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Abstract

This set of notes has arisen out of a number of attempts, over the 
past 40 years, to understand how one might examine the evolution of 
densities in systems whose dynamics are described by differential delay 
equations. Though we have no definitive solution to the problem, we 
have written these notes in an attempt to define the problem as we see 
it, and to sketch out several obvious attempts that have been suggested 
to solve the problem. We offer these in the hope that by being available 
to the general mathematical community they will inspire others to 
consider–and hopefully solve–the problem.
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1 Introduction

In examining the dynamical behavior of a system there are fundamentally
two options available to the experimentalist.

1. In the first option s/he will examine the dynamical trajectories of in-
dividuals, be they fundamental particles in a cloud chamber or cells in
a petri dish or animals in an ecological experiment. In this case the
experimentalist may be interested in replicating the experiment many
times, and building up a statistical description of the observed behav-
ior under the assumption (among others) that the trajectory behavior
will be replicated between trials given the same initial conditions.

2. In the second option this approach will be forsaken for one in which
the evolving statistics of large populations are examined. This is, of
course, most familiar in statistical mechanics, but is also important in
many other areas. The advantage of this approach is that if one can
understand the dynamics of density evolution, then many interesting
statistical quantities can be computed, and the results compared with
experimental results.

Which approach is taken is sometimes a matter of choice, but often dictated
by the nature of the individual units being studied.

For a large class of systems in which the underlying dynamics are de-
scribed by differential equations, or stochastic differential equations, or maps,
there is a large corpus of methods that have been developed with which one
can approach both of the types of data collection outlined above and the
connection of that data to underlying dynamical systems theory.

However many problems in the physical, and especially the biological,
sciences involve the dynamic behavior of individual entities whose dynam-
ics involve significant delays. For problems like this, existing techniques to
theoretically consider the evolution of densities are non-existent. Repeated
attempts to think of ways to formulate the evolution of densities in the
presence of dynamics with delays have failed in even the most elementary
respects (e.g. defining the fundamental mathematical aspects of the prob-
lem) and it is because of this failure that we present this Open Problem.

To be more concrete, if we have a variable x evolving under the action
of some dynamics described by a differential delay equation

dx

dt
= ε−1F(x(t), x(t− τ)), x(t) = ϕ(t) t ∈ [−τ, 0], (1.1)
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then we would like to know how some density of the variable x will evolve
in time, i.e. we would like to be able to write down an equation

UNKNOWN OPERATOR ACTING ON DENSITY = 0. (1.2)

Unfortunately we don’t really know how to do this, and that’s the whole
point of this paper. The reason that the problem is so difficult is embodied
in Equation 1.1 and the infinite dimensional nature of the problem because
of the necessity of specifying the initial function ϕ(t) for t ∈ [−τ, 0].

However, we do have some clues about what UNKNOWN OPERATOR
should look like in various limiting cases. For example, if in Equation 1.1,
F(x, x(t− τ)) = −x(t) + S(x(t− τ)) so (1.1) becomes

ε
dx

dt
= −x(t) + S(x(t− τ)), x(t) = ϕ(t) t ∈ [−τ, 0], (1.3)

then we expect that:

1. If τ → 0 then we should recover the normal Liouville operator (see
Section 2.3 below) from UNKNOWN OPERATOR;

2. If we let ε→ 0 and restrict t to t ∈ N, then UNKNOWN OPERATOR
should reduce to the Frobenius Perron operator (see Section 2.5) for
the map S.

3. If ε → 0, then from UNKNOWN OPERATOR we should recover the
operator governing the evolution of densities in a function space under
the action of the functional map

x(t) = S(x(t− τ)), (1.4)

for t ∈ R+, though we don’t know what that should be (see Section
6.1)

This paper is organized as follows. In Section 2 we briefly what is known
about density evolution in systems with finite dimensional dynamics, start-
ing with a description of the connection between dynamics and densities in
2.1. Section 2.3 reviews the situation for the commonly known situation in
which the dynamics are described by ordinary differential equations. Section
2.4 briefly considers dynamics described by stochastic differential equations,
while 2.5 does the same for finite dimensional maps. This section concludes
in 2.6 with a description of the dynamic density evolution behaviors er-
godicity, mixing, exactness and asymptotic periodicity. Section 3 examines
density evolution behavior in partial differential equations.
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Section 4 starts to examine the situation in differential delay equations.
Section 4.1 relates the formal ‘density evolution’ problem for differential
delay equations to what is actually measured in an experimental setting.
Finally, Section 4.2 gives numerical evidence for the existence of interesting
ergodic properties of density evolution dynamics in the presence of delays.

Section ?? considers the real mathematical problems involved in this
problem ranging from the proper nature of the underlying space to the
problem of defining a density. Section 6.1 reformulates the problem as one
of functional interation.

Section 5 outlines an approach that has been tried based on Hopf func-
tional techniques, while Section 6 considers the problem reformulated as the
method of steps. Finally Section 8 considers approximations to the delay
problem, first looking at using a distribution of time delays in 8.1 and then
in 8.2 with an approximation in which the time delay is divided into ever
finer intervals. We conclude in Section 9 with a brief Discussion.

2 Density evolution in systems with finite dimen-
sional dynamics

2.1 Dynamics and densities

In looking at ensemble behavior, the natural framework is to look at the
evolution of a density as the description of the temporal behavior of the
ensemble. Thus we start by looking at the operators important for describing
this density evolution. For background material see Lasota and Mackey
(1994).

We first start with a set X. Measure theorists often like to keep X pretty
abstract, but for us X is going to be the phase space (more about this in
the next section) on which all of our dynamics operates. Sometimes X will
be a closed finite interval like [0, 1], sometimes it may be R+, or even Rd,
and sometimes X is a function space. In any event, whatever X is we are
going to assume that it does not have any pathological properties.

Let X be a space, A a σ-algebra, µ a measure, and denote by (X,A, µ)
the corresponding σ-finite measure space. Let D be the subset of the space
L1(X,A, µ) containing all densities, i.e. D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}. A
linear map P : L1 → L1 is a Markov operator if P (D) ⊂ D. If there is
an f∗ ∈ D such that Pf∗ = f∗ then f∗ is called a stationary density.

In terms of dynamics, we consider St : X → X, as time t changes. Time
t may be either continuous (t ∈ R) as, for example, it would be for a system
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whose dynamics were governed by a set of differential equations, or discrete
(integer valued, t ∈ Z) if the dynamics are determined by discrete time
maps.

A dynamical system {St}t∈R (or, alternately, t ∈ Z for discrete time
systems) on a phase space X, is simply any group of transformations St :
X → X having the properties S0(x) = x and St(St′(x)) = St+t′(x) for
t, t′ ∈ R or Z. Since, from the definition, for any t ∈ R, we have St(S−t(x)) =
x = S−t(St(x)), it is clear that dynamical systems are invertible, and systems
of ordinary differential equations are examples of dynamical systems as are
invertible maps. A semidynamical system {St}t∈R+ is any semigroup of
transformations St : X → X such that S0(x) = x and St(St′(x)) = St+t′(x)
for t, t′ ∈ R+ (or N).

As one might guess, Markov operators are extremely valuable in terms
of examining the evolution of densities under the action of a variety of dy-
namics, and in the next few paragraphs we will give concrete examples of
these operators.

2.2 Frobenius Perron operator

Let (X,A, µ) be a σ-finite measure space and St : X → X be a measurable1

and nonsingular2 transformation. Then the unique operator P t : L1 → L1

defined by ∫
A
P tf(x)µ(dx) =

∫
S−1
t (A)

f(x)µ(dx) (2.5)

is the Frobenius-Perron operator corresponding to St.
Thus, if f is a density, then equation (2.5) defining the Frobenius-Perron

operator has an intuitive interpretation. Start with an initial density f and
integrate this over a set B that will evolve into the set A under the action
of the transformation St. However, the set B is S−1

t (A). This integrated
quantity must be equal, since St is nonsingular, to the integral over the set
A of the density obtained after one application of St to f . This final density
is P tf . Any density f∗ for which P tf∗ = f∗ is called a stationary density of
P t.

The fact that the Frobenius-Perron operator is unique is a straightfor-
ward consequence of the Radon-Nikodym theorem. It is clear from the
definition that the Frobenius-Perron operator is a Markov operator, and
so P t is a linear contracting operator. Also, if f ≥ 0 then P tf ≥ 0 and

1S−1
t (A) ∈ A for all A ∈ A

2µ(S−1
t (A)) = 0 for all A ∈ A such that µ(A) = 0
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‖ P tf ‖=‖ f ‖. Finally it is easy to show that if Snt = St ◦ · · · ◦ St, and
Pnt and P t are, respectively, the Frobenius-Perron operator corresponding
to Snt and St, then Pnt = P t ◦ · · · ◦ P t = (P t)n.

Sometimes the implicit defining Equation 2.5 for the Frobenius- Perron
operator allows one to obtain an explicit formula for P t. For example if
A = [a, x] then (2.5) becomes∫ x

a
P tf(s) ds =

∫
S−1
t ([a,x])

f(s) ds (2.6)

so

P tf(x) =
d

dx

∫
S−1
t ([a,x])

f(s) ds. (2.7)

This process may be carried even further if the transformation is invertible
so S−1

t = S−t and S−t has a continuous derivative with respect to x. Then,
(2.7) becomes

P tf(x) = f(S−t(x))

∣∣∣∣dS−t(x)

dx

∣∣∣∣ . (2.8)

From this it is relatively straightforward to obtain a generalization of
equation (2.8) valid for any invertible transformation St operating in Rd.
Namely

P tf(x) = f(S−t(x))J−t(x). (2.9)

2.3 The Liouville equation

Given a set of ordinary differential equations

dxi
dt

= Fi(x), i = 1, . . . , d (2.10)

operating in a bounded region of Rd, it is possible to derive an evolution
equation for P tf(x) by using the invertibility of (2.10) in conjunction with
(2.9). This gives the evolution equation for f(t, x) = P tf(x):

∂f

∂t
= −

d∑
i=1

∂(fFi)
∂xi

, (2.11)

the generalized Liouville equation.
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2.4 The Fokker Planck equation

As an extension of the situation for ordinary differential equations, for
stochastic differential equations of the form

dx = F(x)dt+ σ(x)dW (t), (2.12)

where x is a d-dimensional vector and W (t) is a standard Wiener process,
then the density f(t, x) ≡ P tf0(x) satisfies the Fokker-Planck equation

∂f

∂t
= −

d∑
=1

i
∂(fFi)
∂xi

+
1

2

d∑
i,j=1

∂2(aijf)

∂xi∂xj
, (2.13)

where aij(x) =
∑d

k=1 σik(x)σjk(x).

