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Abstract

Here we review and extend central limit theorems for chaotic deterministic semi-dynamical discrete time systems. We then
apply these results to show how Brownian motion-like behavior can be recovered and how an Ornstein–Uhlenbeck process can be
constructed within a totally deterministic framework. These results illustrate that under certain circumstances the contamination of
experimental data by “noise” may be alternately interpreted as the signature of an underlying chaotic process.
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1. Introduction

Almost anyone who has ever looked through a microscope at a drop of water has been intrigued by the seemingly
erratic and unpredictable movement of small particles suspended in the water, e.g. dust or pollen particles. This
phenomenon, noticed shortly after the invention of the microscope by many individuals, now carries the name of
“Brownian motion” after the English botanist Robert Brown who wrote about his observations in 1828. Almost three-
quarters of a century later Einstein (1905) gave a theoretical (and essentially molecular) treatment of this macroscopic
motion that predicted the phenomenology of Brownian motion. (A very nice English translation of this, and other, work
of Einstein on Brownian motion can be found in Fürth (1956).) The contribution of Einstein led to the development of
much of the field of stochastic processes and to the notion that Brownian movement is due to the summated effect of a
very large number of tiny impulsive forces delivered to the macroscopic particle being observed. This was also one of
the most definitive arguments of the time for an atomistic picture of the microscopic world.

Other ingenious experimentalists used this conceptual idea to explore the macroscopic effects of microscopic influ-
ences. One of the more interesting is due to Kappler (1931), who devised an experiment in which a small mirror was
suspended by a quartz fiber (cf. Mazo (2002) for an analysis of this experimental setup). Any rotational movement of
the mirror would tend to be counterbalanced by a restoring torsional force due to the quartz fiber. The position of the
mirror was monitored by shining a light on it and recording the reflected image some distance away (so small changes in
the rotational position of the mirror were magnified). Air molecules striking the mirror caused a transient deflection that
could be monitored, and the frequency of these collisions was controlled by changing the air pressure. Fig. 1.1, taken
from Kappler (1931), shows two sets of data taken using this arrangement and offers a vivid macroscopic depiction of
microscopic influences.

In trying to understand theoretically the basis for complicated and irreversible experimental observations, a number
of physicists have supplemented the reversible laws of physics with various hypotheses about the irregularity of the
physical world. One of the first of these, and arguably one of the most well known, is the so-called “molecular chaos”
hypothesis of Boltzmann (1995). This hypothesis, which postulated a lack of correlation between the movement of
molecules in a small collision volume, allowed the derivation of the Boltzmann equation from the Liouville equation
and led to the celebrated H theorem. The origin of the loss of correlations was never specified. In an effort to understand
the nature of turbulent flow, Ruelle (1978–1980) postulated a type of mixing dynamics to be necessary. More recently,
several authors have made “chaotic hypotheses” about the nature of dynamics at the microscopic level. The most
prominent of these is Gallavotti (1999), and virtually the entire book of Dorfman (1999) is predicated on the implicit
assumption that microscopic dynamics have a chaotic (loosely defined, but usually taken to be mixing) nature. All of
these hypotheses have been made despite the fact that none of the microscopic dynamics that we write down in physics
actually display such properties.

Others have taken this suggestion (chaotic hypothesis) quite seriously, and attempted an experimental confirmation.
Fig. 1.2 shows a portion of the data, taken from Gaspard et al. (1998), that was obtained in an examination of a
microscopic system for the presence of chaotic behavior. Their data analysis showed a positive lower bound on the sum
of Lyapunov exponents of the system composed of a macroscopic Brownian particle and the surrounding fluid. From
their analysis, they argued that the Brownian motion was due to (or the signature of) deterministic microscopic chaos.
However, Briggs et al. (2001) were more cautious in their interpretation, and Mazo (2002, Chapter 18) has explored
the possible interpretations of experiments like these in some detail.

If true, the existence of deterministic chaos (whatever that means) would be an intriguing possibility since it could
serve as an explanation of a host of unresolved problems in the sciences. Most notably, it could serve as an explanation
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Fig. 1.1. The upper panel shows a recording of the movement of the mirror in the Kappler (1931) experiment over a period of about 30 minutes at
atmospheric pressure (760 mm Hg). The bottom panel shows the same experiment at a pressure of 4 × 10−3 mm Hg. Both figures are from Kappler
(1931). See the text for more detail. Published with permission of Annalen der Physik.

Fig. 1.2. The data shown here, taken from Gaspard et al. (1998), show the position of a 2.5 �m particle in water over a 300 second period with a
sampling interval of 1

60 sec (see Gaspard et al. (1998); Briggs et al. (2001) for the experimental details). The inset figure shows the power spectrum,

which displays a typical decay (for Brownian motion) with �−2. Published with permission of Nature.

for the manifest irreversibility of our physical and biological world in the face of physical laws that fail to encompass
irreversibility without the most incredulous of assumptions. In particular, it would clarify the foundations of irreversible
statistical mechanics, e.g. the operation of the second law of thermodynamics (Dorfman, 1999; Gallavotti, 1999; Mackey,
1989, 1992; Schulman, 1997), and the implications of the second law for the physical and biological sciences.

In this paper, we have a rather more modest goal. We address a different facet of this chaotic hypothesis by studying
how and when the characteristics of Brownian motion can be reproduced by deterministic systems. To motivate this,



170 M.C. Mackey, M. Tyran-Kamińska / Physics Reports 422 (2006) 167 –222

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000

-4

-2

0

2

4

Fig. 1.3. The top panel shows the simulated position of a particle obeying Eqs. (1.1)–(1.4) using Eq. (3.28), while the bottom panel shows the
velocity of the same particle computed with Eq. (3.21). The parameters used were: � = �/m = 10, � = 1, and � = − 1

10 ln (9 × 10−4) � 0.932 so

� ≡ e−�� = 9 × 10−4. The initial condition on the tent map given by Eq. (1.4) was y0 = 0.12562568.
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Fig. 1.4. As in Fig. 1.3 except that � = 1
10 ln (2) � 0.069 so � = 1

2 .

in Figs. 1.3–1.6 we show the position (x) and velocity (v) of a particle of mass m whose dynamics are described by

dx

dt
= v , (1.1)

m
dv

dt
= −�v + F(t) . (1.2)
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Fig. 1.5. As in Fig. 1.4 except that � = − 1
10 ln (0.9) � 0.011 so � = 0.9.
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Fig. 1.6. As in Fig. 1.3, with the parameters of Fig. 1.5 and an initial condition on the tent map (1.4) of y0 = 0.1678549321.

In Eqs. (1.1) and (1.2), we have taken F to be a fluctuating “force” consisting of a sequence of delta-function like
impulses given by

F(t) = m�
∞∑

n=0

�(t)�(t − n�) , (1.3)



172 M.C. Mackey, M. Tyran-Kamińska / Physics Reports 422 (2006) 167 –222

and � is a “highly chaotic” (exact, see Section 2) deterministic variable generated by �t+� = T (�t ) where T is the tent
map on [−1, 1] defined by

T (y) =
{

2(y + 1
2 ) for y ∈ [−1, 0) ,

2( 1
2 − y) for y ∈ [0, 1) .

(1.4)

When F(t) is a white noise, Eq. (1.2) is called the Langevin equation (Chandrasekhar, 1943).
In this paper we examine the behavior of systems described by equations like (1.1)–(1.4) and establish, analytically,

the eventual limiting behavior of ensembles. In particular, we address the question of how Brownian-like motion can
arise from a purely deterministic dynamics. We do this by studying the dynamics from a statistical, or ergodic theory,
standpoint.

The outline of the paper is as follows. Section 2 gives required background and new material. This includes the
definitions of a hierarchy of chaotic behaviors (ergodic, mixing, and exact) and a discussion of the evolution of densities
under the action of transfer operators such as the Frobenius–Perron operator. We then go on to treat central limit theorems
and functional central limit theorems. Section 3 returns to the specific problem that Eqs. (1.1)–(1.4) illustrate. We show
when the particle velocity distribution may converge and the particle position may become asymptotically Gaussian
if properly scaled. All of these considerations are for a more general class of maps than given by (1.4). In Section
3.3 we illustrate the application of the results from Section 3.2 using a specific chaotic map (the dyadic map) to act
as a surrogate noise source. Section 4 considers the question when one can obtain Gaussian processes by studying
appropriate scaling limits of the velocity and position variables, and the convergence of the velocity process to an
Ornstein–Uhlenbeck process as the interval � between chaotic perturbations approaches 0. The paper concludes with a
brief discussion in Section 5. The Appendices collect and extend general central limit theorems from probability theory
and weak convergence criteria that are used in the main results of the paper.

2. Ergodic theory and central limit theorems

We are going to examine the behavior illustrated in Section 1 using techniques from ergodic theory, and closely
related concepts from probability theory, applied to the dynamics of semi-dynamical systems. Ergodic theory is ideally
suited to this task as it treats the convergence properties of ensembles and their relation to trajectory dynamics. In this
section we collect together the necessary machinery to do so. Much of this background material can be found in Lasota
and Mackey (1994).

2.1. Density evolution operators

In looking at ensemble behavior, the natural framework is to look at the evolution of a density as the description of
the temporal behavior of the ensemble. Thus we start by looking at the operators important for describing this density
evolution.

Let (Y1,B1, 	1) and (Y2,B2, 	2) be two 
-finite measure spaces and let the transformation T : Y1 → Y2 be
measurable, i.e. T −1(B2) ⊆ B1 where T −1(B2) = {T −1(A) : A ∈ B2}. Then we say that T is nonsingular (with
respect to 	1 and 	2) if 	1(T

−1(A)) = 0 for all A ∈ B2 with 	2(A) = 0. Associated with the transformation T we have
the Koopman operator UT defined by

UT g = g ◦ T

for every measurable function g : Y2 → R. We define the transfer operator PT : L1(Y1,B1, 	1) → L1(Y2,B2, 	2) as
follows. For any f ∈ L1(Y1,B1, 	1), there is a unique element PT f in L1(Y2,B2, 	2) such that∫

A

PT f (y)	2(dy) =
∫

T −1(A)

f (y)	1(dy) . (2.1)

Eq. (2.1) simply gives an implicit relation between an initial density of states (f ) and that density after the action
of the map T, i.e. PT f . The Koopman operator UT : L∞(Y2,B2, 	2) → L∞(Y1,B1, 	1) and the transfer operator
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PT are adjoint, so∫
Y2

g(y)PT f (y)	2(dy) =
∫

Y1

f (y)UT g(y)	1(dy)

for g ∈ L∞(Y2,B2, 	2), f ∈ L1(Y1,B1, 	1).
In some special cases Eq. (2.1) allows us to obtain an explicit form for PT . Let Y2 = R, B2 = B(R) be the Borel


-algebra, and 	2 be the Lebesgue measure. Let Y1 be an interval [a, b] on the real line R, B1 = [a, b] ∩ B(R) and
	1 be the Lebesgue measure restricted to [a, b]. We will simply write L1([a, b]) when the underlying measure is the
Lebesgue measure.

The transformation T : [a, b] → R is called piecewise monotonic if

(i) there is a partition a = a0 < a1 < · · · < al = b of [a, b] such that for each integer i = 1, . . . , l the restriction of T
to (ai−1, ai) has a C1 extension to [ai−1, ai] and

(ii) |T ′(x)| > 0 for x ∈ (ai−1, ai), i = 1, . . . , l.

If a transformation T : [a, b] → R is piecewise monotonic, then for f ∈ L1([a, b]) we have

PT f (y) =
l∑

i=1

f (T −1
(i) (y))

|T ′(T −1
(i) (y))|1T ((ai−1,ai ))(y) ,

where T −1
(i) is the inverse function for the restriction of T to (ai−1, ai). Note that we have equivalently

PT f (y) =
∑

x∈T −1({y})

f (x)

|T ′(x)| . (2.2)

Of course these formulas hold almost everywhere with respect to the Lebesgue measure.
The notion of a piecewise monotonic transformation on an interval can be extended to “piecewise smooth” transfor-

mations T : Y → Y with Y ⊂ Rk . Therefore if T has, for example, finitely many inverse branches and the Jacobian
matrix DT(x) of T at x exists and det DT(x) �= 0 for almost every x, then the Frobenius–Perron operator is given by

PT f (y) =
∑

x∈T −1({y})

f (x)

| det DT(x)|

for f ∈ L1(Y ). If T is invertible then we have PT f (y) = f (T −1(y))| det DT−1(y)|.
Let (Y,B) be a measurable space and let T : Y → Y be a measurable transformation. The definition of the transfer

operator for T depends on a given 
-finite measure on B, which in turn gives rise to different operators for different
underlying measures on B. If 	 is a probability measure on B which is invariant for T, i.e. 	(T −1(A)) = 	(A) for all
A ∈ B, then T is nonsingular. The transfer operator PT : L1(Y,B, 	) → L1(Y,B, 	) is well defined and when we
want to emphasize that the underlying measure 	 in the transfer operator is invariant under the transformation T we
will write PT ,	. The Koopman operator UT is also well defined for f ∈ L1(Y,B, 	) and is an isometry of L1(Y,B, 	)
into L1(Y,B, 	), i.e. ‖UT f ‖1 = ‖f ‖1 for all f ∈ L1(Y,B, 	). The following relation holds between the operators
UT ,PT ,	 : L1(Y,B, 	) → L1(Y,B, 	)

PT ,	UT f = f and UT PT ,	f = E(f |T −1(B)) (2.3)

for f ∈ L1(Y,B, 	), where E(·|T −1(B)) : L1(Y,B, 	) → L1(Y, T −1(B), 	) denotes the operator of conditional
expectation (see Appendix A). Both of these equations are based on the following change of variables (Billingsley,
1995, Theorem 16.13): f ∈ L1(Y,B, 	) if and only if f ◦ T ∈ L1(Y,B, 	), in which case the following holds∫

T −1(A)

f ◦ T (y)	(dy) =
∫

A

f (y)	(dy), A ∈ B . (2.4)

If the measure 	 is finite, we have Lp(Y,B, 	) ⊂ L1(Y,B, 	) for p�1. The operator UT : Lp(Y,B, 	) → Lp(Y,B, 	)
is also an isometry in this case. Note that if the conditional expectation operator E(·|T −1(B)) : L1(Y,B, 	) →
L1(Y,B, 	) is restricted to L2(Y,B, 	), then this is the orthogonal projection of L2(Y,B, 	) onto L2(Y, T −1(B), 	).
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One can also consider any 
-finite measure m on B with respect to which T is nonsingular and the corresponding
transfer operator PT : L1(Y,B, m) → L1(Y,B, m). To be specific, let Y be a Borel subset of Rk with Lebesgue
measure m and B = B(Y ) be the 
-algebra of Borel subsets of Y. Throughout this paper m will denote Lebesgue
measure and L1(Y ) will denote L1(Y,B, m). The transfer operator PT : L1(Y ) → L1(Y ) is usually known as the
Frobenius–Perron operator. A measure 	 (on Y) is said to have a density g∗ if 	(A) = ∫

A
g∗(y) dy for all A ∈ B, where

g∗ ∈ L1(Y ) is nonnegative and
∫
Y

g∗(y) dy = 1. A measure 	 is called absolutely continuous if it has a density. If the
Frobenius–Perron operator PT has a nontrivial fixed point in L1(Y ), i.e. the equation PT f = f has a nonzero solution
in L1(Y ), then the transformation T has an absolutely continuous invariant measure 	, its density g∗ is a fixed point of
PT , and we call g∗ an invariant density under the transformation T. The following relation holds between the operators
PT and PT ,	

PT (fg∗) = g∗PT ,	f for f ∈ L1(Y,B, 	) . (2.5)

In particular, if the density g∗ is strictly positive, i.e. g∗(y) > 0 for almost every y ∈ Y , then the measures m and 	 are
equivalent and we also have

PT (f ) = g∗PT ,	

(
f

g∗

)
for f ∈ L1(Y ) .

2.2. Probabilistic and ergodic properties of density evolution

Some of the most important concepts and results from ergodic theory are related to the convergence properties
of sequences of densities (starting from an initial density) under the action of a transfer operator associated with the
underlying dynamics. This section considers a hierarchy of convergence behaviors and illustrates them through concrete
examples.

Let (Y,B, 	) be a normalized measure space and let T : Y → Y be a measurable transformation preserving the
measure 	. We can discuss the ergodic properties of T in terms of the convergence behavior of its transfer operator
PT ,	 : L1(Y,B, 	) → L1(Y,B, 	). To this end, we note that the transformation T is defined to be

(i) Ergodic (with respect to 	) if and only if every invariant set A ∈ B is such that 	(A) = 0 or 	(Y\A) = 0.
This is equivalent to: T is ergodic (with respect to 	) if and only if for each f ∈ L1(Y,B, 	) the sequence
(1/n)

∑n−1
k=0 P

k
T ,	f is weakly convergent in L1(Y,B, 	) to

∫
f (y)	(dy), i.e. for all g ∈ L∞(Y,B, 	)

lim
n→∞

∫
1

n

n−1∑
k=0

Pk
T ,	f (y)g(y)	(dy) =

∫
f (y)	(dy)

∫
g(y)	(dy) .

(ii) Mixing (with respect to 	) if and only if

lim
n→∞ 	(A ∩ T −n(B)) = 	(A)	(B) for A, B ∈ B .

Mixing is equivalent to: For each f ∈ L1(Y,B, 	) the sequence P n
T f is weakly convergent in L1(Y,B, 	) to∫

f (y)	(dy), i.e.

lim
n→∞

∫
Pn

T ,	f (y)g(y)	(dy) =
∫

f (y)	(dy)

∫
g(y)	(dy) for g ∈ L∞(Y,B, 	) .

(iii) Exact (with respect to 	) if and only if

lim
n→∞ 	(T n(A)) = 1 for A ∈ B with T (A) ∈ B, 	(A) > 0 .

Exactness is equivalent to: For each f ∈ L1(Y,B, 	) the sequence P n
T,	f is strongly convergent in L1(Y,B, 	)

to
∫

f (y)	(dy), i.e.

lim
n→∞

∫
|Pn

T ,	f (y) −
∫

f (y)	(dy)|	(dy) = 0 .
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The characterization of the ergodic properties of transformations through the properties of the evolution of densities
requires that we know an invariant measure 	 for T. Examples of ergodic, mixing, and exact transformations are given
in the following.

