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These notes summarize a number of calculations that have been done over the past years in which I was trying
to examine the effect of having forces acting that were not instantaneous, i.e., ones that either

(1) interact with a constant delay, or with a delay that is proportional to the distance over which the force acts.
This latter situation has been extensively considered from a mathematical point of view by R.D. Driver and
his co-workers1; or

(2) depend on both the positions of the interacting particles in the past as well as in the future (the so called
half-advanced/half-retarded interaction case). This situation, in which causality is violated, is justified by the
observation that if it is required that the laws of physics should be time reversal invariant, then the existence
of retarded potentials implies the corresponding existence of advanced potentials. This notion, apparently
contrary to common experience, has been raised a number of times over the past decades2.

These theoretical investigations into the potential significance of retarded and/or advanced interactions have assumed
even more significance in light of the recent experimental results of Sandoghdar et al.3, so elegantly summarized in a
historical context by Levy4.

OK, enough of the blah-blah introduction. Now its time to do a

1. Warm Up Exercise.

1See R.D. Driver, Ann. Phys. (N.Y.) (1963) 21, 122; R.D. Driver and M.J. Norris, ibid. (1967) 42, 347; R.D. Driver, Phys. Rev.
(1969) 178, 2051; V.I. Zhdanov, “Convergence of iteration method in the relativistic two-body problem, taking into account the retardation

of interactions”, J. Phy. A: Math. Gen. (1991) 24, 5011-5027.
2Namely in the work of K. Schwarzschild [Göttinger Nachrichten (1903) 128, 132], H. Tetrode [“Über den Wirkungszusammenhang

der Welt: Eine Erweiterung der Klassichen dynamik”, Zeits. für Physik (1922) 10, 317-328], A.D. Fokker [Zeits. für Physik (1929) 58,
386; Physica (1929) 9, 33; “Theorie relativiste de l’interaction de deux particules chargees”, ibid (1932) 12, 145-152], L. Page [“Advanced
potentials and their application to atomic models”, Phys. Rev. (1924) 24, 296-305] J.A. Wheeler and R.P Feynman [“Interaction with
the absorber as the mechanism of radiation”, Rev. Mod. Phys. (1945) 17, 157-181; “Classical electrodynamics in terms of direct
interparticle action”, ibid (1949) 21, 425-433], C.M. Anderson and H.C. von Baeyer [“Almost circular orbits in classical action at a distance
electrodynamics”, Phys. Rev. D. (1972) 5, 802; “Solutions of the two-body problem in classical action at a distance electrodynamics:
Straight line motion”, ibid, 2470-2476], R.D. Driver [“Can the future influence the present”, Phys. Rev. D. (1979) 19, 1098-1107], J.T.
Hoag and R.D. Driver [“A delayed-advanced model for the electrodynamics two-body problem”, Nonlin. Anal. (1990) 15, 165-183]

3V. Sandoghdar, C.I. Sukenik, and E.A. Hinds, ”‘Direct measurement of the van der Waals interaction between an atom and its
images in a micro- sized cavity”, Phys. Rev. Lett. (1992), 68, 3432-3435

4B.G. Levy, “New evidence confirms old predictions of retarded forces”, Phys. Today (1993) April, 1993, 18-20.

Typeset by AMS-TEX

1



2 MICHAEL C. MACKEY

According to my notes, on September 18, 1986, Helmut Schwegler and I considered a slightly modified harmonic
oscillator

m
dx

dt
= v

dv

dt
= −k [αx(t − τ) + βx(t + τ)]

(1.1)

with mass m, position x, velocity v, and spring constant k. The thing that is different about this harmonic oscillator
is that we have allowed for the possibility of both retarded and advanced forces, where τ is the retardation and/or
advancement. There are two free constants in this force, α and β. We assume that α, β ∈ [0, 1] and that α + β = 1.
Thus, if (α, β) = (1, 0) then the force is purely retarded, while if (α, β) = ( 1

2 , 1
2 ) then we have the half-advanced/half-

retarded situation that has received so much interest in the past (cf. references of the introduction).
Combining the equations (1.1) gives

m
d2x

dt
= −k [αx(t − τ) + βx(t + τ)] . (1.2a)