2.5 Density evolution in maps

For the one dimensional map

xt+1 = S(xt) (2.14)

the Frobenius Perron operator is given by

PSf(x) =
d

dx

∫
S−1([0,x])

f(u) du. (2.15)

Example 1. For the tent map

S(x) =

{
2x for x ∈

[
0, 1

2

)
2(1− x) for x ∈

[
1
2 , 1
]
,

(2.16)

S : [0, 1]→ [0, 1], and the corresponding Frobenius Perron operator is given
by

PSf(x) =
1

2

[
f
(x

2

)
+ f

(
1− x

2

)]
. (2.17)

It is easily verified that the stationary density is f∗(x) = 1[0,1](x) where
1A(x) is the indicator function.

Further, for a one dimensional map perturbed by a noise source ξ dis-
tributed with density g

xt+1 = S(xt) + σξt (2.18)

then the Markov operator governing the density evolution is given by

PSf(x) =

∫
X
f(u)g(x− σS(u)) du. (2.19)
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Example 2. The Keener map

S(x) = αx+ β (mod 1), α, β ∈ (0, 1) (2.20)

is statistically periodic when perturbed by noise ξ distributed with density g:

xn+1 = (αxn + β + σξn) (mod 1) (2.21)

and has a Markov operator given by

PSf(x) =

∫
X
f(u)g(x− σ(αu+ β)) du. (2.22)

2.6 The dynamics of density evolution

As is the case when examining the temporal evolution of single trajectories
emanating from a given initial condition in a dynamical system, there can
be a variety of dynamical behaviors of densities when evolving from an
initial density. The first ones that we consider are ergodicity, mixing and
asymptotic stability and all three of these can be characterized by the nature
of the convergence of successive values of the densities.

The weakest type of convergence is contained in the property of ergod-
icity. Let (X,A, µ) be a normalized measure space and S : X → X a
non-singular transformation that preserves the measure µ which has density
f∗. S is ergodic if every invariant set A ∈ A is such that either µ(A) = 0 or
µ(X \A) = 0. Ergodicity is equivalent to

Theorem 2.1. St is ergodic with stationary density f∗ operating in a finite
normalized phase space X if and only if for any integrable function g the time
average of g along the trajectory of St is equal to the f∗ weighted average of
g over the entire phase space. That is,

lim
t→∞

1

t

t−1∑
k=0

g(Sk) =

∫
X
g(x)f∗(x) dx =< g > (2.23)

in the discrete time case, or

lim
T→∞

1

T

∫ T

0
g(St(x)) dt =

∫
X
g(x)f∗(x) dx =< g > (2.24)

in the continuous time case.
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Next in the hierarchy is the stronger property of mixing. Let (X,A, µ) be
a normalized measure space and S : X → X a transformation that preserves
the measure µ which has density f∗. S is mixing if

lim
t→∞

µ(A
⋂
S−t(B)) = µ(A)µ(B) for allA,B ∈ A. (2.25)

Mixing is equivalent to

Theorem 2.2. Let St be an ergodic transformation, with stationary density
f∗ of the associated Frobenius- Perron operator, operating in a phase space
of finite f∗ measure. Then St is f∗ mixing if and only if {P tf} is weakly
convergent to f∗ for all densities f , i.e.,

lim
t→∞

< P tf, g >=< f∗, g > (2.26)

for every bounded measurable function g.

Finally, we have the strongest property of asymptotic stability. Let
(X,A, µ) be a normalized measure space, S : X → X a transformation that
preserves the measure µ which has density f∗, and S such that S(A) ∈ A
for each A ∈ A. S is asymptotically stable if

lim
t→∞

µ(St(A)) = 1 for allA,B ∈ A. (2.27)

Asymptotic stability is equivalent to

Theorem 2.3. If St is an f∗ measure preserving transformation operating
on a finite normalized phase space X and P t is the associated Frobenius-
Perron operator corresponding to St, then St is f∗ asymptotically stable if
and only if

lim
t→∞

‖ P tf − f∗ ‖= 0,

i.e., {P tf} is strongly convergent to f∗, for all initial densities f .

Remark 1. The three dynamic behaviors of densities we have examined are
related in that asymptotic stability implies mixing which implies ergodicity.
The converse is not true.

Remark 2. Ergodicity and mixing are properties that may be present in
both dynamical and semi-dynamical systems. Asymptotic stability, however,
is only possible in semi-dynamical systems.
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There is a fourth type of dynamic behavior that density evolution can dis-
play, that of asymptotic periodicity (Komorńık and Lasota, 1987; Komorńık,
1993). Namely, the ergodic transformation S is asymptotically periodic with
period r if there exist a sequence of densities g1, . . . , gr and a sequence of
bounded linear functionals λ1, . . . , λr such that

lim
t→∞
||P t(f −

r∑
j=1

λj(f)gj)|| = 0.

The densities gj have disjoint supports and Pgj = gα(j), where α is a per-
mutation of (1, . . . , r). The invariant density is given by

g∗ =
1

r

r∑
j=1

gj (2.28)

and (Sr, gj) is exact for every j = 1, . . . , r.

Remark 3. Asymptotic periodicity is a density evolution property that may
either be inherent in the dynamics (Provatas and Mackey, 1991a; Losson and
Mackey, 1995) or induced by noise (Lasota and Mackey, 1987; Provatas and
Mackey, 1991b) as in the next two examples.

Example 3. The generalized tent map on [0, 1] is defined by:

S(x) =

{
ax for x ∈

[
0, 1

2

)
a(1− x) for x ∈

[
1
2 , 1
]
.

(2.29)

Ito et al. (1979a,b) have shown that the tent map Equation 2.29 is ergodic,
thus possessing a unique invariant density g∗. The form of g∗ has been
derived in the parameter window

an+1 = 21/2n+1
< a ≤ 21/2n = an for n = 0, 1, 2, · · · , (2.30)

by Yoshida et al. (1983). Provatas and Mackey (1991a) have proved the
asymptotic (statistical) periodicity of (2.29) with period r = 2n, n = 0, 1, · · ·
for

21/2n+1
< a ≤ 21/2n . (2.31)

Thus, for example, {P tf} has period 1 for 21/2 < a ≤ 2, period 2 for
21/4 < a ≤ 21/2, period 4 for 21/8 < a ≤ 21/4, etc. Equation 2.29 is exact
for a = 2.

The Frobenius-Perron operator corresponding to (2.29) is given by

Pf(x) =
1

a

[
f
(x
a

)
+ f

(
1− x

a

)]
. (2.32)
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Example 4. Lasota and Mackey (1987); Provatas and Mackey (1991b) have
studied the asymptotic periodicity induced by noise in a Keener map

S(x) = (ax+ b) (mod 1), 0 < a, b < 1 (2.33)

by studying the dynamics of

xn+1 = (axn + b+ ξn) (mod 1), 0 < a, b < 1, (2.34)

when the noise source ξ is distributed with density g.

3 Density evolution in partial differential equa-
tions

Remark 4. Should we add a section about the ergodic theory like results in
partial differential equations obtained by Rudnicki? These results are based
on a Wiener measure, and I wonder if using the Wiener measure might not
be a way out of part of the trouble that we have.

4 Dynamics in ensembles of differential delay equa-
tions

4.1 What do we measure?

As pointed out in the Introduction, there are fundamentally two types of
data that are taken in experimental situations, and one is related to statis-
tical properties of large ensembles of ’units’ that are typically assumed to
have the same dynamics. If their dynamics are described by a differential
delay equation of the form in Equation 1.1 then we must consider what is
likely to be measured. Figure 4.1 will aid in this.

In Figure 4.1 we show a schematic depiction of what one would actually
measure in an ensemble of units whose dynamic evolution is governed by a
differential delay equation. We assume that there are N such units involved
in our experiment, and that the experiment is started at time t = 0 with
each of the N units having a history (= an initial function) on the interval
[−τ, 0] preceding the start of the experiment. We let these N units evolve
dynamically in time, and assume that we have a device able to record a
histogram approximation ρ to the density f(t, x) of the distribution of the
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Figure 4.1: A schematic illustration of the connection between the evolution
of an ensemble of initial functions and what would be measured in a labo-
ratory. In the case that the delay has been scaled to τ = 1, an ensemble of
N initial functions on [−1, 0] is allowed to evolve forward in time under the
action of the delayed dynamics. At time t we sample the distribution of the
values of x across all N trajectories and form an approximation to a density
f(t, x) given by ρ. Taken from Losson and Mackey (1995) with permission.

state variable x at time t.3 Note that this measurement procedure is carried
out at successive individual times and might be continuous.

Thus, what we measure is not unlike what we might measure in a system
whose dynamics are evolving under the action of the system of ordinary
differential equations (2.10). However, what we are able to calculate is far
different.

4.2 Numerical evidence for interesting density dynamics in
differential delay equations

Within the framework sketched in Section 4.1, what types of behavior can be
observed in ensembles of differential delay equations? Numerous numerical
studies of situations like this have revealed a rich and sometimes bewilder-
ing array of dynamical behaviors that become clear only within an ergodic

3It sometimes might be the case that we would not measure ρ, but rather might have
estimates of various moments of ρ like < x >, < x2 >, etc.
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theory context. We illustrate two of those here.
Losson and Mackey (1995) numerically studied the ensemble evolution

of N = 22, 500 differential delay equations of the form

dx

dt
= −αx+

{
axτ if xτ < 1/2
a(1− xτ ) if xτ ≥ 1/2

a

α
∈ (1, 2], (4.35)

formed by considering the tent map (2.29) of Example 3 as the singular
perturbation limit of the differential delay equation (1.3) with ε = 10, and
a = 1.3 in Equation 2.29. Some of their results are shown in Figure 4.2,
clearly illustrating the existence of presumptive asymptotic periodicity in a
continuous time setting that depends on the choice of the ensemble of initial
functions.