Example 2.1. The transformation on [0, 1]
T (y) = y + � mod 1 ,

known as rotation on the circle, is ergodic with respect to the Lebesgue measure when � is irrational. The associated
Frobenius–Perron operator is given by

PT f (y) = f (y − �) .

Example 2.2. The baker map on [0, 1] × [0, 1]

T (y, z) =
{

(2y, 1
2z) 0�z� 1

2 ,

(2y − 1, 1
2 + 1

2z) 1
2 < z�1

is mixing with respect to the Lebesgue measure. The Frobenius–Perron operator is given by

PT f (y, z) =
{

f ( 1
2y, 2z) 0�z� 1

2 ,

f ( 1
2 + 1

2y, 2z − 1) 1
2 < z�1 .

Example 2.3. The tent map on [−1, 1] defined by Eq. (1.4) is exact with respect to the Lebesgue measure, and has a
Frobenius–Perron operator given by

PT f (y) = 1
2 [f ( 1

2y − 1
2 ) + f ( 1

2 − 1
2y)] .

Example 2.4. A class of piecewise linear transformations on [0, 1] are given by

TN(y) =
{

N
(
y − 2n

N

)
for y ∈ [ 2n

N
, 2n+1

N

)
N
( 2n+2

N
− y

)
for y ∈ [ 2n+1

N
, 2n+2

N

)
,

(2.6)

where n=0, 1, . . . , [(N −1)/2] and [z] denotes the integer part of z. For N �2, these piecewise linear maps generalize
the tent map, are exact with respect to the Lebesgue measure, and have the invariant density

g∗(y) = 1[0,1](y) . (2.7)

Example 2.5. The Chebyshev maps (Adler and Rivlin, 1964) on [−1, 1] studied by Beck and Roepstorff (1987),
Beck (1996) and Hilgers and Beck (1999) are given by

SN(y) = cos(N arccos y), N = 0, 1, . . . (2.8)

with S0(y) = 1 and S1(y) = y. They are conjugate to the transformation of Example 2.4, and satisfy the recurrence
relation SN+1(y) = 2ySN(y) − SN−1(y). For N �2 they are exact with respect to the measure with the density

g∗(y) = 1

�
√

1 − y2
.

For N = 2 the Frobenius–Perron operator is given by

PS2f (y) = 1

2
√

2y + 2

[
f

(√
1

2
y + 1

2

)
+ f

(
−
√

1

2
y + 1

2

)]
and the transfer operator by

PS2,	f (y) = 1

2

[
f

(√
1

2
y + 1

2

)
+ f

(
−
√

1

2
y + 1

2

)]
.
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Given a transfer operator under which the Lebesgue measure is invariant it is rather easy to construct a second
transformation (and its associated transfer operator) under which a measure 	 is invariant, and vice-versa, through
conjugation. This construction of a transfer operator for a conjugate map is presented in the next theorem.

Theorem 2.6 (Lasota and Mackey (1994, Theorem 6.5.2)). Let T : [0, 1] → [0, 1] be a measurable and nonsingular
(with respect to the Lebesgue measure) transformation. Let 	 : B([a, b]) → [0, ∞) be a probability measure with a
strictly positive density g∗, that is g∗(y) > 0 for almost every y. Let a second transformation S : [a, b] → [a, b] be
given by S = G−1 ◦ T ◦ G, where

G(x) =
∫ x

a

g∗(y) dy, a�x�b .

Then the transfer operator PS,	 is given by

PS,	f = UGPT UG−1f for f ∈ L1([a, b],B([a, b]), 	) , (2.9)

where UG, UG−1 are Koopman operators for G and G−1, respectively, and PT is the Frobenius–Perron operator for
T. As a consequence, 	 is invariant for S if and only if the Lebesgue measure is invariant for T.

Example 2.7. The dyadic map on [−1, 1] is given by

T (y) =
{

2y + 1, y ∈ [−1, 0]
2y − 1, y ∈ (0, 1] ,

(2.10)

and has the uniform invariant density

g∗(y) = 1
2 1[−1,1](y) .

Like the tent map, it is exact with respect to the normalized Lebesgue measure on [−1, 1]. It has a Frobenius–Perron
operator given by

PT f (y) = 1
2 [f ( 1

2y − 1
2 ) + f ( 1

2y + 1
2 )] .

Example 2.8. Alexander andYorke (1984) defined a generalized baker transformation (also known as a fat/skiny baker
transformation) S
 : [−1, 1] × [−1, 1] → [−1, 1] × [−1, 1] by

S
(x, y) = (
x + (1 − 
)h(y), T (y))

where 0 < 
 < 1, T is the dyadic map on [−1, 1], and

h(y) =
{

1, y�0 ,

−1, y < 0 .

For every 
 ∈ (0, 1) the transformation S
 has an invariant probability measure on [−1, 1] × [−1, 1] and is mixing.
The invariant measure is the product of a so-called infinitely convolved Bernoulli measure (see Section 3.3) and the
normalized Lebesgue measure on [−1, 1]. If 
 = 1

2 , the transformation S
 is conjugated through a linear transform of
the plane to the baker map of Example 2.2. If 
 < 1

2 , the transformation S
 does not have an invariant density (with
respect to the planar Lebesgue measure).

Example 2.9. The continued fraction map

T (y) = 1

y
mod 1 y ∈ (0, 1] (2.11)

has an invariant density

g∗(y) = 1

(1 + y) ln 2
(2.12)
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and is exact. The Frobenius–Perron operator is given by

PT f (y) =
∞∑

k=1

1

(y + k)2 f

(
1

y + k

)
and the transfer operator by

PT ,	f (y) =
∞∑

k=1

y + 1

(y + k)(y + k + 1)
f

(
1

y + k

)
.

Example 2.10. The quadratic map is given by

T
(y) = 1 − 
y2, y ∈ [−1, 1]
where 0 < 
�2. It is known that there exists a positive Lebesgue measure set of parameter values 
 such that the map
T
 has an absolutely continuous (with respect to Lebesgue measure) invariant measure 	
 (Jakobson, 1981; Benedics
and Carleson, 1985). Let � > 0 be a very small number and let

�ε = {
 ∈ [2 − ε, 2] : |T n

 (0)|�e−�n and |(T n


 )′(T
(0))|�(1.9)n ∀n�0}
for ε > 0. Young (1992) proved that for sufficiently small ε and for every 
 ∈ �ε the transformation T
 is exact with
respect to 	
 and this measure is supported on [T 2


 (0), T
(0)].

Example 2.11. The Manneville–Pomeau map T
 : [0, 1] → [0, 1] is given by

T
(y) = y + y1+
 mod 1 ,

where 
 ∈ (0, 1). The map has an absolutely continuous invariant probability measure 	
 with density satisfying

c1

y

�g∗(y)� c2

y


for some constants c2 �c1 > 0 (cf. Thaler, 1980), and is exact.

Finally, we discuss the notion of Sinai–Ruelle–Bowen measure or SRB measure of T which was first conceived
in the setting of Axiom A diffeomorphisms on compact Riemannian manifolds. This notion varies from author to
author (Alexander and Yorke, 1984; Eckmann and Ruelle, 1985; Tsujii, 1996; Young, 2002; Hunt et al., 2002). Let
(Y, �) be a compact metric space with a reference measure m, e.g. a compact subset of Rk and m the Lebesgue or
a compact Riemannian manifold and m the Riemannian measure on Y. If T : Y → Y is a continuous map, then by
the Bogolyubov–Krylov theorem there always exists at least one invariant probability measure for T. When there is
more than one measure, the question arises which invariant measure is “interesting”, and has led to attempts to give a
good definition of “physically” relevant invariant measures. Though this seems to be a rather vague and poorly defined
concept, loosely speaking one would expect that one criteria for a physically relevant invariant measure would be
whether or not it was observable in the context of some laboratory or numerical experiment.

An invariant measure 	 for T is called a natural or physical measure if there is a positive Lebesgue measure set Y0 ⊂ Y

such that for every y ∈ Y0 and for every continuous observable f : Y → R

lim
n→∞

1

n

n−1∑
i=0

f (T i(y)) =
∫

f (z)	(dz) . (2.13)

In other words the average of f along the trajectory of T starting in Y0 is equal to the average of f over the space Y.
Observe that if 	 is ergodic then from the individual Birkhoff ergodic theorem it follows that for every f ∈ L1(Y,B, 	)

Condition 2.13 holds for almost all y ∈ Y , i.e. except for a subset of Y of (	) measure zero. Thus, if T has an ergodic
absolutely continuous invariant measure 	 with density g∗ then every continuous function f is integrable with respect
	 and Condition 2.13 holds for almost every point from the set {y ∈ Y : g∗(y) > 0}. Therefore such 	 is a physical
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measure for T. Not only absolutely continuous measures are physical measures. Consider, for example, the generalized
baker transformation S
 of Example 2.8. Alexander and Yorke (1984) showed that there is a unique physical measure
	
 for each 
 ∈ (0, 1). This measure is mixing and hence ergodic. Although for 
 > 1

2 the transformation expands

areas, the measure 	
 might not be absolutely continuous for certain values of the parameter 
 (e.g. 
 = −1+√
5

2 ) in
which case the Birkhoff ergodic theorem only implies Condition 2.13 on a zero Lebesgue measure set. Therefore a
completely different argument was needed in the proof of the physical property.

In the context of smooth invertible maps having an Axiom A attractor the existence of a unique physical measure
on the attractor was first proved for Anosov diffeomorphisms by Sinai (1972) and later generalized by Ruelle (1976)
and Bowen (1975). Roughly speaking, these are maps having uniformly expanding and contracting directions and their
physical invariant measures have densities with respect to the Lebesgue measure in the expanding directions (being
usually singular in the contracting directions). This property led then to the characterization of a Sinai–Ruelle–Bowen
measure. In a recent attempt to go beyond maps having an Axiom A attractor, Young (2002) additionally requires that
T has a positive Lyapunow exponent almost everywhere. The precise definition strongly relies on the smoothness and
invertibility of the map T. Note that the generalized baker transformation S
 has Lyapunov exponents equal to ln 2 and
ln 
 and the measure 	
 is absolutely continuous along all vertical directions.

2.3. Brownian motion from deterministic perturbations

We are now ready to start developing the machinery to examine the question posed in the Introduction, i.e. how
Brownian-like motion can arise from a purely deterministic dynamics. We first, in Section 2.3.1, give some background
material and review the content of the central limit theorem and introduce a stronger result from Billingsley (1968)
known as a functional central limit theorem. Section 2.3.2 then goes on to develop a number of essential results using
the central limit theorem and functional central limit theorem for invertible maps.

2.3.1. Preliminaries
We follow the terminology of Billingsley (1968). If � is a measurable mapping from a probability space (�,F, Pr)

into a measurable space (Z,A), we call � a Z-valued random variable. The distribution of � is the normalized measure
� = Pr ◦�−1 on (Z,A), i.e.

�(A) = Pr(�−1(A)) = Pr{� : �(�) ∈ A} = Pr{� ∈ A}, A ∈ A .

The random variables � and � are, by definition, (statistically) independent if for all measurable A and B

Pr{� ∈ A, � ∈ B} = Pr{� ∈ A} Pr{� ∈ B} ,

i.e. the distribution of the pair (�, �) is the product of the distribution of � with that of �.
Let (Z, �) be a metric space and B(Z) be the 
-algebra of Borel subsets of Z. A sequence (�n) of normalized

measures on (Z,B(Z)) is said to converge weakly to a normalized measure � if

lim
n→∞

∫
Z

f (z)�n(dz) =
∫

Z

f (z)�(dz)

for every continuous bounded function f : Z → R. As an example, in Eq. (2.13) the measures (1/n)
∑n−1

i=0 �T i(y) are
weakly convergent to 	 for each y ∈ Y0.

Note that the integrals
∫
Z

f (z)�(dz) completely determine �, thus the sequence (�n) cannot converge weakly to
two different limits. Note also that weak convergence depends only on the topology of Z, not on the specific metric
that generates it; thus two equivalent metrics give rise to the same notion of weak convergence. If we have a family
{�� : ��0} of normalized measures instead of a sequence, we can also speak of weak convergence of �� to � when �
goes to ∞ or some finite value �0 in a continuous manner. This then means that �� converges weakly to � as � → �0 if
and only if ��n

converges weakly to � for each sequence (�n) such that �n → �0 as n → ∞.
If Z = Rk and F and Fn are, respectively, the distribution functions of � and �n, i.e. F(z) = �{y : yi �zi, i�k} and

Fn(z) = �n{y : yi �zi, i�k} for z = (z1, . . . , zk) ∈ Rk , then (�n) converges weakly to � if and only if

lim
n→∞ Fn(z) = F(z) at continuity points z of F .
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The characteristic function �� of a normalized measure � on Rk is defined by

��(r) =
∫

exp(i〈r, z〉)�(dz) ,

where i = √−1 and 〈r, z〉 = ∑k
j=1 rj zj denotes the inner product in Rk . The continuity theorem (Billingsley, 1968,

Theorem 7.6) gives us the following: (�n) converges weakly to � if and only if

lim
n→∞ ��n

(r) = ��(r) for each r ∈ Rk . (2.14)

A sequence �n of Z-valued random variables converges in distribution, or weakly, to a normalized measure � on
(Z,B(Z)), if the corresponding distributions of �n converge weakly to �. This is denoted by

�n →d � .

If � is the distribution of a random variable �, we write �n →d �. Note that the underlying probability spaces for the
random variables �, �1, �2 . . . may be all distinct.

A sequence �n of Z-valued random variables converges in probability to a Z-valued random variable � if

lim
n→∞ Pr(�(�n, �) > ε) = 0 for all ε > 0 (2.15)

and almost surely (a.s.) to � if

lim
n→∞ �n(�) = �(�) for almost every � .

This is denoted, respectively, by

�n →P � and �n → � a.s.

Here all the random variables are defined on the same probability space. Note that if Condition 2.15 holds then

lim
n→∞ Pr0(�(�n, �) > ε) = 0 for all ε > 0

for every probability measure Pr0 on (�,F) which is absolutely continuous with respect to Pr. In other words con-
vergence in probability is preserved by an absolutely continuous change of measure. We will also frequently use the
following result from Billingsley (1968, Theorem 4.1): If (Z, �) is a separable metric space, and

if �̃n →d � and �(�n, �̃n)→P 0, then �n →d � . (2.16)

We will write N(0, 
2) for either a real-valued random variable which is Gaussian distributed with mean 0 and variance

2, or the measure on (R,B(R)) with density

1√
2�


exp

(
− x2

2
2

)
. (2.17)

The characteristic function of N(0, 
2) is �(r) = exp(−
2

2 r2), r ∈ R. Since 
N(0, 1) = N(0, 
2) when 
 > 0, we can
always write 
N(0, 1) for 
�0, which in the case 
 = 0 reduces to the point measure �0 at 0.

Let (�j )j �1 be a sequence of real-valued zero-mean random variables with finite variance. If there is 
 > 0 such that∑n
j=1 �j√

n
→d 
N(0, 1) , (2.18)

then (�j )j �1 is said to satisfy the central limit theorem (CLT). Note that if the random variables �j are defined on the
same probability space (�,F, Pr), we have the equivalent formulation of (2.18) in the case of 
 > 0

lim
n→∞ Pr

{
� ∈ � :

∑n
j=1 �j (�)



√

n
�z

}
= �(z), z ∈ R ,
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where

�(z) = 1√
2�

∫ z

−∞
exp

(
−1

2
t2
)

dt (2.19)

is the standard Gaussian distribution function. In the case of 
 = 0∑n
j=1 �j√

n
→P 0 .

Let {w(t), t ∈ [0, ∞)} be a standard Wiener process (Brownian motion), i.e. {w(t), t ∈ [0, ∞)} is a family of real-
valued random variables on some probability space (�,F, Pr) satisfying the following properties:

(i) the process starts at zero: w(0) = 0 a.e.;
(ii) for 0� t1 < t2 the random variable w(t2) − w(t1) is Gaussian distributed with mean 0 and variance t2 − t1;

(iii) for times t1 < t2 < · · · < tn the increments w(t2)−w(t1), . . . , w(tn)−w(tn−1) are independent random variables.

The existence of the Wiener process {w(t), t ∈ [0, 1]} is equivalent to the existence of the Wiener measure W on
the space C[0, 1] of continuous functions on [0, 1] with uniform convergence, in a topology which makes C[0, 1] a
complete separable metric space. Then, simply, W is the distribution of a random variable W : � → C[0, 1] defined
by W(�) : t �→ w(t)(�).

Let D[0, 1] be the space of right continuous real valued functions on [0, 1] with left-hand limits. We endow D[0, 1]
with the Skorohod topology which is defined by the metric

�S(�, �̃) = inf
s∈S

(
sup

t∈[0,1]
|�(t) − �̃(s(t))| + sup

t∈[0,1]
|t − s(t)|

)
, �, �̃ ∈ D[0, 1] ,

where S is the family of strictly increasing, continuous mappings s of [0, 1] onto itself such that s(0) = 0 and s(1) = 1
(Billingsley, 1968, Section 14). The metric space (D[0, 1], �S) is separable and is not complete, but there is an equivalent
metric on D[0, 1] which turns D[0, 1] with the Skorohod topology into a complete separable metric space. Since the
Skorohod topology and the uniform topology on C[0, 1] coincide, W can be considered as a measure on D[0, 1].

A stronger result than the CLT is a weak invariance principle, also called a functional central limit theorem (FCLT).
Let (�j )j �1 be a sequence of real-valued zero-mean random variables with finite variance. Let 
 > 0 and define the
process {�n(t), t ∈ [0, 1]} by

�n(t) = 1



√

n

[nt]∑
j=1

�j for t ∈ [0, 1] ,

(where the sum from 1 to 0 is set equal to 0). Note that �n is a right continuous step function, a random variable of
D[0, 1] and �n(0) = 0. If

�n →d w

(here the convergence in distribution is in D[0, 1]), then (�j )j �1 is said to satisfy the FCLT.
If for every k�1 and every vector (t1, . . . , tk) ∈ [0, 1]k with t1 < · · · < tk the joint distribution of the vector

(�n(t1), . . . ,�n(tk)) converges to the joint distribution of (w(t1), . . . , w(tk)), then we say that the finite dimensional
distributions of �n converge to those of w. For one dimensional distributions this convergence is equivalent to the
central limit theorem.

