from the density (2.4). Let us see how. 
It is a fundamental assumption of thermodynamics that 

POSTULATE C. There exists a one to one correspondence between states of thermodynamic equilib­
rium and states of maximum entropy. 
We add to this the following. 

POSTULATE D. Given an observable O(x) and its average < ('.) >, the density given by (2.4)-(2.6) 
maximizing the entropy with respect to ('.) corresponds to the density of the state of thermodynamic 
equilibrium attained physically. 

If there is but one state of thermodynamic equilibrium that is attained regardless of the way in which the system 
is prepared then this is called a globally stable equilibrium and is associated with a globally stable state of maximal 
entropy (strong form of the Second Law). If, however, there are multiple states of thermodynamic equilibrium, each 
corresponding to a state of locally maximal entropy and dependent on the initial preparation of the system, then we 
say that these are local or metastable states of equilibrium (weak form of the Second Law). 

Given these observations, it is natural to examine the consequences of associating the equilibrium thermodynamic 
entropy Sf D with the maximal Boltzmann Gibbs entropy H given by (2.7): 

H(f.) s-+ S,i,D. 

Since we have not specified units for H, a multiplicative constant c- 1 may be necessary, viz. 

H(f.) = S,i,Df c, 

which implies from (2.7) that the equilibrium thermodynamic entropy is given by 

Sf D = clog Z + cv < ('.) > 
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If, as before, we make the association of< 0 > with the internal thermodynamic energy U, 

< 0 >= U, 

we wish to then associate the parameter v with some function of the temperature T. At this point, it should be noted 
that 

1 dZ 
< O >= - Z dv· 

Taking the derivative of < 0 > with respect to the parameter v in this equation we have 

d < 0 > = ~ [dZ] 2 
_ !._ [d2Z] 

dv Z 2 dv Z dv2 

=< 0 >2 - < 02 > . 

Remembering that the variance D 2 (0lf,) of a function O with respect to a density f, is simply given by 

D2(0l.f.) =< 02 > - < 0 >2 

=< ( 0- < 0 > )2 > 

and that the variance is by necessity non-negative, D 2 2:: 0, we immediately have that 

Therefore, if there is any connection between variations in the parameter v and the average energy < 0 >= U, it 
must be an inverse one. Since our experience tells us that that temperature T and energy U are directly proportional 
to one another, this leads us to conclude that if the parameter v and the temperature T are related to one another 
then it must be an inverse relationship. 

Next in our investigation of the potential physical meaning of the parameter v, consider two systems: 

( 1) System A, operating in a phase space X A, characterized by an energy functional O A ( Xa), average energy 
< 0 A >, parameter v A; and 

(2) System B, operating in a phase space XB, characterized by an energy functional OB(xb), average energy 
< OB >, and parameter VB. 

By Theorem 2.2, the densities maximizing the entropy for systems A and B are, respectively, 

with (2.8) 

and 

with (2.9) 

We combine systems A and B into a third system C, operating on the product space XA x XB, so the new system C 
has an energy functional Oc(Xa, xb) and average energy < Oc >, and is characterized by a parameter Ve. Again by 
Theorem 2.2 the density maximizing the entropy of the combined system C will be given by 

(2.10) 

with 

If systems A and B do not interact, then the density of the combined system C will be the product of the 
individual densities of systems A and B: 

(2.11) 
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Furthermore, the energy of the combined system, Oc, will be the sum of the separate energies of system A and system 
B: 

and < Oc >=< OA >+<OB>. (2.12) 

Remember from Theorem 2.2 that the< CJ >'s are nonegative. Inserting equations (2.8) and (2.9) into the right hand 
side of (2.11), and (2.10) into the left hand side along with the relations (2.12) gives 

_1_e-vc[OA(xal+OB(xb)] = __ 1_e-vAOA(Xa)-vBOB(xb) 

Zc ZAZB 
(2.13) 

Now consider two possibilities. First, assume that the two systems A and B are characterized by the same 
parameter v = v A = VB. Then it is clear from (2.13) that Ve = v. If the parameter v is a monotone function of 
temperature then this argument implies that combining two systems of the same temperature (v A = v8 ) results in a 
system of the same temperature. 

Next, assume that v A < VB. Then, how can equation (2.13) be satisfied? Clearly, if the combined system Chas 
a parameter Ve such that 

Vc0c(Xa,Xb) = VACJA(xa) + VBCJB(xb), 

then (2.13) will be satisfied. What is the value of the parameter Ve? It is easily obtained by multiplying the last 
relationship by .fc = .f A.fB and integrating over the product space Xe= XA x XB to obtain 

(2.14) 

Furthermore, by writing (2.14) in the form 
Ve= VAr + vB(l - r), 

where O < r = <OA';e,:4; 08 > < 1, it is clear that Ve< VB. Alternately, equation (2.14) can be rewritten in the form 

where O < 8 = <OA';~ll:08 > < 1, so VA < Ve. Thus we have proved that when VA < VB the parameter Ve of the 
combined system is limited by 

VA< Ve< VB. 

If v is interpreted as a monotone function of temperature this last result is in accord with our experience, since 
combining two systems of two different temperatures TA and TB will result in a combined system with a temperature 
Tc intermediate between TA and TB. 

Thus, we conclude from these arguments that v is a monotone function of the inverse temperature. If we take v 
to be 

1 
v = kT 

where k is Boltzmann's constant, then the entropy expression in (2.7) becomes 

S!j,D = clogZ + cU/kT, 

or 
TS!j,D = cTlogZ + (c/k)U. (2.15) 

If the constant c is taken to be identical with Boltzmann's constant, c = k, then (2.15) immediately gives the Gibb's 
function 

F= U-TS!i,v, (2.16) 

the fundamental equation of equilibrium thermodynamics relating the Helmholtz free energy 

F = -kTlogZ 

to the internal energy U, temperature T, and equilibrium entropy S!j,D. 
Thus, by the use of Postulates A through D in conjunction with the identification of certain parameters and 

functions with corresponding quantities of thermodynamic interest, the result is the fundamental relationship on 
which all of equilibrium thermodynamics is based. 
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D. BOLTZMANN AND OTHER STATISTICS. 
In addition to the relative ease with which the fundamental relationships of equilibrium thermodynamics can 

be deduced by a suitable identification of quantities in the density of the canonical ensemble, other results can be 
obtained by considering situations in which the energy functional is specified. 

Continuous Energy Spectrum. First, consider the situation in which we have a system for which the energy 
functional is continuous and given by 

p2 
O(p) = Eo + 2m' 

where Eo is a zero point energy and p is the momentum, taken to be continuous. This might, for example, describe 
the situation in a one dimensional classical gas. The partition function is 

while the density maximizing the entropy is just 

Z ~
nm -vc = --e a, 
V 

and the parameter v and the average energy < 0 > are connected by the relation 

v- 1 =< 0 > -Eo 

as before. Taking v- 1 = kT as we have argued for in the previous section, (2.17) takes the form 

(2.17) 

which is the continuous Maxwell-Boltzmann distribution for particle momenta in one dimension, and kT =< 0 > 
-Eo. 

This picture changes quite radically if the assumption concerning the continuity of the energy spectrum O of the 
system is replaced by the assumption that it is discrete. 

Discrete Two-level Energy Spectrum. As an example consider the situation in which the energy functional has 
only two values 

0(0) = Eo or O(l)=Eo+&, 

where Eo and 6E are both constants with the dimensions of energy. Eo is to be thought of as some "ground state energy" 
0(0), while DE is the value by which the energy can increment to its second level 0(1). Now in searching for a density 
which maximizes the entropy we must interpret the integrals in equations (1.1), (2.3), and (2.6) as Stieltjes integrals 
from which we easily calculate that the partition function Z is given by 

z = e-ve0 (1 + e-v6c), 

and thus the density maximizing the entropy is simply 

f,(O) = 1 + ~-v& and 

Discrete Equally Spaced Multi-level Spectrum. Alternately, consider the situation in which the energy function 
can take on a number of discrete values of the form 

O(n) = Eo + n6E 

where Eo and DE are interpreted as before. 

n=O, l,···, 

In this case the partition function Z is given by 

and the density maximizing the entropy is 

e-vco 
z = ------,,-

1-e-v6c' 

f,(n) = [l - e-v6c]e-vn8c n =0, l,···. 

(2.18) 

(2.19) 

(2.20) 
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General Discrete Multi-level Spectrum. Finally, we look at the situation in which the system energy may take 
any one of (m + 1) discrete values, 

O(n) = Eo + En, n=O,··· ,m 

where rn may be finite or not. Now the partition function is easily calculated to be 

m 

z = e-VEo L e-VEi' 

i=O 

and the density maximizing the Boltzmann Gibbs entropy is 

n=O,··· ,m,, 

which is just the density of the discrete Maxwell Boltzmann distribution. 

E. BLACKBODY RADIATION. 
In the previous section when we considered the case where the energy had a discrete and equally spaced multi­

level spectrum, had we allowed all values of n E R+ and not restricted ourselves to integer values of n in equation 
(2.18), the corresponding result would have been 

f,(n) = IJOEe-vn8e, 

which does not seem too different from (2.20). However, the differences become immediately apparent when the 
average energy < 0 > is calculated in the discrete (integral n) case: 

00 

n=O 

(2.21) 

If it is assumed that the energy functional in (2.18) is that of a system in which there is a strict relationship between 
the frequency of oscillation and the incremental energy OE of the form 

OE= liw, 

and that v = 1/kT as we have argued for in Section C, then (2.21) takes the form 

- .WO. e kT 

< O(w, T) > -Ea = liw " . 
1- e-f¥ 

(2.22) 

This will be immediately recognized as the Planck formula for the average energy of a system of oscillators (relative 
to the ground state energy Eo) at a temperature T and frequency w. From this it is quite straightforward to derive the 
Planck formula for the spectrum of black body radiation E(w, T) from the general relation 

w2 
E(w, T) = [< O(w, T) > -Eo] - 2 .3, 

7r C' 
(2.2:~) 

where c is the velocity of light. Substituting (2.22) into (2.23) immediately gives the Planck blackbody radiation 
formula 

Ii w3 
E(w,T) = 23 nw • 

7r c· err - 1 
(2.24) 

Note that had we used the result for the average energy of an ensemble with a continuous dependence on n in (2.18), 
then the result would have been 

. kT 2 t(w,T) = - 2 3 w, 
7r c· 

(2.2.5) 

the Rayliegh-Jeans radiation law with its "ultraviolet catastrophe". The same expression results from (2.24) in 
the high temperature limit with n,w « kT, while the low temperature limit with liw » kT gives the Wien radiation 
law 

- Ii 3 -~ E(w,T)- - 2 3 w e . 
7r C' 
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F. GENERAL ENTROPY MAXIMA. 
It is quite easy to state and prove an obvious generalization of Theorem 2.2 applicable to systems in which there 

are multiple known averages < Oi >. This generalization is contained in: 

Theorem 2.3. Assume that a sequence of m non-negative measurable functions Oi(x), i = 1, ... , m, and their 
averages < O; > over tlle entire space X are given. Then the maximum of the entropy H(f) for all densities f, subject 
to the conditions 

occurs for tlle density 

where 

and the vi 's are implicitly determined from 

< Oi >= fx Oi(x)f(x) dx 

1 m 
J.(x) = z II e-v,O,(x) 

i=l 

z = { ft e-v,O,(x) dx, 

lx i=l 

Proof. The demonstration is an extension of the proof of Theorem 2.2. D 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

The density (2.27) maximizing the entropy is a generalization of the density of the grand canonical ensemble. 
If we know that a given system has a number of independent averages (2.26) of functions Oi(x), then the content of 
Theorem 2.3 can be used to construct the density that maximizes the entropy. This density can, in turn, be used to 
construct a generalized thermodynamics for that system. Grad (1952) and Jaynes (1957) have followed this procedure. 