Losson and Mackey (1995) have also numerically examined noise induced
asymptotic periodicity in a differential delay equation formed by considering
the noisy Keener-map (2.34) as the singular perturbation limit of Equation
1.3 where the noise source ξ is distributed with density g:

dx

dt
= −αx+ [(axτ + b+ ξ) mod 1] 0 < a, b < 1 (4.36)

The results of their simulations, shown in Figure 4.3, give circumstantial
evidence for the existence of noise induced asymptotic periodicity (Figure
4.3c,d)) as well as asymptotic stability (Figure 4.3b).

4.3 Writing the Frobenius-Perron operator highlights all of
the problems

I think that Equation 1.1 can be thought of as inducing a flow Tt on a phase
space of continuous functions C = C([−τ, 0],R), which I guess would be
written as xt = T ϕ. According to Hale and Verduyn Lunel (1993, page
68), {Tt : t ≥ 0} : C → C is a strongly continuous semigroup. In one
sense, it would seem that the evolution of a density under the action of this
semi-group would be given by an extension of Equation 2.5∫

A
P tf(x)µ(dx) =

∫
T −1
t (A)

f(x)µ(dx) for all measurableA ⊂ C. (4.37)

This writing of the evolution of the density f under the action of the semi-
group of Frobenius-Perron operators P t : L1(C) → L1(C) is, however,
merely formal and serves to highlight the major problems that we face.
Namely the problem surfaces of what the measure µ on the space C is, what
is a density f on C, what does it mean to do integration over subsets of C,
and how would you actually figure out what T −1

t is?
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Figure 4.2: Apparent asymptotic periodicity in the differential delay equa-
tion (4.35). The parameters are a = 13, α = 10. Both (a) and (b) were
produced with 22, 500 initial functions. (a) Each of the initial functions was
a random process supported uniformly on [0.65, 0.75]. (b) The initial func-
tions were random processes supported either on [0.65, 0.75] (for 17000 cases)
or on [0.35, 0.45] (for the remaining 5500 initial functions). The cycling is
not transient, and is observed for all times. The dependence of the density
cycle on the initial density reflects the dependence of the the eventual form
of the statistically periodic density sequence on the initial functions. Taken
from Losson and Mackey (1995) with permission.
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Figure 4.3: Noise induced apparent asymptotic periodicity in the stochastic
differential delay equation (4.36). As in Figure 4.2, each simulation was
performed with 22, 500 random initial functions. In all four panels, the
parameters of the equation were a = 0.5, b = 0.567, α = 10. For panels (a)-
(c) the initial density was as in Figure 4.2(a). (a) No noise in the system:
p(x, t) is not a density, but a generalized function. (b) Noise supported
uniformly on [0, 0.1]. The system is asymptotically stable, and r = 1 in
(2.28). (c) Noise uniformly supported on [0, 0.2], and r = 2 in (2.28). (d)
Same noise as in (c), with an initial density as in Figure 4.2(b). From Losson
and Mackey (1995) with permission.
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5 The Hopf functional approach

5.1 Introduction to Hopf characteristic functionals and Hopf
functional differential equations

This section briefly introduces a set of techniques to enable one to have a dif-
ferential calculus for functionals, rather than just for the ordinary functions
we usually consider, and how these may be used to study the behaviour of in-
finite dimensional systems like partial differential equations and differential
delay equations.

5.1.1 Functionals and functional derivatives

A functional may be considered a function of infinitely many variables.
Thus, one could consider a function h : ∆ → R and then a space of
functions C(∆), so a functional Ψ is Ψ : C(∆) → R. The functional Ψ(h)
should be thought of as a natural extension and generalization of a function
F (x) of many variables.

In the normal calculus we are accustomed to the definition of the partial
derivative of a function of several variables, e.g. with F : Rd → R with
x = (x1, · · · , xi, · · · , xd) and x̄ = (x̄1, · · · , x̄i, · · · , x̄d) we have

∂F (x)

∂xi
= lim

x̄i→x

F (x̄)− F (x)

x̄i − xi
.

We want to develop a natural extension of this concept to functionals Ψ(h).
As in the more usual case we expect that this extension will:

1. Depend on Ψ ; and

2. Depend on the choice of the “point” h.

How are we to proceed? Consider two functions h and a second one h̄
that is just a bit different from h in some neighborhood of x0. Then the
“increase” of the functional Ψ(h) in going from h to h̄ is just

Ψ(h̄)− Ψ(h).

Further, the area between h and h̄, if h̄ ≥ h, is just∫
∆

(h̄− h) dx.
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Thus we take the expression

lim
h̄→h, supp(h̄−h)→x0

Ψ(h̄)− Ψ(h)∫
∆(h̄− h) dx

to be the definition of the functional or Volterra derivative of Ψ(h) and
we denote it by

δΨ(h)

δx0
.

Hence
δΨ(h)

δx0
= lim

h̄→h supp(h̄−h)→x0

Ψ(h̄)− Ψ(h)∫
∆(h̄− h) dx

. (5.38)

Instead of the above we might simply write the increase of Ψ between h
and h̄ as

Ψ(h̄)− Ψ(h) = A

∫
∆

(h̄− h) dx+O

(∫
∆
|h̄− h| dx

)
(5.39)

where

lim
h̄→h, supp(h̄−h)→x0

O

(∫
∆
|h̄− h| dx

)
= 0,

and the convergence to zero is faster than that of∫
∆

(h̄− h) dx.

In this case, the constant A is just taken to be the functional derivative, i.e.

A =
δΨ(h)

δx0
. (5.40)

In the ordinary calculus the quantity

∂F (x)

∂xi
,

for a fixed i, may be considered as a new function and

∂2F (x)

∂xj∂xi

calculated. Analogously, we can fix x0 (analogous to fixing i) in the expres-
sion

δΨ(h)

δx0
,
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and then calculate
δ2Ψ(h)

δxiδx0
.

Example 5. Functional derivative of a linear functional
Having defined a functional derivative, lets try to calculate one. Specifi-

cally, lets try to calculate the functional derivative of the linear functional

Ψ(h) =

∫
∆
h(x)f(x) dx (5.41)

where f(x) is taken to be continuous.
Now the increase of Ψ can be simply written as

Ψ(h̄)− Ψ(h) =

∫
∆
f(x)[h̄(x)− h(x)] dx

=

∫
∆
f(x0)[h̄(x)− h(x)] dx+

∫
∆

[f(x)− f(x0)][h̄(x)− h(x)] dx

= f(x0)

∫
∆

[h̄(x)− h(x)] dx+

∫
∆
ε|x− x0|[h̄(x)− h(x)] dx

= f(x0)

∫
∆

[h̄(x)− h(x)] dx+O

(∫
∆
|h̄(x)− h(x)| dx

)
. (5.42)

However, this is just precisely the form we had in our alternative formulation
of development of the functional derivative, and we thus conclude that for
Equation 5.41 the functional derivative is

δΨ(h)

δx0
= f(x0), (5.43)

i.e. it is just the kernel of (5.41) evaluated at x0, and is clearly independent
of h.

Remark 5. It is interesting to compare this result with the situation in the
ordinary calculus where we differential a linear function

F (x) = c1x1 + · · ·+ cnxn,

so
∂F (x)

∂xi
= ci,

and again we see the independence of the result on xi.
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5.1.2 Hopf Characteristic Functionals

To introduce these we first require some notation. By the symbol < h, f >
we mean, as usual,

< h, f >=

∫
∆
h(x)f(x) dx. (5.44)

[Note that < h, f >≡ Ψ(h).] Further, we let µf be a probabilistic measure
on a space C(∆) of functions f . By considering such a situation we are
concentrating on the one in which a first choice gives a function, say f1,
while a second choice gives f2. We say that the functions f form a random
field or that C(∆) with µf forms a random field.

With these notions, we define the Hopf characteristic functional to
be

Φ(h) =

∫
C(∆)

ei<h,f> dµf . (5.45)

Note that the integration is over the space C(∆). Furthermore, (5.45) can
also be recognized as

Φ(h) =

∫
C(∆)

eiΨ(h) dµf .

Remark 6. In normal probability theory, if we have a random vector (ξ1, · · · , ξn)
and a vector (λ1, · · · , λn), then the characteristic function is just

E
(
ei(λ1ξ1+···+λnξn)

)
=

∫
Ω
ei(λ1ξ1+···+λnξn) Pξ(dω)

=

∫
Ω
ei<λ,ξ> dPξ

= φ(λ). (5.46)

Thus replacing the discrete ξi by continuous functions makes the connection
with the definition of the Hopf characteristic functional more evident:

E
(
ei<h,f>

)
=

∫
C(∆)

ei<h,f> dµf ≡ Φ(h).

Remark 7. The factor i =
√
−1 in the exponential isn’t too mysterious

since it just serves to ensure that

ei<h,f>

is no greater than 1 since |ei| ≤ 1.
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To calculate the functional derivative of the Hopf characteristic func-
tional, we must first calculate the increase of Φ between h and h̄. In carrying
out this computation we will need the fact that

eix − eiy ' i(x− y)eix̃, x̃ −→
x→y

y.

Thus we may write

Φ(h̄)− Φ(h) =

∫ [
ei<h̄,f> − ei<h,f>

]
dµf

'
∫
i < h̄− h, f > ez̃ dµf . (5.47)

Now the area between h̄ and h is just

∆h =

∫
[h̄(x)− h(x)] dx (5.48)

so
∆Φ

∆h
=

∫
i

[
< h̄− h, f >

∆h

]
ez̃ dµf . (5.49)

[N.B. Don’t confuse the ∆ here with the intervals introduced earlier.] Note
that:

1. z̃ → i < h, f > as ∆h→ 0;

2. By our considerations of the linear functional (5.41),

< h̄− h, f >
∆h

−→
∆h→0

f(x0).