From now on I will use the convention that x−τ ≡ x(t − τ) so xτ ≡ x(t + τ) and equation (1.2a) can be equivalently
written

m
d2x

dt
= −k [αx−τ + βxτ ] (1.2b)

We are curious to know if undamped harmonic motion is a possibility in this model defined by (1.2b). Since
(1.2b) is linear, this is a pretty straightforward question to answer. Make the ansatz that x(t) = exp(λt), substitute
this into (1.2b) and obtain the eigenvalue equation

mλ2 = −k
[
αe−λτ + βeλτ

]
. (1.3)

Assume that λ = µ + iω, and substitute this into equation (1.3). After separating the real and imaginary parts of the
result we have, respectively,

m(µ2 − ω2) = −k cos(ωτ)[αe−µτ + βeµτ ]

2mµω = −k sin(ωτ)
[
−αe−µτ + βeµτ

]
.

(1.4)

Since we are looking for strictly periodic motion, take µ = 0 so λ = iω and equations (1.4) become

mω2 = k cos(ωτ) (1.5a)

0 = (β − α) sin(ωτ). (1.5b)

Note that for strictly periodic solutions of (1.2) to exist, Equations (1.5a,b) must be simultaneously satisfied.
Equation (1.5b) can be satisfied on one of two ways. Either

(1) sin(ωτ) ≡ 0 which implies that ωτ = nπ where n is an integer; or
(2) α ≡ β which, in combination with the restriction that α + β = 1, immediately implies that α = β = 1

2 .
With these two possibilities in mind, we now turn to a consideration of how (1.5a) can be satisfied.
With Possibility 1 for satisfying (1.5b), if ωτ = nπ with n an integer then cos(ωτ) = (−1)n so, from equation

(1.5a) and the fact that k, m, and ω2 are all positive we conclude that if Possibility 1 is to be considered then n must
be an even integer and ωτ = 2κπ, where κ is an integer. Note that this condition places no additional constraints on
α and β over and above the original one that α + β = 1.

To consider Possibility 2, rewrite (1.5a) as

m

kτ2
(ωτ)2 = cos(ωτ). (1.6)

For a fixed τ , solving this transcendental equation (1.6) analytically for ω is, in general, impossible. However, note
that in the special case that

m

kτ2
<< 1, (1.7)
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then (1.6) will have a number of zeros at values given approximately by

ωτ '
(

n +
1
2

)
π. (1.8a)

Since ω = 2πf , this last relation becomes

f '
(

n +
1
2

)
1
2τ

. (1.8b)

Equation (1.8b) gives, of course, the allowed frequencies of the linear harmonic oscillator at which radiation occurs–an
example that is carried out in every undergraduate course in quantum mechanics.

1a. The issue of energy. In a system like (1.1), just exactly how should one go about defining the energy E? We
could assume, as classically, that E is made up of a kinetic energy, which we take to be

Ekin =
1
2
mv2, (1.9)

but what to do about defining an analog of the potential energy? If we define an operator

D ≡ ∂

∂x−τ
+

∂

∂xτ
, (1.10)

so
F = −k [αx−τ + βxτ ] = −Dφ, (1.11)

then what should we take the potential φ to be? Its obvious that either of the following two choices will work equally
well:

φ(xτ , x−τ ) =
k

2
[
αx2

τ + βx2
−τ

]
(1.12a)

φ(xτ , x−τ ) =
k

2
[αxτ + βx−τ ]2 (1.12b)

This leaves me in a bit of a jam! What to do? Well, which ever (if either) definition of potential energy is correct the
total energy should be

E =
1
2
mv2 + φ, (1.13)

so
dE

dt
= mvv̇ +

∂φ

∂t

= vF +
∂φ

∂t

= −vDφ +
∂φ

∂t
.