The convergence of all finite-dimensional distributions of �n to those of w is not sufficient to conclude that �n →d w

in D[0, 1]. According to Theorems 15.1 and 15.5 of Billingsley (1968) if, additionally, for each positive ε

lim
�→0

lim sup
n→∞

Pr

(
sup

|t−s|��
|�n(s) − �n(t)| > ε

)
= 0 , (2.20)

then �n converges in distribution to the Wiener process w.
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The term “functional central limit theorem” comes from the mapping theorem (Billingsley, 1968, Theorem 5.1),
according to which for any functional f : D[0, 1] → R, measurable and continuous on a set of Wiener measure 1,
the distribution of f (�n) converges weakly to the distribution of f (w). This applies in particular to the functional
f (�) = sup0� s �1�(s). Instead of real-valued functionals one can also consider mappings with values in a metric
space. For example, this theorem applies for any f : D[0, 1] → D[0, 1] of the form f (�)(t) = sups � t�(s) or

f (�)(t) = ∫ t

0 �(s) ds.

2.3.2. CLT and FCLT for maps with zero auto-correlation
Obtaining Brownian-like motion is intimately connected with central limit theorems (CLT) for maps and various

invariance principles. We start to investigate this question in the present section.
Many CLT results and invariance principles for maps have been proved, see e.g. the survey of Denker (1989). These

results extend back over some decades, including contributions by Ratner (1973), Boyarsky and Scarowsky (1979),
Wong (1979), Keller (1980), Jabłoński and Malczak (1983a), Jabłoński (1991), Liverani (1996) and Viana (1997).

First, however, remember that if we have a time series y(j) and a bounded integrable function h : X → R, then the
auto-correlation of h is defined as

Rh(n) = lim
N→∞

1

N

N−1∑
j=0

h(y(j + n))h(y(j)) .

If the time series is generated by a measurable transformation T : Y → Y operating on a normalized measure space
(Y,B, 	), and if 	 is an invariant measure under T and T is ergodic, then we can rewrite the auto-correlation as

Rh(n) = lim
N→∞

1

N

N−1∑
j=0

h(y(j + n))h(y(j)) =
∫

h(y)h(T n(y))	(dy) .

The average 〈h〉 is just

〈h〉 = lim
N→∞

1

N

N−1∑
j=0

h(y(j)) =
∫

h(y)	(dy) .

In this section we give CLT and FCLT results for systems in which Rh(n) = 0 for n�1. This restriction on the auto-
correlation holds for a number of the examples we discuss, e.g. the tent map of Example 2.3, the Chebyshev maps of
Example 2.5, and the quadratic map of Example 2.10 with 
 = 2. Note, however, that the dyadic map introduced in
Example 2.7 and used extensively as an example does not satisfy this restriction.

Let (Y,B, 	) be a normalized measure space, and T : Y → Y be a measurable transformation such that 	 is T-
invariant. (Y,B, 	) will serve as our probability space (�,F, Pr). Let h ∈ L2(Y,B, 	) be such that

∫
h(y)	(dy)=0. The

random variables �j =h◦T j−1, j �1 are real-valued, have zero-mean and finite variance equal to ‖h‖2
2 =∫

h2(y)	(dy).
Thus the terminology from Section 2.3.1 applies.

The explicit formulae for the Frobenius–Perron operators in Section 2.2 show that the equations PT h=0 orPT ,	h=0
can be easily solved. For instance, in Example 2.3, every function h which is odd is a solution of these equations. In
particular, considering h with PT ,	h=0 turns out to be very fruitful. Statistical properties of the sequence (h◦T j )j �0
when PT ,	h = 0 are summarized in the following

Theorem 2.12 (CLT). Let (Y,B, 	) be a normalized measure space and T : Y → Y be ergodic with respect to 	. If
h ∈ L2(Y,B, 	) is such that PT ,	h = 0, then

(i)
∫

h(y)	(dy) = 0 and
∫

h(y)h(T n(y))	(dy) = 0 for all n�1.
(ii)

∑n−1
j=0 h ◦ T j/

√
n→d 
N(0, 1) and 
 = ‖h‖2.

(iii) If 
 > 0 then (h ◦ T j )j �0 satisfies the CLT and FCLT.
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(iv) If h ∈ L∞(Y,B, 	) and 
 > 0 then all moments of
∑n−1

j=0 h ◦ T j/
√

n converge to the corresponding moments of

N(0, 1), i.e. for each k�1 we have

lim
n→∞

∫ (∑n−1
j=0 h(T j (y))√

n

)2k

	(dy) = (2k)!
k

k!2k
,

lim
n→∞

∫ (∑n−1
j=0 h(T j (y))√

n

)2k−1

	(dy) = 0 .

Proof. First note that the transfer operator PT ,	 preserves the integral, i.e.
∫
PT ,	h(y)	(dy) = ∫

h(y)	(dy). Hence∫
h(y)	(dy) = 0. Now let n�1. Since 	 is a finite measure, the Koopman and transfer operators are adjoint on the

space L2(Y,B, 	). This implies∫
h(y)h(T n(y))	(dy) =

∫
h(y)Un

T h(y)	(dy)

=
∫

PT ,	h(y)Un−1
T h(y)	(dy) = 0

and completes the proof of (i). Part (ii) follows from Lemma A.7 and Theorem A.2 in the appendix, since for each n�1
we have

1√
n

n−1∑
j=0

h ◦ T j = 1√
n

n∑
j=1

h ◦ T n−j .

For Part (iii), if 
 > 0, then the CLT is a consequence of part (ii), while the FCLT follows from Lemma A.8 and A.9
in Appendix A. Finally, the existence and convergence of moments in Part (iv) follows from Theorem 5.3 and 5.4 of
Billingsley (1968) and from Lemma A.7 in Appendix A. �

Remark 2.13. Note in particular that if T is invertible then the equation PT ,	(h) = 0 has only a zero solution, so the
theorem does not apply.

A central assumption of Theorem 2.12 is that PT ,	(h) = 0, so we now address the question of solvability of the
equation PT ,	(h) = 0 and give a sufficient condition for this to hold.

Proposition 2.14. Let (Y,B, 	) be a normalized measure space and T : Y → Y be a measurable map preserving the
measure 	. Let Y = Y1 ∪ Y2 with Y1, Y2 ∈ B and 	(Y1 ∩ Y2) = 0 and let a bijective map � : Y1 → Y2 be such that
both � and �−1 are measurable and preserve the measure 	. Assume that for every A ∈ B there is B ∈ B such that
B ⊆ Y1 and

T −1(A) = B ∪ �(B) . (2.21)

If h(y) + h(�(y)) = 0 for almost every y ∈ Y1 then PT ,	h = 0.

Proof. From Condition 2.21 it follows that∫
T −1(A)

h(y)	(dy) =
∫

B

h(y)	(dy) +
∫
�(B)

h(y)	(dy) .

Since ∫
�(B)

h(y)	(dy) =
∫
�(B)

h(�−1(�(y)))	(dy) ,

the last integral is equal to∫
B

h(�(y))(	 ◦ �)(dy) =
∫

B

h(�(y))	(dy)
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by the change of variables applied to �−1 and finally by the invariance of 	 for � together with the definition
of PT ,	. �

Remark 2.15. The above proposition can be easily generalized. For example, we can have

T −1(A) = B ∪ �1(B) ∪ �2(B)

with the sets B, �1(B), �2(B) pairwise disjoint.
Note that if Y is an interval then it is enough to check Condition 2.21 for intervals of the form [a, b).

Example 2.16. For an even transformation T on [−1, 1] with an even invariant density we can take Y1 = [−1, 0] and
�(y) = −y. In this case PT ,	h = 0 for every odd function on [−1, 1]. In particular, this applies to the tent map of
Example 2.3 and to the Chebyshev maps SN of Example 2.5 with N even. We also have PSN ,	h= 0 when h(y)= y and
SN is the Chebyshev map with N odd. Indeed, first observe that by Theorem 2.6 we have PSN ,	h=0 if PTN

f =0 where
TN is given by 2.6 and f (y) = cos(�y) for y ∈ [0, 1] and then note that PTN

f = 0 follows because the expression

f (y) +
(N−1)/2∑

n=1

(
f

(
2n

N
+ y

)
+ f

(
2n

N
− y

))
reduces to

cos(�y)

⎛⎝1 + 2
(N−1)/2∑

n=1

cos

(
2n�

N

)⎞⎠
which is equal to 0. For the dyadic map, we can take �(y) = y + 1. Then any function satisfying h(y) + h(y + 1) = 0
gives a solution to PT ,	h = 0.

The next example shows that the assumption of ergodicity in Theorem 2.12 is essential.

Example 2.17. Let T : [0, 1] → [0, 1] be defined by

T (y) =
⎧⎨⎩

2y, y ∈ [0, 1
4 ) ,

2y − 1
2 , y ∈ [ 1

4 , 3
4 ) ,

2y − 1, y ∈ [ 3
4 , 1] .

The Frobenius–Perron operator is given by

PT f (y) = 1

2
f

(
1

2
y

)
1[0,

1
2 )

(y) + 1

2
f

(
1

2
y + 1

4

)
+ 1

2
f

(
1

2
y + 1

2

)
1[ 1

2 ,1](y) .

Observe that the Lebesgue measure on ([0, 1],B([0, 1])) is invariant for T and that T is not ergodic since T −1([0, 1
2 ])=

[0, 1
2 ] and T −1([ 1

2 , 1]) = [ 1
2 , 1]. Consider the following functions:

h1(y) =
⎧⎨⎩

1, y ∈ [0, 1
4 ),

−1, y ∈ [ 1
4 , 3

4 ),

1, y ∈ [ 3
4 , 1],

h2(y) =

⎧⎪⎪⎨⎪⎪⎩
1, y ∈ [0, 1

4 ) ,

−1, y ∈ [ 1
4 , 1

2 ) ,

−2, y ∈ [ 1
2 , 3

4 ) ,

2, y ∈ [ 3
4 , 1] .

We see at once that PT h1 = PT h2 = 0, PT h2
1 = h2

1, and PT h2
2 = h2

2. It is immediate that for every y ∈ [0, 1] we have
h2

1(T (y)) = h2
1(y) = 1 and h2

2(T (y)) = h2
2(y). Lemma A.7 and Theorem A.3 in the appendix show that

1√
n

n−1∑
j=0

h1 ◦ T j →d N(0, 1) ,
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while

1√
n

n−1∑
j=0

h2 ◦ T j →d � ,

where � has the characteristic function of the form

��(r) =
∫ 1

0
exp

(
− r2

2
h2

2(y)

)
dy .

The density of � is equal to

1

2

1√
2�

exp

(
−x2

2

)
+ 1

2

1√
8�

exp

(
−x2

8

)
, x ∈ R .

Consequently, the sequence (h2 ◦ T j )j �0 does not satisfy the CLT.

We now turn to a discussion of the problem of changing the underlying probability space for the sequence (h◦T j )j �0.
The random variables h ◦ T j in Theorem 2.12 are defined on the probability space (Y,B, 	). Since 	 is invariant for
T, they have the same distribution and constitute a stationary sequence. We shall show that the result (iii) of Theorem
2.12 remains true if the transformation T is exact and h ◦ T j are random variables on (Y,B, 	0) where 	0 is an
arbitrary normalized measure absolutely continuous with respect to 	. In other words we can consider random variables
h(T j (�0)) with �0 distributed according to 	0. Now these random variables are not identically distributed and constitute
a non-stationary sequence. For example, consider the tent map T (y)=1−2|y| on [−1, 1] and h(y)=y. Then Theorem
2.12 applies if �0 is uniformly distributed. In the next theorem we will show that we can also consider �0 having a
density with respect to the normalized Lebesgue measure on [−1, 1].
Theorem 2.18. Let (Y,B, 	) be a normalized measure space and T : Y → Y be exact with respect to 	. Let
h ∈ L2(Y,B, 	) be such that PT ,	h = 0 and 
 = ‖h‖2 > 0. If �0 is distributed according to a normalized mea-
sure 	0 on (Y,B) which is absolutely continuous with respect to 	, then (h ◦ T j (�0))j �0 satisfies both the CLT and
FCLT.

Proof. Let g0 be the density of the measure 	0 with respect to 	. On the probability space (Y,B) define the random
variables �n by

�n(y) = 1



√

n

n−1∑
j=0

h(T j (y)), y ∈ Y .

To prove the CLT we shall use the continuity theorem, and to do so we must show that

lim
n→∞

∫
exp(ir�n(y))g0(y)	(dy) = exp

(
− r2

2

)
, r ∈ R .

Fix ε > 0. Since T is exact, there exists m�1 such that∫
|Pm

T,	g0(y) − 1|	(dy)�ε .

Define

�̃n(y) = 1



√

n

n−m−1∑
j=0

h(T j (y)), n > m

and observe that

�n = 1



√

n

m−1∑
j=0

h ◦ T j + �̃n ◦ T m
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for sufficiently large n. Since for every y the sequence 1


√

n

∑m−1
j=0 h(T j (y)) converges to 0 as n → ∞, we obtain

lim
n→∞

∣∣∣∣∫ exp(ir�n(y))g0(y)	(dy) −
∫

exp(ir �̃n(T
m(y)))g0(y)	(dy)

∣∣∣∣ = 0 .

The equality exp(ir �̃n ◦ T m) = Um
T (exp(ir �̃n)) implies that∫

exp(ir �̃n(T
m(y)))g0(y)	(dy) =

∫
exp(ir �̃n(y))Pm

T,	g0(y)	(dy) ,

since the operators UT and PT ,	 are adjoint. This gives∣∣∣∣∫ exp(ir �̃n(T
m(y)))g0(y)	(dy) −

∫
exp(ir �̃n(y))	(dy)

∣∣∣∣ �
∫

|Pm
T,	g0(y) − 1|	(dy)�ε .

From Theorem 2.12 and the continuity theorem, it follows that

lim
n→∞

∫
exp(ir �̃n(y))	(dy) = exp

(
− r2

2

)
.

Consequently,

lim sup
n→∞

∣∣∣∣∫ exp(ir�n(y))g0(y)	(dy) − exp

(
− r2

2

)∣∣∣∣ �ε ,

which leads to the desired conclusion, as ε was arbitrary.
Similar arguments as above, the multidimensional version of the continuity theorem, and Lemma A.8 in Appendix

A allow us to show that the finite dimensional distributions of

�n(t) = 1



√

n

[nt]−1∑
j=0

h(T j (�0))

converge to the finite dimensional distributions of the Wiener process w. By Lemma A.9 in Appendix A, Condition
2.20 holds with Pr =	. Since 	0 is absolutely continuous with respect to 	, it is easily seen that this condition also holds
with Pr =	0. �

2.3.3. CLT and FCLT for maps with not necessarily zero auto-correlation
Does the CLT still hold when h does not satisfy the equation PT ,	h = 0? The answer to this question is positive

provided that h can be written as a sum of two functions in which one satisfies the assumptions of Theorem 2.12 while
the other is irrelevant for the central limit theorem to hold. This idea goes back to Gordin (1969), and allows us to
develop CLT results for maps in which the auto-correlation Rh(n) is not necessarily zero for n�1.

Theorem 2.19. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and
h ∈ L2(Y,B, 	) be such that

∫
h(y)	(dy) = 0. If there exists h̃ ∈ L2(Y,B, 	) such that PT ,	h̃ = 0 and the sequence

(1/
√

n)
∑n−1

j=0(h − h̃) ◦ T j is convergent in L2(Y,B, 	) to 0, then

lim
n→∞

‖∑n−1
j=0 h ◦ T j‖2

2

n
= ‖h̃‖2

2 (2.22)

and

1√
n

n−1∑
j=0

h ◦ T j →d ‖h̃‖2N(0, 1) .
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Moreover, if the series
∑∞

j=1

∫
h(y)h(T j (y))	(dy) is convergent, then

‖h̃‖2
2 =

∫
h2(y)	(dy) + 2

∞∑
n=1

∫
h(y)h(T n(y))	(dy) . (2.23)

Proof. We have∑n−1
j=0 h ◦ T j

√
n

=
∑n−1

j=0 h̃ ◦ T j

√
n

+
∑n−1

j=0(h − h̃) ◦ T j

√
n

. (2.24)

Since PT ,	h̃ = 0, we obtain
∫

h̃(y)	(dy) = 0 and
∫

h̃(T i(y))h̃(T j (y))	(dy) = 0 for i �= j by Condition (i) of
Theorem 2.12. Hence

‖h̃‖2
2 = 1

n

n−1∑
j=0

‖h̃ ◦ T j‖2
2 =

∥∥∥∥∥∥ 1√
n

n−1∑
j=0

h̃ ◦ T j

∥∥∥∥∥∥
2

2

and therefore Eq. (2.22) holds. Since the sequence

1√
n

n−1∑
j=0

(h − h̃) ◦ T j

is convergent to 0 in L2(Y,B, 	), it is also convergent to 0 in probability. Eq. (2.24), Condition (ii) of Theorem 2.12
applied to h̃, and property (2.16) complete the proof of the first part.

It remains to show that

lim
n→∞

‖∑n−1
j=0 h ◦ T j‖2

2

n
=
∫

h2(y)	(dy) + 2
∞∑

n=1

∫
h(y)h(T n(y))	(dy) .

Since 	 is T-invariant, we have

1

n

∫ ⎛⎝n−1∑
j=0

h(T j (y))

⎞⎠2

	(dy) = ‖h‖2 + 2
1

n

n−1∑
j=1

j∑
l=1

∫
h(y)h(T l(y))	(dy) .

By assumption the sequence (
∑n

j=1

∫
h(y)h(T j (y))	(dy))n�1 is convergent to

∑∞
j=1

∫
h(y)h(T j (y))	(dy), which

implies Eq. (2.23). �

Remark 2.20. Note that in the above proof of the CLT we only used the weaker condition that the sequence (1/
√

n)∑n−1
j=0 (h − h̃) ◦ T j is convergent to 0 in probability. The stronger assumption that this sequence is convergent in

L2(Y,B, 	) was used to derive Eq. (2.22). Note also that all of the computations are useless when ‖h̃‖2 = 0 and the
most interesting situation is when h̃ is nontrivial, i.e. ‖h̃‖2 > 0.

Strengthening the assumptions of the last theorem leads to the functional central limit theorem.

Theorem 2.21. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and h ∈
L2(Y,B, 	) be such that

∫
h(y)	(dy) = 0. If there exists a nontrivial h̃ ∈ L2(Y,B, 	) such that PT ,	h̃ = 0 and the

sequence (1/
√

n)
∑n−1

j=0(h − h̃) ◦ T j is a.s. convergent to 0, then (h ◦ T j )j �0 satisfies the FCLT.