Therefore, taking ∆h → 0 in (5.49) we have finally that the functional
derivative of the Hopf characteristic functional (5.45) is given by

δΦ(h)

δ(x0)
= i

∫
C(∆)

f(x0)ei<h,f> dµf . (5.50)

Note from (5.50) that functional differential of an integral behaves just like
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in the normal calculus since

δΦ(h)

δ(x0)
=

δ

δ(x0)

∫
C(∆)

eiΨ(h) dµf

=

∫
C(∆)

δ

δ(x0)
eiΨ(h) dµf

= i

∫
C(∆)

δΨ(h)

δ(x0)
eiΨ(h) dµf

= i

∫
C(∆)

f(x0)eiΨ(h) dµf (5.51)

where we have used (5.43).
This last result, Equation 5.50, is quite interesting in the following sense.

To see why, assume that h = 0. Then we have

δΦ(0)

δ(x0)
= i

∫
f(x0) dµf .

However,

E(f(x0)) =

∫
f(x0) dµf ,

and, thus, for the Hopf characteristic functional we have proved that

E(f(x0)) =
1

i

δΦ(0)

δ(x0)
(5.52)

It is interesting to pursue this procedure, for example by calculating

δ2Φ(h)

δ(x1)δ(x0)
.

By the same arguments as before, we have

∆

(
δφ(h)

δ(x0)

)
=

δΦ(h̄)

δ(x0)
− δΦ(h)

δ(x0)

= i

∫
f(x0)

[
ei,h̄,f> − ei<h,f>

]
dµf

' i2
∫
f(x0) < h̄− h, f > ez̃ dµf . (5.53)

From this we have

∆

(
δφ(h)

δ(x0)

)
δh

' i2
∫
f(x0)

[
< h̄− h, f >

δh

]
ez̃ dµf .
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Taking the limit of this final expression as δh → 0 we obtain the second
functional derivative of the Hopf functional which is given by

δ2Φ(h)

δ(x1)δ(x0)
= i2

∫
f(x0)f(x1)ei<h,f> dµf .

Once again taking h = 0, we find

E(f(x0)f(x1)) =
1

i2
δ2Φ(0)

δ(x1)δ(x0)
(5.54)

so as a special case

E(f2(x0)) =
1

i2
δ2Φ(0)

δ(x0)2
(5.55)

The consequences of equations (5.52), (5.54), and all similar versions that
can be easily derived using these elementary techniques is quite surprising.
Namely, given the Hopf characteristic functional (5.45):

Φ(h) =

∫
C(∆)

ei<h,f> dµf .

with respect to the probabilistic measure µf of a random field of functions f ,
we can calculate all of the probabilistic properties (moments) of the random
field by simply evaluating various functional derivatives of Φ at h = 0.

Remark 8. As a simple example of these ideas, consider all of the trajec-
tories of British Airways flight 094 from Warsaw to London over a 10 year
period. Each trajectory f(x) gives the altitude f at location x, and f(x) can
be considered as a member of a random field. We can thus make some state-
ments about this ensemble of trajectories. For example, if x0 is a particular
location between Warsaw and London, then the expected value of the altitude
at x0 is given by

E(f(x0)) =
1

i

δΦ(0)

δ(x0)
,

the variance in the altitude at x0 is given by

E(f2(x0))− [E(f(x0))]2 =
1

i2
δ2Φ(0)

δ(x0)2
−
[

1

i

δΦ(0)

δ(x0)

]2

,

and the correlation between the altitudes at points x0 and x1 is given by

E(f(x0)f(x1)) =
1

i2
δ2Φ(0)

δ(x1)δ(x0)
.
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Remark 9. Suppose we have a partial differential equation and an initial
condition is chosen from a random field with measure µf . Then as time
increases from zero, the measure evolves and we can consider the flow of
measures. This was exactly the point of view adopted by Prodi and Foias
in their study of the Navier-Stokes hydrodynamic equations. However, Hopf
realized the difficulties in carrying out this approach and proposed, instead,
that one one might consider the evolution of the characteristic functionals.
When the Hopf point of view is adopted, we have to solve a functional dif-
ferential equation involving Φ(h).

Remark 10. If we have a system of ordinary differential equations, then the
Liouville equation describes the evolution of a density under the action of a
flow generated by the system of ordinary differential equations. Alternately,
we could form the Hopf functional differential equation for the evolution of
Φ(h).

5.1.3 Hopf characteristic functionals and partial differential equa-
tions

In this section we turn to a discussion of partial differential equations of the
form

∂u

∂t
= Lu (5.56)

from the perspective of Hopf characteristic functionals. In (5.56) with initial
functions u(0, x) = f(x), the operator L is a linear combination of terms of
the form

u,
∂u

∂xi
,

∂2u

∂xi∂xj
, · · · , (5.57)

and products of these terms.
For systems whose dynamics are governed by equations like (5.56), we

can always derive a functional differential equation for Φ(f). Boundary value
problems are rather delicate and difficult to treat using the Hopf method,
but it is rather easy to treat initial value problems

∂u

∂t
= Lu

u(0, x) = f(x). (5.58)

Here we assume that W is a space, f ∈ W , and that we have a proba-
bilistic measure µf on W . How are we to view equations (5.56) within this
context? Assume that we have a set of initial functions. Then equation
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(5.58) describes the evolution of functions such that a set or ensemble of
initial functions evolves in time to a new ensemble. We assume that the
evolution of these initial functions is such that the measure is preserved, i.e.

µf (Wt) = µf (W0). (5.59)

Having this probabilistic measure µf we couple (adjoin) it to the Hopf
characteristic functional

Φ0(h) =

∫
ei<h,f> dµf , (5.60)

where the integration is over the space W but the notation has been sup-
pressed. Likewise, to µft we adjoin

Φt(h) =

∫
ei<h,f> dµft . (5.61)

How does this probabilistic measure evolve? As we have seen, knowing
the Hopf characteristic functional gives a great deal of information concern-
ing the random field and we will thus consider the evolution of measures via
the evolution of Φt(h). Then, given Φt(h) we may return to a consideration

of µft ≡ µf (Wt).
Once again return to our basic system Equation 5.58, so it is clear that

the solution u(t, x) depends on f which can be indicated by writing u(t, ·),
with the “·” indicating dependence on a whole function. The system (5.58)
is equivalent to the operation of a transformation St operating on W (the
space of initial functions f), u(t, ·) = St(·), and from equation (5.59) we may
write

µf (Wt) = µf (W0) = µf (S−1
t (Wt)). (5.62)

Using this we have∫
ei<h,u(t,·)> dµf =

∫
ei<h,u(t,·)> dµf (S−1

t (Wt)).

Changing the variables on the right hand side gives∫
ei<h,u(t,·)> dµf =

∫
ei<h,S

−1
t (u(t,·))> dµf (Wt).

If we fix the time and set u(t, ·) = St(f), this then becomes∫
ei<h,u(t,·)> dµf =

∫
ei<h,f> dµft , (5.63)
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which is a very important and fundamental relationship. Equation (5.63) is
entirely analogous to the “change of variables” formula (Lasota and Mackey,
1985, page 41). The only difference is that f now plays the role of x since
we are integrating over functions.

Let us now fix the following notation. Write Φt(h) ≡ Φ(t, h) so

Φ(0, h) =

∫
ei<h,f> dµf (5.64)

and

Φ(t, h) =

∫
ei<h,f> dµft

=

∫
ei<h,u(t,·)> dµf . (5.65)

To study the evolution of the Hopf functional with respect to the system
(5.58) we now differentiate Φ(t, h) with respect to t to give

∂Φ

∂t
=

∂

∂t

∫
ei<h,u> dµf

=

∫
∂

∂t
ei<h,u> dµf

= i

∫
∂ < h, u >

∂t
ei<h,u> dµf

= i

∫ 〈
h,
∂u

∂t

〉
ei<h,u> dµf

= i

∫
< h,Lu > ei<h,u> dµf

= i

∫ {∫
h(x)Lu(t, x) dx

}
ei<h,u> dµf

= i

∫
h(x)

[∫
Luei<h,u> dµf

]
dx. (5.66)

Therefore our final formula becomes

∂Φ

∂t
= i

∫
h(x)

[∫
Luei<h,u> dµf

]
dx , (5.67)

which we will illustrate through a series of examples.
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Example 6. Let us consider the partial differential equation

∂u

∂t
= u. (5.68)

From equation (5.67), since Lu = u, we have

∂Φ

∂t
= i

∫
h(x)

[∫
uei<h,u> dµf

]
dx.

However,
δΦ(t, h)

δ(x)
=

∫
uei<h,u> dµf ,

so the functional differential equation for Φ corresponding to (5.68) is simply

∂Φ

∂t
=

∫
h(x)

δΦ

δ(x)
dx. (5.69)

The solution of equation (5.69) is

Φ(t, h) = Φ0(eth) (5.70)

where Φ(0, h) = Φ0(h) is the characteristic functional of the initial measures.
Before showing you how we arrived at the solution, lets just go through

the exercise of verifying that it is indeed the solution. First, recall that

Φ(ḡ)− Φ(g) =

∫
δΦ(g)

δ(x)
[ḡ(x)− g(x)] dx+O

(∫
|ḡ(x)− g(x)| dx

)
.

Now we have, setting g = eth and using (25),

∂Φ(t, h)

∂t
= lim

t̄→t

Φ0(et̄h)− Φ0(eth)

t̄− t

= lim
t̄→t

{∫
[et̄ − et]h(x)

δΦ0(f)

δ(x)

∣∣∣∣
f=eth

dx+O

(∫
|et̄h− eth| dx

)}

' lim
t̄→t

{∫
[et̄ − et]h(x)

δΦ0(f)

δ(x)

∣∣∣∣
f=eth

dx+O

(
[et̄ − et]

∫
h(x) dx

)}

= et
∫
h(x)

δΦ0(f)

δ(x)

∣∣∣∣
f=eth

dx. (5.71)

27



As an aside, note that if we have a general functional Φ(λh) then

δ[Φ(λh)]

δ(x)
= lim

h̄→h

Φ(λh̄)− Φ(λh)

h̄− h

= λ lim
h̄→h

Φ(λh̄)− Φ(λh)

λh̄− λh

= λ
δΦ

δ(x)
(λh) = λ

δΦ(f)

δ(x)

∣∣∣∣
f=λh

. (5.72)

Thus, taking λ = et we may write

δ[Φ0(eth)]

δ(x)
= et

δΦ0(f)

δ(x)

∣∣∣∣
f=eth

,

and, as a consequence, equation (27) becomes

∂Φ(t, h)

∂t
=

∫
h(x)

δ[Φ0(eth)]

δ(x)
dx

=

∫
h(x)

δΦ(t, h)

δ(x)
dx, (5.73)

thereby demonstrating that (5.70) is indeed the solution of the functional
differential equation (5.69).