(1.14)

1b. Nonconstant τ . Of course, this is a bit of a stupid exercise since if we are considering advances and/or delays
that are a consequence of the exchange of virtual particles, then the delays and advances will not be constant. To
illustrate this, it would seem that the sensible (“physically realistic”) version of (1.2) should, in fact, be

m
d2x

dt
= −k [αx(t − τR) + βx(t + τA)] , (1.15)

where τR and τA must satisfy the functional equations

cτR = |x(t) − x(t − τR)| (1.16a)

cτA = |x(t) − x(t + τA)| (1.16b)

and c is the speed of light. Probably one might also want to include relativistic effects in the mass m, though that
is unclear at this point. However, this becomes a total mess mathematically, and thus a different, and maybe more
interesting system to study is one in which we have an electron and proton interacting through advanced and retarded
potentials. This we treat in the third section, after some preliminary remarks about the old Bohr quantization.
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2. Bohr Treatment of Atomic Spectra. This section outlines the assumptions and results of the old Bohr
quantization rules, as these provide a touchstone for any alternative treatment of quantum mechanics.

In his work, Bohr made four assumptions that we can summarize as follows:
(1) Atomic systems have a number of stationary states. In a stationary state, there is no emission of radiation

even though this would be expected on the basis of classical electromagnetic theory.
(2) Any emission or absorption of radiation corresponds to a transition between stationary states. The frequency

(ν) of radiation (either emitted or absorbed) is given by

ν =
E1 − E2

h
,

where h is Planck’s constant, and E1,2 is the energy of the two stationary states between which the transition
is occurring.

(3) When the system is is a stationary state, the dynamics are governed by classical considerations, but this is
not the case for transitions between stationary states.

(4) Different stationary states for an electron orbiting a proton in a circular orbit are determined by

p = n

(
h

2π

)
= n~,

so the angular momentum p is an integral multiple of ~.
Now, lets put flesh on these assumptions and do some calculations for an electron-proton system, where the

proton is fixed (infinitely massive) and the electron has finite mass m. First, from Newton’s laws ma = F , where a is
the acceleration and F is the force, for circular motion we obtain

m
v2

r
=

|A|
r2

,

where r is the radius of the orbit, v is the electron velocity, and the constant A is given by

A = − e2

4πε0
= −e2c2

107
.

(e is the electronic charge and c is the velocity of light.) Thus

mv2 =
|A|
r

. (2.1)

If E is the total energy of the electron, then

E = Ekin + Epot

=
1
2
mv2 +

A

r
=

1
2
mv2 − |A|

r

or

E =
A

2r
= −|A|

2r
. (2.2)

Since Bohr assumes that the angular momentum is quantized (assumption 4) pn = n~ so

pn = np1,

and in a circular orbit the angular momentum is
p = mvr,

which means that mvnrn = n~ so vn = n~/mrn and consequently from (2.1)

mv2
n = m

(
n~

mrn

)2

=
|A|
rn

.
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Solving this relation for rn gives

rn =
n2~2

m|A|
,

or
rn = n2r1 (2.3)

with

r1 =
~2

m|A|
. (2.3’)

Furthermore, we may now write vn as

vn =
|A|
n~

,

or

vn =
v1

n
(2.4)

with

v1 =
|A|
~

. (2.4’)

Since the orbital frequency f is given by
f =

ω

2π
=

v

2πr
,

we have

fn =
vn

2πrn

=
(

n~
2πm

) (
m|A|
n2~2

)2

=
( m

2π

) |A|2

(n~)3
,

or

fn =
f1

n3
(2.5)

where

f1 =
m

2π

|A|2

~3
. (2.5’)

Since the period Tn is just Tn = 1/fn it is immediate from (2.5) that

Tn = n3T1, (2.6)

with T1 = 1/f1.
The time required for the propagation of effects from electron to proton (the delay) is just τ = r/c, so from the

above relations we find

τn =
n2~2

mc|A|
or more simply

τn = n2τ1, (2.7)

with

τ1 =
~2

mc|A|
. (2.7’)

Finally, the energy of the nth stationary state is

En = − |A|
2rn

, (2.8)
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or

En =
E1

n2
(2.9)

wherein

E1 = −m

2
|A|2

~2
. (2.9’)

From Bohr’s assumption 2 the frequency of radiation in going from stationary state n1 to n2 is

hν = En1 − En2

= − |A|
2rn1

+
|A|
2rn2

=
|A|
2

(
1

rn2

−
1

rn1

)

=
m|A|2

2~2

(
1
n2

2

− 1
n2

1

)

Thus

ν =
m|A|2

4π~3

(
1
n2

2

− 1
n2

1

)
.