Proof. Since every sequence convergent 	 almost everywhere is convergent in probability, the CLT follows by Remark
2.20 and Theorem 2.19. To derive the FCLT define

�̃n(t) = 1



√

n

[nt]−1∑
j=0

h̃ ◦ T j and �n(t) = (1/

√

n)

[nt]−1∑
j=0

h ◦ T j , t ∈ [0, 1] ,
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where 
 = ‖h̃‖2. Then by (iii) of Theorem 2.12 we have

�̃n →d w .

By property (2.16) it remains to show that

�S(�n, �̃n)→P 0 .

To this end observe that

�S(�n, �̃n)� sup
0� t �1

|�n(t) − �̃n(t)|�(1/

√

n) max
1�k �n

∣∣∣∣∣∣
k−1∑
j=0

(h − h̃) ◦ T j

∣∣∣∣∣∣ .

Since the sequence (1/
√

n)
∑n−1

j=0 (h − h̃) ◦ T j is a.s. convergent to 0, the same holds for the sequence (1/

√

n)

max1�k �n |∑k−1
j=0 (h − h̃) ◦ T j | by an elementary analysis. �

Remark 2.22. If T is exact, then Theorems 2.19 and 2.21 hold for the sequence (h ◦ T j (�0))j �0 provided that �0 is
distributed according to a normalized measure 	0 on (Y, 	) which is absolutely continuous with respect to 	. Indeed,
since convergence to zero in probability is preserved by an absolutely continuous change of measure, we can apply the
above arguments again, with Theorem 2.12 replaced by Theorem 2.18.

One situation when all assumptions of the two preceding theorems are met is described in the following.

Theorem 2.23. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and h ∈
L2(Y,B, 	). Suppose that the series

∞∑
n=0

Pn
T ,	h

is convergent in L2(Y,B, 	). Define f = ∑∞
n=1 P

n
T ,	h and h̃ = h + f − f ◦ T .

Then h̃ ∈ L2(Y,B, 	), PT ,	h̃=0,
∫

h(y)	(dy)=0, and the sequence ((1/
√

n)
∑n−1

j=0(h− h̃)◦T j )n�1 is convergent

to 0 both in L2(Y,B, 	) and a.s.
In particular, ‖h̃‖2 = 0 if and only if h = f ◦ T − f for some f ∈ L2(Y,B, 	).

Proof. Since PT ,	(h + f ) = f , we have by Eq. (2.3)

PT ,	h̃ = PT ,	(h + f ) − PT ,	(f ◦ T ) = f − PT ,	UT f = 0.

Thus it remains to study the behavior of the sequence (1/
√

n)
∑n−1

j=0(h − h̃) ◦ T j , which, with our notation, reduces

to (1/
√

n)(f ◦ T n − f ). This sequence is obviously convergent to 0 in L2(Y,B, 	) because ‖f ◦ T n − f ‖2 �2‖f ‖2.
It is also a.s. convergent to 0 which follows from the Borel-Cantelli lemma and the fact that for every ε > 0 the series∑∞

n=1 	(f 2 ◦ T n �nε) = ∑∞
n=1 	(f 2 �nε) is convergent since f ∈ L2(Y,B, 	). �

Summarizing our results for general h we arrive at the following sufficient conditions for the CLT and FCLT to hold.

Corollary 2.24. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and
h ∈ L2(Y,B, 	). If

∞∑
n=0

‖Pn
T ,	h‖2 < ∞ , (2.25)
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then 
�0 given by


2 =
∫

h2(y)	(dy) + 2
∞∑

n=1

∫
h(y)h(T n(y))	(dy)

is finite and (h ◦ T j )j �0 satisfies the CLT and FCLT provided that 
 > 0.

Proof. Since the operators PT ,	 and UT are adjoint on the space L2(Y,B, 	), we have∫
h(y)h(T n(y))	(dy) =

∫
Pn

T ,	h(y)h(y)	(dy) .

Thus ∣∣∣∣∫ h(y)h(T n(y))	(dy)

∣∣∣∣ �
∫

|Pn
T ,	h(y)h(y)|	(dy)�‖Pn

T ,	h‖2‖h‖2

by Schwartz’s inequality. Hence

∞∑
n=1

∫
|h(y)h(T n(y))|d	�‖h‖2

∞∑
n=1

‖Pn
T ,	h‖2 ,

which shows that the series
∑∞

n=1

∫
h(y)h(T n(y))	(dy) is convergent. Since assumption (2.25) implies that the series∑∞

n=0 P
n
T ,	h is absolutely convergent in L2(Y,B, 	), the assertions follow from Theorems 2.19, 2.21, and 2.23. �

Remark 2.25. Note that if Condition 2.25 holds then

lim
n→∞ ‖Pn

T ,	h‖2 = 0 .

Since 	 is finite, we have

lim
n→∞ ‖Pn

T ,	h‖1 = 0 .

Therefore the validity of Condition 2.25 on a dense subset of {h ∈ L1(Y,B, 	) : ∫ h(y)	(dy) = 0} implies that T
is exact.

We now give the following generalizations of Theorem 2.23 which allow us to have the CLT and FCLT for maps
with polynomial decay of correlations.

Theorem 2.26 (Tyran-Kamińska (2005)). Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with
respect to 	, and h ∈ L2(Y,B, 	) be such that

∫
h(y)	(dy) = 0. Suppose that

∞∑
n=1

n
− 3

2

∥∥∥∥∥
n−1∑
k=0

Pk
T ,	h

∥∥∥∥∥
2

< ∞ . (2.26)

Then there exists h̃ ∈ L2(Y,B, 	) such that PT ,	h̃=0 and the sequence ((1/
√

n)
∑n−1

j=0 (h− h̃)◦T j )n�1 is convergent

in L2(Y,B, 	) to zero. If∥∥∥∥∥
n−1∑
k=0

Pk
T ,	h

∥∥∥∥∥
2

= O(n�) with � <
1

2

then ((1/
√

n)
∑n−1

j=0(h − h̃) ◦ T j )n�1 is convergent a.s. to 0.

Now we give a simple result that derives CLT and FCLT from a bound on the rate of decay of correlations.
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Corollary 2.27 (Tyran-Kamińska (2005)). Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with
respect to 	, and let h ∈ L∞(Y,B, 	) be such that

∫
h(y)	(dy) = 0. If there are � > 1 and c > 0 such that∣∣∣∣∫ h(y)g(T n(y))	(dy)

∣∣∣∣ � c

n� ‖g‖∞ (2.27)

for all g ∈ L∞(Y,B, 	) and n�1, then 
�0 given by


2 =
∫

h2(y)	(dy) + 2
∞∑

n=1

∫
h(y)h(T n(y))	(dy)

is finite and (h ◦ T j )j �0 satisfies the CLT and FCLT provided that 
 > 0.

2.3.4. Examples
The material of the previous sections has been dense and difficult, but absolutely necessary for us to understand how

systems like Eqs. (1.1)–(1.4) can generate processes with the properties of white noise. As we show in the next two
sections, the answer to this question is intimately related to an extension of a familiar concept from probability theory
(the central limit theorem) to situations like we are considering where the �(t) are not statistically independent. Before
doing so, however, we turn to a few examples to illustrate some of the material of the previous sections.

Assume that Y is an interval [a, b] in R for some a, b. Recall that a function h : [a, b] → R is said to be of bounded
variation if

b∨
a

h = sup
n∑

i=1

|h(yi−1) − h(yi)| < ∞ ,

where the supremum is taken over all finite partitions, a = y0 < y1 < · · · < yn = b, n�1, of Y.
Let V ([0, 1]) denote the space of all integrable functions with bounded variation over [0, 1] such that

∫ 1
0 h(y) dy =0.

We have

|h(y)|�
1∨
0

h for h ∈ V ([0, 1]), y ∈ [0, 1] . (2.28)

Example 2.28. For the continued fraction map there exists a positive constant c < 1 such that for every function h of
bounded variation over [0, 1] we have (Iosifescu, 1992, Corollary, p. 904)

1∨
0

Pn
T ,	h�cn

1∨
0

h for all n�1 ,

where 	 is Gauss’s measure with density g∗ as in Example 2.9. From this and Condition 2.28 it follows that for every
h ∈ V ([0, 1])

‖Pn
T ,	h‖2 � sup

y∈[0,1]
|Pn

T ,	h(y)|�cn
1∨
0

h .

Consequently, Condition 2.25 is satisfied and Corollary 2.24 applies.

By definition, the Frobenius–Perron operator is a linear operator from L1([0, 1]) to L1([0, 1]), but for sufficiently
smooth piecewise monotonic maps it can be defined as a pointwise map of V ([0, 1]) into V ([0, 1]). Since functions of
bounded variation have only countably many points of discontinuity, redefining PT at those points does not change its
L1 properties. If, moreover, one is able to give an estimate for the iterates of PT in the bounded variation norm

‖h‖BV =
1∨
0

h +
∫ 1

0
|h(y)| dy ,
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then obviously one is able to estimate the norm of P n
T f in all Lp([0, 1]) spaces. In many cases there exist c1, c2 > 0

and r ∈ (0, 1) such that

‖P n
T h‖BV �c1r

n

(
1∨
0

h + c2‖h‖1

)
, h ∈ V ([0, 1]) . (2.29)

We now describe two classes of chaotic maps for which one can easily show that Condition 2.25 holds for every
h ∈ V ([0, 1]).

Example 2.29. Consider a transformation T : [0, 1] → [0, 1] having the following properties

(i) there is a partition 0 = a0 < a1 < · · · < al = 1 of [0, 1] such that for each integer i = 1, . . . , l the restriction of T
to [ai−1, ai) is continuous and convex,

(ii) T (ai−1) = 0 and T ′(ai−1) > 0,
(iii) T ′(0) > 1.

For such transformation the Frobenius–Perron operator has a unique fixed point g∗, where g∗ is of bounded variation
and a decreasing function of y (Lasota and Mackey, 1994). Moreover it is bounded from below when, for exam-
ple, T ([0, a1]) = [0, 1]. It is known (Jabłoński and Malczak, 1983b) that the estimate in Eq. (2.29) holds for the
Frobenius–Perron operator PT for transformations with these three properties. Suppose that g∗(y) > 0 for almost every
y ∈ [0, 1]. Since ‖PT ,	‖∞ �‖f ‖∞ for all f ∈ L∞([0, 1],B, 	), we have for all h ∈ f ∈ L∞([0, 1],B, 	)

‖Pn
T ,	h‖2 �‖h‖1/2∞ ‖Pn

T ,	h‖1/2
1 (2.30)

If h is of bounded variation with
∫

h(y)g∗(y) dy = 0, then hg∗ ∈ V ([0, 1]) and ‖Pn
T ,	h‖1 = ‖P n

T (hg∗)‖1. Thus

‖Pn
T ,	h‖2 = O(rn/2)

by Eq. (2.29) and Corollary 2.24 applies.

Example 2.30. Let a transformation T : [0, 1] → [0, 1] be piecewise monotonic, the function 1
|T ′(y)| be of bounded

variation over [0, 1] and infy∈[0,1] |T ′(y)| > 1. For such transformations the Frobenius–Perron operator has a fixed
point g∗ and g∗ is of bounded variation (Lasota and Mackey, 1994). Suppose that PT has a unique invariant density
g∗ which is strictly positive. Then the transformation T is ergodic and g∗ is bounded from below. There exists k such
that T k is exact, the estimate in Eq. (2.29) is valid for the Frobenius–Perron operator PT k corresponding to T k , and the
following holds (Jabłoński et al., 1985): There exists c1 > 0 and r ∈ (0, 1) such that

|P n
T kf (y)|�c1r

n

(
1∨
0

f +
∫ 1

0
|f (y)|dy

)
, y ∈ [0, 1], f ∈ V ([0, 1]) .

Hence Corollary 2.24 applies to T k and every h of bounded variation with
∫

h(y)g∗(y) dy = 0. One can relax
the assumption that g∗ is strictly positive and have instead g∗ �c for almost every y ∈ Y∗ = {y ∈ [0, 1] : g∗(y) > 0}.
Then the above estimate is valid for y ∈ Y∗ and f with suppf = {y ∈ [0, 1] : f (y) �= 0} ⊂ Y∗ and Corollary 2.24 still
applies to T k .

Example 2.31. The conclusions of Corollary 2.24 can be extended to conjugated maps. If the Lebesgue measure on
[0, 1] is invariant with respect to T, then Theorem 2.6 offers the following.

Let T : [0, 1] → [0, 1] be a transformation for which the Lebesgue measure on [0, 1] is invariant and for which
Eq. (2.29) holds. Let g∗ be a positive function and S : [a, b] → [a, b] be given by S = G−1 ◦ T ◦ G, where

G(x) =
∫ x

a

g∗(y) dy, a�x�b .
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By Theorem 2.6 we have

PS,	f = UGPT UG−1f for f ∈ L1([a, b],B([a, b]), 	) .

The operator UG : L2([0, 1]) → L2([a, b],B([a, b]), 	) is an isometry, thus

‖Pn
S,	h‖2 = ‖P n

T UG−1h‖L2([0,1]) .

Since G is increasing, G−1 is a function of bounded variation. As a result, if h : [a, b] → R is a function of bounded
variation with

∫
h(y)g∗(y) dy = 0, then UG−1h = h ◦ G−1 is of bounded variation over [0, 1]. Consequently, by

Eq. (2.29)

∞∑
n=0

‖Pn
S,	h‖2 < ∞ ,

where ‖ · ‖2 denotes the norm in L2([a, b],B([a, b]), 	) and 	 is the measure with density g∗.

Example 2.32. Finally we discuss the case of quadratic maps. We follow the formulation in Viana (1997). Consider
the quadratic map T
, 
 ∈ (0, 2), of Example 2.10 and assume that for the critical point c=0 there are constants �c > 1
and � > 0 such that �c > e2� and

(i) |(T n

 )′(T (c))|��n

c for every n�1;

(ii) |T n

 (c) − c|�e−�n for every n�1;

(iii) T
 is topologically mixing on the interval [T 2

 (c), T
(c)], i.e. for every interval I ⊂ [−1, 1] there exists k such

that T k

 (I ) ⊃ [T 2


 (c), T
(c)].

Young (1992) shows that there is a set of parameters 
 close to 2 for which conditions (i), (ii), (iii) hold with �c = 1.9
and �=10−6 and that the central limit theorem holds for (h◦T

j


 ) with h of bounded variation. Viana (1997) (Section 5)
proves that conditions (i), (ii), (iii) imply all assumptions of our Corollary 2.24 for the transformation T
 and functions
h of bounded variation with

∫
h(y)	
(dy) = 0.

Remark 2.33. Only recently was the FCLT established by Pollicott and Sharp (2002) for maps such as the Manneville–
Pomeau map of Example 2.11 and for Hölder continuous functions h with

∫
h(y)	(dy) = 0 under the hypothesis that

0 < 
 < 1
3 . When 0 < 
 < 1

2 the CLT was proved by Young (1999), where it was shown that in this case condition 2.27
holds. Thus our Corollary 2.27 gives both the CLT and the FCLT for maps satisfying the following:

(i) T (0) = 0, T ′(0) = 1, T is increasing and piecewise C2 and onto [0, 1],
(ii) infε�y �1|T ′(y)| > 1 for every ε > 0,

(iii) limy→0y
1−
T ′′(y) �= 0.

as the “tower method” of (Young, 1999) gives us the estimate in Eq. (2.27) with � = 1

 − 1 for all Hölder continuous h

and g ∈ L∞([0, 1],B, 	) with the constant c dependent only on h.

3. ‘Langevin equations’ with deterministic perturbations

The original problem we posed in Section 1 was “...how Brownian-like motion can arise from a purely deterministic
dynamics.” Having developed the necessary machinery to tackle this in the previous section, in this section we commence
our examination of this problem. In a sense, the conclusions of the section are negative since we will show what does
not work. However, the results of this investigation will serve as a guide to a successful resolution of the question
in Section 4.



192 M.C. Mackey, M. Tyran-Kamińska / Physics Reports 422 (2006) 167 –222

We consider the position (x) and velocity (v) of a dynamical system defined by

dx(t)

dt
= v(t) , (3.1)

dv(t)

dt
= b(v(t)) + �(t) , (3.2)

with a perturbation � in the velocity. We further assume that �(t) consists of a series of delta-function-like perturbations
that occur at times t0, t1, t2, . . . . These perturbations have an amplitude h(�(t)), and �(t) takes the explicit form

�(t) = �
∞∑

n=0

h(�(t))�(t − tn) . (3.3)

We further assume that � is generated by a dynamical system that at least has an invariant measure for the results of
Section 3.1 to hold, or is at least ergodic for the central limit theorem to hold as in Section 3.2.

In practice, we will illustrate our results assuming that � is the trace of a highly chaotic semi-dynamical system that
is, indeed, even exact in the sense of Lasota and Mackey (1994) (cf. Section 2). � could, for example, be generated by
the differential delay equation

�
d�

dt
= −�(t) + T (�(t − 1)) , (3.4)

where the nonlinearity T has the appropriate properties to generate chaotic solutions (Mackey and Glass, 1977; an der
Heiden and Mackey, 1982; Dorizzi et al., 1987; Berre et al., 1990). The parameter � controls the time scale for these
oscillations, and in the limit as � → 0 we can approximate the behavior of the solutions through a map of the form

�n+1 = T (�n) . (3.5)

Thus, we can think of the map T as being generated by the sampling of a chaotic continuous time signal �(t) as, for
example, by the taking a Poincaré section of a semi-dynamical system operating in a high dimensional phase space.

Let (Y,B, 	) be a normalized measure space. Let b : Rk → Rk , h : Y → Rk be measurable transformations, and let
(tn)n�0 be an increasing sequence of real numbers. Assume that � : R+ × Y → Y is such that �(tn+1) = T (�(tn)) for
n�0, where T : Y → Y is a measurable transformation preserving the measure 	. Combining (3.2) with (3.3) we have

dv(t)

dt
= b(v(t)) + �

∞∑
n=0

h(�(t))�(t − tn) . (3.6)

We say that v(t), t � t0, is a solution of Equation (3.6) if, for each n�0, v(t) is a solution of the Cauchy problem

dv(t)

dt
= b(v(t)), t ∈ (tn, tn+1) ,

v(tn) = v(t−n ) + �h(�(tn)) , (3.7)

where v0 is an arbitrary point of Rk and v(t−n ) = limt→t−n v(t) for n�1.