Now that we have verified the solution (5.69), lets consider the problem of
how one could have have obtained (5.69) without making a series of random
guesses. This turns out to be quite straightforward since there is a general
technique for solving Hopf functional differential equations corresponding to
linear evolution equations.

Specifically, again consider the evolution equation

∂u

∂t
= Lu, (5.74)

with the initial condition u(0, ·) = f , where Lu is linear, and the correspond-
ing Hopf functional differential equation is

∂Φ

∂t
= i

∫
h(x)

[∫
Luei<h,u> dµf

]
dx (5.75)

with a characteristic functional Φ(0, h) = Φ0(h) of the initial measure. If
the solution of Equation 5.74 is written

u(t, ·) = Γtf (5.76)
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(Γt is now a linear operator), then the solution of the corresponding Hopf
equation is simply

Φ(t, h) = Φ0(Γ∗th), (5.77)

where Γ∗t is the operator adjoint to Γt, i.e., the operator satisfying

< Γh, f > = < h, Γ∗f > .

To show that (5.77) is indeed the solution to the Hopf equation (5.75) is
quite straightforward. Thus, if we start from

Φ0(h) =

∫
ei<h,f> dµf ,

then

Φ(t, h) =

∫
ei<h,u(t,·)> dµf . (5.78)

From equation (5.76), u(t, ·) = Γtf so equation (5.78) becomes

Φ(t, h) =

∫
ei<h,Γtf> dµf

=

∫
ei<Γ∗t h,f> dµf

= Φ0(Γ∗th), (5.79)

thus demonstrating equation (5.77).
With this discussion under our belt, we can now consider a second ex-

ample.

Example 7. Consider the initial value problem

∂u

∂t
= a(t, x)

∂u

∂x
(5.80)

with u(0, ·) = f(·). From the general equation (5.67), we have directly that

∂Φ

∂t
= i

∫
h(x)

[∫
a(t, x)

∂u

∂x
ei<h,u> dµf

]
dx

=

∫
h(x)a(t, x)

∂

∂x

[
i

∫
uei<h,u> dµf

]
dx (5.81)

so, using equation (5.50),

∂Φ

∂t
=

∫
h(x)a(t, x)

∂

∂x

δΦ

δ(x)
dx (5.82)

is the functional differential equation for Φ corresponding to (5.80).
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Actually, it is equally easy to show that the slightly more general initial
value problem

∂u

∂t
= a(t, x)

∂u

∂x
+ b(t, x)u (5.83)

has a corresponding Hopf equation

∂Φ

∂t
=

∫
h(x)

[
a(t, x)

∂

∂x

δΦ

δ(x)
+ b(t, x)

δΦ

δ(x)

]
dx. (5.84)

Example 8. If we take the particular case of a(t, x) = −x and b(t, x) = λ,
then (5.83) becomes

∂u

∂t
= −x∂u

∂x
+ λu, (5.85)

which is a linearized version of an equation that has been applied to the
problem of describing the simultaneous proliferation and maturation of a
population of cells [see Lasota and Mackey (1985, Example 11.1.1, pp. 297-
302), where it is shown that the solutions of (5.85) are exact with respect to
the Wiener measure].

The solution of (5.85), given an initial condition u(0, ·) = f(·) is simply

u(t, x) = eλtf(e−tx), (5.86)

which may be obtained using the method of characteristics. Thus, writing
(38) as

u(t, ·) = Γtf(·),

where
(Γtf)(x) = eλtf(e−tx),

we also have

< h,Γtf >=

∫
h(x)eλtf(e−tx) dx.

Make the change of variables y = e−tx so dx = etdy and thus

< h,Γtf >=

∫
e(λ+1)th(ety)f(y) dy.

Thus it is straightforward to see that

(Γ∗th)(x) = e(λ+1)th(etx)

and, as a consequence, the Hopf equation

∂Φ

∂t
=

∫
h(x)

[
−x ∂

∂x

δΦ

δ(x)
+ λ

δΦ

δ(x)

]
dx (5.87)
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corresponding to (5.85) has the solution

Φ(t, h) = Φ0(e(λ+1)th(etx)) (5.88)

where Φ0 is the characteristic functional of the initial measure.

Example 9. Consider the system of ordinary differential equations

dxk
dt

= Fk(x), k = 1, · · · , d (5.89)

and the corresponding Liouville equation for the evolution of the density
u(t, x) under the action of the flow generated by (5.89):

∂u

∂t
= −

d∑
k=1

∂[Fku]

∂xk
. (5.90)

Rewriting (5.90) as

∂u

∂t
= −u

d∑
k=1

∂Fk
∂xk
−

d∑
k=1

Fk
∂u

∂xk
, (5.91)

and identifying L in an obvious manner, we have from (5.67) that

∂Φ

∂t
= −i

∫
h(x)

[∫ d∑
k=1

∂Fk
∂xk

uei<h,u>dµf −
d∑

k=1

Fk
∂

∂xk

∫
uei<h,u>dµf

]
dx.

(5.92)
Then, using (5.50) and some simple manipulations it is almost immediate
that the differential equation for the Hopf functional Φ is given by

∂Φ

∂t
= −i

∫
h(x)

[
d∑

k=1

∂

∂xk

(
Fk
δΦ

δx

)]
dx. (5.93)

5.2 Characteristic functionals for delay equations

We consider differential delay equations of the form

du

ds
= −αu(s) + F (u(s− 1)) for 1 < s, (5.94)

in which the delay τ is taken to be 1 without loss of generality, with the
initial function

u(s) = v(s) if s ∈ [0, 1]. (5.95)
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From now on we write Equations 5.94-5.95 as the combined system

u(s) = v(s)for s ∈ [0, 1],

du(s)

ds
= −αu(s) + F (v(s− 1))for 1 < s < 2 (5.96)

and denote by St the corresponding semidynamical system St : C([0, 1]) 7−→
C([0, 1]) given by

Stv(x) = uv(x+ t), (5.97)

where uv denotes the solution of Equation 5.96 corresponding to the initial
function v. Equation 5.97 defines a semidynamical system because a differ-
ential delay equation is noninvertible, i.e. it cannot be run unambiguously
forward and backwards in time.

From Equation 5.97, the system (5.96) is equivalent to considering

∂

∂t
Stv(x) =

{
∂

∂t
v(x+ t) for x ∈ [0, 1− t],

−αu(x+ t) + F (v(x+ t− 1)) for x ∈ (1− t, 1].
(5.98)

Thus, we consider a segment of a solution of (5.96) defined on an interval
It = [t, t+1], as t increases (continuously) [i.e. the differential delay equation
(5.96) operates on a buffer of length 1, “sliding” it along the time axis].
Equation (5.98) states that the contents of this buffer are the initial condition
v when the argument (x+t) is less than 1, and the solution u of the equation
otherwise.

We next introduce the characteristic functional Zt of a family of probabil-
ity measures evolving from an initial measure. We define the characteristic
functional Zt for (5.98) by

Zt[J1, J2] =

∫
C

exp

[
i

∫ 1

0
J1(x)uv(x+ t) dx+ i

∫ 1

0
J2(x)v(x) dx

]
dµ0(T −1

t (v, uv)).

(5.99)
The source functions J1 and J2 are elements of C([0, 1]) and the measure
of integration is the initial measure µ0 (describing the initial distribution
of functions) composed with T −1

t (v, uv) where Tt(v) : C([0, 1]) 7−→ C × C is
defined by

Tt(v) = (v, uv). (5.100)

For simplicity, we will use the notation µ0(T −1
t (v, uv)) ≡ W[v,St(v)], so

(5.99) becomes

Zt[J1, J2] =

∫
C

exp

[
i

∫ 1

0
J1(x)uv(x+ t) dx+ i

∫ 1

0
J2(x)v(x) dx

]
dW[v,St(v)].

(5.101)
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When no confusion is possible, we write Wt for W[v,St(v)].
If f and g are two functions defined on an interval I, we denote their

scalar product by

< f, g >≡
∫
I
f(x)g(x) dx.

To simplify the notation we also write

Υ[J1, J2; v] = exp [i < J1(x), uv(x+ t)}+ i{J2(x), v(x) >] . (5.102)

Υ is used from now on to denote the function of J1, J2 and v defined in
(5.102). We begin by noting the following relations

δnZt
δJn1 (ξ)

= in 〈Υunv (ξ + t)〉 , (5.103)

δnZt
δJn2 (ξ)

= in 〈Υvn(ξ)〉 , (5.104)

where it is understood that〈(
...

)〉
=

∫
C

(
...

)
dW[v,St(v)].

Note that if µ0 is the probability measure on the space of all initial
functions v, and A is any subset of C([0, 1]), then

µt(A) ≡ µ0(S−1
t (A)). (5.105)

In other words, the probability that a randomly chosen function belongs to A
at time t equals the probability that the counterimage of that function (un-
der the action of St) belonged to the counterimage of the set A. This defines
the family of measures characterized by the solutions Zt of a functional dif-
ferential equation which is the Fourier transform of the infinite dimensional
version of the Kramers-Moyal expansion Risken (1984). The derivation of
such an equation for a differential delay equations was first considered by
Capiński (1991). If the semiflow St is measure-preserving with respect to µ0,
then µ0(A) ≡ µ0(S−1

t (A)). In this case, we alternately say that the measure
µ0 is invariant with respect to St.

We are now in a position to derive an evolution equation for the charac-
teristic functional.
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5.2.1 A functional differential equation for Zt.