G. MAXIMAL ENTROPY PRINCIPLES. 
As attempts to justify Postulate D on dynamical grounds increasingly met with failure, more and more authors 

tried to enshrine this hypothesis as a basic principle, often known as the Maximal Entropy Principle. Tolman 
(1938) seems to have been one of the first to espouse this point of view. He argued that since the techniques being 
used in thermodynamics were statistical in nature, one had to have some principle that would guide the selection of 
the proper density out of the unlimited number of possibilities. The Maxmimal Entropy Principle certainly offers one 
such guide. Jaynes (1957), Scalapino (1961), and Katz (1967) have written extensively on the use of the maximal 
entropy principle in reformulating classical and quantum statistical mechanics, and Lewis (1967) has tried to justify 
it on dynamical grounds. 

It may appear that the use of the maximal entropy principle gives a great deal (equilibrium thermodynamics) 
for very little. Such is surely not the case. In actuality the hardest aspect of the understanding of thermodynamics is 
determining which systems, described by densities, will evolve toward equilibrium in such a way that the entropy is 
maximized. 

H. SUMMARY. 
Based on the topics covered in this chapter it is clear that the central questions of what systems can be reasonably 

described by densities that approach a limit that maximizes the entropy rank as the most important one~-; that must 
be answered if we are to have any clear and comprehensive understanding of the foundations of thermodynamics 
since (Postulate D) we assume that the density maximizing the entropy characterizes the physically attained state of 
thermodynamic equilibrium. The treatment of these problems constitutes the remainder of this book. 

******************************************************************************* 
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REVERSIBILITY 

Though thermodynamics accounts for what we see in the real world, its impossible to derive thermodynamics from 
reversible ( e.g. Hamiltonian) systems. 
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This fact has led to a tremendous wastage of effort as various individuals have tried to derive thermodynamics from 
the statistical mechanics of reversible systems,and specifically Hamiltonian systems. Two alternative points of view: 

(1) View Hamiltonian dynamics as an abstraction of, or approximation to, the dynamics of the real world. Works 
very well for large distances and/ or small energies. 

(2) We perceive the phenomena described by thermodynamics but we are unable to perceive some coordinate. 

Higher Space (string space) 
Invertible DS with constant entropy 

Projection or Trace 1 
Our Observation Space 

1 Short distance/large energy 

SDS with increasing entropy 
Noninvertible 

The fact that Ii. shows up in the Sakur-Tetrode entropy just indicates the fundamental nature of the projection. 

22 OCTOBER, 1986: OXFORD 

A SET OF REMARKS 

(1) I think that the MEP can be viewed within the general context of variational principles (VP). Now other VP 
often are used to ~ equations of motion. Is it possible to use an extension of the MEP to obtain an H 
theorem? cf. Gerjuey et al. Rev. Mod. Phys. (1983), 55, 729; R.M. Lewis "A unifying principle in statistical 
mechanics", J. Math. Phys. (1967), 8, 1448-1459.] 

(2) Pauli exclusion principle ~ :3 interactions between particles in spite of the fact that it was specifically 
excluded. 

(3) If have an AP transformation S then ACF will be periodic, in spite of the fact that entropy is at least constant 
or increasing. 

(4) I think it might be possible to model channel openings/closings as an AP process. How to calculate the 
distribution of open/closed times? 

(5) Action seems to play such a large role in, e.g., Feynman path integrals, and the Motz and Nelson derivations 
of the Schrodinger equation. How can I understand the intuitive interconnection between Lagrangians, Hamil­
tonians, and action. But note that action [as well as Hamiltonians and Lagrangians] concepts all come from 
classical equations of motion [i.e., all reversible]. 

(6) In normalizing a density J f(y)dy = 1 if have ad-dimensional mechanical system so dy = dxdp then there must 
be a constant in f with dimensions lid (action raised to the d power). What is the connection of this with the 
Sakur-Tetrode entropy? 

23 OCTOBER, 1986: OXFORD 

REMARKS-QM 

(1) Suppose we have a SDS describing a "quantum" system. Suppose really does obey classical laws WRT radiation, 
i.e. only get radiation with acceleration. Then, how to understand radiation eg., from H atom. Works if and 
only if electron isn't moving-I mean, is in a state of constant velocity- when in a stationary state. In going 
from State 1 ---. State 2, does accelerate and emits radiation (or emits it). 

(2) Maybe as AL suggests :3 a constant vacumn fluctuation giving rise to Brownian motion like movement of 
particle. 

(3) The reason that there has been such a failure of SM to ~ Thermodynamics based on Newtonian DS is that 
at the microscopic level these systems are not isolated from their environment. 

At the macroscopic level, e.g., motion of planets, the isolated systems of Newtonian mechanics are a good 
approximation. But, at the microscopic level perhaps :3 fluctuations that must be considered in examining the 
dynamics. What could the origin of these fluctuations be? 

a. Background energy radiated by other particles that are accelerated. This is the idea of stochastic 
electrodynamics [at least of Marshall]. 

b. Fluctuations of unknown origin, as in Nelson. This could be due, for example, to a trace operation 
though it is clear that :3 other possibilities. 

( 4) Essential to concentrate on the experimental facts. 
a. Spectra: Emission or absorption at discrete wavelengths. 
b. Photoelectric effect: Dependence of electron emission on incident wavelength. 
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Note that both of the above situations can be viewed as ones in which 3 forcing of the system. 

c. Blackbody radiation: Distribution of energy radiated with frequency. 

d. Specific heats of solids: Related to blackbody radiation. 

26 OCTOBER, 1986: EDINBURGH 

(1) Marganeau and Murphy give a very good synopsis of Gibbs statistical mechanics and approach to thermody­
namics. 

Trouble is, of course, how to prove entropy - maximum. Of course, for a Hamiltonian system this won't 
work. This is why ergodic hypothesis is introduced, but even that doesn't work. 

(2) Therefore, see that need an "exact hypothesis", or "AS" or "AP" hypothesis. 
(3) Is H constant V mixing transformations? 
(4) In our new AP paper [Stab+ noise ==;, AP] does entropy increase? [See work of Nick Provatas.] 

(1) K-automorphism, pp. 73- 76 

4 NOVEMBER, 1986: OXFORD 
FACTORS AND TRACES 

K-automorphism 

Factor (T4.5.l) 1 
Measure Preserving, Invertible, Constant H 

baker transformation 

1 Trace Trajectory 

Exact System ------------------ dyadic transformation 
Measure Preserving, Non-invertible, H to maximum 

(2) What is the connection between trace (D4.5.2) and factor (D7.2.2)? Trajectory of a factor is a special type 
of a trace. 

(3) Every exact transformation is a factor of a K-automorphism (T4.5.1). What about every asymptotically stable 
transformation? Probably every AS transformation is a factor of some generalization of a K-automorphism. 

(4) Given an exact Show can one construct a K automorphism T 3 Sis a factor of T? 

AL says: See Rochlin. If S : X - X then the corresponding T he constructs is on X x X x · · · an infinite 
number of times. 

(5) From R4.1.4. Given S: X - X construct 

T(x, y) = (S(x) + y, {Jx) 

which is invertible and measure preserving. 

If Sis exact, when is Ta K-automorphism? 
(6) An intersecting and nonperiodic trajectory of a trace ==;,His constant or increasing, i.e. H(Pf) 2: H(f). 

4 NOVEMBER, 1986: OXFORD 
REVERSIBLE AND IRREVERSIBLE SYSTEMS 
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(1) Note the following connections. 

OS-Reversible-Constant H SOS-Irreversible-Const/Increasing H 

Statistical Stability 

1 
K Flow 

Factor-T4.5.l 
Exact 

T5.5.2 with r = 1 

1 1 
Strong Mixing Strong Mixing 

1 1 
Weak Mixing Weak Mixing 

J 1 
Ergodicity Ergodicity 

(2) Forward Kolmogorov equation (the Fokker Planck equation) is equivalent to 

Semi-Group for Frobenius Perron Operator (Liouville equation) + Noise 

(3) Backward Kolmogorov equation is equivalent to 

Semi-Group for Koopman Operator+ Noise 

(4) Nelsons approach to stochastic quantum mechanics: 

Time Backward - OS-Reversible-Constant H -
1 

Time Forward 

1 

AP 

Koopman Operator Frobenius Perron Operator 

J 1 
K Semigroup + Noise Liouville equation + Noise 

1 1 
Backward Kolmogorov Eqn - Schrodinger Eqn + Second Eqn +-- Forward Kolmogorov Eqn 

(5) Where might the noise come from? 

Entropy Constant MASTERDS 

Low Noise 1 1 Trace 

Classical Mech 
Coarse Resolution 

OUR WORLD 
Fine Resolution 

Entropy Increasing 

1 High Noise 

For + Back Kol - Schrodinger Eqn 

(6) Can have a system with H = constant and take away coordinate information to get increasing H. As an 
example need only consider the baker-dyadic example. This loss of information to give an increasing entropy 
is just the Ehrenfest coarse graining requirement. 
Thus there seem to be two ways to get entropy to increase in a DS. Either 
a. Loss of information; or 
b. Addition of noise. 
Do we live in a baker universe but only sense a dyadic section? 
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Generally, 

When does 

Who knows. 
When does 

MICHAEL C. MACKEY 

dH 
IRREVERSIBILITY ~ dt ~ 0. 

dH 
IRREVERSIBILITY ~ dt > 0? 

d:: > 0 ~ IRREVERSIBILITY? 

Always, since from pp262-264 if lim H or lim He ---t 0 then have exactness or asymptotic stability =* 
irreversibility. 

4 NOVEMBER, 1986: OXFORD 

GENERALIZED BAKER, R-ADICS, AND NOISE 

(1) Consider the generalized baker transformation but only look at the x projection 

S(x) = rx mod 1. 