Let � : R+ × Rk → Rk be the semigroup generated by the Cauchy problem (if b is a Lipschitz map then � is well
defined)

dṽ(t)

dt
= b(ṽ(t)), t > 0 ,

ṽ(0) = ṽ0 , (3.8)

i.e. for every ṽ0 ∈ Rk the unique solution of (3.8) is given by ṽ(t) = �(t, ṽ0) for t �0. As a result, the solution of (3.6)
is given by

v(t) = �(t − tn, v(tn)) for t ∈ [tn, tn+1), n�0 .
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After integration, for t ∈ [tn, tn+1) we have

x(t) − x(tn) =
∫ t

tn

v(s) ds =
∫ t

tn

�(s − tn, v(tn)) ds =
∫ t−tn

0
�(s, v(tn)) ds .

Consequently, the solutions of Eqs. (3.1) and (3.2) are given by

x(t) = x(tn) +
∫ t−tn

0
�(s, v(tn)) ds , (3.9)

v(t) = �(t − tn, v(tn)), for t ∈ [tn, tn+1), n�0 . (3.10)

Observe that x(t) is continuous in t, while v(t) is only right continuous, with left-hand limits, and v(tn)= limt→t+n v(t).
We are interested in the variables v(tn), vn := v(t−n ), �n := �(tn), and xn := x(tn) which appear in the definition of

the solutions v(t) and x(t). We have

v(tn) = vn + �h(�n) , (3.11)

vn+1 = �(tn+1 − tn, v(tn)) , (3.12)

�n+1 = T (�n) , (3.13)

xn+1 = xn +
∫ tn+1−tn

0
�(s, v(tn)) ds . (3.14)

We are going to examine the dynamics of these variables from a statistical point of view.
We start by supposing that v0 has a distribution �, �0 has a distribution 	, and that the random variables are independent.

The next section considers what we can say about the long-term behavior of the distribution of the random variables
v(tn) or vn.

3.1. Weak convergence of v(tn) and vn

To simplify the presentation and easily use Proposition B.2 of Appendix B, assume that the differences tn+1 − tn do
not depend on n, so that tn = n� for n�0. Define � : Rk → Rk by

�(v) = �(�, v), v ∈ Rk , (3.15)

where � describes the solutions of the unperturbed system as defined by Eq. (3.8). In particular, adding chaotic
deterministic perturbations to any exponentially stable system produces a stochastically stable system as stated in the
following

Corollary 3.1. Let � : Rk → Rk be a Lipschitz map with a Lipschitz constant � ∈ (0, 1). Let T : Y → Y be
a transformation preserving the measure 	, and h : Y → Rk be such that

∫
Y

|h(y)|	(dy) < ∞. Assume that the
random variables v0 and �0 are independent and that �0 has a distribution 	. Then v(n�) converges in distribution to
a probability measure �∗ on Rk and �∗ is independent of the distribution of the initial random variable v0. Moreover,
vn converges in distribution to the probability measure �∗ ◦ �−1.

Proof. From Eqs. (3.11) and (3.12) it follows that

v((n + 1)�) = �(v(n�)) + �h(�n+1), n�0 .

Define the transformation Rn : Rk × Y → Rk recursively:

R0(v, y) = v + �h(y) ,

Rn+1(v, y) = �(Rn(v, y)) + �h(T n+1(y)), v ∈ Rk, y ∈ Y, n�0 . (3.16)
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Then v(n�)=Rn(v0, �0). One can easily check by induction that all assumptions of Proposition B.2 are satisfied. Thus
v(n�) converges in distribution to a unique probability measure �∗ on Rk . Since vn+1 =�(v(n�)) and � is a continuous
transformation, it follows from the definition of weak convergence that the distribution of vn+1 converges weakly to
�∗ ◦ �−1. �

We call the measure �∗ the limiting measure for v(n�). Note that �∗ may depend on 	.

Remark 3.2. Although Corollary 3.1 shows that there is a unique limiting measure, we cannot conclude in general
that this measure has a density absolutely continuous with respect to the Lebesgue measure. See Example 2.8 and
Remark 3.12.

3.2. The linear case in one dimension

We now consider Eq. (3.2) when b(v) = −�v and ��0. In this situation, we are considering a frictional force linear
in the velocity, so Eqs. (3.1) and (3.2) become

dx(t)

dt
= v(t) ,

dv(t)

dt
= −�v(t) + �

∞∑
n=0

h(�(t))�(t − tn) . (3.17)

To make the computations of the previous section completely transparent, multiply Eq. (3.17) by the integrating factor
exp(�t), rearrange, and integrate from (tn − ε) to (tn+1 − ε), where 0 < ε < minn�0 (tn+1 − tn), to give

v(tn+1 − ε)e�(tn+1−ε) − v(tn − ε)e�(tn−ε) = �
∞∑

n=0

∫ tn+1−ε

tn−ε
h(�(z))�(z − tn) dz

= �e�(tn−ε)h(�(tn − ε)) . (3.18)

Taking the limε→0 in Eq. (3.18) and remembering that v(t−n ) = vn and �(tn) = �n, we have

vn+1 = �nvn + ��nh(�n) , (3.19)

where �n ≡ tn+1 − tn and 0��n ≡ e−��n < 1.
We simplify this formulation by taking tn+1 − tn ≡ � > 0 so the perturbations are assumed to be arriving periodically.

As a consequence, �n ≡ � with

� = e−�� . (3.20)

Then, Eq. (3.19) becomes

vn+1 = �vn + ��h(�n) . (3.21)

This result can also be arrived at from other assumptions.1

1 Alternately but, as it will turn out, equivalently, we can think of the perturbations as constantly applied. In this case we write an Euler
approximation to the derivative in Eq. (3.17) so with an integration step size of � we have

v(t + �) = (1 − ��)v(t) + ��h(�(t)) . (3.22)

Measuring time in units of � so tn+1 = tn + � we then can write this in the alternate equivalent form

vn+1 = �vn + �1�h(�n) , (3.23)

where, now, � = 1 − �� and �1 = ���−1. Again, by induction we obtain Eq. (3.24).
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3.2.1. Behavior of the velocity variable
For a given initial v0 we have, by induction,

vn = �nv0 + ��
n−1∑
j=0

�n−1−j h(�j ) ,

= �nv0 + ��
n−1∑
j=0

�n−1−j h(T j (�0)) . (3.24)

We now calculate the asymptotic behavior of the variance of vn when �0 is distributed according to 	, the invari-
ant measure for T. Assume for simplicity that v0 = 0, set 
2 = ∫

h2(y)	(dy) and assume that the auto-correlation∫
h(y)h(T n(y))	(dy) = 0 for n�1. Then we have

∫
v2
n	(dy) = �2

∫ ⎛⎝n−1∑
j=0

�n−j h(T j (y))

⎞⎠2

	(dy) .

Since the sequence h ◦ T j is uncorrelated by our assumption,

∫ ⎛⎝n−1∑
j=0

�n−j h(T j (y))

⎞⎠2

	(dy) =
n−1∑
j=0

�2n−2j

∫
h(T j (y))2	(dy) = 1 − �2n

1 − �2 
2 .

Thus ∫
v2
n	(dy) = �2
2

(
1 − �2n

1 − �2

)
. (3.25)

Since b(v)=−�v, we have �(t, v)=e−�t v. Eq. (3.21), in conjunction with Eqs. (3.12) and (3.11), leads to vn+1=�v(n�)
where v(n�) = vn + �h(�n). Thus

v(n�) = �nv0 + �
n∑

j=0

�n−j h(T j (�0)) . (3.26)

Case 1: If � < 1 and �0 is distributed according to 	, then by Corollary 3.1 there exists a unique limiting measure
�∗ for v(n�) provided that h is integrable with respect to 	. The sequence vn also converges in distribution. Since the
function � defined by Eq. (3.15) is linear, �(v) = �v, both sequences v(n�) and vn are either convergent or divergent
in distribution.

What can happen if the random variable �0 in Eq. (3.26) is distributed according to a different measure?

Proposition 3.3. Let � < 1, the transformation T be exact with respect to 	, and h ∈ L1(Y,B, 	). If the random variable
�0 is distributed according to a normalized measure 	0 on (Y,B) which is absolutely continuous with respect to 	, then

�
n∑

j=0

�n−j h(T j (�0))→d �∗ (3.27)

and �∗ does not depend on 	0.

Proof. Recall that by the continuity theorem

�
n∑

j=0

�n−j h(T j (�0))→d �∗
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if and only if for every r ∈ R

lim
n→∞

∫
Y

exp

⎛⎝ir�
n∑

j=0

�n−j h(T j (y))

⎞⎠ 	0(dy) =
∫

R
exp(irx)�∗(dx) .

We know that the last equation holds when 	0 = 	. Since for every m�1 the sequence

�
m−1∑
j=0

�n−j h(T j (y))

is convergent to 0 as n → ∞ and

n∑
j=m

�n−j h ◦ T j =
n∑

j=0

�n−m−j h ◦ T j ◦ T m ,

an analysis similar to that in the proof of Theorem 2.18 completes the demonstration. �

Case 2: If � = 1 we have vn = v0 + �
∑n−1

j=0 h(T j (�0)). Since v0 and �0 are independent random variables, v0 and

�
∑n−1

j=0 h(T j (�0)) are also independent. Hence vn converges if and only if �
∑n−1

j=0 h(T j (�0)) does. Moreover, if there
is a limiting measure �∗ for vn, then the sequence v(n�) converges in distribution, say to 	∗, and �∗ is a convolution of
the distribution of v0 and 	∗. As a result, �∗ depends on the distribution of v0. However, if the map T and function h
satisfy the CLT, then∑n−1

j=0 h(T j (�0))



√

n
→d N(0, 1) .

Hence
∑n−1

j=0 h(T j (�0)) is not convergent in distribution since the density is spread out on the entire real line.

3.2.2. Behavior of the position variable
For the position variable we have, for t ∈ [n�, (n + 1)�),

x(t) − x(n�) =
∫ t

n�
v(s) ds =

∫ t

n�
e−�(s−n�)v(n�) ds = 1 − e−�(t−n�)

�
v(n�) .

With x(n�) = xn we have

xn+1 − xn = 1 − e−��

�
v(n�) = 1 − �

�
v(n�) . (3.28)

Summing from 0 to n gives

xn+1 = x0 + 1 − �

�

n∑
j=0

v(j�) . (3.29)

From this and Eq. (3.26) we obtain

xn+1 = x0 + 1 − �

�

n∑
j=0

⎛⎝�j v0 + �
j∑

i=0

�j−ih(T i(�0))

⎞⎠
= x0 + (1 − �n+1)

�
v0 + (1 − �)�

�

n∑
j=0

j∑
i=0

�j−ih(T i(�0)) .
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Changing the order of summation in the last term gives

n∑
j=0

j∑
i=0

�j−ih(T i(�0)) =
n∑

i=0

n∑
j=i

�j−ih(T i(�0)) =
n∑

i=0

1 − �n−i+1

1 − �
h(T i(�0))

= 1

1 − �

n∑
i=0

h(T i(�0)) − �

1 − �

n∑
i=0

�n−ih(T i(�0)) .

Consequently

xn+1 = x0 + (1 − �n+1)

�
v0 + �

�

n∑
i=0

h(T i(�0)) − ��

�

n∑
i=0

�n−ih(T i(�0)) .

In conjunction with Eq. (3.28), this gives

xn = x0 + (1 − �n)

�
v0 + �

�

n∑
i=0

h(T i(�0)) − �

�

n∑
i=0

�n−ih(T i(�0)) . (3.30)

Next we calculate the asymptotic behavior of the variance of xn. Assume as before that x0 = v0 = 0, and that∫
h(y)h(T j (y))	(dy) = 0 and 
2 = ∫

h2(y)	(dy). We have(
n∑

i=0

h(T i(�0)) −
n∑

i=0

�n−ih(T i(�0)

)2

=
(

n∑
i=0

h(T i(�0))

)2

+
(

n∑
i=0

�n−ih(T i(�0))

)2

− 2
n∑

i=0

h(T i(�0))

n∑
i=0

�n−ih(T i(�0)) .

Since, by assumption, the sequence h ◦ T i is again uncorrelated we have∫ (
n∑

i=0

h(T i(y))

)2

	(dy) =
n∑

i=0

n∑
j=0

∫
h(T i(y))h(T j (y))	(dy)

=
n∑

i=0

∫
h(T i(y))2	(dy) = (n + 1)
2 .

Analogous to the computation for the velocity variance∫ (
n∑

i=0

�n−ih(T i(y))

)2

	(dy) =
n∑

i=0

�2n−2i

∫
h(T i(y))2	(dy) = 1 − �2n+2

1 − �2 
2

and ∫ n∑
i=0

h(T i(y))

n∑
j=0

�n−j h(T j (y))	(dy) =
n∑

i=0

n∑
j=0

�n−j

∫
h(T i(y))h(T j (y))	(dy)

=
n∑

i=0

�n−i

∫
h(T i(y))2	(dy) = 1 − �n+1

1 − �

2 .

Consequently, if x0 = v0 = 0 then∫
x2
n	(dy) = �2
2

�2

(
n + 1 + 1 − �2n+2

1 − �2 − 2
1 − �n+1

1 − �

)
. (3.31)
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Theorem 3.4. Let (Y,B, 	) be a normalized measure space, T : Y → Y be a measurable map such that T preserves
the measure 	, let 
 > 0 be a constant, and h ∈ L2(Y,B, 	) be such that

∫
h(y)	(dy) = 0. Then∑n

i=0 h(T i(�0))√
n

→d N(0, 
2) (3.32)

if and only if

xn√
n

→d N

(
0,

�2
2

�2

)
. (3.33)

Proof. Assume that Condition 3.32 holds. From Eq. (3.30) we obtain

xn√
n

= x0√
n

+ (1 − �n)

�

v0√
n

+ �

�
√

n

n∑
i=0

h(T i(�0)) − �

�
√

n

n∑
i=0

�n−ih(T i(�0)) .

By assumption

�

�
√

n

n∑
i=0

h(T i(�0))→d �

�
N(0, 
2) .

Thus the result will follow when we show that the remaining terms are convergent in probability to zero. The first term

x0√
n

+ (1 − �n)

�

v0√
n

is convergent a.s. to zero and consequently in probability. The sequence
∑n

i=0 �n−ih(T i(�0)) is convergent in distri-
bution and �

�
√

n
→ 0 as n → ∞. Consequently, the sequence

�

�
√

n

n∑
i=0

�n−ih(T i(�0))

is convergent in probability to zero which completes the proof. The proof of the converse is analogous. �

Remark 3.5. Observe that if the transformation T is exact and �0 is distributed according to a measure absolutely
continuous with respect to 	, then the conclusion of Theorem 3.4 still holds.

Theorem 3.4 generalizes the results of Chew and Ting (2002). In Section 2.3.2 we have discussed when Condition
3.32 holds for a given ergodic transformation.

Remark 3.6. Note that if we multiply Gaussian distributed random variable N(0, 1) by a positive constant c, then it
becomes Gaussian distributed N(0, c2) with variance c2. Thus if we multiply both sides of Eq. (3.33) by 1√

�
, we obtain

x(n�)√
n�

→d N

(
0,

�2
2

��2

)
.

So if � = √
�m�, as in Chew and Ting (2002), then

�2
2

��2 = m
2

�
.

What we have demonstrated in this section for the case of a linear frictional term in the velocity equation is quite
interesting. Namely, the velocity will converge in distribution (but not necessarily to a Gaussian) and the position
variable will not. However, given the proper scaling, as we have shown in Theorem 3.4, there will be convergence of
the position variable.
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3.3. Identifying the limiting velocity distribution

In Remark 3.2 we noted that although Corollary 3.1 guaranteed the existence of a unique limiting invariant measure,
we could not conclude in general that it had a density absolutely continuous with respect to Lebesgue measure. In
this section we consider a concrete example in which the perturbations � are taken from iterates of the dyadic map of
Example 2.7 and analytically construct the density of the limiting measure. We further illustrate the temporal approach
of the densities to this invariant density graphically.

Let Y ⊂ R be an interval, B = B(Y ), and T : Y → Y be a transformation preserving a normalized measure 	
on (Y,B(Y )). Recall from Section 3.1 that �∗ is the limiting measure for the sequence of random variables (v(n�))
starting from v0 ≡ 0, i.e.

v(n�) = �
n∑

i=0

�n−ih(�i ) ,

where h : Y → R is a given integrable function, 0 < � < 1, �i = T i(�0), and �0 is distributed according to 	.

Proposition 3.7. Let Y = [a, b] and h : Y → R be a bounded function. Then the limiting measure �∗ has moments of
all order given by∫

xk�∗(dx) = lim
n→∞

∫
v(n�)k	(dy) (3.1)

and the characteristic function of �∗ is of the form

�∗(r) =
∞∑

k=0

(ir)k

k!
∫

xk�∗(dx), r ∈ R .

Moreover,

�∗
([

− �c

1 − �
,

�c

1 − �

])
= 1 ,

where c = supy∈Y |h(y)|.

Proof. Since h is bounded, we have

|v(n�)|k �
(

�c

1 − �

)k

, n, k�0 .

The existence and convergence of moments now follow from Theorems 5.3 and 5.4 of Billingsley (1968). Since v(n�)
has all its values in the interval[

− �c

1 − �
,

�c

1 − �

]
we obtain

�n

([
− �c

1 − �
,

�c

1 − �

])
= 1 ,

where �n is the distribution of v(n�). Convergence in distribution (Billingsley, 1968, Theorem 2.1) implies that

lim sup
n→∞

�n(F )��∗(F )

for all closed sets. Therefore

�∗
([

− �c

1 − �
,

�c

1 − �

])
= 1 .

The formula for the characteristic function is a consequence of the other statements. �
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Remark 3.8. Note that if the characteristic function of �∗ is integrable, then �∗ has a continuous and bounded density
which is given by

f∗(x) = 1

2�

∫ ∞

−∞
exp(−ixr)�∗(r) dr, x ∈ R .

On the other hand if �∗ has a density then �∗(r) → 0 as |r| → ∞.
Note also that if a density exists then it must be zero outside the interval[

− �c

1 − �
,

�c

1 − �

]
.