Time differentiation of the characteristic functional Zt defined in (5.101)
yields, in conjunction with (5.98),

∂Zt
∂t

= i

〈
Υ

∫ 1

0
J1(x)

∂uv(x+ t)

∂t
dx

〉
= i

〈
Υ

∫ 1

0
J1(x)

∂uv(x+ t)

∂x
dx

〉
= i

〈
Υ

∫ 1−t

0
J1(x)

∂v(x+ t)

∂x
dx− αΥ

∫ 1

1−t
J1(x)u(x+ t) dx

〉
+i

〈
Υ

∫ 1

1−t
J1(x)F (v(x+ t− 1)) dx

〉
. (5.106)

Therefore, from Equation 5.103 and the definition (5.98), we obtain

∂Zt
∂t

=

∫ 1−t

0
J1(x)

∂

∂x

(
δZt
δJ1(x)

)
dx− α

∫ 1

1−t
J1(x)

δZt
δJ1(x)

dx

+i

〈
Υ

∫ 1

1−t
J1(x)F (v(x+ t− 1)) dx

〉
. (5.107)

Equation 5.107 is related to the Hopf functional differential equation for the
evolution of the characteristic functional Zt, and contains all the statistical
information describing the evolution of a density of initial functions under
the action of the differential delay system (5.94,5.95). An equation similar to
(5.107) was first obtained by Capiński (1991) for a differential delay equation
with a quadratic nonlinearity (see Example 10 below).

In order to derive the Hopf equation per se, we restrict our attention to
situations where the feedback function F in the differential delay equation
(5.94) is a polynomial

F (v) =

n∑
k=1

akv
k. (5.108)

With nonlinearity (5.108), Equation 5.107 becomes, with identity (5.104),

∂Zt
∂t

=

∫ 1−t

0
J1(x)

∂

∂x

(
δZt
δJ1(x)

)
dx− α

∫ 1

1−t
J1(x)

δZt
δJ1(x)

dx

+
n∑
k=1

i(1−k) ak

∫ 1

1−t
J1(x)

δkZt
δJk2 (x+ t− 1)

dx. (5.109)
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Analytically solving the Hopf equation (5.109) is not possible at present,
though a correct method of solution should make use of integration with
respect to measures defined on the space C. Presently, the theory of such
integrals only allows their consistent utilization in solving functional dif-
ferential equations when the measure of integration is the Wiener measure
Sobczyk (1984).

Before proceeding to treat the Hopf equation in a perturbative manner,
we illustrate its specific form for a simple nonlinear delay equations.

Example 10. The differential delay equation

du

ds
= −αu(s) + ru(s− 1)[1− u(s− 1)], (5.110)

can be considered as a continuous analogue of the discrete time quadratic
map

un+1 = run(1− un) (5.111)

because Equation 5.110 is the singular perturbation of the quadratic map
(5.111) as defined in Ivanov and Šarkovskĭı (1991). The characteristic func-
tional is defined by (5.101), and the functional differential equation corre-
sponding to (5.109) was shown by Capiński (1991) to be

∂Zt
∂t

=

∫ 1−t

0
J1(x)

∂

∂x

(
δZt
δJ1(x)

)
dx− α

∫ 1

1−t
J1(x)

δZt
δJ1(x)

dx

+r

∫ 1

1−t
J1(x)

δZt
δJ2(x+ t− 1)

dx (5.112)

−ri−1

∫ 1

1−t
J1(x)

δ2Zt
δJ2

2 (x+ t− 1)
dx. (5.113)

In spite of the fact that we cannot solve the Hopf equation analytically,
relatively mild assumptions allow one to gain significant insight into the
dynamics of Zt. More precisely, if Zt is analytic we can expand it in a
power series and treat the Hopf equation in a perturbative manner. We
follow this approach in the next section.

5.2.2 The moments of the measure Wt

The statistical properties of the random field of functions v and u are de-
scribed by an infinite hierarchy of moments of the measure Wt. For fixed t,
the average value of the contents of the buffer defined on It = [t, t+ 1] (i.e.
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v on [t, 1] and uv on (1, 1 + t]), which is just the first order moment of the
measure Wt, is

M1
v (t, x) ≡

∫
C
v(x+ t) dµ0(v) for x ∈ [0, 1− t], (5.114)

M1
u(t, x) ≡

∫
C
uv(x+ t) dµ0(v) for x ∈ (1− t, 1]. (5.115)

These two equations can be written as one relation:

M1(t, x) ≡
∫
C
uv(x+ t) dWt for x ∈ [0, 1]. (5.116)

The definition of the second order moment (or covariance function)M2(t, x, y)
is, with the same notation,

M2(t, x, y) =

∫
C
v(x+ t)v(y + t) dµ0(v) ≡M2

vv(t, x, y) for x, y ∈ [0, 1− t]× [0, 1− t],

M2(t, x, y) =

∫
C
uv(x+ t)v(y + t) dµ0(v) ≡M2

uv(t, x, y) for x, y ∈ (1− t, 1]× [0, 1− t],

M2(t, x, y) =

∫
C
v(x+ t)uv(y + t) dµ0(v) ≡M2

vu(t, x, y) for x, y ∈ [0, 1− t]× (1− t, 1],

M2(t, x, y) =

∫
C
uv(x+ t)uv(y + t) dµ0(v) ≡M2

uu(t, x, y) for x, y ∈ (1− t, 1]× (1− t, 1].

The subscripts of the various components of M2 refer to the segments of
the solution whose correlation is given by the particular component. For
example, M2

uv describes the correlation between u and v segments of the
solution as is illustrated in Figure 1. Remember that the initial function is
defined on an interval [0, 1], so to complete the description of the statistical
dependence of the solution uv on the initial function it is necessary to intro-
duce the functions M2

ou. M1
o is the first order moment of measure µ0, M2

oo

is the second order moment of µ0 etc..
The moments of the measure Wt are also given by the power series

expansion of the characteristic functional Zt as we next discuss.

5.2.3 Taylor series expansion of the functional Zt.

The expression for the series expansion of a functional can be understood
with the following argument. Let

F (y1, · · · , yk) = F (y)
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Figure 5.4: A D.D.E transforms a function defined on [0, 1] into a function
defined on It. Illustration of the “o”, “v” and “u” segments of the solution.
Reproduced from Losson and Mackey (1992) with permission.

be a function of k variables. The power series expansion of F is

F (y) =
∞∑
n=0

k∑
i1=0

· · ·
k∑

in=0

1

n!
En(i1, · · · , in)(y1, · · · , yn), (5.117)

where

En(i1, · · · , in) =
∂nF (y)

∂y1 · · · ∂yn

∣∣∣∣
y=0

.

Passing to a continuum in the following sense

i −→ xi,

yi(i = 1, · · · , k) −→ y(x),

−∞ < x <∞,∑
i

−→
∫
IR
dx, (5.118)

we obtain the corresponding series expansion of a functional F :

F [y] =

∞∑
n=0

∫
IRn

dx1 · · · dxnEn(x1, · · · , xn)y(x1) · · · y(xn), (5.119)

where

En(x1, · · · , xn) =
1

n!

δnF [y]

δy(x1) · · · δy(xn)

∣∣∣∣
y=0

. (5.120)
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F [y] is called the characteristic functional of the functions En.
With these conventions, the expansion of the characteristic functional

(5.101) is

Zt[J1, J2] =
∞∑
p=0

p∑
q=0

∫ 1

0
· · ·
∫ 1

0
Epq(t, x1, · · · , xp)

 q∏
j=1

J1(xj) dxj

 p∏
j=q+1

J2(xj) dxj

 .

(5.121)
The kernels Epq in the expansion are proportional to the moment functions
of the measureW[v,Stv]. From equations (5.103) and (5.104) they are given
by

Epq(t, x1, · · · , xp) =
1

p!

δpZt
δJq1 δJ

p−q
2

=
ip

p!
〈uv(x1) · · ·uv(xq)v(xq+1) · · · v(xp)〉 (5.122)

=
ip

p!
Mp

uqv(p−q)(t, x1, · · · , xp), (5.123)

where from now on we use the notationMp

uqv(p−q)(t, x1, · · · , xp) = Mp

uqv(p−q)(t,x).
Equation (5.121) is the infinite dimensional generalization of the well known
expansion of a characteristic function in terms of the corresponding proba-
bility moments (or their Legendre transforms, the cumulants).

5.2.4 P.D.E’s for the moments.

The evolution equation of the kth moment is given by substituting the mo-
ment in question into (5.109) and then using formula (5.121) to the appro-
priate order.

Consider the first order moments of the measureWt. If we substitute the
definitions (5.122)-(5.123) and the expansion (5.121) into equation (5.109),
we obtain a P.D.E for the moment M1(t, x):

∂

∂t
M1
v (t, x) =

∂

∂x
M1
v (t, x) for x ∈ [0, 1− t],

∂

∂t
M1
u(t, x) = −αM1

u(t, x) +

n∑
k=1

akM
k
ok(x+ t− 1, k. . ., x+ t− 1)

for x ∈ (1− t, 1]. (5.124)

Equation 5.124 is simply the Hopf equation (5.109) for the first order mo-
ments. In (5.124) the k arguments of Mk

ok
indicate that it is the k-point
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autocorrelation function of the initial function distribution described by µ0.
Moments whose label does not contain u are moments of the initial measure.

The second order moment functions M2(t, x) are given by the solutions
of the four equations:

∂

∂t
M2
vv(t, x, y) =

∂

∂x
M2
vv(t, x, y) +

∂

∂y
M2
vv(t, x, y)

for (x, y) ∈ [0, 1− t)× [0, 1− t), (5.125)

∂

∂t
M2
uv(t, x, y) =

∂

∂y
M2
uv(t, x, y)− αM2

uv(t, x, y)

+
n∑
k=2

akM
k
o(k−1)v

(t, x+ t− 1, (k−1). . . , x+ t− 1, y)

for (x, y) ∈ (1− t]× [0, 1− t], (5.126)

∂

∂t
M2
vu(t, x, y) =

∂

∂x
M2
vu(t, x, y)− αM2

vu(t, x, y)

+

n∑
k=2

akM
k
vo(k−1)(t, x, y + t− 1, (k−1). . . , y + t− 1)

for (x, y) ∈ [0, 1− t]× (1− t, 1], (5.127)

∂

∂t
M2
uu(t, x, y) = −2αM2

uu(t, x, y)

+

n∑
k=1

ak {Mk
o(k−1)u

(t, x+ t− 1, (k−1). . . , x+ t− 1, y) +

+Mk
uo(k−1)(t, x, y + t− 1, (k−1). . . , y + t− 1) } ,

for (x, y) ∈ (1− t, 1]× (1− t, 1]. (5.128)

The functions M2
ou and M2

oou are given by

∂

∂t
M2
ou(t, x, y) = −αM2

ou

+
n∑
k=2

akM
k
ok(x, y + t− 1, k. . ., y + t− 1), (5.129)

∂

∂t
M3
oou(t, x, y, z) = −αM3

oou(t, x, y, z) +

+
n∑
k=3

akM
k
ok(x, y, z + t− 1, k. . ., z + t− 1),(5.130)

and similar equations give the moments Mk
o(k−1)u

.