If r = an integer, then P J. = J. has J. = 1 as a unique solution, and Sis exact. This also has a delta function 
ACF. r does not need to be an integer. See references in Keener file. 

(2) Alternately, another transformation 

S(x) = [r - u 2]x + u 2E mod 1, 

where E is an i.i.d. random variable uniformly distributed on [O, 1], will have some other characteristics. What 
are they? AS I think. 
With this situation could consider the low noise (u2 ---t 0) and the high noise (u2 ---tr) situations. 

(3) If you were collecting data but could only measure x you might come up with either (1) or (2) above as 
explanations (dynamics). 

( 4) Alternative interpretation of (2) is 

T= { S(x) 
U(E) 

= [r - u2]x + u2E mod 1, 

= PE mod 1 p an integer. 

(5) Might r play the role of some universal constant? Maybe 3 two of them: one for x (k or kT) and one for y (Ii 
or !iv). 

(6) Could you construct a thermodynamics for this type of system? Might be quite interesting. 

4 NOVEMBER, 1986: OXFORD 

LASOTA & TRAPLE, J. DIFF. EQN. (1986), 63, 406-417 

Consider 
du 
dt = g(u) + E(t) 

or 
du 
dt = A(t)g(u) + E(t) 

where g(u) is continuous. 
Idea is to take A and E as traces of a measure preserving DS St: X ---t X with µ(X) = 1. 
For a function f define: 

(1) 

1 JT Mean value= Mf = lim -T f(t)dt 
T---+oo 2 -T 

(2) 

1 JT Correlation function= r(f(s)) = lim 2T f(t + s)f(t)dt 
T---+oo -T 

(3) 
Covariance matrix = K f = r(f - M f). 

(2.1) 
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Definition. If M f and r (f ( s)) exist and r (f ( ·)) is continuous, then f is stationary. 

Definition. If f is stationary and lim8 _, 00 K f = 0 then f is pseudorandom. {This is the terminology of Bass.] 

Assume that St is either ergodic or mixing 

Proposition 5.1. 

(1) If St is ergodic then all traces are stationary. 
(2) If St is mixing then all traces are pseudorandom. 

Corollary 5.1. If St is ergodic and A and l are traces, then the unique bounded solution of (2.1) is stationary. If St 
is mixing, then it is pseudorandom. 

N.B. Arnold and Avez show that a transformation Tis mixing if and only if ACF--+ 0, i.e. is pseudorandom. 

TRAPLE PREPRINT 

DISCRETE PROCESSES WITH DYNAMICAL 

AND SEMIDYNAMICAL PERTURBATIONS 

Considers the discrete analog of (2.1), i.e. 
Un+l = A(n)g(un) + ln 

Has an exact correspondence to P5.1 and C5.l, namely with S continuous, invertible, and measure preserving on a 
normalized measure space 

(1) S ergodic ~ {un} is stationary. 
( 2) S mixing ~ {Un} is pseudorandom. 

QUESTIONS. 

(1) What if S isn't invertible, i.e. if 
a. S is measure preserving and exact, or 
b. S is asymptotically stable. 
Are the solutions of the DE or FDE also exact/ AS? 

(2) What if Sis statistically periodic. Does this ~ solutions are also? 
(3) What if only l is a trace. Not a problem if A is a constant since A constant is a trace. 

If A(t) is periodic, then take S : C --+ C to be rotation on a circle so A(t) = 'lj,(St(zo)) and S : X --+ X so 
l = ip(St(xo)). Then take St: X x C--+ X x C so S(x, y) = (St(xo), S(zo)) and the pair (A, l) is the trace of 
st. 

TURNING CONSTANT ENTROPY SYSTEM INTO INCREASING ENTROPY 

Three ways to turn a system with constant entropy into a system with increasing entropy-all illustrated with the baker 
transformation. 

(1) Take a trace by throwing away all information on one coordinate, e.g. baker to dyadic. 
(2) Coarse grain by loosing some information or precision, e.g Andy Lasota's baker example. 
(3) Add noise from a heat bath. 

13 JANUARY, 1987: BREMEN 

MINIMAL ACTION AND ENTROPY 

A curious fact (which I have seen elsewhere) is mentioned by Grossing [Phys. Lett. A (1981), 118,381] and should be 
understood. Comes from ideas of 

(1) L. de Broglie "La thermodynamique de la paticule isolee", Gauthier-Villars, Paris, 1964; and 
(2) L. Brillouin "Tensors in mechanics and elasticity", Academic Press, New York, 1964. 

Start with the Boltzmann formula for the relation between variation in action S and dissap heat Q0 [equivalent to 
energy M0 c2] of a periodic system with frequency 11 = 1/T: 

voS = ToSe 
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where S'e is the entropy of the system and T is the temperature of the heat bath. 
Consider a particle with "internal heat" Q0 [equivalent to a variational rest mass M0 ] in contact with a va.cumn hea.t 
bu.th a.t temperature T 3 

This implies 

so 

or 

M0 c2 = hv = kT 

Ii 
6S = 6Sek 

6S 6Se 

Ii k 

I~= ~e I 
In other words on the natural trajectory (minimal action S corresponding to stationary states) of a 
particle the entropy is maximal! This would seem to imply that the Second Law of Thermodynamics is 
equivalent in some sense to a minimal action principle. 
Further note that 

so 

6S 6Qo 
T = -M0 c2 

BS = _ k6Qo 
e Moc2· 

However, with Se= k ln P this gives in turn 

the Boltzmann formula. 

20 JANUARY, 1987: BREMEN 

BOSE EINSTEIN STATISTICS FOR DISTINGUISHABLE PARTICLES 

From Tersoff and Bayer [Phys. Rev. Lett. (1983), 50, 553-554] 
Suppose we have N particles distributed among M states, i = 1, · • · , M. Assume that the probability of finding one 
particle in state i is wi. Then a traditional combinatorial argument says that the probability of a given configuration 
{n1,··· ,nM} is just 

M wn; 

P{ni} = N! IJ-•-· 
n·' i=l i• 

with Lni = N. 

Jfhave the situation where all M state are equally likely (microcanonical ensemble), then wi = 1/M and 

Lni=N, 

which just gives the traditional Maxwell Boltzmann statistics. 

(1) 

However, T and B argue that in the absence of this knowledge concerning the wi, the most likely probability is obtained 
by averaging (1) over all possible configurations subject to wi 2'. 0 and Li wi = 1. Note that distinguishability of 
particles is to be retained. They claim that this procedure, viz. 

leads to Bose Einstein statistics, i.e. 
p = N! ( M - 1 )! . 

(N+M-1)! 

(2) 
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To see how this result is obtained we must first remember that 

with m, n integers. 

Then, using the 15-function allows us to write 

where 

M-1 

WM= 1- L wi = aM-1-WM-1 

i=l 

M-2 

a M _ 1 = 1 - L wi. 

i=l 

This trick allows us to turn the M fold integral 

1 1 ( M ) l .Af. l w~ 1 • • • wr;,: dw1 · · · dw M/5 1 - 8 wi 

into an ( M - 1) fold integral: 

Therefore 

with aM-l = aM-2 -WM-2, and this implies that 

raM-2 nM-2 nM!nM-1! 

IM-2 = Jo dwM-2WM-2 (nM + nM-1 + 1)! 

nM!nM-1!nM-2! nM+nM-i+nM-2+2 

= (nM + nM-1 + nM-2 + 1)! aM-2 

Thus after the final ( M - 1) st integration we have that { 4) is in fact equal to 

ITM .I 
I = i=l n,. 

1 (N + M -1)!. 

(4) 

But the sequence of the (M - 1) integrations was totally arbitrary, save for the restrictions on the wi, and there were 
therefore (M - 1)! ways of performing them. Each way will, moreover, give precisely the same value of fi. Thus we 
are left with the final result that the average (2) is indeed given by 

There are two important points here: 

NI ITM ., 
P{n}= · i=ln,. (M-1)! 

' ITM n , (N + M - 1)! 
i=l i· 

N!(M -1)! 

(N +M-1)! 

(1) The statistics that a given type of particle obeys is not a criterion on which one may decide the question of 
distinguishability; and 

(2) Totally distinguishable particles may obey Bose Einstein statistics. [Note: Restricting n; to O or 1 ==:, Fermi 
Dirac statistics, again with distinguishable particles. See Petroni and Viger, Phys. Lett. (1984), 101A, 4-6] 
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LASOTA MIXING 
19 MARCH, 1987: OBERW0LFACH 

Let X be a sigma finite measure space, and S : X -; X a dynamics that is not necessarily measure preserving. 

Definition LMl. We say that Sis Lasota Mixing 1 if and only if VA, B, CCX with µ(A), µ(B), µ(C) nonzero 
and finite we have 

lim µ(S-n(C) n A) -; µ(A) 
n->oo µ(S-n(C) n B) µ(B)" 

(1) 

OBSERVATIONS ABOUT LMl. 

(1) This definition reduces to the normal definition of mixing if S preserves the measureµ. To see this consider 
B = X and µ( X) = 1 so 

µ(s-n(C) n B) = µ(S-n(C) n X) 

= µ(S-n(C)) 

= µ(C), 

where the last two lines follow from the assumption that µ is preserved. Therefore we have 

lim µ(S-n(C) n A) = µ(A)µ(C). 
n->oo 

(2) In equation (1) the left hand side may not be defined for small n, i.e. n must be sufficiently large to permit 
adequate spreading. This does not, however, matter for the limit. 

(3) As an example of Lasota Mixing 1, we might consider the baker transformation in which you have compression 
by a factor of 4 but only stretch by a factor of 2: 

{ 
1 

2x,4Y 
T(x,y) = 1 1 

2x-1 -y+ -
' 4 2 

(4) The definition of Lasota Mixing 1 is good for situations in which the contraction (or expansion) of a set by 
iteration is independent of the set (or its location). 

In thinking about a second ( and more general) definition of Lasota Mixing, let X be a sigma finite measure space, and 
S : X -; X a dynamics that is not necessarily measure preserving. 

Definition LM2. We say that Sis Lasota Mixing 2 if and only if VA, B, CCX with µ(A), µ(B), µ,(C) nonzero 
and finite :3 a finite >. > 0, in.dependent of C, 3 

1. µ(S-n(C)nA) , 
Im --'------------ -; A 

n->oo µ(S-n(C) n B) 

In general, >. depends on A and B. 

OBSERVATIONS ABOUT LM2. 

Theorem. Ifµ( X) = 1 and S is measure preserving, then LM2 is equivalent to normal (Strong or Hopf) mixing. 