Since, from equation (2.5) we can write
nfn

2
=

m|A|2

4πn2~3
,

this last relation becomes
ν =

1
2

[n2fn2 − n1fn1 ] .

Having all of these relations, its instructive to see what the numbers really look like. Taking
(1) electronic charge e = 1.6 × 10−19 coulombs;
(2) ~ = 1.05× 10−34 Joule-sec;
(3) speed of light c = 3 × 108 mt/sec;
(4) electron mass m = 9.1 × 10−31 kg; and
(5) K = 8.99× 109 mt2/sec2

we rather easily find that
(1) Radius in the first Bohr orbit is r1 = 5.26× 10−11 mt = 0.526A;
(2) Velocity in the first Bohr orbit is v1 = 2.2 × 106 mt/sec;
(3) Delay to the first Bohr orbit is τ1 = 1.75× 10−19 sec;
(4) Frequency in the first Bohr orbit is f1 = 6.66× 1015 sec−1;
(5) Period in the first Bohr orbit is T1 = 1.5 × 10−16 sec;
(6) Ratio of the period to the delay in the first Bohr orbit is

T1

τ1
= 858 = 2π × 137,

where 137 is the “fine structure constant”. This last relation can be written in the alternate form

ω1τ1 =
1

137
.

3. The Hydrogen Atom. With the historical outline and calculations of the previous section, we now turn to a
consideration of how these might be modified by the assumption that an electron and proton are interacting non-
instantaneously through a combination of advanced and/or retarded forces.

As noted in the previous section, the velocity in the first Bohr orbit is O(106mt/sec), and velocities in successively
higher orbits decrease as n−1. Since these velocities are much less than the speed of light, it would seem that a non-
relativistic treatment is a reasonable first approximation. Thus with an interacting electron proton pair, we can in the
first instance neglect magnetic forces and view the interparticle forces as purely central.
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Consider an electron of mass me located at the vector position re interacting with a proton of mass mp at rp.
The force on the electron due to the proton is Fp,e while the force on the proton due to the electron is Fe,p. If the
forces are central, Fp,e = −Fe,p, and we can write the equations of motion of the electron and proton as

mer̈e = Fe,p (3.1a)

mpr̈p = −Fe,p. (3.1b)

Further, since the forces are central it will be easier to work in a center of mass coordinate system, so we define a new
vector r = re − rp, and a reduced mass µ that satisfies

1
µ

=
1

me
+

1
mp

.

Then equations (3.1a,b) take the form

r̈ =
1
µ
F, (3.2)

where we have set Fe,p = F.
Now we must specify the force F. We wish to consider the possibility of a mixture of retarded and/or advanced

potentials, so in the non-relativistic case with α, β ≥ 0 and α + β = 1 (??does this also require that the proton be
infinitely massive??),

F = − e2

4πε0

{
α

r−
|r−|3

+ β
r+

|r+|3

}
(3.3)

where r− and r+ are the vectors r evaluated at times t− τR and t− τA, and τR and τA satisfy the functional equations

cτR = |r(t) − r(t − τR)| (3.4a)

cτA = |r(t) − r(t + τA)| (3.4b)

respectively.
Define unit vectors ur, ur+, ur− such that r = rur, r+ = r+ur+, and r− = r−ur−, and set

A = − e2

4πε0
.