39



A pattern clearly emerges from the preceding analysis: The moment
Mp(t,x) is given by 2p partial differential equations of the same form as
(5.125) through (5.128) since Mp(t,x) is a function of p variables, each of
which can belong to one of two possible intervals ([0, 1− t] or (1− t, 1]). The
first of these equations (when all the xk’s belong to [0, 1− t]) is

∂

∂t
Mp
vp(t,x) =

p∑
j=1

∂

∂xj
Mp
vp(t,x). (5.131)

We call the equations which give the moments of the form Mp

vlu(p−l) mixed
equations because they yield functions which correlate mixed u and v seg-
ments of the solution. For the moment of order p, there are (2p − 2) mixed
equations and 2 pure equations. The pure equations give Mp

vp and Mp
up , the

p-point autocorrelation functions of the v and u segments of the solution.
If xj ∈ [0, 1 − t] for j = 1, · · · , l and xj ∈ (1 − t, 1] for j = l + 1, · · · , p,

then when the forcing term F of equation (5.94) is the polynomial (5.108),
the generic form of the mixed equation for Mvlu(p−l) is

∂

∂t
Mp

vl u(p−l) (t,x) =
l∑

i=1

∂

∂xi
Mp

vl u(p−l)(t,x)− α(p− l)Mp

vl u(p−l)(t,x)

+
n−1∑
j=0

aj

{
M

(p+j)

vl oj u(p−l)(t,x) +M
(p+j)

vl u(p−l) oj
(t,x)

}
. (5.132)

Once again, this equation is one representative of the (2p − 2) mixed equa-
tions to be solved to obtain the moment of order p. Deriving these equations
is tedious, but the task is greatly simplified by the similarity existing be-
tween the systems of equations for moments of different orders.

Before proceeding, we illustrate the ideas presented above and derive
the partial differential equations analogous to (5.124) and (5.125) through
(5.128) for the nonlinear D.D.E (5.110) considered in Example 10.

Example 11. When the D.D.E is

du

ds
= −αu(s) + ru(s− 1)− ru2(s− 1), (5.133)

the first order moment equations are given by

∂M1
v (t, x)

∂t
=

∂M1
v (t, x)

∂x
, (5.134)

∂M1
u(t, x)

∂t
= −αM1

u(t, x) + rM1
o (x+ t− 1)

− rM1
oo(x+ t− 1, x+ t− 1). (5.135)
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The four evolution equations for the second order moments are

∂M2
vv(t, x, y)

∂t
=

∂M2
vv(t, x, y)

∂x
+
∂M2

vv(t, x, y)

∂y
,

for x, y ∈ [0, 1− t] (5.136)

∂M2
vu(t, x, y)

∂t
=

∂M2
vu(t, x, y)

∂x
− αM2

vu(t, x, y) + rM2
vo(t, x, y + t− 1)

−rM3
voo(t, x, y + t− 1, y + t− 1),

for x ∈ [0, 1− t], y ∈ (1− t, 1] (5.137)

∂M2
uv(t, x, y)

∂t
=

∂M2
uv(t, x, y)

∂y
− αM2

uv(t, x, y) + rM2
ov(t, x+ t− 1, y)

−rM3
oov(t, x+ t− 1, x+ t− 1, y),

for x ∈ (1− t, 1], y ∈ [0, 1− t] (5.138)

∂M2
uu(t, x, y)

∂t
= −2αM2

uu(t, x, y) + r
[
M2
ou(t, x+ t− 1, y) +M2

uo(t, x, y + t− 1)
]
−

r
[
M3
oou(t, x+ t− 1, x+ t− 1, y) +M3

uoo(t, x, y + t− 1, y + t− 1)
]
,

for x, y ∈ (1− t, 1]. (5.139)

To solve these equations, one needs to solve first for the moments M2
ou, M2

uo,
and M3

oou which satisfy equations of the following form

∂M2
ou(t, x, y)

∂t
= −αM2

ou(t, x, y) + βM2
oo(t, x, y), (5.140)

∂M3
oou(t, x, y, z)

∂t
= −αM3

oou(t, x, y, z) + rM3
ooo(x, y, z + t− 1)

−rM4
oooo(x, y, z + t− 1, z + t− 1). (5.141)

Hence, the moments can be obtained by successively solving ordinary or hy-
perbolic partial differential equations. Suppose for illustration that first order
moments of the initial measure are real positive constants:

M1
o = m1 (5.142)

M2
oo = m2 (5.143)

M3
ooo = m3 (5.144)

M4
oooo = m4. (5.145)

First Moment:
For M1

u(t, x), the evolution equation (5.135) reduces to

∂M1
u(t, x)

∂t
= −αM1

u(t, x) + r(m1 −m2), (5.146)

41



whose solution is

M1
u(t, x) = γ1 +

[
M1
u(0, x)− γ1

]
e−αt where γ1 ≡

r(m1 −m2)

α
. (5.147)

At t = 0, from (5.97) and (5.98) we know that v(1) = uv(1). In addition,
M1
o (t, x) ≡M1

v (t, x). Therefore, from (5.114)-(5.115),

M1
o (t = 0, x = 1) =

∫
C
v(1)dµ0 =

∫
C
uv(1)dµ0(v) = M1

u(t = 0, x = 1)

and from the initial condition (45) we conclude M1
u(t = 0, x) = m1. Hence

M1
u(t, x) = γ1 + [m1 − γ1] e−αt. (5.148)

Second Moments:
To obtain expressions for M2

uv, M
2
vu, M

2
uu we have to solve their respective

equations of motion (remember that M2
vv is given). We first tackle (5.138)

(this choice is arbitrary; (5.137) can be dealt with in the same manner):

∂M2
uv(t, x, y)

∂t
=
∂M2

uv(t, x, y)

∂y
− αM2

uv(t, x, y) + r(m2 −m3) (5.149)

with initial condition M2
uv(0, x, y) = M2

vv(0, x, y) ≡ m2 for all x, y in the
domains defined in (41). This initial condition is, as for the first moment,
obtained from Equations 5.114-5.115. Equation 5.149 is solved using the
method of characteristics, and the solution is

M2
uv(t, x, y) = γ2 + [m2 − γ2] e−αt where γ2 ≡

r(m2 −m3)

α
. (5.150)

The moment M2
vu(t, x, y) can be obtained in a similar way and the result is

M2
vu(t, x, y) = M2

uv(t, x, y). (5.151)

This equality is due to the fact that the moments of the initial measure
are constant. Finally, it is necessary to solve (5.140) and (5.141) before
obtaining M2

uu. Using (5.143)-(5.145),

M2
ou = γ2 + [m2 + γ2] e−αt (5.152)

M2
uo = γ2 + [m2 + γ2] e−αt (5.153)

M2
oou = γ3 + [m3 + γ3] e−αt where γ3 ≡

r(m3 −m4)

α
(5.154)

M2
uoo(t) = γ3 + [m3 + γ3] e−αt (5.155)
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so that the evolution equation for M2
uu becomes

∂M2
uu(t, x, y)

∂t
= −2αM2

uu(t, x, y) + 2rγ2 + 2rγ3 + 2reαt [m2 −m3 + γ2 − γ3] .

(5.156)
The above is a linear first order ODE which can be solved to give

M2
uu(t) =

−2re−αt

3α
[m2 −m3 + γ2 − γ3]− r

α
[γ2 − γ3] +Ke2αt, (5.157)

where

K ≡ 2r

3α

(
m2 −m3 +

1

2
(γ3 − γ2)

)
+m2 •

This analysis can be carried out in a similar way when the moments are
not constants, but such that the equations derived above remain solvable
analytically.

5.2.5 Invariant measures.

It is of physical interest to investigate the constraint to be satisfied by a
measure µ∗, invariant under the action of a differential delay equation. For
the nonlinear DDE (5.133), the characteristic functional Y of such a measure
is defined as

Y[J1] =

∫
C

exp

[
i

∫ 1

0
J1(x)uv(x+ t) dx

]
dµ∗ (5.158)

and so we have
Y[J1] = Zt[J1, 0] for all t.

where Zt[J1, J2] is given by (5c). The Hopf equation (16) becomes

0 =

∫ 1−t

0
J1(x)

∂

∂x

(
δY

δJ1(x)

)
dx− α

∫ 1

1−t
J1(x)

δY
δJ1(x)

dx

+ r

∫ 1

1−t
J1(x)

δY
δJ1(x+ t− 1)

dx

− ri−1

∫ 1

1−t
J1(x)

δ2Y
δJ2

1 (x+ t− 1)
dx, ∀t. (5.159)

By choosing t = 0, the first integral in the Hopf equation must vanish so
that we have,

∂

∂x

(
δY

δJ1(x)

)
= 0 a.e. (5.160)
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From this relation a necessary condition for the invariant measure follows:
using (5.123), the moments must satisfy

n∑
k=1

∂

∂xk
Mn
uqv(n−q)(x1, · · · , xk) = 0. (5.161)

6 The method of steps

In treating the problem using the “method of steps” we restrict our attention
to systems of the form

dx

dt
= G (x(t)) + F ((x(t− τ)) (6.162)

where F and G are real functions and τ is a positive real constant. The
initial function for the system is denoted

x(t) ≡ ϕ(t) for t ∈ [−τ, 0). (6.163)

To simplify matters, we start with linear differential delay equations of
the form

dx

dt
= ax(t) + bx(t− τ), (6.164)

with a and b real constants. The first avenue we explore is the rewriting of
a differential delay equation as a set of ordinary differential equations.