Proof. Since Bis arbitrary, take B = X. then we have 

µ(X n s-n(C)) = µ(s-n(C)) = µ(C) 

since Sis measure preserving. Thus from (2) we have 

lim µ(S-n(C) n A)= >,.µ(C) 
n->oo 

since ).. only depends on A. This, in turn, implies that 

lim µ(S-n(X \ C) n A) = >.µ(X \ C) 
n->oo 

(2) 
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since >. is independent of C. But we can rewrite the left hand side of this relation as 

µ(S-n(X \ C) n A)= µ((X \ s-n(C) n A) 

=µ(A\ s-n(C)) 

so we have 

This implies that ).. = µ.(A) and thus 

= µ(A) - µ(An s-n(C)) 

-t µ(A) - >.µ(C) 

µ(A) - >-.µ(C) = >-.µ(X \ C) 

= >-.[µ(X) - µ(C)] 

= >-.[1- µ(C)]. 

lim µ(S-n(C) n A)= µ(A)µ(C) 
n---->oo 

Theorem: 15 June, 1987: Brissac. If Sis LM2, then Sis ergodic. 

Proof. Assume C is an invariant set so 

From the definition of LM2 we have 

C = s-n(C). 

µ(AnC = ;>.. 
µ.(BnC) 

We want to show that ).. independent of C ~ C C X is trivial. 
a. If C = X then ).. is independent of C since 

b. A is arbitrary so set A = X \ C ~ 

But 

;>..=µ(A). 
µ(B) 

µ(AnC)=0 

µ(An C) = >-.µ(B n C) 

(3) 

so with (3) and >. > 0 (definition of LM2), we must have µ(B n C) 
~ µ.(C) = 0. 

0. Since µ(B) > 0 by assumption, this 

Therefore, all invariant subsets are trivial and ergodicity is proved. 

Theorem. S ergodic with stationary density J. is LM2 <;::::=} 

lim < pnf,g >=< f, 1 >< f.,g > 
n---->oo 

The proof is as in Lasota and Mackey with J. = 1. 

Theorem. S is LM2 <;::::=} {P"J} is weakly convergent to J. 'v f EV. 

16 JUNE, 1987: BRISSAC 

CORRELATIONS AND LASOTA MIXING 

See "Time's Arrow", Chapter 5 (Mixing), Section C (The Decay of Correlations) for the relevant computations 
reprinted below. 

To understand the connection between mixing and the decay of correlations requires the introduction of a few 
concepts. If we have a time series x(t) [either discrete or continuous], and two bounded integrable functions <Y, 'T} : X -, 
R, then the correlation of <Y with 'T) is defined as 

T-1 

Ru,.,(r) = lim Tl '°' <Y(x(t + r))ry(x(t)) 
T---->oo ~ 

t=O 
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in the discrete time case, or 

l 1T R/J,r,(T) = lim - a(x(t + T))7J(x(t)) dt 
T-+oo T 0 

in the continuous case. The average of the function a is just 

or 

so it is clear that 

(1) R,,.,,7(0) =< a'T) >; and 

T-l 

<a>= lim Tl '°' a(x(t)), 
T---+oo ~ 

t=O 

l lT <a>= lim T a(x(t)) dt, 
T-+oo o 

(2) R,,.2(0)R,72(0) 2: R(j,,7(T). This follows directly by writing out the expression< [aa(t) + fJTJ(t + T)] 2 > for real 
and nonzero a and (J, and noting that it must be nonnegative. 

The covariance of a with 'T), C/J,r,(T), is defined by 

c/J,r,(T) = R/J,r,(T)- <a>< 7J >, 

while the normalized covariance p(j,r,(T) is 

p(j (T) = R,,.,r,(T)- < (J >< 7) > . 
,T/ < (]'7) > - < (J >< 7) > 

Clearly, p,,.,,7(0) = 1. 

Now assume we have an ergodic transformation St with consequent unique stationary density f •, operating in a 
finite normalized phase space X, and that St is generating the sequence of values {x(t)}. Then the correlation of a 
with 7) can be written in both the discrete and continuous time case as 

(.5.7) 

by use of the extension of the Birkhoff Ergodic Theorem 4.6. Using the definition of the Koopman operator, along 
with the adjointness of the Frobenius-Perron and Koopman operators, equation (.5.7) can be rewritten in the form 

(.5.8) 

Writing the defining relation for mixing transformations as in the proof of Theorem .5.1, it is clear that for general 
functions 'T) and a we have 

lirn < pt(7Jf,), a>=< 7Jf,, 1 >< f., a>, 
t-+oo 

so (.5.8) yields 

lim R,,.,r,(T) =< 7) ><a> 
T-+00 

when St is mixing. Thus we have the following result connecting mixing with the limiting behaviour of the 11ormalized 
covariance. Namely, 

Theorem 5.3. St is f. mixing if and only if 

lim p,,.r,(T) = 0. 
T---+(X) , 
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16 JUNE, 1987: BRISSAC 

Both Krylov and Ma emphasize decay of correlations to zero in a finite time as being important for the approach 
of the entropy to its maximum. Many exact transformations have this property, so we have the following conjectures. 

Conjecture 1. S : X -+ X measure preserving (is it necessary that measure be finite). S is exact if and only if 
3 finite To > 0 3 

PJ,g(T) = 0 1::/ T > To. 

Corollary 1. 3 finite no (f) > 0 3 

H(Pnf)=O 1::/ n > n0 (f). 

Conjecture 2. S X -+ X ergodic with stationary density f *. S is asymptotically stable if and only if 3 finite 
To> 0 3 

Rj,g(T) =< f, 1 >< f.,g) 

1::/ T > To. 

Corollary 2. 3 finite no(.f) > 0 3 

H(Pn flf,) = 0 1::/ n > n0 (.f). 

2 JULY, 1987: BRISSAC 

WEAK LASOTA MIXING 

In the normal definition of weak mixing we have S : X -+ X on a normalized measure space, S measure preserving 
¢:::::::} f. = 1 is the only stationary density. Then S is weak mixing if and only if 

n-1 
Ji~¾ L lµ(A n s-k(B)) - µ(A)µ.(B)I = o A,B EA. 

k=O 

An obvious extension to a non measure preserving S is given by 

Definition. Sis Lasota Weak Mixing if 1::/ A, B, CC A 3 finite positive A, independent of C, 3 

. 1 n-11 µ(An s-k(C)) I 
hm - - ..\ = 0 

n-= n ~ µ(B n S-k(C)) 
1::/A,B CA. 

GENERALIZATIONS OF K-AUTOMORPHISM 

In the normal case we define K-automorphism in the following way. We have sn(A) = { Sn(A) : AC A}. (X, A,µ) 
is normalized and S : X -+ X is invertible and 3 S and s- 1 are measurable and measure preserving. S is a K 
automorphism is 3 a sigma algebra Ao C A 3 

(1) s- 1 (Ao) C Ao; 
(2) The sigma algebra n;:;a=0s-n(Ao) is trivial (only consists of sets of measure O or l); and 
(3) The smallest sigma algebra containing u;:;a=0 s-n(Ao) is A. 

How to generalize this definition to non measure preserving S so that the new property ¢:::::::} Lasota Mixing? 3 two 
questions here: 

(1) Generalize K automorphism definition to non measure preserving S. Hint: Look at the proof that the baker 
transformation is a K automorphism (E4.5.l, pp 74-5) for clue of how to generalize. 

(2) Show that the generalization ¢:::::::} Lasota Mixing. Hint: Look at proof of Theorem 4.5.2 (every K auto is 
mixing) for the clue. See also Walters (1982) An Introduction to Ergodic Theory, Springer; and Parry 
(1981) Topics in Ergodic Theory, Cambridge University Press. 
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4 JULY, 1987: MONTREAL 

VARIOUS STATEMENTS OF THE LAWS OF THERMODYNAMICS 

BY THOMPSON, MA, AND BUCHDAHL 

Zeroth Law. All three are in agreement. If A is in equilibrium with B and Bis likewise in agreement with C, then 
A is in equilibrium with C. 

First Law. Q is heat, Wis work, and U is internal temperature. Applies to adiabatic processes in thermally isolated 
systems. 

(1) Thompson and Ma say that in an adiabatic transformation from 1 - 2, ~W12 = -~U12 and for any such 
process Q = ~W + ~U. 

(2) Buchdahl says that the amount of work W done in an adiabatic transition is solely dependent on the initial 
and final states ~ ~W + ~U = 0, while in a nonadiabatic transition Q = ~W + ~U. 

Second Law. 

(1) Thompson and Ma say that for reversible systems :3 an absolute temperature scale 3 8Q/T is an exact 
differential of a quantity S called entropy, while for irreversible changes in a thermally isolated system S 
increases. 

(2) Buchdahl says that :3 an ordering of states reflected in the entropy function S 3 S" is adiabatically inaccessible 
from S' ¢:==> S" < S'. 

Third Law. Entropy goes to zero as T - 0. Ma points out that this plus 

where 

S(T) = lT i,dT', 

C(T') = dQ 
dT 

is the heat capacity, was the basis of the work of Sakkur and Tetrode. 

21 JULY, 1987: MONTREAL 

FINITE TIME EXACTNESS 

Seems to me that it might be worthwhile to define a new type of chaotic behaviour, a variation of exactness or 
asymptotic stability [i.e. a special case], in which we have strong convergence of { pn f} to f • after a finite number of 
steps: 

'v n?. no(!). 

(1) Probably only works for a finite measure space. 
(2) Example is the dyadic transformation. Pick any set AC [0, 1] of nonzero measure µ(A) > 0. Then µ(Sn(A)) = 1 

after a finite n. 
(3) This is related to Ma's conception that the origin of the Second Law is the decay of correlations in a finite 

number of steps. Remember that get decay of correlations to zero after an infinite time with mixing. [Question: 
13 March, 1995-couldn't this decay also occur with mixing in a finite time for the baker transformation?]. 

(4) Is there any connection between the "thermodynamic limit" and the finiteness or non-finiteness of the limiting 
value of n? 

(5) Wrote Andy Lasota with these ideas today. 

23 JULY, 1987: ST. GABRIEL 

COARSE GRAINING AND ASYMPTOTIC PERIODICITY 

If you coarse grain an AP system, can you cause the entropy to converge to zero rather than being periodic? 
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23 JULY, 1987: ST. GABRIEL 

RANDOM THOUGHTS 

(1) In an isolated system if it is reversible then entropy is constant, but if it is irreversible then entropy may increase. 
However, in a nonisolated system (for example, a system with added noise) then entropy may increase regardless 
of whether original system was reversible or not. QUESTION: In a nonisolated system, if we consider [System 
+ Perturbation] then is the entropy of the whole constant? 

(2) Is it ever possible that H as opposed to He might be periodic? 
(3) A system with a nonuniform J. may have an H (not He) that decreases. This was the reason to introduce the 

conditional entropy in the first place. QUESTION: How is this important for the development of structure in 
biology-chemistry-physics? How is it related to the development of structure and/ or order? 

