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I. INTRODUCTION 

The time between cell birth and cellular division is known as the cell generation, 
or cell cycle, time. In a steady state population of apparently identical cells. 
the distribution of generation times is broad. thus indicating considerable 
variability in the rate at which cells traverse the cell cycle. Perturbation of a 
steady state population of cells is followed by a rapid return of successive 
distributions of cell cycle times to the unperturbed distribution. The 
interpretation of the origin of this variability in cellular processes has been 
uniformly based on probabilistic considerations [1-5j. 

Here it is shown how a completely deterministic process may lead to a 
description of cellular variability indistinguishable from that having its origins 
in probabilistic considerations. The model is very similar to that of l6j with the 
important exception that an alternative deterministic hypothesis replaces the 
assumption made previously concerning the probabil ity of mitosis. 

II. MATHEMATICAL PRELIMINARIES 

In this section. the notions of a smooth density and Renyi transformations are 
introduced before starting a theorem that is central to the development of the 
model. 

A function h: lO.lj + R that is Lipschitz:ean and satisfies 

1 

min h> 0 and J hd]J = 1. 

o 
where ]J denotes the Lebesgue measure on lO.lj. is called a smooth density. 

A mapping S:lO,lj + lO.lj which satisfies: 
il There exists a partition 0 = ao< a1 < ••• <ap = 1 of lO.lj such that for 

each integer i. i = 1 ••••• p. the restriction of S. of S to the open interval 
1 

(ai_I' ail can be extended as a C2 function to la i _1, aij; 
ii) Sit lai_l'aiJl = lO.lj. i = 1, •••• p; and 
iii) inf IS'(xll >1 i = 1. "', P 

(a. 1.a.l 
1- 1 

315 



is called a Renyi transformation. 

Theorem (LASOTA and YORKE [7 jl. Let S:[O.lj + [O.lj be a Renyi transformation. 

S = (l+£)S where £> O. and N (xl be the smallest integer n. n = 0.1 ••••• such 
£ £ 

that S~+l(xl > 1 for a given initial x E [O.lj. i.e. 

inf {n:sn+1(xl > I}. 
£ 

Then there exists a unique constant cr> 0 such that for every smooth density h of 

initial x E [O.lj 

limllh{x:N£(xl>T/£} exp(-crT). T:>O. 
£+0 

where 

What is the content of this theorem? For £ > 0 it is clear that eventually 

there must exist some "kick-out time" [8j n such that S~+l(xl ¢ [O,lj. The theorem 

merely states that. for £+0 the fraction of points from an initial density h with 

kickout times greater than T :> 0 is exponentially distributed: 

III. THE MODEL 

With the preliminaries of the previous section, we may proceed to a development of 

the model of the cell cycle. The model is mathematically identical to that 

developed in [6j. Only the interpretation of one hypothesis is different. 

The model rests on three hypotheses. 

HI. There exists some substance(s) (mitogen) necessary, but not sufficient, for 

mitosis to take place. 

There is ample experimental support for this concept. as reviewed in [9). 
Consider a cell in a large population that was born at time t = 0 with mitogen 

content r. The evolution of mitogen following birth is governed by 

dm 
(It = g(m), m(O) = r. (1) 

The solution of (1) is denoted by m(r.t). Mitogen levels are assumed to be bounded 

on the closed interval to [O,Uj, and the mitogen production-rate satisfies 

g(m»O forO<m<2J1. and ( 2a) 

g(2J1.) = O. (2b) 
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H2. There exists an intracellular variable, sufficient to trigger mitosis once 
it exceeds a threshold, that oscillates in an extremely complicated "chaotic" 
fashion. 

Let x(t) denote the level of this variable at time t, and tn' n = 0,1, ••• , 
denote the times at which x(t) attains a relative maximum. If xn = x(tn) denotes 
the values of these relative maxima, then it is assumed that 

where 5:lo,lj + lO,lj is a Renyi transformation. Mitosis is assumed to take place 

whenever xn > 1. 

This hypothesis, in conjunction with the theorem of the previous section, tells 
us that for small mitogen levels the fraction of a large population of cells with 
mitotic times greater than some number T ~ ° is given approximately by 

I1 h{xo:Nm(xo) >T} = exp (-amT) 

regardless of the density of h of initial values xo. Thus the mitotic rate is 

approximately (am) for small m. 

Remark. This second hypothesis gives a deterministic interpretation of the 
probabilistic assumption of l6j that the probability ofa cell with mitogen level m 
dividing in a time It,t+6tj is 

.p(m)M + 0(6t), .p(0) = 0, lim inf .p(x) > 0. 
X+U 

With a mitotic rate of (am), if we let a(r,t) denote the fraction of cells born 
with mitogen level r that have not divided by time t, then we have approximately 

da(r,t) dt = -am( r, t) a( r , t) , so 

t 

a(r,t) exp{-ajm(r,S)ds} 

° 
Note that -at ( r,t) = am( r,t)a( r,t) is the density function for the distribution of 
mitotic (generation) times in these cells with initial mitogen levels r. 