Then (3.2) and (3.3) can be combined to give

µv̇ = µr̈ = A

{
α
ur−

r−2
+ β

ur+

r+
2

}
. (3.5)

We are interested in the total energy of the electron-proton system, and in contradiction to the quantized harmonic
oscillator problem, there seems to be no ambiguity. As before, we have a kinetic energy

Ekin =
1
2
µv · v, (3.6)

and define a potential by

φ = A

{
α

r−
+

β

r+

}
, (3.7)

so with the operator

D ≡
∂

∂x−τ
ur− +

∂

∂xτ
ur+, (3.8)

we have F = −Dφ, and the total energy of the pair is

E =
1
2
µv · v + A

{
α

r−
+

β

r+

}
, (3.9)

while the rate of change of the energy is
dE

dt
= v ·F +

∂φ

∂t
. (3.10)
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3a. Consequences of constant |L|. Note from (3.2) that, with the definition of the angular momentum L = r×(µv),
we have L̇ = r × F. Hence if the angular momentum L is to be a constant with respect to time, then it is necessary
that the motion take place in a plane so r×F = 0. Thus, we work in circular coordinates r, θ. Let uθ be a unit vector
orthogonal to ur, so we can then write

r = rur

ṙ = ṙur + rθ̇uθ

r̈ = [r̈ − rθ̇2]ur + [rθ̈ + 2ṙθ̇]uθ.

Hence, for planar motion
|L| = |r × (µv)| = µr2θ̇. (3.11)

Furthermore, the equation of motion (3.5) can be written in the more explicit form

[r̈ − rθ̇2]ur + [rθ̈ + 2ṙθ̇]uθ =
A

µ

{
α
ur−

r−2
+ β

ur+

r+
2

}
. (3.12)

Taking the dot product of (3.12) with ur gives

r̈ − rθ̇2 =
A

µ

{
α
ur · ur−

r−2
+ β

ur · ur+

r+
2

}

=
A

µ

{
α

cos(θ − θ−)
r−2

+ β
cos(θ+ − θ)

r+
2

}
,

(3.13)

while the dot product of (3.12) with uθ yields

1
r

d(r2θ̇)
dt

= rθ̈ + 2ṙθ̇ =
A

µ

{
α
uθ · ur−

r−2
+ β

uθ · ur+

r+
2

}

=
A

µ

{
−α

sin(θ − θ−)
r−2

+ β
sin(θ+ − θ)

r+
2

}
.

(3.14)

As a consequence of equation (3.11), if L̇ = 0 then it follows that

|L| = µr2θ̇

must be constant, or more explicitly
|L| = µr2θ̇ = C.

Since both r and r2 must be non-negative, this then implies that with L̇ = 0, we cannot have θ̇ changing sign, and it
too must be constant. This then, in turn, implies that r2 is constant. Hence, it is clear from (3.11) for the magnitude
of the angular momentum that a necessary and sufficient condition for |L| to be constant is to have the planar motion
satisfy the following conditions simultaneously:

(1) The planar motion must be circular ( r = r− = r+ ) which, in turn, implies that τR = τA = r/c; and
(2) The planar motion must be uniform so θ̇ = ω or θ = ωt + const. This, in conjunction with (1) implies

θ − θ− = −(θ − θ+) = ωr/c.
Note in particular that when these conditions are satisfied, then from (3.10) we have

dE

dt
≡ 0

so these conditions define a situation in which there is absolutely no radiation of energy from the orbiting
electron, in sharp contrast to the classical situation without the advanced/retarded interactions.

Under these conditions we have from the two component equations of motion (3.13) and (3.14)

−rω2 =
A

µr2
cos

(ωr

c

)
(3.15)
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(remember that α + β = 1) and

0 = (β − α)
A

µr2
sin

(ωr

c

)
⇐⇒ dL

dt
≡ 0. (3.16)

There are two ways in which the latter equation (3.16) can be satisfied:

(1) If
ωr

c
= nπ, (3.17)

where n is an integer; or
(2) With an assumption of half-advanced and half-retarded interactions, α = β = 1

2 .