(4) Gibbs and others consider ensembles in r space (6N dimensional) but we (LM) consider them inµ space (6D). 
Whats the connection? 

(5) Clarify the connection between concepts of ergodicity, quasiergodicity, metric transitive and metric indecom­
posability in the statistical mechanics literature and our approach. 

(6) AP systems and development of order (eg. BZ reaction). AP could mimic the periodicity seen in the BZ 
reaction. Start with uniform concentration (hi entropy, maximal disorder) and go to spontaneous periodic 
behaviour in space/time (low entropy, ordered). Is it better to use H rather than He? 

and 

CONJECTURE BY ANDY ABOUT TRACE PERTURBATION 
8 APRIL, 1988: LUBLIN 

Suppose we have two transformations: 

n=0,1,··· 

~t+i = T(~t) t = 0, 1, .. ·. 

Let T be statistically stable, and examine the perturbed system 

[Alternatively, one could take ~t+l = Tk~t) and Xn+l = S(xn) + E~n-

(*) 

Andy Lasota's Conjecture. If k is sufficiently large, then the eventual behaviour of the f n generated by (*) will 
be asymptotically periodic. 

(1) Note that what we are doing in (*) is perturbing S with every kth iterate of T. 
(2) Try this numerically with Sa Keener map, and Ta quadratic map. 
(3) Does it also work if T is just exact, like a tent or dyadic map? Probably. 

FROBENIUS PERRON OPERATOR AND DDE'S 
9 APRIL, 1988: LUBLIN 

In a DDE one must specify an initial function on the interval [-T, O]. Thus the DDE is really mapping functions 
into functions in some function space. this is the primary problem in defining a Frobenius Perron operator since it is 
totally unclear what measure should be used in this space of functions, i.e., which is the most natural measure. 

H THEOREMS FROM THE FOKKER PLANCK EQUATION 
9 APRIL, 1988: LUBLIN 

Horstiemke and Lefever (pp. 112-113) talk about a Fokker Planck equation (in one dimension) with an equilibrium 
solution .f, supported on [a, b]. They then go on to define a functional 

¢(t) = 1b f(x, t) log [~:~~tn dx 
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which is clearly the negative of the conditional entropy H(flf.). It is easy to show that </>(t) 2 0 with ¢(t) = 0 
<==} .f = .f ,. They point out that if one can show that ¢(t) ~ 0 with ¢(t) = 0 <==} .f = J., then </> is a Liapunov 
function and .f, is globally asymptotically stable. 

They go through an integration by parts of the Fokker Planck equation to claim that they have done just this, 
i.e. show ¢(t) ~ 0 with ¢(t) = 0 <==} .f = f •. However, Andy says that the proof is incomplete because 3 examples 
such that the distance between f and J. is E positive at t-+ oo, that is f-+ J. more slowly than t-+ oo. 

Riskin (The Fokker Planck Equation) has a similar proof according to AL, but he allows his Fokker Planck 
equation to have time dependent coefficients and AL says that in this case the proof is simply wrong. He offers a 
counter example of a Fokker Planck like equation with time dependent coefficients in which the proof does not hold. 

Counter Example. Consider 
with Ux(0, t) = ux(l, t) = 0. 

Make the time transformation 

so fort E [0, oo] we have TE [0, 1]. Now with 

the transformed PDE becomes 

t 
T=--

1 +t' 

dt 2 
ur = ut dT = (1 + t) ut, 

1 
Ut = {l + t) 2 Uxx 

a PDE with a time dependent diffusion coefficient. 

x, t E [0, 1] x [0, 1] 

If you solve the original equation in a Fourier series then would have 

u:::: L ane-n2 T 2 cosnx -+ ao 
n 

with T-+ oo. 

Make the change of variables to get the solution in the new variable 

with t-+ oo. 
n n 

But, as t-+ oo we have T-+ 1 and the system with t dependent coefficient for sure doesn't go to its maximal entropy 
state! 

TRACE PERTURBATION AGAIN (SEE 8/4/88) 
9 APRIL, 1988: LUBLIN 

There are some problems with this whole idea. Consider the following: 

(1) If we have 

where the (n are i.i.d. random variables, then given a density f n of the Xn we have no trouble constructing an 
operator P to give .fn+1 through fn+l = P.fn- This is so because of the assumed independence of the (n-

(2) However, if we have 

Xn+l = S(xn) + EYn 

Yn+l = Tk(Yn) 

with k 2 1, then it is not possible to calculate fn+i given .f n in the same way as in the previous remark. The 
problem lies in the fact that 

Xn depends on Yo,··· , Yn-1 

and 
Yn depends on Yo, · · · , Yn-1 
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which implies that they are not independent and therefore we do not have available the tools that we had at 
our disposal in 1. 

(3) One possible way out of this quandary might be to obtain an operator P governing the two dimensional density 
.f (x, y) so 

.fn+1(x,y) = P.fn(x,y) 

and then to look at the marginal density 

(4) However, this introduces another problem, illustrated by the special case of a transformation S such that 
S(x) = 0 \:J x. Then our system becomes 

Xn+I = Yn 

Yn+I = Tk(Yn)-

Now (xn-1--1,Yn+1) are both functions of the same variable (Yn) and therefore the density .fn+1(x,y) becomes 
degenerate ===} no way to calculate the marginal density .f n+ 1 (x) ! Note that this will occur for any S 3 i S' I < 1 
\:J X (as in the Keener map). 

(5) Discuss this with Traple in Krakow. 

POINCARE RECURRENCE AND ROUGH DENSITIES 

9 APRIL, 1988: LUBLIN 

(1) We know that for a mathematical density the Poincare recurrence theorem implies absolutely nothing about 
the behaviour of the density evolution. But, for a real (rough) density the situation is much different. Consider 
the following. 

(2) Suppose we have a trajectory evolving under the action of Xn+I = S(xn), and we pick an initial point xo in a 
set A with µ(A) = E. Then if Sis at least mixing, then we must wait on average a time 

T = [¼]' 
where [·] denotes the integer value function, such that xr E A and x_i €/. A \:J j = 1, · · · , T - 1. For example, if 
E = 1/10 then T :::::'. 10. 

(:)) Pick two initial points Xo E A and Yo E B with J-l(A) = µ(B) = E. Let each trajectory evolve under the action 
of S, and consider this in a two dimensional space such that 

If Sis mixing, then with Zn+I = (xn+l, Yn+1) = S2(zn), S2 is at least ergodic. [For a proof see Peter Walters, 
Ergodic Theory: Introductory Lectures, Lecture Notes in Mathematics, volume 458, 1975; ISBN 0-387-
07163-6. There he proves in Theorem 1.10, page 44, that if Tis measure preserving and µ.(X) = 1 then 

T weakly mixing <¢::> T x T weakly mixing <¢::> T x T ergodic.] 

Now we must wait a time 

T:::::'. [E\] 
on average for (xr, YT) EA x B. 

( 4) Extending this argument to N initial points we must wait an average time 

T :::::'. [ E~] 
for the recurrence of the initial (rough) density. This of course presupposes that E::; 1/ N. 
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Step 3. Define the product partition AV B of two partitions 

(A)= A1, · · · , An and (B) = B1, · · · , Bn 

by all possible intersections 
i = 1, • • • , n, j = 1, • • • , n 

that have positive measure. 

Step 4. Define the KS entropy of the partition A by 

n 

h(A) = I: ry(m(Ai)) 
i=l 

where 
ry(x) = { 

0
-xlogx x > 0 

X=O 

Remark 3. h(A) is totally unchanged by the addition or subtraction of sets of measure zero to the partition. 

Remark 4. There is only a vague similarity between the KS entropy h(A) and my coarse grained Boltzmann Gibbs 
entropy. 

Step 5. From a partition (A)= (A1, · · · , An) construct the partition 

Then the entropy of the transformation T with respect to the partition A is defined as 

h(A,T) = lim -k1 h(AvT- 1(A)v ... ,T-k(A)). 
k--->oo 

Step 6. Define the KS entropy of T by 
h(T) = sup h(A, T) 

(A) 

where the supremum is taken over all possible partitions A. 

Remark 5. As it stands, this is clearly impossible because how can you calculate over all possible partitions A? This 
is circumvented by the following 

We say that a partition A is a generator if A is the smallest sigma algebra containing all of the sets A, r- 1(A), 
etc. Example: [O, ½], (½, 1] is the generator for the tent map and the dyadic map. 

Theorem. If A is a generator, then h(T) = h(A, T). 

Remark 6. This theorem makes the calculation of the KS entropy possible. 

Remark 7. If Tis invertible, then can also calculate h(T) by using 

AV T(A) V · · · V Tk(A). 

Remark 8. The KS entropy measures the speed of mixing in some sense. 

Example. Lets calculate the KS entropy of the tent map with a= 2. Take A= [O, ½], (½, l]. Then 

so 

1 4 (1) h(A V r- 1(A)) = - 4 810g 4 = log 22 . 

By induction we find that 

h(T) = lim _kl log 2k+1 = log 2. 
k--->oo 
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POSSIBILITY OF AP IN CT SYSTEMS: DISCUSSION WITH AL AND RR 
14 APRIL, 1988: KATOWICE 

RR thins that in a CT system, you will approach a fixed density without perturbations of coefficients. AL agrees, 
and their argument is as follows. 

In a DT system that is AP, we have 

pn f(x) = L Ai(f)gi(x) 

and if extend this to a CT system 

since \:/ t E R :3 n E N and 0 E [O, 1] 3 t = n + 0. But, in DT we have a constant permutation that can't exist in CT. 
Reason is that in DT the g;'s are orthogonal (disjoint support) ===;- there can't be continuous movement of densities 
with associated coefficients ===;- there is no permutation of coefficients and therefore no permutation of densities. 

Conjecture. If there are no invariant sets (i.e. P is ergodic then in CT asymptotic periodicity is equivalent to 
asymptotic stability. 

Rudnicki has a student working on this for his thesis. 

PERTURBATION OF MAPS 

DISCUSSION WITH J. TRAPLE AND A. LASOTA 

17 APRIL, 1988: KRAKOW 

(1) We considered (see Oberwolfach notes) the perturbation of a map by the parabola 

Xn+l = AXn + fJYn i>-.1 < 1 

Yn+l = 4yn(l - Yn)· 

(2) Traple [JMAA (1988), 129, 118--130] in his Theorem 5.1 (page 129) says that if perturb a system with another 
system L that is mixing, then solution of perturbed system is pseudo random in the sense of Bass which means 
that limT~=(covariance function)= 0. 

(:~) If define a random solution as one in which the covariance = 0 \:/ T except for T = 0, then I conjecture that if 
L is asymptotically stable then the solution of the original (perturbed) equation is random. 