Let Y = [a, b] be an interval and h(y) = y for y ∈ Y . Thus h is bounded and for this choice of h all moments of the
corresponding limiting distribution �∗ exist by Proposition 3.7. However, the calculation might be quite tedious. We
are going to determine the measure �∗ for a specific example of the transformation T by using a different method.

Let hn : Y → R be defined by

hn(y) =
n∑

i=0

�n−iT i(y), y ∈ Y, n�0 . (3.2)

Then v(n�) = �hn(�0) and vn = ��hn−1(�0). Thus knowing the limiting distribution for these sequences is equivalent
to knowing the limiting distribution for hn(�0).

3.3.1. Dyadic map
To give a concrete example for which many of the preceding considerations can be completely illustrated, consider

the generalized dyadic map defined by Eq. (2.10):

T (y) =
{

2y + 1, y ∈ [−1, 0]
2y − 1, y ∈ (0, 1] .

Proposition 3.9. Let �, �0 be random variables uniformly distributed on [−1, 1]. Let (�k) be a sequence of independent
random variables taking values drawn from {−1, 1} with equal probability. Assume that � is statistically independent
of the sequence (�k). Then for every � ∈ (0, 1)

hn(�0)→d 1

2 − �

(
� +

∞∑
k=0

�k�k+1

)
. (3.3)

Proof. The random variable

�0 =
∞∑

k=1

�k

2k

is uniformly distributed on [−1, 1]. It is easily seen that for the dyadic map

�i = T i(�0) =
∞∑

k=1

�k+i

2k
for i�1 . (3.4)

Using this representation we obtain

n−1∑
i=0

�n−1−i�i =
n−1∑
i=0

�n−1−i
n−i∑
k=1

�k+i

2k
+

n−1∑
i=0

�n−1−i
∞∑

k=n−i+1

�k+i

2k
.
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Changing the order of summation leads to

n∑
k=1

(
k∑

i=1

�n−1−k+i

2i

)
�k +

n−1∑
i=0

�n−1−i

2n−i

∞∑
k=1

�k+n

2k

= 1

2 − �

n∑
k=1

�n−k

(
1 −

(
�

2

)k
)

�k +
1 −

(
�
2

)n

2 − �
�n .

Consequently

n−1∑
i=0

�n−1−i�i = 1

2 − �

n∑
k=1

�n−k�k + 1

2 − �
�n − �nwn ,

where

wn = 1

2 − �

[
n∑

k=1

(
1

2

)k

�k +
(

1

2

)n

�n

]
.

This gives

hn−1(�0) + �nwn = 1

2 − �

(
n∑

k=1

�n−k�k + �n

)
. (3.5)

Note that for every n we have |wn|�2. Therefore �nwn is a.s. convergent to 0 as n → ∞. Since hn(�0) converges
in distribution, say to �̃∗, we have hn−1(�0) + �nwn →d �̃∗ and the random variables on the right-hand side of Eq.
(3.5) converge in distribution to �̃∗. Since the random variables �k are independent, the random variables

∑n
k=1 �n−k�k

and �n are also independent for every n. The same is true for
∑n−1

k=0 �k�k+1 and �. Moreover, �n + ∑n
k=1 �n−k�k and

� + ∑n−1
k=0 �k�k+1 have identical distributions. Thus

1

2 − �

(
� +

n−1∑
k=0

�k�k+1

)
→d �∗ .

On the other hand
∑n−1

k=0 �k�k+1 → ∑∞
k=0 �k�k+1 almost surely as n → ∞, but this implies convergence in

distribution. �

Before stating our next result, we review some of the known properties of the random variable which appears in
Eq. (3.3). For every � ∈ (0, 1) let

�� =
∞∑

k=0

�k�k+1 , (3.6)

and let �� be the distribution function of ��, ��(x) = Pr{�� �x} for x ∈ R. Explicit expressions for �� are, in general,
not known. The measure induced by the distribution �� is called an infinitely convolved Bernoulli measure (see Peres
et al., 2000 for the historical background and recent advances).

It is known (Jessen and Wintner, 1935) that �� is continuous and it is either absolutely continuous or singular. Recall
that x is a point of increase of �� if ��(x − ε) < ��(x + ε) for all ε > 0. The set of points of increase of �� (Kershner and
Wintner, 1935) is either the interval [− 1

1−� , 1
1−� ] when �� 1

2 or a Cantor set K� of zero Lebesgue measure contained in

this interval when � < 1
2 , �� is always singular for � ∈ (0, 1

2 ) and the Cantor set K� satisfies K� =(�K� +1)∪(�K� −1)

and 1
1−� , − 1

1−� ∈ K�. Wintner (1935) noted that �� has the uniform density ��(x) = 1
4 1[−2,2](x) for � = 1

2 and that it

is absolutely continuous for the kth roots of 1
2 . Thus it was suspected that �� is absolutely continuous for all � ∈ [ 1

2 , 1).
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However, Erdös (1939a) showed that �� is singular for

� =
√

5 − 1

2

and for the reciprocal of the so-called Pisot numbers in (1, 2). Later Erdös (1939b) showed that there is a 
 < 1 such
that for almost all � ∈ (
, 1) the measure �� is absolutely continuous. Only recently, Solomyak (1995) showed that

 = 1

2 .

Proposition 3.10. Let � > 0 and � ∈ (0, 1). Define

a� = �

1 − �
and b� = ��

(2 − �)(1 − �)
(3.7)

Then the density f �∗ of the limiting measure ��∗ of v(n�) satisfies

f �∗ (v) = 0 if and only if |v|�a� .

Moreover, on the interval (−a�, a�) we have

f �∗ (v) =

⎧⎪⎪⎨⎪⎪⎩
2−�
2� ��

(
2−�
� v + 1

)
, −a� < v < − b� ,

2−�
2�

[
��

(
2−�
� v + 1

)
− ��

(
2−�
� v − 1

)]
, −b� �v�b� ,

2−�
2�

[
1 − ��

(
2−�
� v − 1

)]
, b� < v < a� ,

(3.8)

where �� is the distribution function of �� defined by Eq. (3.6).

Proof. Recall that we have v(n�) = hn(�0). By Proposition 3.9, the sequence (2 − �)hn(�0) converges in distribution
to � + �� and the random variables � and �� are statistically independent. Since � has the uniform density on [−1, 1]
and �� is continuous, the density of � + �� is given by∫ ∞

−∞
1

2
1[−1,1](x − z) d��(z) =

∫ ∞

−∞
1

2
1[x−1,x+1](z) d��(z)

=
∫ x+1

x−1

1

2
d��(z) = 1

2
(��(x + 1) − ��(x − 1)) .

Since v(n�) converges in distribution to �/(2 − �)(� + ��), it follows that ��∗ is the distribution of �/(2 − �)(� + ��).
Thus ��∗ has a density given by

f �∗ (v) = 2 − �

2�

(
��

(
2 − �

�
v + 1

)
− ��

(
2 − �

�
v − 1

))
, v ∈ R .

Consequently, f �∗ (v) = 0 if and only if

��

(
2 − �

�
v + 1

)
= ��

(
2 − �

�
v − 1

)
. (3.9)

Since �� is nondecreasing, it must be constant outside the set of points on which it is increasing, which is contained
in the interval [− 1

1−� , 1
1−� ]. Hence ��(x) = 0 for x� − 1

1−� and ��(x) = 1 for x� 1
1−� . Therefore if |v|� �

1−� , then

f �∗ (v) = 0 and Eq. (3.8) follows. If �� 1
2 the function �� is increasing on the interval [− 1

1−� , 1
1−� ], thus f �∗ is positive

on [− �
1−� , �

1−� ]. Now let � < 1
2 . Since 1

1−� , − 1
1−� ∈ K�, we also have 2�−1

1−� , 1−2�
1−� ∈ K� and they divide the interval

[− 1
1−� , 1

1−� ] into three intervals of length 2, 2 1−2�
1−� , and 2 respectively. Since the middle interval has length less than

2 and the distance between the points 2−�
� v + 1 and 2−�

� v − 1 is always 2, the result follows in this case as well. �
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Remark 3.11. If � = 1
2 then ��(x) = 1

2 (x + 2), 2 − � = 3
2 and the density is equal to

f �∗ (v) =

⎧⎪⎨⎪⎩
9

32� (v + 2), −2� < v < − 2
3� ,

3
8� , |v|� 2

3� ,

9
32� (2 − v), 2

3� < v < 2� .

(3.10)

Remark 3.12. The invariant measure for the baker transformation S
 of Example 2.8 is the product of the distribution
of (1−�)�� and the normalized Lebesgue measure. Thus, in this example the limiting measure for vn is the distribution
of (1 − �)��, which may be either singular or absolutely continuous.

3.3.2. Graphical illustration of the velocity density evolution with dyadic map perturbations
What is the probability density function of hn(�0) defined by Eq. (3.2) when �0 is distributed according to 	? For

many maps, including the dyadic map example being considered here, this can be calculated analytically. This is the
subject of this section.

Let Y be an interval and let 	 have a density g∗ with respect to Lebesgue measure. Then the distribution of hn(�0) is
given by

Pr{hn(�0) ∈ A} = Pr{�0 ∈ h−1
n (A)} =

∫
h−1

n (A)

g∗(y) dy, A ∈ B(R) .

To obtain the density of hn(�0) with respect to the Lebesgue measure, one has to write the last integral as
∫
A

gn(x) dx

for some nonnegative function gn. If the map hn : Y → R is nonsingular with respect to Lebesgue measure, then the
Frobenius–Perron operator Phn : L1([−1, 1]) → L1(R) for hn exists and gn = Phng∗.

Let Y =[−1, 1] and let T be the dyadic map. Remember that PT has the uniform invariant density g∗(y)= 1
2 1[−1,1](y).

Since hn is a linear function on each interval ( k
2n , k+1

2n ] with constant derivative, say h′
n, we have

gn(v) = Phng∗(v) = 1

2h′
n

2n−1∑
k=−2n

1
hn(( k

2n , k+1
2n ])(v), v ∈ R . (3.11)

The derivative h′
n satisfies the recurrence equation h′

n = �n−1 + 2h′
n−1, n�1 and h′

0 = 0 and is equal to

(� − 3)2n + �n

� − 2

for each n.
In Fig. 3.1 we show the evolution of the velocity densities gn when T is the dyadic map for two different values of

�. For � = 1
2 (left hand panels) the density rapidly (by n = 8) approaches the analytic form given in Eq. (3.10). On the

right hand side, for � = 0.8 the velocity densities have, by n = 8, approached a Gaussian-like form but supported on a
finite interval. In both cases the support of the limiting densities is in agreement with Proposition 3.10. Fig. 3.2 shows
g8(v) for six different values of �.

3.3.3. r-dyadic map
Let r �2 be an integer. Consider the r-dyadic transformation on the interval [0, 1]

T (y) = ry (mod 1), y ∈ [0, 1] .

The proof of Proposition 3.9 carries over to this transformation when (�k) is a sequence of independent random variables
taking values in {0, 1, . . . , r − 1} with equal probabilities, i.e. Pr(�k = i) = 1

r
, i = 0, 1, . . . , r − 1, and � is a random

variable uniformly distributed on [0,1] and independent of the sequence of random variables (�k). Then the limiting
measure for vn is the distribution of the random variable

�

r − �

(
� +

∞∑
k=0

�k�k+1

)
.
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Fig. 3.1. This figure shows the successive evolution of the densities gn, n = 2, . . . , 8 of the velocity under perturbations from the dyadic map. In the

left hand series of densities, � = 1
2 , while on the right � = 0.8. When � = 1

2 the densities gn rapidly approach the limiting analytic form f
1
2∗ given

in Eq. (3.10). In both cases, � = 1.
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Fig. 3.2. This figure illustrates the form of the density g8(v) for perturbations coming from the dyadic map, as computed from Eq. (3.11), and various
values of � as indicated, with � = 1. In every case the initial velocity density was the uniform invariant density of the dyadic map.

4. Gaussian behavior in the limit � → 0

In the last section we have shown for the concrete example of the dyadic map that when � is independent of � then the
density of the limiting invariant measure is not Gaussian though it may, on occasion, have a Gaussian-like appearance
(cf. Figs. 3.1 and 3.2).

In this section we consider the possibility that � depends on �, �(�), and explore the type of dependence required
to ensure a true limiting invariant measure with a Gaussian density. That is, we show how to truly converge to an
Ornstein–Uhlenbeck process and thus reproduce Brownian motion from a deterministic process.

In a series of papers Beck and Roepstorff (1987), Beck (1990b), Beck (1990a), Beck (1996) and Hilgers and Beck
(1999), motivated by questions related to alternative interpretations of Brownian motion, have numerically examined
the dynamic character of the iterates of dynamical systems of the form

un+1 = �un + √
�yn, � ≡ e−�� (4.1)

yn+1 = T (yn) , (4.2)

in which T is a ‘chaotic’ mapping and � is a small temporal scaling parameter. They refer to these systems as linear
Langevin systems, and point out that they arise from the following

u̇ = −�u + √
�

∞∑
i=1

yi−1�(t − i�) .

Integrating this equation one obtains Eq. (4.1) with un = u(n�).
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For situations in which the map T is selected from the class of Chebyshev maps [cf. Eq. (2.8) and Adler and Rivlin
(1964)], Hilgers and Beck (2001) have provided abundant numerical evidence that the density of the distribution of the
sequence of iterates {ui}Ni=0, for N quite large, may be approximately normal, or Gaussian, as � → 1, and Hilgers and
Beck (1999) have provided some of the same type of numerical evidence for perturbations coming from the dyadic and
tent maps. Our results provide the analytic basis for these observations.

In this section we consider and answer the question when one can obtain Gaussian processes by studying appropriate
scaling limits of the velocity and position variables. We first recall what is meant by a Gaussian process.

An R-valued stochastic process {�(t); t ∈ (0, ∞)} is called Gaussian if, for every integer l�1 and real numbers
0 < t1 < t2 < · · · < tl < ∞ the random vector (�(t1), . . . , �(tl)) has a joint normal distribution or equivalently, for all
dj ∈ R, j =1, . . . , k, the random variable

∑l
j=1 dj �(tj ) is Gaussian. The finite dimensional distributions of a Gaussian

process are completely determined by its first moment m(t) = E(�(t)) and its covariance function

K�(t, s) = E(�(t) − m(t))(�(s) − m(s)), s, t > 0.

If m(t) ≡ 0, t > 0 we say that � is a zero-mean Gaussian process. The initial random variable �(0) can be either
identically equal to zero or can be any other random variable independent of the process {�(t); t ∈ (0, ∞)}.

Now we recall the Ornstein–Uhlenbeck theory of Brownian motion for a free particle. The Ornstein–Uhlenbeck
velocity process is a solution of the stochastic differential equation

dV (t) = −�V (t) dt + 
0 dw(t) ,

where w is a standard Wiener process, and the solution of this equation is

V (t) = e−�tV (0) + 
0

∫ t

0
e−�(t−s) dw(s) .

In other words, V is an Ornstein–Uhlenbeck velocity process if � defined by �(t)=V (t)−e−�tV (0), t �0, is a zero-mean
Gaussian process with covariance function

K�(t, s) = 
2
0

2�
(e2� min(t,s) − 1)e−�(t+s) . (4.3)

If the initial random variable V (0) has a normal distribution with mean zero and variance 
2
0/2�, then V itself is a

stationary, zero-mean Gaussian process with covariance function

KV (t, s) = 
2
0

2�
e−�|t−s| .

Let X(t) denote the position of a Brownian particle at time t. Then

X(t) = X(0) +
∫ t

0
V (s) ds .

In other words, X is an Ornstein–Uhlenbeck position process if � defined by �(t) = X(t) − X(0) − (1 − e−�t )/�V (0)

is a zero-mean Gaussian process with covariance function

K�(t, s) = 
2
0

2�3 (2� min(t, s) − 2 + 2e−�t + 2e−�s − e−�|t−s| − e−�(t+s)) .

In particular the variance of �(t) is equal to 
2
0/2�3(2�t − 3 + 4e−�t − e−2�t ).

Let h ∈ L2(Y,B, 	) be such that
∫

h(y)	(dy) = 0. Assume that x0, v0, and �0 are independent random variables on
(Y,B, 	) and �0 is distributed according to 	. The solution of Eq. (3.17) is of the form

v(t) = e−�(t−n�)v(n�), t ∈ [n�, (n + 1)�), n�0 .
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We indicate the dependence of x(t) and v(t) on � by writing x�(t) and v�(t) respectively. Let n=[ t
� ], where the notation

[·] indicates the integer value of the argument, for t ∈ [n�, (n + 1)�), substitute � = e−��, and use Eq. (3.26) to obtain

v�(t) = e−�t v0 + �(�)e−�t
[ t
� ]∑

j=0

e��j h(T j (�0)), t �0 , (4.4)

and Eq. (3.30) to obtain

x�(t) = x0 + 1 − e−�t

�
v0 + �(�)

�

⎛⎝ [ t
� ]∑

j=0

h(T j (�0)) − e−�t
[ t
� ]∑

j=0

e��j h(T j (�0))

⎞⎠ . (4.5)

Observe that the first moment of v�(t) is equal to∫
v�(t)	(dy) = e−�t

∫
v0(y)	(dy) ,

since the random variables h(T j (�0)) have a first moment equal to 0.Assume for simplicity that
∫

h(y)h(T j (y))	(dy)=
0 for j �1 and set 
2=∫

h2(y)	(dy). Since the random variables v0 and h(T j (�0)) are independent, the second moment
of v�(t) takes the form

∫
v�(t)

2	(dy) = e−2�t
∫

v2
0(y)	(dy) + [�(�)]2e−2�t

[ t
� ]∑

j=0

e2��j
∫

h2(T j (y))	(dy)

= e−2�t
∫

v2
0(y)	(dy) + 
2[�(�)]2e−2�t 1 − e2��([ t

� ]+1)

1 − e2�� .

If 
 and � do not depend on �, we have

lim
�→0


2e−2�t
(

e2��([ t
� ]+1) − 1

) �

e2�� − 1
= 
2

2�
(1 − e−2�t ) .

Hence the limit of the second moment of v�(t) as � → 0 is finite and positive if and only if �(�) depends on � in such
a way that

lim
�→0

[�(�)]2

�

is finite and positive.
Beck and Roepstorff (1987) take �(�) = √

� from the outset, and claim that in the limit � → 0 the process v�(t)

converges to the Ornstein–Uhlenbeck velocity process when the sequence (h◦T j ) has a so-called �-mixing property2

on the probability space (Y,B, 	). In fact, the following result can be proved.