3a.i. Satisfying (3.16): Consequences of n an integer. Condition (3.17) implies that cos(nπ) = (−1)n and this
in conjunction with (3.15) implies first of all that

µ

|A|
r3ω2 = (−1)n. (3.18)

Since the left hand side is nonnegative, this places the further requirement on n that it be an even integer, n = 2κ and
thus

ωr

c
= 2κπ, (3.19)

Consequently (3.15) takes the form

r3ω2 =
|A|
µ

, (3.20)

or, with ωr = 2κπc, we have more specifically

r =
1
κ2

|A|
µ(2πc)2

. (3.21)

We can write this in the form equivalent to (2.3) as

rκ =
r1

κ2
(3.22)

wherein

r1 =
|A|

µ(2πc)2
. (3.23)

Furthermore, since ω = 2κπc/r, we can write

ωκ = κ3ω1 (3.24)

where
ω1 =

µ

|A|
(2πc)3. (3.25)

With the above results, it is straightforward that the angular momentum is quantized according to

|L|κ =
|L|1
κ

,

with

|L|1 =
|A|
2πc

.

What about the energy under these conditions? First note that with circular orbits the potential φ will be
independent of time so with the additional assumption of uniform motion we have

dE

dt
= v · F = (α − β)

Aω

r
sin(

ωr

c
), (3.26)
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which is obviously zero. Thus in all of the quantized orbits defined by (3.13) the energy is independent of time. It has
a value given by

E =
1
2
µω2r2 +

A

r

=
1
2
µ(2κπc)2 +

A

r1
κ2

= −1
2
(2π)2µc2κ2,

or

Eκ = −1
2
(2π)2µc2κ2. (3.27)

Notice that this quantized behaviour is not only highly relativistic, but also non-relativistic, since the smallest energy
is |E1| = µc2(2π)2/2, 2π2 ' 18 times larger than µc2.

Strangely enough, it would appear that these conditions specifying the orbital properties for which the angular
momentum is quantized are satisfied without any conditions on α and β. However, this is not the case as the following
computation shows. Using (3.5) we may write a more explicit equation for L̇, namely

L̇ = Ar

{
α
ur × ur−

r−2
+ β

ur × ur+

r+
2

}
. (3.28)

Since we are searching for conditions for L̇ = 0, an examination of (3.11) makes it obvious that if r is finite this
requires that the bracketed term must be identically zero for all time. Since retarded and/or advanced potentials have
been assumed, this condition certainly requires at the minimum that (ur × ur−) and (ur × ur+) have opposite signs,
which in turn means that both advanced and retarded interactions must be operative. Thus neither α nor β can be
identically zero.

Remembering further that uniform circular motion of the electron is a consequence of L̇ = 0 which, in turn,
implies that τR = τA and further that ur × ur− = −(ur × ur+), (3.11) takes the simpler form

L̇ =
A

r
(ur × ur−)(α − β). (3.29)

It is clear that considering the half-advanced, half-retarded situation with α = β = 1
2 will be the only way in which

L̇ = 0 given the other assumptions about the uniform circular motion of the electron. Thus condition (2) for equation
(3.16) to hold follows as an immediate consequence of condition (1) when uniform circular motion is assumed.

3a.ii. Satisfying (3.15).
If we go back to equation (3.15)

−rω2 =
A

µr2
cos

(ωr

c

)
, (3.15)

how can we deal with this? First, note from 3.11 and its consequences that

|L| = µr2θ̇ = µr2ω = Γ(r, ω) (3.30)

is a constant independent of time. This, in conjunction with (3.15), gives

−Γ(r, ω)c
A

·
(ωr

c

)
= cos

(ωr

c

)
. (3.31)

For [Γ(r, ω)c/A << 1], this implies that
(ωr

c

)
'

(
n +

1
2

)
π n an integer. (3.32)

The immediate consequence of this in (3.16), since

sin
(ωr

c

)
' sin[(n +

1
2
)π] = (−1)n, (3.33)

is to require half advanced and half retarded interations: α = β =
1
2
.
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4. Stability Considerations.
We found, in the previous section, that the necessary and sufficient conditions for constant angular momentum

translated into conditions implying uniform and planar circular motion. These, in turn, gave conditions involving r
and ω that are embodied in equations (3.15) and (3.16):

−rω2 =
A

µr2
cos

(ωr

c

)
(3.15)