Three additional points from conversation between Krakow and Lublin with AL: 

(1) Stochastic perturbation of a map with (n that have no density gives a fractal attractor. 
(2) Perturbation of a system by a semi-dynamical system ( e.g as above) may also give a fractal attractor. But, it 

also may have a density. 
(:~) Perturbation of a system by (n distributed with a density will produce asymptotic periodicity as in our Physica 

D paper. 

THOUGHTS PLUS ANDRE/ZENG COMMENTS 

13 MAY, 1988: GUELPH 

(1) We can have a large system with constant entropy, and by taking a trace WRT dynamic variables we get a 
situation with increasing entropy. 

(2) Question: Is it possible to do the same thing by using only some subset A of the entire phase space X, A C X? 
For example, we might have a universe with constant entropy while :3 an increasing entropy in some subset. 

(3) It would seem that this is impossible if H(Ptflf,) 2 0, cuz if Htot = const while HA(Ptflf,) T, then this 
===;- that need Hx\A (Pt flf,) 1-

( 4) AL: Conceptually not the way physicists think. Why define conditional entropy-requires an example or a 
sentence. 

(5) Z: Need more physical examples and comparison with physical systems. 
(6) Z: Connection between reversible and irreversible Markov operators and reversible and irreversible systems is 

unclear. 
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item AL/Z: Clarify the connection between Boltzmann, Gibbs, and my approach. 
(7) AL: Need examples of how Markov operators make the density evolve. Give examples from physics of evolu­

tion equations for densities, e.g. the Liouville equation, Fokker-Planck equation, heat equation, Schrodinger 
equation. Maybe use the heat equation to show pictures of evolution of the density. 

(8) ~fake clear the difference between reversible and irreversible systems. 
(9) Make clear the distinction between time reversal invariance (t--+ -t and equations don't change form), time 

shift invariance ( :l T 3 x(t) = x(t + T) ==? x is constant or periodic), and time translation invariance 
x(t) = x(t + T) \:/ T ==? x is constant. 

(10) First Hopf bifurcation breaks the symmetry of the time translation invariance. Higher order (secondary) 
bifurcations break time shift invariance. 

( 11) AL: See R.eichl for scaling arguments and phase transitions. 
(12) Z: Add section to illustrate classical work of Boltzmann on approach of system to equilibrium. 
(la) Z: How do you connect evolution of density to evolution of a thermodynamic system 
(14) Z: Add a discussion of nonequilibrium thermodynamics, and relate it to the present work [Onsager, de Groot, 

Mazur, Lewis]. 
(15) AL: Add more examples of continuous time systems. 
(16) Z/ AL: Every time a theorem is proved, connect the consequences with the physics. Before theorem tell what 

going to prove. State theorem as physically as possible. Make proofs as transparent as possible. 
(17) AL: Add the Gibbs mixing paradox. 
(18) Z: Make the distinction between extensive and intensive variables. 
(19) Z: Suggests I look at R.enyi on information theory. 
(20) Z: Dissipation in a dynamical sense corresponds to an attractor with dimension contraction relative to the 

initial dimension. This is not the same as thermodynamic dissipation which we usually associate with loss of 
energy. 

(21) LG: Connection between equilibrium and non-equilibrium physics. 
(22) Question: Is it possible to use the Hille-Yoshida theorem ~~ = Mu to derive a general expression for H and 

nonequilibrium thermodynamics and irreversible thermodynamics? See Lewis. 
(2:1) Question: Add superadditive entropy with Loskot paper? 

DENSITY DEPENDENT DYNAMICS 

28 OCTOBER, 1988: KATOWICE 

( 1) In discussion with Andy we realized that if you have a continuous time density dependent dynamics ( e.g. the 
Bohm equations obtained from the Schrodinger equation) then would have 

dx-
-' = F-(x u) dt ' ' i = 1, · · · ,d 

and the evolution of the density u(t, x) is just governed by the equation 

au I: a -+ -(uFi) = 0. 
at . axi 

' 
There are some existence and uniqueness results for such nonlinear equations, but probably not much in terms 
of stability results. 

(2) For density dependent discrete time dynamics (maps) the situation is much harder since we haven't an explicit 
form that allows us to calculate the Frobenius Perron operator. Andy thinks the best hope is to pick a map 
that we know a lot about (preferably onto) and then make the coefficients density dependent. Hopefully it 
might even have some biological application! 

(:3) As an example we might pick a modified hat map Xn+l = S(xn) with 

S(x) = 2x 2 { 
x {a+ /3 j~2x f(x)dx} x E [o)J 

(1 - x) { 1 + 2(1 ~ x) f21x-1 f(x)dx} 

with a + fJ = 2, 1 + 6 = 2, and f is the density. 
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(4) A quick check shows that S(O) = S(l) = 0 and S(½) = 1 If you start with fo(x) = 1 than you get the old hat 
map back. 

(5) Hopefully, if start with fo(x) that doesn't differ from J. = 1 too much (in C 1 topology), then can prove that 
f n ---, f •, an analog of local stability in differential equations. 

(6) Another possibility might be a hat map with 

(7) Or the random map 

a(!) = 1 + L f(x)dx ~c [0,1] 

p(f) =ft. f (x)dx 

1 - p(f) 

SCHWARZCHILD (PRISONER) THEOREM 

1 NOVEMBER, 1988: KATOWICE 

Theorem. Let (X, ~, µ) be a finite measure space, St: X---, X, t ER (so Sis invertible), andµ an invariant measure. 
Further let A C X and define 

A_= {x EX: S-t(x) E A'v't E (-oo,0]} 

(the set of all trajectories from -oo to 0) and 

A+ = {x E X : St(x) E A'v't E (0, -oo }. 

Then if a trajectory was in A_ it will always be in A+ and vice versa. 

Proof. We have 

A_= n St(A) and 
t,".0 

since y E St(A) <====;, S-t(Y) EA. 

Now 

so 

and 

Further, sinceµ, is an invariant measure we have 

s_t(A+) = s_t (n,.20S,.(A)) 

= nr2o8,._t(A) 

= nu:;::-tSu(A) 

lim µ(A+)= µ(nt>O nu:2'.-t Su(A)) t_,oo 

= µ (n~=-ooSu(A)) 
= µ(A+ nA_) 

In a completely analogous fashion 

Now 

lim µ(A_) =µ(A+nA_). t_,oo 

A+ \ A_ = trajectories in A+ that didn't come from A_ 

c A+ \ (A+ n A_) 
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and 

Therefore 

and 

so 

Define 

so 

A_ \ A+ = trajectories in A_ that didn't go to A+ 

c A_\ (A+ nA_). 

µ(A+ \A-) :S µ(A+\ (A+ nA_)) 

= µ(A+) - µ(A+ nA_) = 0 

µ(A- \ A+) :S µ(A_\ (A+ n A_)) 

= µ(A-)- µ(A+ nA_) = 0 

µ(A+\ A_)= µ(A+\ A_)= 0. 

A-;- B =(A\ B) u (B \ A) 

µ(A+ -;-A_)= 0. • 

PERTURBATION OF DISCRETE TIME SYSTEM WITH ANOTHER 

DISCUSSION WITH J. TRAPLE 

3 NOVEMBER, 1988: KRAKOW 

In thinking about how we might start to look at the perturbation of a discrete time system by another, one 
possibility is to consider 

k k ki ui+l = S(u;) + ip(T (x0 )) k = 1, 2, · ··. 

For example, with S(x) = ax, lal < 1, and k = 1 we have 

u}+l = .X(Ti(xo)) 

where 
00 

m=-oo 

We could, for example, pick T to be the ubiquitous parabola t(x) = 4x(l - x). 

COARSE GRAINED ENTROPY 

DISCUSSION WITH R. RUDNICKI 

10 NOVEMBER, 1988: KATOWICE 

Its certainly true that for an invertible system 

H(Pt fl!,) = H(flf,) = constant Vt 

Suppose our invertible system is mixing. Then if n is the index of the partition (the number of units) it is also the 
case that 

lim H~0 (Ptflf.) = 0. 
t-,oo 

But, we should also expect that 

This seems like a real paradox! 
A partial (?) explanation. Let 

g(t) = H(Pt fl!,)= constant 

and 

Then Vt< oo 
0 2: g1 > g2 > · · · > g(t) = constant. 

Thus the gn, though increasing to 0 as n ---. 1, approach a constant limiting function g(t). [I don't think this is any 
explanation at all.] 
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SUPER ADDITIVE ENTROPIES 

DISCUSSION WITH RUDNICKI AND LOSKOT 

11 NOVEMBER, 1988: KATOWICE 

Their paper was rejected by J. lebowitz ( Comm. Math. Phys.) since results had been previously obtained by 
Csiszar, I. (1967). "Information type measures of the differences of probability distributions and indirect observations", 
Studia Sci. Math. Hungaria 2, 299-318. 
ibid. "On topological properties off divergences" pp 329-339. 

Rudnicki and Loskot proved that for any concave function 'f/ 

lim H,,(fnlgn) = ry(l) =* lim llfn - gnllu = 0. 
n----too n..........,00 

The converse can also be proved if :3 conditions on 'f/. They say that 

(1) r7 concave and continuous in R+; and/or 
(2) 'f/ is strictly concave at 1 which means that 'T) can't be linear in a neighborhood of 1 

are sufficient. 

COARSE GRAINED ENTROPY~SoME THOUGHTS 

12 NOVEMBER, 1988: KATOWICE 

(1) Though we know that for mixing systems H[!G(Ptflf,) --t O eventually, how many fluctuations can it have 
along the way. How severe can they be? 

(2) Perhaps the number and severity of the fluctuations in the entropy in its travels to O depend on n. 
Un to address these two points it would be most interesting to examine the effects of changing the coarse graining 

index n on the evolution of the entropy of a model mixing system [start with the baker transformation of 
course]. (a). Could uniformly coarse grain throughout the phase space [i.e. CG with respect to x and y 

equally]; (b). Alternately could CG in either x or y. 
(4) If have a CG mixing system with initial entropy H(flf.) and find, for example that 

H(flf,) > H(Pflf.) > H(P2 !If.) 
and then 

H(P2 !If.)< H(P3 !If.)<···< 0 

then is this some crude example of the development and then aging and destruction (death) of a biological 
organism? 

DISCUSSION WITH ANDY CONCERNING ENTROPY 

12 NOVEMBER, 1988: KATOWICE 

See background notes from Oxford, Fall, 1986! 
Suppose we have a finite number (though large) of particles and we are able to continuously measure and plot 

the entropy of this collection. 
Though the Poincare recurrence time is of the order of 

Tp '.:::'. 0(101023), 

if one was able to observe this system for a time t many order of magnitude larger than Tp the graph of the entropy 
might look like 

Andy says that if perturb the system to an entropy level -c, then :3 no reason to expect that the subsequent 
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entropy will increase or decrease as :3 bipolar possibilities for each such -c if you can observe the system (universe) 
for an infinitely long time. 