Theorem 4.1. Let (Y,B, 	) be a normalized measure space and T : Y → Y be ergodic with respect to 	. Let
h ∈ L2(Y,B, 	) be such that

∑∞
n=0 ‖Pn

T ,	h‖2 < ∞ and let


 =
(∫

h(y)2	(dy) + 2
∞∑

n=1

∫
h(y)h(T n(y))	(dy)

)1/2

2 A sequence of random variables {�j : j �0} is called �-mixing if

lim
n→∞ sup

{ | Pr(A ∩ B) − Pr(A) Pr(B)|
Pr(A)

: A ∈ Fk
1, b ∈ F∞

k+n, k�1

}
= 0 ,

where Fk
1 and F∞

k+n
denote the 
-algebra generated by the random variables �1, . . . , �k and �k+n, �k+n+1, . . . , respectively.
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be positive. Assume that � > 0 and

lim
�→0

[�(�)]2

�
= 1 .

Then for each v0 the finite dimensional distributions of the velocity process v� given by Eq. (4.4) converge weakly as
� → 0 to the finite dimensional distributions of the Ornstein–Uhlenbeck velocity process V for which V (0) = v0 and

0 = 
.

Proof. By Theorem 2.23 we have PT ,	(h̃) = 0 where h̃ = h + f − f ◦ T and f = ∑∞
n=1 P

n
T ,	h. For t �0 and � > 0

define

��(t) = �(�)e−�t
[ t
� ]∑

j=0

e��j h̃ ◦ T j , �̃�(t) = �(�)e−�t
[ t
� ]∑

j=0

e��j (f ◦ T j+1 − f ◦ T j ) .

Then

v�(t) = e−�t v0 + ��(t) + �̃�(t) .

Observe that

�̃�(t) = �(�)e−�t (e��[ t
� ]f ◦ T [ t

� ]+1 − f ) + �(�)e−�t (e−�� − 1)

[ t
� ]∑

j=1

e��j f ◦ T j .

Hence

‖�̃�(t)‖2 �2|�(�)|e−�t (e��[ t
� ] + 1)‖f ‖2 ,

and consequently

‖�̃�(t)‖2 �4|�(�)|‖f ‖2, t �0, � > 0 .

This and Lemma A.14 imply that the finite dimensional distributions of v�(t) − e−�t v0 converge weakly to the corre-
sponding finite dimensional distributions of a zero mean Gaussian process � with �(0) = 0 and the covariance function
K�(t, s) given by Eq. (4.3) where 
2

0 = ‖h̃‖2
2. �

For the corresponding position process we have the following.

Theorem 4.2. Under the assumptions of Theorem 4.1, letV (0)=v0. Then for eachx0 the finite dimensional distributions
of the position process x� given by Eq. (4.5) converge weakly as � → 0 to the finite dimensional distributions of the
Ornstein–Uhlenbeck position process X for which X(0) = x0.

Proof. This follows from Lemma A.15 similarly as the preceding theorem follows from Lemma A.14. �

Example 4.3. Let us apply Theorem 4.1 to a transformation T : [−1, 1] → [−1, 1] and h(y)= y. We have PT ,	h= 0
when T is the tent map, Eq. (1.4). Then 
2 = 1/3. Thus all assumptions of Theorem 4.1 are satisfied. When T is
one of the Chebyshev maps (2.8) SN we also have PT ,	h = 0 by Example 2.16 and 
2 = 1/2. For the dyadic map
(2.10), the series

∑∞
n=1 P

n
T ,	h is absolutely convergent in L2([−1, 1],B([−1, 1]), 	) and is equal to h. This implies

that 
 = ‖2h − h ◦ T ‖2, thus in this case 
 = 1, which can be easily calculated. Thus all of the numerical examples and
studies of Beck and co-workers cited above are covered by this example.

5. Discussion

In this paper we were motivated by the strong statistical properties of discrete dynamical systems to consider when
Brownian-motion-like behavior could emerge in a simple toy system. To illustrate this possibility, in the Introduction
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we have numerically illustrated how a simple system can produce behavior that has the visual appearance of an
Ornstein–Uhlenbeck process.

To deal analytically with this problem, in Section 2 we have reviewed a number of different types of ‘chaotic’temporal
behaviors that dynamical systems may display, and also given the necessary background material from ergodic theory to
allow one to examine these within the context of ensemble behavior. We have also reviewed and significantly extended
a class of central limit theorems for discrete time maps in Section 2.3, and illustrated how a Wiener process can be
produced from a deterministic system. Section 2.3.4 illustrates a number of the points developed in the previous parts
of Section 2 with concrete examples.

In Section 3 we have turned to a consideration of the Langevin-like equations

dx(t)

dt
= v(t) ,

dv(t)

dt
= −�v(t) + �(t)

in which the perturbation �(t) need not be a Gaussian noise but may be substituted by

�(t) = �
∞∑

n=0

h(�(t))�(t − n�)

with a highly irregular deterministic function �(n�). When the variables h(�(n�)) are uncorrelated Gaussian distributed
(thus in fact independent) random variables then the limiting distribution of v(n�) is Gaussian. This need not be
the case for the deterministic noise produced by perturbations derived from highly chaotic semi-dynamical systems.
Specifically, in Section 3.1 we have shown that although the velocity will converge in distribution it will not necessarily
be a Gaussian. Section 3.2.2 shows that the position variable will never converge. However, given the proper scaling
of �, as we have shown in Theorem 3.4, convergence of the position variable can be achieved. In Section 3.3 we have
illustrated all of our results of Section 3.2 for the specific case of perturbations derived from the exact dyadic map.

In Section 4, in the limit � → 0 the deterministic perturbations give precisely the same result as is customarily
obtained using Gaussian distributed white noise, i.e. an Ornstein–Uhlenbeck process. Specifically, with respect to the
question we posed in the Introduction (how Brownian-like motion can arise from a purely deterministic dynamics), the
central and most important results of this paper are contained in Theorems 4.1 and 4.2. These two theorems give, for the
first time we believe, sufficient conditions on the scaling of the noise amplitude � with respect to the interval � between
perturbations for deterministic processes to reproduce an Ornstein–Uhlenbeck process in both velocity and position.
Thus these results give the theoretical framework in which previous numerical results, e.g. by Beck and Roepstorff
(1987); Beck (1990b, 1990a, 1996); Hilgers and Beck (1999); Chew and Ting (2002), can be understood.

The significance of these considerations is rather broad. It is the norm in experimental observations that any ex-
perimental variable that is recorded will be “contaminated” by “noise”. Sometimes the distribution of this noise is
approximately Gaussian, sometimes not. The considerations here illustrate quite specifically that the origins of the
noise observed experimentally need not be due to the operation of a random process (random in the sense that there
is no underlying physical law allowing one to predict exactly the future of the process based on the past). Rather, the
results we present strongly suggest, as an alternative, that the fluctuations observed experimentally might well be the
signature of an underlying deterministically chaotic process.
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Appendix A. Limit theorems for dependent random variables

This appendix reviews known general central limit theorems from probability theory which we can use directly in
the context of dynamical systems. With their help we then prove several results which we have used in Sections 2.3
and 4.

Consider random variables arranged in a double array

�1,1, �1,2, . . . , �1,k1

�2,1, �2,2, . . . , �2,k2
...

�n,1, �n,2, . . . , �n,kn

...

(A.1)

with kn → ∞ as n → ∞. We shall give conditions which imply that the row sums converge in distribution to a
Gaussian random variable 
N(0, 1), that is

kn∑
i=1

�n,i →d 
N(0, 1) . (A.2)

We shall require the Lindeberg condition

lim
n→∞

kn∑
i=1

E(�2
n,i1{|�n,i |>ε}) = 0 for every ε > 0 . (A.3)

If independence in each row is allowed, then we have the classical Lindeberg–Feller theorem.

Theorem A.1 (Chung (2001, Theorem 7.2.1)). Let the random variables �n,1, . . . , �n,kn
be independent for each n.

Assume that E(�n,i) = 0 and
∑kn

i=1 E(�2
n,i) = 1, n�1. Then the Lindeberg condition holds if and only if

kn∑
i=1

�n,i →d N(0, 1) ,

and

f or all � > 0, max
1� i �kn

Pr{|�n,i | > �} → 0 . (A.4)

If one considers a map T on a probability space (Y,B, 	) which preserves the measure 	, and defines �n,i to be
(1/

√
n)f ◦ T i−1 for i = 1, . . . , n with f measurable, then Condition A.4 holds. This is because

Pr{|�n,i | > �} = 	({y ∈ Y : |f (T i−1(y))| > �
√

n}) ,

and {y ∈ Y : |f (T i−1(y))| > �
√

n} = T −i+1({y ∈ Y : |f (y)| > �
√

n}). Thus by the invariance of 	 this leads to

max
1� i �kn

Pr{|�n,i | > �} = 	({y ∈ Y : |f (y)| > �
√

n}) → 0 .

Similarly, if one takes a square integrable f, then the Lindeberg condition A.3 is satisfied. Indeed, we have

E(|�n,i |21{|�n,i |>ε}) = 1√
n

2

∫
{z:|f (T i−1(z))|�√

nε}
f 2(T i−1(y))	(dy)

and by the change of variables applied to T i−1 this reduces to

1

n

∫
{|f |�√

nε}
f 2(y)	(dy) .
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Thus
n∑

i=1

E(|�n,i |21{|�n,i |>ε}) =
∫

{|f |�√
nε}

f 2(y)	(dy) (A.5)

converges to 0 by the Lebesgue dominated convergence theorem and the assumption that f 2 is integrable.
Since our random variables are dependent, we cannot apply the above theorem. Instead, we use the notion of

martingale differences for which there is a natural generalization of Theorem A.1. Moreover, additional assumptions
are needed, as one can easily check that if T is the identity map, then

1√
n

n∑
i=1

f ◦ T i−1 = n√
n

f

which cannot be convergent to a Gaussian random variable.
We first recall the definition of conditional expectation. Let a probability space (�,F, Pr) be given and let G be a

sub-
-algebra of F. For � ∈ L1(�,F, Pr) there exists a random variable E(�|G), called the conditional expectation
of � given G, having the following properties: it is G measurable, integrable and satisfies the equation∫

A

E(�|G)(�) Pr(d�) =
∫

A

�(�) Pr(d�), A ∈ G .

The existence and uniqueness of E(�|G) for a given � follows from the Radon–Nikodym theorem. The transformation
� �→ E(�|G) is a linear operator between the spaces L1(�,F, Pr) and L1(�,G, Pr), so sometimes it is called an
operator of conditional expectation.

Let {�n,i : 1� i�kn, n�1} be a family of random variables defined on a probability space (�,F, Pr). For each
n�1, let a family {Fn,i : i�0} of sub-
-algebras of F be given. Consider the following set of conditions:

(1) E(�n,i) = 0 and E(�2
n,i) < ∞,

(2) Fn,i−1 ⊆ Fn,i ,
(3) �n,i is Fn,i measurable,
(4) E(�n,i |Fn,i−1) = 0 for each 1� i�kn, n�1.

A family {Fn,i , �n,i : 1� i�kn, n�1} satisfying conditions (i)–(iv) is called a (square integrable) martingale differ-
ences array.

Theorem A.2 (Billingsley (1995, Theorem 35.12)). Let {�n,i : 1� i�kn, n�1} be a martingale difference array
satisfying Lindeberg condition A.3. If

kn∑
i=1

E(�2
n,i |Fn,i−1)→P 
2 , (A.6)

where 
 is a nonnegative constant, then

kn∑
i=1

�n,i →d 
N(0, 1) . (A.7)

If the limit in Condition A.6 is a random variable instead of the constant 
2, we obtain convergence to mixtures of
normal distributions.

Theorem A.3 (Eagleson (1975, Corollary p. 561)). Let {�n,i : 1� i�kn, n�1} be a martingale difference array
satisfying the Lindeberg condition A.3. If there exists an F∞ =⋂∞

n=1 Fn,0-measurable, a.s. positive and finite random
variable � such that

kn∑
i=1

E(�2
n,i |Fn,i−1)→P � , (A.8)
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then
∑kn

i=1 �n,i is convergent in distribution to a measure whose characteristic function is �(r) = E(exp(− 1
2 r2�)).

The above result shows that to obtain a normal distribution in the limit a specific normalization is needed and
we have the following.

Theorem A.4 (Gaenssler and Joos (1992, Theorem 3.6)). Let {�n,i : 1� i�kn, n�1} be a martingale difference array
and let � be a real-valued random variable such that Pr(0 < � < ∞) = 1. Suppose that

lim
n→∞ E

(
max

1� i �kn

|�n,i |
)

= 0 (A.9)

and

kn∑
i=1

�2
n,i →P � . (A.10)

If � is Fn,i-measurable for each n and for each 1� i�kn, then∑kn

i=1 �n,i√∑kn

i=1 �2
n,i

→d N(0, 1) .

Remark A.5. If � in Condition A.10 is constant, � = 
2, then the conclusion of Theorem A.4 is equivalent to

kn∑
i=1

�n,i →d 
N(0, 1) .

Note also that Condition A.9 is implied by the Lindeberg condition.

The next result gives conditions for convergence of moments in Theorem A.2.

Theorem A.6 (Hall (1978, Theorem), Teicher (1988, Theorem 3)). Let {�n,i : 1� i�kn, n�1} be a martingale differ-

ence array with
∑kn

i=1 E(�2
n,i) = 
2 where 
 > 0. Suppose that for p > 1

kn∑
i=1

E|�n,i |2p → 0 and E

∣∣∣∣∣
kn∑

i=1

E(�2
n,i |Fn,i−1) − 
2

∣∣∣∣∣
p

→ 0 . (A.11)

Then

lim
n→∞ E

∣∣∣∣∣
kn∑

i=1

�n,i

∣∣∣∣∣
2p

= E|N(0, 
2)|2p .

Let (Y,B, 	) be a normalized measure space and T : Y → Y be a measurable map such that T preserves the measure
	. Recall from Section 2 relation 2.3 between the transfer operator PT ,	, the Koopman operator and the operator of
conditional expectation which gives

PT ,	 ◦ UT f = f and UT ◦ PT ,	f = E(f |T −1(B)), f ∈ L1(Y,B, 	) .

Lemma A.7. Let (Y,B, 	) be a normalized measure space, and T : Y → Y be a measurable map such that T preserves
the measure 	. Let {cn,i : 1� i�kn, n�1} be a family of real numbers and h ∈ L2(Y,B, 	). Suppose that PT ,	h = 0.
Then

�n,i = cn,ih ◦ T kn−i , 1� i�kn, �n,i = 0, i > kn ,
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with

Fn,i = T −kn+i (B), 0� i�kn and Fn,i = B, i > kn, n�1

is a martingale difference array.
Moreover, if cn,i = 1√

kn
, 1� i�kn then the following hold

(i) Lindeberg condition A.3;
(ii) Conditions A.8 and A.10 with � = E(h2|I) where I is the 
-algebra of all T-invariant sets;

(iii) Condition A.6 with 
2 = ∫
h2d	 provided that T is ergodic;

(iv) Condition A.11 for every p > 1 provided that T is ergodic and h ∈ L∞(Y,B, 	).

Proof. To check conditions (2), and (3) of the definition of a martingale difference array, observe that T −j−1(B) ⊂
T −j (B) and h ◦ T j is T −j (B) measurable. The Koopman and transfer operators for the iterated map T j are just the
j th iterates of the operators UT and PT ,	. From this and Eq. (2.3) we have P

j
T ,	U

j
T h = h and

E(h ◦ T j |T −j−1(B)) = U
j+1
T P

j+1
T ,	 (h ◦ T j ) = U

j+1
T PT ,	h .

Since PT ,	h = 0, we see that E(h ◦ T j |T −j−1(B)) = 0 for j �0 which proves condition (4).
Now assume that cn,i = 1√

kn
, 1� i�kn. Then (i) follows from Eq. (A.5). To obtain Condition A.8 use Eq. (2.3),

change the order of summation

kn∑
i=1

E(�2
n,i |Fn,i−1) = 1

kn

kn∑
i=1

E(h2 ◦ T kn−i |T −kn+i−1(B))

= 1

kn

kn∑
i=1

U
kn−i+1
T P

kn−i+1
T ,	 U

kn−i
T (h2)

= 1

kn

kn∑
i=1

U
kn−i+1
T PT ,	(h

2) = 1

kn

kn−1∑
i=0

Ui+1
T PT ,	(h

2)

and apply Birkhoff’s ergodic theorem to the integrable function UT PT ,	(h
2) to conclude that this sequence is convergent

to E(UT PT ,	(h
2)|I) almost everywhere (with respect to 	), and consequently in probability. Since UT PT ,	(h

2) =
E(h2|T −1(B)) and I ⊆ T −1(B), we have E(UT PT ,	(h

2)|I)=E(h2|I). Similarly, Condition A.10 follows from the
Birkhoff ergodic theorem, which completes the proof of (ii). Assume, additionally, that T is ergodic. Then � is constant
and is equal to

∫
h2 d	, so (iii) holds. Since h2 ∈ Lp(Y,B, 	) and p > 1, we have

kn∑
i=1

E|�n,i |2p = 1

np

∫
h2p(y)	(dy) → 0

and UT PT ,	(h
2) ∈ Lp(Y,B, 	). By the ergodic theorem in Lp spaces we get

kn∑
i=1

E(�2
n,i |Fn,i−1) = 1

kn

kn−1∑
i=0

Ui
T UT PT ,	(h

2) →
∫

UT PT ,	(h
2)(y)	(dy)

in Lp(Y,B, 	), but
∫

UT PT ,	(h
2)(y)	(dy) = ∫

h2(y)	(dy) and the proof of (iv) is complete. �

We now turn to the FCLT for (h ◦ T i)i �0. Let (Y,B, 	) be a normalized measure space and T : Y → Y be ergodic
with respect to 	. Let h ∈ L2(Y,B, 	) and 
 = ‖h‖2 > 0. We define a random function

�n(t) = 1



√

n

[nt]−1∑
i=0

h ◦ T i for t ∈ [0, 1]
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(where the sum from 0 to −1 is set to be 0). Note that �n is a right continuous step function, a random variable of
D[0, 1] and �n(0) = 0.

Lemma A.8. If PT ,	h = 0, then the finite dimensional distributions of �n converge to those of the Wiener process w.