Generally, the initial mitogen level r in a large population of cells will be 
distributed on lO,R-) with a density f( r), so the alpha-curve for the entire 
population is given by 

R-

a( t) = j a( r, t)f( r)dr. 

° Finally, the density function for the distribution of generation times for the 

(4 ) 

317 



enti re popul ati on is gi ven by 

Ji. 

1jJ(t) - f a t ( r, t)f( r)dr. 

o 

( 5) 

Another statistic, widely used by cell kineticists in characterizing populations 

of renewing cells, is the fraction of sibling cell pairs whose intermitotic times 

differ by at least a time t. This fraction is denoted by 8(t). The derivation of 

the beta-curve for this hypothetical cellular population requires a third 

assumption concerning the fate of the mitogen in a mother cell when mitosis takes 

place. Here, as in [6j, it is assumed that: 

H3. Each sister cell receives exactly one-half of the mitogen present in the 

mother cell at mitosis. 

This leads directly to the result 

Ji. 

8( t) -2 f f a t ( r,s)a( r,s+t)f( r)dsdr 

o 0 

which has been obtained before [6j. 

To complete the specification of this model .requires the distribution f( r) of 

initial mitogen levels in the population of cells. As shown in [6j, the 

distribution of mitogen f i +1 in the (i+l)st generation of cells is determined by 

that in the ith generation, fi' from the integral equation 

Ji. 

fi +1(Y) = J k(y,r)f i( r)dr (6) 

o 

where the kernel k(y,r) is given by 

o " y < ~r 

k(y,r) 
2y 

2q( 2y )exp{ f q( Z)dZ} ~r" y < Ji.. 

r 

and q(y) = cry/g(y). With the properties of g(y) specified in (2a,b), (6) has a 

unique globally>asymptotically stable solution f*(y). This ensures that there is a 

unique density function 1)J*( t) for the distribution of cell cycle times in the 

entire population of cells. 
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I V. DISCUSSION 

Of the three hypotheses used in the development of this model, HI and H3 have 
appeared in a number of other cell cycle models. Only H2 is unique, and I will 
confine ~ comments to H2. 

With respect to H2, at least two questions arise. The first is mathematical in 
nature. Is there any dynamical or semi-dynamical system that is oscillatory and 
which has successive maxima determined by the map (3)1 Clearly, any such continuous 
time system must, by necessity, be of dimensionality 3 or greater. Though there is 
no analytic proof of the existence of such systems at this time, there is good 
numerical evidence for their existence. 

Consider the LORENTZ l10J equations 

dx Of = yz - bx 

'* = -xz + rz - y 

*" = Cf(y-Z) 

(7) 

with Cf = 10 and b = 8/3. Lorentz numerically investigated this system for a 
variety of values of r. If successive maxima in x(t) are labeled as ~, then the 
points (xn' xn+1) are approximately located on the graph of the one-dimensional 
mapping 

YORKE and YORKE l8J studied this system (7) and found that there is a critical 
range of the parameter r such that e:( r) > 0 and the results of the theorem of 
section II hold. They were also able to demonstrate the exponential dependence of 
the kickout times predicted by the theorem of Lasota and Yorke. 

The second question raised by H2 is related to its biological justification. In 
this regard I can offer arguments for the hypothesis that are no more, nor less, 
convincing than those put foward to justify the usual probabil istic assumption that 
H2 replaces. 

The assumption that there is an intracellular oscillator timing the cell cycle 
is certainly not new, as a variety of investigators have proposed such a scheme 
lll-15J or criticized it l16J. Indeed~ considering the nature of the cell cycle, 
it would be surprising if the existence of an underlying oscillator had not been 
hypothesized. The nature of the oscillators considered ranges from 'limit cycle' 
to 'relaxation' types, though the distinction is more one of degree than of type. 
Others have assumed that this intracellular oscillator has superimposed 'noise' to 
mimic the distribution of cell cycle events l17-21J though this assumption begs the 
question addressed here. 
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However, the existence of an oscillator such as that considered here -- one with 
a strange attractor -- seems not to have been considered even though all of the 
ingredients are present for its occurrence. (The existence of such an oscillator 
was all but explicitly postulated in l22j). It is well known that the biochemical 
control loops within the cycling cell are numerous, richly interconnected, and 
nonlinear. Further, many display mixed positive/negative feedback with or without 
significant time delays in their feedback pathways l23-25j. As has been shown 
numerically l26,27j these are exactly the conditions under which one may encounter 
the presence of strange attractors and the attendant Renyi transformation-like 
connection between successive maxima l28j. 
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