Question 1. Seems to me that if, at a time t you are at an entropy level of h(t), then perturbing to a level of -c 
you will get an unambigious increase of decrease in H depending on the state you were in at time t, i.e. on the 
density .f (x, t). 

AL's idea-which I don't understand. 
Consider Ti, 1 as something of a probability of a fluctuation in entropy to increased values per unit time. Then 

he claims that, with probability 
1 

1--
Tp 

if you change (perturb) the entropy to a value -c then you will be at the minimum of a fluctuation! 
The consequences of this are two fold and, if true, amazing. 

(1) Following a perturbation to a smaller entropy value, the subsequent entropy evolution will always appear to 
be increasing. 

(2) If the direction of time were suddenly reversed and entropy was the only indicator of the "arrow of time", then 
one would be unable to detect this time reversal! 

Question 2. How can this assertion be proved? Does it require any assumption(s) concerning the nature of the 
dynamics responsible for generating the evolution of the entropy? Can it possibly be independent of the dynamics? 

19 NOVEMBER, 1991 
QUANTUM MECHANICS AND HIDDEN VARIABLES 

When I was a student, I was very disturbed by quantum mechanics. Even more disturbing to me was the fact 
that neither my professor nor the other students seemed to have any difficulty with it. I later learned that I was not 
alone. 

Almost from its very inception, the formalism and interpretation of quantum mechanics spawned a number of 
attempts to find alternative formulations that had interpretations more in accord with the notions of reality that 
physicists were accustomed to from their study of macroscopic behaviour (see Jammer [1989, The Conceptual 
Development of Quantum Mechanics, AIP; and 1974, The Philosophy of Quantum Mechanics, Wiley] for 
an excellent account of the history of this subject). Some of these came wearing the clothes of so called "hidden 
variables" theories. 1 These are interesting because of their connection with the operation of taking a trace of a 
dynamical system, and because they illustrate that taking a trace of a reversible system may not automatically lead 
to entropy evolution as time changes. 

A few years ago I happened to read two papers written by the physicist David Bohm [Physical Review (19.52a,b), 
85, 166-19:3] that excited me because they provided a simple example of a hidden variables theory that was completely 
consistent with the predictions of quantum mechanics. In my opinion, the original work of Bohm is one of the most 
interesting of the existing hidden variables theories (there are many) because of its simplicity, and because it was the 
first widely known2 clear counter example that led to the discovery of the inapplicability of the famous "proof" by von 
Neumann (19:32) that hidden variable representations of quantum mechanics were impossible. 

Following Bohm3 , we consider the non-relativistic Schrodinger equation for a single particle with position x and 
mass m moving in a potential V(x) (the argument carries through for many particle systems) 

in fJip = - .!!:_ V 2 ijJ + V ijJ . 
f)t 2m 

(1) 

Bohm postulated that the wave function i/J is an objectively real quantity that is to be thought of as a field, satisfying 
a field equation (1) just like the electromagnetic field satisfies Maxwell's equations. Since ''P is generally complex, we 
let the amplitude of ?j, be v1 and its phase be S (both .f and S are real quantities) so 

(2) 

1 To my knowledge, the most penetrating analysis of hidden variable theories is by Belinfante ( 1973),A Survey of Hidden-Variables 
Theories, Pergamon Press, Oxford. 

2 de Broglie's "pilot wave" hypothesis in his 1927 thesis is mathematically identical with Bohm's theory, though with differing 
interpretations on various points. 

3 Bohm's hidden variable theory is what Belinfante calls a hidden variable theory of the first kind, i.e., those in which deviations 
from the predictions of quantum mechanics will only occur in a non-equilibrium situation, whereas von Neumann's ''proof" only applies to 
hidden variable theories of the zeroth kind. 
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with 'lj;* = v'l e-iS /n and 'lj;'lj;* = f. 
It is a simple series of calculations to show that f and S satisfy the pair of coupled partial differential equations 

a f + v' . (! v1 s) = 0 at m 
(3) 

and 
as (v'S)2 
fit+~+ V(x) + VQ(x,f) =0, (4) 

where 

(.5) 

How should we interpret this rewriting of the Schrodinger equation? Bohm reasoned as follows. S is the solution 
of equation (4), and in the "classical" limit of fi ---t 0 this equation is precisely the Hamilton-Jacobi equation for a 
particle moving in a potential V. If one considers a large number of particles moving according to (4), then from 
classical mechanics v'S/m is the velocity v(x) of a particle at the point x. When fi-=/- 0, Bohm interpreted (4) as the 
Hamilton-Jacobi equation for a single particle moving in a combined potential consisting of the classical potential V 
plus a quantum potential Vq given by (.5). 

Bohm took the classical results as a justification for identifying the velocity v with v' S through the relation 

v'S 
V=m' (6) 

thereby explicitly assuming that even in a quantum mechanical situation particles are real objects (not manifestations 
of wave functions that collapse upon measurement) and we can attach objective meaning to both particle position x 
and the wave function 'ljJ. 

and 

With (6), equations (3) and (4) can be rewritten in the form 

af - + v' • (fv) = 0 at 

as 1 
7ft + 2mv 2 + V(x) + Vq(x, f) = O. 

(7) 

(8) 

Mathematically, f = 'ljJ'ljJ* is a density since f ?: 0 and J 'ljJ'ljJ* dx = J f dx = 1. The fact that (7) is of the form of 
a classical conservation, or continuity, equation for the density, much like the Liouville equation, was used by Bohm 
to motivate his final major assumption that f = 'ljJ'ljJ* is a physical probability density of an ensemble of particles. 
Precisely the same point of view was taken by Schrooinger [1978, Wave Mechanics, Chelsea Pub. Co., New York] 
in his original development of the Schrodinger equation. 

It is worth noting here that if, in analogy with the classical situation, we set 

then (8) is equivalent to 

or to 

Noting further that 

1 2 
1t = 2mv + V + Vq 

as= -1t 
at 

dx 1 a1t 
-=V=--
dt m 8v 
dv d 

m- = -v'S = -v'1t. 
dt dt 

d (1 2) d - -mv = -v • v'1t = --(V + Vq) 
ill 2 ill ' 

(9) 

(10) 

(11) 
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we have 
1 2 

1t = 2mv + V + Vq = constant, (12) 

so 1t plays the role of a conserved energy for the system. 
Equations (11) are clearly reversible (and even of Hamiltonian form), so from the results of Mackey [1991, Time's 

Arrow: The Origins of Thermodynamic Behavior, Springer-Verlag, New York], if we identify f(t, x) = ptf(x) 
then it is clear that the conditional entropy He satisfies 

for all initial densities. That there is no entropy evolution in quantum systems described by the Schrodinger equation is 
well known, and has been proved by Wehrl [Reviews of Modern Physics (1978), 50, 221-260] using different techniques. 

It is perhaps unfortunate that Bohm's work has acquired the label of a hidden variable theory. Since he is 
attaching objective significance to both particle position and the wave function, what are the "hidden variables" in 
Bohm's reinterpretation of quantum mechanics? It seems that there are two. First, the Schrodinger equation only 
deals with particle position x as the velocity v does not enter. Secondly, and more importantly, is the appearance of 
the quantum potential Vq in Bohm's interpretation. Since equations (7) and (8) differ from their classical counterparts 
only in the appearance of Vq, any attempt to deduce quantum mechanics from some more comprehensive theory must 
explain the origin of the quantum potential. We will return to this point in Chapter 11 when we discuss Nelsons 
derivation of the Schrodinger equation. 

The quantum potential Vq is a strange bird for at least two reasons. 

(l) Vq is quite different from any form of potential function we are accustomed to in classical physics because of 
its dependence on the probability density function f(t, x) at all points in configuration space, and its lack of 
explicit diminution as the distance between a point and a particle increases. The former is the origin of the 
"nonlocal" nature of quantum mechanics, with its apparent conflict with relativistic theory, though Bohm and 
Hiley (1984) have argued that this conflict is more apparent than real. 

(2) The second peculiar aspect of the quantum potential Vq arises through the way in which it depends on the 
probability density function u, viz. 

"\72(v7) 
Vq~ JJ 

From this it is clear that the quantum potential at a particular point in space is independent of the magnitude 
of the probability density function at that point, depending only on the shape of f. 

26 JANUARY, 1994 
THE BOHR TREATMENT OF ATOMIC SPECTRA 

These notes summarize the treatment followed by N. Bohr1- 4 in his explanation of the emission and absorption 
spectra of various elements. This work was later summarized by Bohr in yet a fifth paper5 • 

The impetus for Bohr's work was the observation, by 1913 quite well established, that the spectra of atomic 
hydrogen can be very accurately described by the formula 

D = Roo {-1 - __!_} n'2 n2 
n' < n with both being positive integers, (1) 

wherein D (in units of mC 1 ) is the wavenumber [related to the frequency v ( sec- 1 ) by v = cD, where c is the speed 
of light], and R 00 is the Rydberg constant appropriate for hydrogen. When n' = 1, equation (1) describes the Lyman 
series in the ultraviolet region (discovered in 1906); for n' = 2 it describes the visible Balmer series first described in 
1885; with n' = 3 one recovers a good description of the infrared Paschen series of 1908. n' = 4 corresponds to the 
1922 Brackett series (also infrared); and n' = 5 gives the far infrared Pfund series. 

1 N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. (1913), 26, 1-25. 
2 N. Bohr, "On the constitution of atoms and molecules: II. Systems containing only a single nucleus", Phil. Mag. (1913), 26, 

476-502. 
3 N. Bohr, "On the constitution of atoms and molecules: III. Systems containing several nuclei", Phil. Mag. (1913), 26, 857-875. 
4 N. Bohr, "On the effect of electric and magnetic fields on spectral lines", Phil. Mag. (1914), 27, 506--524. 
5 N. Bohr, "On the quantum theory of radiation and the structure of the atom", Phil. Mag. (1915) 30, 394-415. 
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In trying to understand the phenomenology described by equation (1), Bohr used a mixture of classical physics, 
and what we now call the "old" quantum mechanics. Let us first examine the classical portion of his treatment. 