(remember that α + β = 1) and

0 = (α − β)
A

µr2
sin

(ωr

c

)
. (3.16)

A reasonable questions is the following. Given values of r and ω that satisfy (3.15)-(3.16), are they stable or
unstable solutions of the equations of motion

r̈ − rθ̇2 =
A

µ

{
α
ur · ur−

r−2
+ β

ur · ur+

r+
2

}

=
A

µ

{
α

cos(θ − θ−)
r−2

+ β
cos(θ − θ+)

r+
2

}
,

(3.13)

and

rθ̈ + 2ṙθ̇ =
A

µ

{
α
uθ · ur−

r−2
+ β

uθ · ur+

r+
2

}

=
A

µ

{
α

sin(θ − θ−)
r−2

+ β
sin(θ − θ+)

r+
2

}
,

(3.14)

in the face of small perturbations? In this section, we examine this question.
To deal with this problem, we assume that R(t) is a small (O(ε)) perturbation of r satisfying (3.15)-(3.16) so

r(t) ' r + R(t),

while Θ(t) is a small perturbation of ωt:
θ(t) ' ωt + Θ(t).

Then, to O(ε) the left hand sides of (3.13) and (3.14) become

r̈(t) − r(t)θ̇2(t) ' R̈(t) − ω2R(t) − 2rωΘ̇(t) − rω2 (3.34)

and
r(t)θ̈(t) + 2ṙ(t)θ̇(t) ' rΘ̈(t) + 2ωṘ(t) (3.35)

respectively.
In examining the angular components,

θ(t) − θ± = ∓ωr

c
+ Θ(t) − Θ

(
t ± r

c
± R

c

)
' ∓ωr

c
± r

c
Θ̇(t)

so, to the same accuracy,
cos(θ(t) − θ±) ' cos

(ωr

c

)
+ Θ̇(t)

r

c
sin

(ωr

c

)
(3.36)

and
sin(θ(t) − θ±) ' ∓ sin

(ωr

c

)
± Θ̇(t)

r

c
cos

(ωr

c

)
. (3.37)

Furthermore, in the radial motion we have

r±(t) = r + R

(
t ± r

c
± R

c

)
' r + R(t) ∓ r

c
Ṙ(t), (3.38)
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so
1

r2
±(t)

'
1
r2

[
1 −

2R(t)
r

±
2Ṙ(t)

c

]
. (3.39)

Consequently,
cos(θ(t) − θ±)

r2
±(t)

' 1
r2

cos
(ωr

c

) [
1 − 2R(t)

r
± 2Ṙ(t)

c

]
+ Θ̇(t)

1
rc

sin
( ω

rc

)
, (3.40)

and
sin(θ(t) − θ±)

r2
±(t)

' ∓
1
r2

sin
(ωr

c

) [
1 −

2R(t)
r

±
2Ṙ(t)

c

]
± Θ̇(t)

1
rc

cos
(ωr

c

)
. (3.41)

Combining the estimations of (3.34) and (3.40), equation (3.13) to O(ε) becomes

R̈ − ω2R − 2rωΘ̇ − rω2 =
A

µ

{
1
r2

cos
(ωr

c

)[
1 − 2R

r

]
+ Θ̇

1
rc

sin
(ωr

c

)}
. (3.42)

In a similar fashion, from (3.35) and (3.41), equation (3.14) becomes (remember that α + β = 1)

rΘ̈ + 2ωṘ =
A

µ

{
(α − β)

1
r2

sin
(ωr

c

)[
1 − 2R

r

]
− 2Ṙ

r2c
sin

(ωr

c

)
+ Θ̇

1
rc

cos
(ωr

c

)}
. (3.43)

Using the equilibrium condition (3.15) in (3.42) we obtain

R̈ − 3ω2R = Θ̇
[

A

µrc
sin

(ωr

c

)
+ 2ωr

]
. (3.44)

In a similar fashion, (3.15) and (3.16) simplify (3.43) to

rΘ̈ = −2Ṙ

[
A

µr2c
sin

(ωr

c

)
+ ω

]
(3.45)