Proof. To show that the finite dimensional distributions of �n converge to the corresponding finite dimensional distribu-
tions of w we use the Cramér–Wold technique. If the c1, . . . , ck are arbitrary real numbers and t0 =0 < t1 < · · · < tk �1,
we put

�n,i =
⎧⎨⎩

cj



√

n
h ◦ T n−i , n − [ntj ] < i�n − [ntj−1], j = 1, . . . , k ,

0, 1� i�n − [ntk] and tk < 1 ,

0, i > n .

Observe that

n∑
i=1

�n,i =
k∑

j=1

cj (�n(tj ) − �n(tj−1)) .

By Lemma A.7 the �n,i array is a martingale differences array. We will verify the conditions of Theorem A.2. The
Lindeberg condition reads as

n∑
i=1

E(�2
n,i1{|�n,i |>ε}) =

k∑
j=1

c2
j


2n
([ntj ] − [ntj−1])E(h21{|h|>ε


√
nc−1

j })

and the right-hand side is a finite sum of sequences converging to 0, so it is convergent to 0. Condition A.6 is a
consequence of ergodicity of T and

n∑
i=1

E(�2
n,i |T −n+i−1(B)) =

k∑
j=1

c2
j


2n

[ntj ]∑
i=[ntj−1]+1

Ui
T PT (h2)→P

k∑
j=1

c2
j (tj − tj−1) .

Therefore, we obtain by Theorem A.2

n∑
i=1

�n,i →d

√√√√ k∑
j=1

c2
j (tj − tj−1) N(0, 1) .

Thus
∑k

j=1 cj (�n(tj ) − �n(tj−1)) converges to the Gaussian distributed random variable with mean 0 and variance∑k
j=1 c2

j (tj − tj−1), but this is the distribution of
∑k

j=1 cj (w(tj ) − w(tj−1)). �

Lemma A.9. If PT ,	h = 0, then Condition 2.20 holds for each positive ε.

Proof. Define a martingale difference array

�n,i =
{ 1



√

n
h ◦ T n−i , 1� i�n ,

0, i > n, n�1 .

Let also �n,0 = 0 and �̃n(t) = ∑[nt]
i=0 �n,i , t ∈ [0, 1], n�1. Since

�n(t) = �̃n(1) − �̃n(1 − t) ,

we obtain

sup
|t−s|��

|�n(s) − �n(t)|� sup
|t−s|��

|�̃n(s) − �̃n(t)|

�4 sup
k

sup
k�<t � (k+1)�

|�̃n(t) − �̃n(k�)| .
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This gives

	

(
sup

|t−s|��
|�n(s) − �n(t)| > ε

)
�

∑
k�<1

	

(
sup

k�<t � (k+1)�
|�̃n(t) − �̃n(k�)| > ε

4

)
.

Now arguments similar to those of Brown (1971, pp. 64–65) and Lemma A.8 complete the proof. �

For the next results we need the following.

Lemma A.10. Let (zi)i �1 be a sequence of real numbers such that

lim
n→∞

∑n
i=1 zi

n
= z .

Then

lim
n→∞

∑kn

i=1 ai
nzi∑kn

i=1 ai
n

= z

for every sequence of integers kn �1 and every sequence of real numbers an satisfying

lim
n→∞ kn = ∞, lim

n→∞ an = 1 and lim
n→∞ akn

n �= 1 (A.12)

and either an > 1 or 0 < an < 1 for all n�1.

Proof. Suppose that an > 1 for all n�1 (the case of 0 < an < 11 for all n�1 is proved analogously). Using the following
method of summation:

m∑
i=k

cibi = cm

m∑
i=k

bi −
m−1∑
i=k

(ci+1 − ci)

i∑
j=k

bi ,

we can write

kn∑
i=1

ai
nzi − z

kn∑
i=1

ai
n = −

kn−1∑
i=1

(ai+1
n − ai

n)

⎛⎝ i∑
j=1

zj − iz

⎞⎠ + akn
n

(
kn∑

i=1

zi − knz

)
.

Fix ε > 0 and let n0 be such that∣∣∣∣∑m
i=1 zi

m
− z

∣∣∣∣ �ε for m�n0 .

Combining these yields, for kn > n0,∣∣∣∣∣
∑kn

i=1 ai
nzi∑kn

i=1 ai
n

− z

∣∣∣∣∣ �
∑n0−1

i=1 (ai+1
n − ai

n)|
∑i

j=1 zj − iz|∑kn

i=1 ai
n

+ ε

∑kn−1
i=n0

(ai+1
n − ai

n)i + a
kn
n kn∑kn

i=1 ai
n

.

Letting n → ∞ we see that the first term on the right goes to zero, while the second term goes to ε times a constant
not depending on ε. �

Theorem A.11. Let (Y,B, 	) be a normalized measure space and T : Y → Y be ergodic with respect to 	. Let (kn),
(an) be sequences satisfying Condition A.12. Let c ∈ R and let (cn) be a sequence of real numbers such that

lim
n→∞ knc

2
n = c2 .
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If h ∈ L2(Y,B, 	) is such that PT ,	h = 0, then

cn

kn∑
i=1

ai
nh ◦ T i →d 
N(0, 1) ,

where


 =
√

c2(a2 − 1)

ln a2 ‖h‖2 and a = lim
n→∞ akn

n .

Proof. We shall apply Theorem A.4. From Lemma A.7 it follows that �n,i = cna
kn+1−i
n h ◦ T kn+1−i is a martingale

difference array and that

lim
n→∞

1√
kn

E

(
max

1� j �kn

|h ◦ T j |
)

= 0 .

We have

max
1� i �kn

|�n,i |� |cn| max(akn
n , 1) max

1� i �kn

|h ◦ T i | ,

so

E

(
max

1� i �kn

|�n,i |
)

�
√

kn|cn| max(akn
n , 1)E

(
1√
kn

max
0� i �kn

|h ◦ T i |
)

,

which gives Condition A.9. Condition A.10 is a consequence of

kn∑
i=1

�2
n,i = c2

n

kn∑
i=1

a2i
n h2 ◦ T i = c2

n

kn∑
i=1

a2i
n

∑kn

i=1 a2i
n h2 ◦ T i∑kn

i=1 a2i
n

,

the fact that

lim
n→∞ c2

n

kn∑
i=1

a2i
n = c2(a2 − 1)

ln a2 ,

Birkhoff’s ergodic theorem, and Lemma A.10. �

Corollary A.12. Under the assumptions of Theorem A.11, if for h ∈ L2(Y,B, 	) the series
∑∞

n=0 P
n
T ,	h is convergent

in L2(Y,B, 	), then

cn

kn∑
i=1

ai
nh ◦ T i →d 
N(0, 1) ,

where


 =
√

c2(a2 − 1)

ln a2 ‖h + f − f ◦ T ‖2 and f =
∞∑

n=1

Pn
T ,	h .

Proof. Theorem 2.23 implies PT ,	(h + f − f ◦ T ) = 0. Thus

cn

kn∑
i=1

ai
n(h + f − f ◦ T ) ◦ T i →d 
N(0, 1)
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by Theorem A.11. Therefore it remains to prove that

cn

kn∑
i=1

ai
n(f ◦ T − f ) ◦ T i →P 0 . (A.13)

Observe that the left-hand side of Eq. (A.13) is equal to

cn(a
kn
n f ◦ T kn+1 − f ◦ T ) + cn(a

−1
n − 1)

kn∑
i=1

ai
nf ◦ T i .

Since cn → 0 as n → ∞, the first term converges to 0 in probability. From Lemma A.10 and Birkhoff’s ergodic
theorem it follows that∑kn

i=1 ai
nf ◦ T i∑kn

i=1 ai
n

→P

∫
f (y)	(dy) .

Therefore the sequence

cn(a
−1
n − 1)

kn∑
i=1

ai
nf ◦ T i = cn(1 − akn

n )

∑kn

i=1 ai
nf ◦ T i∑kn

i=1 ai
n

is also convergent to 0 in probability. �

Remark A.13. Note that we can conclude from Theorem A.11 that

cn

kn∑
i=m

ai
nh ◦ T i →d 
N(0, 1) ,

where m�0 is any fixed integer, because cn goes to zero and an to 1 as n → ∞, so the difference

cn

kn∑
i=1

ai
nh ◦ T i − cn

kn∑
i=m

ai
nh ◦ T i ,

which is either equal to cnh or cn

∑m
i=1 ai

nh ◦ T i , converges in probability to zero.

Lemma A.14. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and � �= 0 be a
constant. Let �(�), � > 0, be such that

lim
�→0

[�(�)]2

�
= 1 .

If h ∈ L2(Y,B, 	) is such that PT ,	h = 0, then the finite dimensional distributions of the process �� defined by

��(t) = �(�)e−�t
[ t
� ]∑

j=0

e��j h ◦ T j , t �0, � > 0

converge weakly as � → 0 to the corresponding finite dimensional distributions of the zero-mean Gaussian process �
for which �(0) = 0 and

E�(t)�(s) = ‖h‖2
2

2�
(e2� min(t,s) − 1)e−�(t+s), t, s > 0 .

Proof. To prove the convergence of the finite dimensional distributions of �� to the corresponding finite dimensional
distributions of the Gaussian process �, it is enough to prove that for any l�1, any real numbers 0 < t1 < · · · < tl < ∞
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and d1, . . . , dl the distribution of
∑l

j=1 dj �(tj ) is Gaussian and that
∑l

j=1 dj ��(tj ) converges in distribution to∑l
j=1 dj �(tj ) as � → 0.
We consider first the case of l = 1. It follows from Theorem A.11 that for t > 0 the distribution of ��(t) converges

weakly as � → 0 to a Gaussian random variable. To see this let �n be a sequence going to zero as n → ∞. Take
kn = [ t

�n
], an = e��n , cn = �(�n)e−�t , and observe that

lim
n→∞ kn = ∞, lim

n→∞ an = 1, lim
n→∞ akn

n = e�t and lim
n→∞ knc

2
n = te−2�t ,

and

te−2�t (e2�t − 1)

ln e2�t = 1 − e−2�t

2�
.

The theorem then implies that

�(�n)e
−�t

[ t
�n

]∑
j=0

e��nj h(T j (�0)) → N

(
0,


2
0

2�
(1 − e−2�t )

)
,

where 
2
0 = ∫

h2(y)	(dy) and �0 is distributed according to 	. Consequently ��(t)→d �(t) as � → 0, where �(t) is a
Gaussian distributed random variable with mean 0 and variance given by

‖h‖2
2

2�
(1 − e−2�t ), t > 0 .

Note that ��(0) = �(�)h. Since lim�→0 �(�) = 0, we also have ��(0) → 0 as � → 0.
We next consider the case of l = 2. Let t1 < t2 and d1, d2 be given. Let �n be a sequence going to zero as n → ∞.

Set kn,1 = [ t1
�n

], kn,2 = [ t2
�n

], kn = kn,2 + 1, and observe that kn,1 < kn,2 for all n sufficiently large. Define

�n,j =
{

d2e−�t2�(�n)e��n(kn−j)h ◦ T kn−j , 0 < j �kn,2 − kn,1 ,

(d2e−�t2 + d1e−�t1)�(�n)e��n(kn−j)h ◦ T kn−j , kn,2 − kn,1 < j �kn ,

0, otherwise .

Then we have

d1��n
(t1) + d2��n

(t2) =
kn∑

j=1

�n,j .

Observe that

kn∑
j=1

�2
n,j = d2

2 e−2�t2 [�(�n)]2
kn,2∑
j=0

e2��nj h2 ◦ T j

+ (2d2d1e−�(t2+t1) + d2
1 e−2�t1)[�(�n)]2

kn,1∑
j=0

e2��nj h2 ◦ T j .

As in the proof of Theorem A.11, we check that Theorem A.4 applies to {�n,j : 1�j �kn, n�1} and conclude that

d1��n
(t1) + d2��n

(t2)→d 
N(0, 1) ,

where 
2 = ‖h‖2
2

2� (d2
2 (1 − e−2�t2) + 2d2d1e−�(t2+t1)(e2�t1 − 1) + d2

1 (1 − e−2�t1)). Since 
N(0, 1) is the distribution of

d1�(t1) + d2�(t2) and E(�(t1)�(t2)) = ‖h‖2
2

2� e−�(t2+t1)(e2�t1 − 1). The case of arbitrary l is deduced analogously from
Theorem A.4. �
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Lemma A.15. Let (Y,B, 	) be a normalized measure space, T : Y → Y be ergodic with respect to 	, and � �= 0 be a
constant. Let �(�), � > 0, be such that

lim
�→0

[�(�)]2

�
= 1 .

If h ∈ L2(Y,B, 	) is such that PT ,	h = 0, then the finite dimensional distributions of the process �� defined by

��(t) = �(�)

�

[ t
� ]∑

j=0

(1 − e�(�j−t))h ◦ T j , t �0, � > 0

converge weakly as � → 0 to the corresponding finite dimensional distributions of the zero-mean Gaussian process �
for which �(0) = 0 and

E�(t)�(s) = ‖h‖2
2

�3 (2� min(t, s) − 2 + 2e−�t + 2e−�s − e−�|t−s| − e−�(t+s))

for t, s > 0.

The lemma follows from Theorem A.4 in a similar fashion as the preceding lemma.

Appendix B. Weak convergence criteria

Let (X, | · |) be a phase space which is either Rk or a separable Banach space, and denote by M1 the space of
all probability measures defined on the 
-algebra B(X) of Borel subsets of X. For a real-valued measurable bounded
function f, and � ∈ M1, we introduce the scalar product notation

〈f, �〉 =
∫

X

f (x)�(dx) .

One way to characterize weak convergence in M1 is to use the Fortet–Mourier metric in M1, which is defined by

dFM(�1, �2) = sup{|〈f, �1〉 − 〈f, �2〉| : f ∈ FFM} for �1, �2 ∈ M1 ,

where

FFM =
{
f : X → R : sup

x∈X

|f (x)|�1, |f |L �1

}
and |f |L = supx �=y

|f (x)−f (y)|
|x−y| . This defines a complete metric on M1, and we have �n → � weakly if and only if

dFM(�n, �) → 0 (cf. Dudley, 1989, Chapter 3).
We further introduce a distance on M1 by

d(�1, �2) = sup{|〈f, �1〉 − 〈f, �2〉| : |f |L �1} for �1, �2 ∈ M1 .

This quantity is always defined, but for some measures it may be infinite. It is easy to check that the function d is finite
for elements of the set

M1
1 =

{
� ∈ M1 :

∫
X

|x|�(dx) < ∞
}

,

and defines a metric on this set. Moreover, M1
1 is a dense subset of (M1, dFM) and

dFM(�1, �2)�d(�1, �2) .
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Let (Y,B, 	) be a normalized measure space and let Rn : X ×Y → X be a measurable transformation for each n ∈ N.
We associate with each transformation Rn an operator Pn : M1 → M1 defined by

Pn�(A) =
∫

X

∫
Y

1A(Rn(x, y))	(dy)�(dx) (B.1)

for � ∈ M1, where

1A(x) =
{

1 x ∈ A ,

0 x /∈ A

is the indicator function of a set A. Write

Unf (x) =
∫

Y

f (Rn(x, y))	(dy)

for measurable functions f : X → R, for which the integral is defined. The operators Un and Pn satisfy the identity
〈Unf, �〉 = 〈f, Pn�〉. Note that if � = �x , where �x is the point measure at x defined by

�x(A) =
{

1 x ∈ A

0 x /∈ A ,
(B.2)

then Unf (x) = 〈f, Pn�x〉.

Remark B.1. Note that if Rn(x, y) does not depend on y, then Unf = URnf where URn is the Koopman opera-
tor corresponding to Rn : X → X. The following relation holds between the Frobenius–Perron operator PRn on
L1(X,B(X), m) and the operator Pn: If � has a density f with respect to m, then PRnf is a density of Pn�.

On the other hand if Rn(x, y) does not depend on x, then Unf is equal to
∫

URnf (y)	(dy), where URn is the
Koopman operator corresponding to Rn : Y → X. The operator Pn has the same value 	 ◦ R−1

n for every � ∈ M1.

Assume that for each n ∈ N the transformation Rn : X × Y → X satisfies the following conditions:

(A1). There exists a measurable function Ln : Y → R+ such that

|Rn(x, y) − Rn(x̄, y)|�Ln(y)|x − x̄| for x, x̄ ∈ X, y ∈ Y .

(A2). The series

∞∑
n=1

∫
Y

|Rn(0, T (y)) − Rn+1(0, y)|	(dy)

is convergent, where T : Y → Y is a transformation preserving the measure 	.
(A3). The integral

∫
Y

|Rn(0, y)|	(dy) is finite for at least one n.

Proposition B.2. Let the transformations Rn satisfy conditions (A1)–(A3). If

lim
n→∞

∫
Y

Ln(y)	(dy) = 0,

then there exists a unique measure �∗ ∈ M1 such that (Pn�) converges weakly to �∗ for each measure � ∈ M1.

Proof. Assumptions (A2) and (A3) imply that Pn(M
1
1) ⊂ M1

1. By the definition of the metric d we have

d(Pn�0, Pn+1�0) = sup{|Unf (0) − Un+1f (0)| : |f |L �1} .

Since the transformation T preserves the measure 	, we can write

Unf (0) =
∫

Y

f (Rn(0, y)	(dy) =
∫

Y

f (Rn(0, T (y))	(dy)
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for any f with |f |L �1. Hence

|Unf (0) − Un+1f (0)|�
∫

Y

|Rn(0, T (y)) − Rn+1(0, y)|	(dy) .

Consequently

d(Pn�0, Pn+1�0)�
∫

Y

|Rn(0, T (y)) − Rn+1(0, y)|	(dy) ,

and

dFM(Pn�0, Pn+1�0)�d(Pn�0, Pn+1�0) .

From Condition (A2), the sequence (Pn�0) is a Cauchy sequence. Since the space (M1, dFM) is complete, (Pn�0) is
weakly convergent to a �∗ ∈ M1. From (A1) it follows that

d(Pn�1, Pn�2)�
∫

Y

Ln(y)	(dy)d(�1, �2) .

Hence (Pn�) is weakly convergent for each � ∈ M1
1 and has the limit �∗. Since, for sufficiently large n, each operator

Pn satisfies

dFM(Pn�1, Pn�2)�dFM(�1, �2)

and the set M1
1 is dense in (M1, dFM). �
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