For an electron-proton system, where the proton is fixed (infinitely massive) and the electron has finite mass me, 
from Newton's laws mea = F, where a is the acceleration and Fis the force, for circular motion we obtain 

v2 IAI 
me-= -2, 

r r 

where r is the radius of the orbit, v is the electron velocity, and the constant A is given by 

e2 e2c2 
A=--=--

47TEo 107 • 

( e is the electronic charge and c is the velocity of light.) 
Since, in a circular orbit, v = rw, where w is the angular frequency, equation (2) can also be written in form 

m rw2 = ~ 
e r2 , 

If E is the total energy of the electron, then it is made up of the sum of the kinetic and potential energy: 

where the kinetic energy is defined in a usual fashion 

From the customary definition of the potential energy, 

Epot = -100 
~dr' = -~-

r r' r 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

This potential energy corresponds to the work required to remove the electron from position r to oo, and the point 
at which the potential energy goes to zero must correspond to the ionization potential for the electron-proton pair. 
Thus, we can write the total energy of equation (4) as 

1 2 A 1 2 IAI A IAI 
E=-mev +-=-meV --=-=--

2 2r 2 2r 2r 2r ' 

where we have used (2) to arrive at the final result. Alternately, we can solve (4) for r: 

to give 

IAlf 2 .1. 
E = ---(mew )s. 

2 

(8) 

(9) 

(10) 

So far, the treatment is entirely classical, and equations (9) and (10) point out the inadequacy of any classical 
treatment to explain the spectral phenomena described by (1). Namely, from equation (9) in a classical situation 
all energies are allowed as well as all radii. However, since the electron is moving in a circular orbit, it is under 
constant acceleration, and consequently should be radiating electromagnetic waves at a frequency equivalent to its 
orbital frequency, i.e. 

w 
v-­- 21r· (11) 

Consequently the electron should lose energy in a continuous fashion and eventually spiral into the nucleus. All of this 
is quite elementary, and simply a summary of the well known classical paradox with respect to the observed discrete 
spectrum of radiation described by equation (1). 
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Faced with this impasse from classical theory, Bohr made the following postulates: 

(1) Although the classical equations of motion (as sketched out above for circular orbits) are valid for an electron 
in an atom, only certain orbits (denoted by the index n = l, 2, •••)are allowed, and in these orbits the electron 
has a fixed binding energy En. 

(2) In these allowed orbits (which can be thought of as corresponding to stationary states) there is no emission of 
radiation even though this would be expected on the basis of classical electromagnetic theory. 

(3) An electron going from a stationary state of binding energy En (remember that on a classical basis that the 
binding energy is negative) at radius rn to a second stationary state with a binding energy En, < En at a 
smaller radius r,-,,, will radiate electromagnetic waves at a frequency v proportional to the difference in the 
binding energies in the two orbits. 

Bohr assumed the constant of proportionality is Planck's constant h: 

En - E,-,,, = hv = hcii. (12) 

The adsorption of energy would be described by the reverse process. Through a comparison of equations (1) 
and (12), Bohr then concluded that the energies in the stationary states must have the form 

E - - Rx,hC 
n - n2 (13) 

(4) Things in the Bohr papers now become a bit clouded, but the fourth postulate essentially utilizes a primitive 
form of what he later enunciated as the correspondence principle. Bohr argued that in the situation that we are 
observing a transition from a state n-8 ton, and n is large relative to 8, we should identify I/ with the classical 
orbital frequency w/21r. In such a circumstance, from equation (1) and the relation between wavenumber and 
frequency we have 

I/= Rooc [ (n ~ 8)2 - ~ 2 ] 

= Rn";c [ [1 - ~/n]2 - 1] 
2R00 c8 

n3 

Thus, in going from the n - 1 to n level with n large, we have that 

2R00c 
I/:::'.~-

(14) 

(15) 

Now setting w = 21rv, with I/ given by (15), in equation (10), along with equation (13), we immediately obtain 
an expression for the Rydberg constant, namely 

(16) 

Equation (16) was Bohr's main result, and with the value of h estimated from black body radiation and exper­
iments on the photoelectric effect, and the other constants, he was able to obtain a numerical value for the Rydberg 
constant consistent with spectroscopic measurements. 

With these relations, we can put some more flesh on the character of these stationary orbits assumed by Bohr. 
From equation (13) we can write the energy of the nth stationary state as 

or 

E --~ n - 2rn, 

~ 
~ 

(17) 

(18) 
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wherein 
E - - me IAl2 

1 - 2 fi2 ' (19) 

and we use the now customary notation Ii= h/21r. Using the expression for the energy in equation (8) we can solve 
for r n to give 

or 

with 

Equation ( 4) now yields 

or 

where 

= (n!i) (melAl) 2 
Wn me n2fi2 

IA12 
= me (nfi)3' 

~ 
~ 

IAl2 
W1 =me7· 

Since the period Tn is just Tn = 1/ f n and fn = 27rWn it is immediate from (24) that 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

with T1 = 1 /21rw1 . The time required for the propagation of effects from electron to proton ( the delay) is just T = r / c, 
so from the above relations we find 

n2!i2 
(27) Tn = 

meclAI 

or more simply 

I Tn = n2T1, I (28) 

with 
fi2 

(29) T1 = meclAI. 

From equation (2) in conjunction with (21), we may write Vn as 

IAI 
Vn=-, n!i (:30) 

or 

(31) 

with 

(32) 

In a circular orbit, the angular momentum is 

p = mevr, 
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which means that 
(33) 

so as a consequence of this entire treatment the angular momentum also ends up being quantized. Many authors 
incorrectly present the Bohr treatment as if quantized angular momentum was one of his postulates, but this is not 
the case. 

Having all of these relations, its instructive to see what the numbers really look like. Taking the best available 
modern determinations we use (unless otherwise noted, these values are taken from6 ): 

(1) speed of light c = 2.99792458 x 108 ms- 1 ; 

(2) Eo = 107 /4n:c2 Fm- 1; 

(3) electronic charge e = 1.60217733 x 10- 19 C 
or7 

e = 1.60217670 x 10- 19 C ; 
(4) electron mass me = 9.1093897 x 10- 31 kg; 
(5) h = 6.6260755 x 10-34 Js ~ Ii = 1.054573 x 10-34 Js 

or7 

h = 6.6260704 x 10-34 Js ~ Ii = 1.054572 x 10-34 Js; 
(6) Rc,o = 1.0973731534 X 107 m- 1 

or8 

R00 = 1.097373156830 X 107 m- 1 

or9 

R00 = 1.097373156841 X 107 m- 1 

we first find that calculating h from equation (16) using the CODATA 6values, especially for R00 , that the precise 
value quoted in the CODATA figures results. Namely, 

h = 6.6260755 x 10- 34 Js, 

which is a bit suspicious since in the CODATA report they make no mention of how their best figure for h was arrived 
at. Going further we rather easily find, using the 1986 CODATA values, that 

(1) Energy in the first Bohr orbit is E 1 = -2.1798741 x 10- 18J; 
(2) Radius in the first Bohr orbit is r 1 = 5.29177249 x 10-11 m; 
(3) Angular frequency in the first Bohr orbit is w1 = 4.13413732 x 1016 s-1; 
(4) Period in the first Bohr orbit is T1 = 1.51982989 x 10- 16 s; 
(5) Delay to the first Bohr orbit is T1 = 1.7651453 x 10-19 s; 
(6) Velocity in the first Bohr orbit is v1 = 2.18769141 x 106 ms- 1; 

(7) Frequency in the first Bohr orbit is f 1 = 6.57968374 x 1015 sec-1; 
(8) Ratio of the period to the delay in the first Bohr orbit is 

Tl = 2n: x 137.03590744504, 
T1 

where 137. • • • is the "fine structure constant". This last relation can be written in the alternate form 

- 1- = 137.03590744504. 
W1T1 

Interestingly, this is not the same value as given in the CODATA report6 , namely 

a - l = 137.0359895, 

nor does it match the recent value7determined from measurements on the quantized Hall effect and the Joseph­
son junction carried out at the NBS: 

a- 1 = 137.0359940. 

6 E.R. Cohen & B.N. Taylor, "The 1986 adjustment of the fundamental physical constants", Rev. Mod. Phys. (1987) 59, 1121-1148. 
7 M.E. Cage, R.F. Dziuba, R.E. Elmquist, B.F. Field, G.R. Jones, P.T. Olsen, W.D. Phillips, J.Q. Shields, R.L. Steiner, B.N Taylor & 

E.R. Williams, "NBS determination of the fine-structure constant and of the quantized Hall resistance and Josephson frequency to voltage 
quotient in SI units", IEEE Trans. Instru. Meas. (1989), 38, 284-289. 

8 F. Nez, M.D. Plummer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, 0. Acef, J.J. Aondy, P. Laurent, A. Clairon & M. Abed, 
"Precise frequency measurement of the 2S-8S/8D transitions in atomic hydrogen: New determination of the Rydberg constant", Phys. 
Rev. Lett. (1992) 69, 2326-2329. 

9T. Andreae, W. Konig, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmerman & D. Meschede, "Absolute frequency mea­
surement of the hydrogen 1S-2S transition and a new value of the Rydberg constant", Phys. Rev. Lett. (1992) 69, 1923-1926. 
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A simpler route to the Bohr results. 
It is interesting that a much simpler and more transparent way is available to derive the essence of the Bohr 

results. It is the following. 
First, we have equation (4), which I repeat for ease of exposition: 

(4) 

Furthermore, for circular planar motion the angular momentum of the electron is constant, so 

(34) 

where C is an unknown quantity to be determined. Solving (4) and (34) for the pair (r, w) gives 

(35) 

and 
melA12 

W=---,--
C3 (36) 

respectively. If we also adopt the Bohr approximation derived from the Rydberg equation: 

2Roc,CO 
v:::::: 

n3 
(14) 

and assume 
47f Roc,CO 

w = 21rv:::::: 3 , 
n 

(37) 

then in conjunction with (36) we have after a bit of algebra the result 

( 21rC) 3 
_ mee\. 

n 8RcxoEo 
(38) 

The right hand side of equation (38) is numerically equal to the value of the Planck constant raised to the third power: 

Consequently, we must have 

so 

and 

respectively. 

h 
Cn =n- =nli, 

27r 

Finally, we note that from equation (7), we can write 

so 
meA2 

[ 1 1 ] [ 1 1 ] En - Em = ~ -? - 2 = liRrx,c = - 2 - 2 = liRcxoc = liv. 2n m~ n m n 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 
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3 AUGUST, 1996: LAC PILON 

COLLAPSE OF THE WAVE FUNCTION 

In the Copenhagen interpretation of QM, as enunciated by Bohr, one of the major issues is the so called mea­
surement problem. In this, it is stated that once any measurement is made on a QM system then the associated wave 
function "collapses" to a delta function. Lets examine this proposition via an analogy. 

Considers dynamical system (or SDS) T, and the associated evolution of densities f via the FP operator. Assume 
that T is such that we at least have a stationary density J •. Now, if we were to make a measurement of the position 
(or whatever variable is evolving under the action of T) at a given time can we assert that the stationary density f. 
collapses at the instant of measurement? Of course not~f. is an independent entity as associated with the evolution 
of an ensemble, and the existence or not off. is completely independent of any measurements that we make on the 
system. 

I think that through this analogy we can immediately see the foolishness of this notion that the wave function 
collapses. 