Before proceeding it is useful to define some notation. The interval Ii
(i = 0, 1, · · · ) is defined to be

Ii ≡ [(i− 1)τ, iτ),

while the restriction of the solution x(t) of equation (6.164) to the interval
t ∈ Ii will be denoted xi(t):

xi(t) ≡ x(t) when (i− 1)τ ≤ t < iτ i = 0, 1, · · ·

with x0(t) = ϕ(t). Finally the real function F0(x0) is defined to be such
that:

dx0

dt
= F0(x0)⇐⇒ x0(t) = ϕ(t).

44



6.1 Functional iteration

Consider the differential delay equation

ε
dx

dt
= −ax(t) + S(x(t− τ)), (6.165)

write out the formal solution using integrating factors, and make the sub-
stitution t − τ → t. Then then we can rewrite the resulting equation as a
mapping L : C → C

xm+1(t) = e−at/ε
{
xm(τ) +

1

ε

∫ t

0
eaz/εS(xm(z))dz

}
= L(xm(t)) (6.166)

for iterating functions supported on [0, τ ] to functions supported on [0, τ ].
In (6.166), m = 0, 1, . . . indexes the number of iterations that have taken
place on an initial function x0(u) with u ∈ [0, τ ].

Remark 11. What, if anything, can be accomplished with the operator
Equation 6.166? Would this be of any help, or should the whole section
be tossed out?

Remark 12. 15 November, 1993. (Sharkovsky et al., 1993, page 134)
point out that equation (6.166) “may have continuous (including arbitrar-
ily smooth) and bounded solutions which are not uniformly continuous when
t → ∞. The existence of these solutions distinguishes difference equations
with a continuous argument from ordinary differential equations with lag
qualitatively”. Thus it is highly likely that it will not be of material benefit
to study the evolution of densities under the action of (6.166) in order to
understand the evolution of densities under the action of a differential delay
equation.

Remark 13. 8 January, 2006. I now do not know what to make of this
note that I added some years ago. I must go back to Sharkovsky et al. (1993)
and try to understand their point again.

Remark 14. We can use the result contained in (6.166) to generate a nu-
merically useful algorithm by dividing up the interval [0, τ ] into n subinter-
vals of length ∆ so τ = n∆. If we set xm(t = j∆) = xjm with j = 1, . . . , n,
then the integral on the right hand side of (6.166) can be written as∫ t=j∆

0
eaz/εS(xm(z))dz '

j∑
k=1

∆ exp

[
k
a∆

ε

]
S(xkm). (6.167)
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Consequently, a finite difference approximation to (6.166) is

xjm+1 = xnme
−aj∆/ε +

∆

ε

j∑
k=1

exp

[
−
(

(j − k)
a∆

ε

)]
S(xkm). (6.168)

If we set κ = exp[−a∆/ε], then (6.168) becomes

xjm+1 = xnmκ
j +

∆

ε

j∑
k=1

κj−kS(xkm). (6.169)

If we define matrices

A =
∆

ε



1 0 0 0 · · · 0
κ 1 0 0 · · · 0
κ2 κ 1 0 · · · 0
κ3 κ2 κ 1 · · · 0
...

...
...

...
... 0

κn−1 κn−2 κn−3 κn−4 · · · 1


,

and

B =



0 0 0 0 · · · κ
0 0 0 0 · · · κ2

0 0 0 0 · · · κ3

0 0 0 0 · · · κ4

...
...

...
...

...
...

0 0 0 0 · · · κn


,

and vectors
S =

[
S · · · S

]
,

and
X T =

[
x1 · · · xn

]
,

then we can write (6.169) in the form

Xm+1 = AS ◦ Xm +BXm. (6.170)

For large m this becomes approximately

Xm+1 ' AS ◦ Xm. (6.171)
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6.2 The idea

Consider the linear equation (6.164). Suppose that one wishes to solve the
differential delay equation for t ∈ I1, given the initial function x0(t) defined
for t ∈ I0.

dx1

dt
= ax1(t) + bx1(t− τ)

= ax1(t) + bx0(t) (6.172)

dx0

dt
= F0(x0). (6.173)

Similarly, the restriction of x(t) to the interval I2 can be obtained by rewrit-
ing the original differential delay equation as the following set of ordinary
equations:

dx2

dt
= ax2(t) + bx1(t) (6.174)

dx1

dt
= ax1(t) + bx0(t) (6.175)

dx0

dt
= F0(x0). (6.176)

This can be easily generalized to the restriction of the solution of the differ-
ential delay equation to the interval Ik with k an arbitrary positive integer:
In that case, the function xk(t) can be computed by solving the following
system of equations:

dx0

dt
= F0(x0). (6.177)

...
dxk−1

dt
= axk−1(t) + bxk−2(t) (6.178)

dxk
dt

= axk(t) + bxk−1(t) (6.179)

This procedure is trivially extended to nonlinear differential delay equa-
tions of the form (6.162), since the solution of (6.162) restricted to the
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interval Ik is also the solution of the system

dx0

dt
= F0(x0) (6.180)

...
dxk−1

dt
= G (xk−1(t)) + F (xk−2(t)) (6.181)

dxk
dt

= G (xk(t)) + F (xk−1(t)) (6.182)

It is possible, when describing the density of trajectories f(t, x) to write
this density for the whole trajectory as a sum of densities for the restrictions
of x(t) on the various Ik’s. We will use the following notation in the next
section

fi(t, x0, · · · , xi) ≡ f(t, x0, · · · , xi) for t ∈ Ii. (6.183)

i.e. fi is the restriction of the phase space density f to the interval Ii. It
will simplify the notation to define

f̃i+1(t, xi+1) ≡
∫ βi

αi

· · ·
∫ β0

α0

f(t, x0, · · · , xi) dx0 · · · dxi. (6.184)

6.3 The Liouville equation

Recall that for the n dimensional system of ordinary differential equations

dxi
dt

= Fi(x0, · · · , xn), i = 0, 1, · · · , n (6.185)

the Liouville equation (describing the evolution of phase-space densities
f(t, x0, · · · , xn) is

∂f

∂t
= −

n∑
i=0

∂fFi
∂xi

. (6.186)

6.3.1 The linear case

In this section we write the evolution equation for the density of trajectories
generated by a density of initial conditions to equation (6.164) rewritten as
system (6.173). The Liouville equation for system (6.173) is

∂f1(t, x0, x1)

∂t
= −∂{F0(x0)f1(t, x0, x1)}

∂x0
− ∂

∂x1
{[ax1 + bx0]f1(t, x0, x1)}

(6.187)
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The evolution equation we are interested in governs the evolution of a density

f̃1(t, x1) ≡
∫ β0

α0

f1(t, x0, x1) dx0

where x0 ∈ [α0, β0]. By integrating (6.187) over x0, it is reduced to an
evolution equation for the density of the variable x1(t);

∂f̃1(t, x1)

∂t
= −

∫ β0

α0

∂{F0(x0)f1(t, x0, x1)}
∂x0

dx0

−
∫ β0

α0

∂

∂x1
{[ax1 + bx0]f1(t, x0, x1)} dx0. (6.188)

Explicitly, (6.188) becomes

∂f̃1(t, x1)

∂t
= −{F0(β0)f1(t, β0, x1)−F0(α0)f1(t, α0, x1)} − af̃1(t, x1)

− ax1
∂f̃1(t, x1)

∂x1

− b
∂

∂x1

∫ β0

α0

x0f1(t, x0, x1) dx0. (6.189)

Note that
∫ β0
α0
x0f1(t, x0, x1) dx0 is the average value of x0(t) and it is given

by the initial conditions to the original problem.
To make our solution of the Liouville equation clearer, define the follow-

ing functions

Qα0,β0
1 (t, x1) ≡ F0(β0)f1(t, β0, x1)−F0(α0)f1(t, α0, x1) (6.190)

Rα0,β0
1 (t, x1) ≡ ∂

∂x1

∫ β0

α0

f1(t, x0, x1) dx0 (6.191)

so that (6.189) becomes

∂f̃1(t, x1)

∂t
+ax1

∂f̃1(t, x1)

∂x1
= −Qα,β1 (t, x1)−Rα0β0

1 (t, x1)−af̃1(t, x1). (6.192)

This is a hyperbolic partial differential equation which can be solved using
the method of characteristics. Note that α0, β0, f1(t, α0, x1) and f1(t, β0, x1)
are specified initially. Equation (6.192) therefore describes the evolution of
an ensemble of trajectories under the equation of the system (6.173), and
we know that the solutions of this system are also solutions of the linear
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differential delay equation (6.164). Therefore, we have obtained the Liouville
equation for the differential delay equation for times restricted to the interval
I1.

The solution of the differential delay equation on the interval I2 is given
by the system (6.176). For this system, the Liouville equation is

∂f2(t, x0, x1, x2)

∂t
= − ∂

∂x2
{[ax2(t) + bx1(t)]f2(t, x0, x1, x2)}

− ∂

∂x1
{[ax1(t) + bx0(t)]f2(t, x0, x1, x2)}

− ∂

∂x0
{F0(x0)f2(t, x0, x1, x2)}. (6.193)

Again, integrating with respect to x0 and x1 yields the density

f̃2(t, x2) ≡
∫ β1

α1

∫ β0

α0

f2(t, x0, x1, x2) dx0dx1,

where min(x1(t)) = α1 and sup(x1(t)) = β1. The evolution equation for the
density f̃2(t, x2) is obtained after double integration of (6.193):

∂f̃2(t, x2)

∂t
= −

{
af̃2(t, x2) + ax2

∂f̃2(t, x2)

∂x2
+ b

∂

∂x2

∫ β1

α1

x1

∫ β0

α0

f2(t, x0, x1, x2)dx0dx1

}

− af̃2(t, x2)− a
∫ β1

α1

∂

∂x1
x1

∫ β0

α0

f2(t, x0, x1, x2)dx0dx1

− b

∫ β1

α1

∂

∂x1

∫ β0

α0

x0f2(t, x0, x1, x2)dx0dx1

+

∫ β1

α1

{F0(β1)f2(t, β1, x1, x2)−F0(α1)f1(t, α1, x1, x2)} dx1. (6.194)

Again, this is a hyperbolic PDE which can be solved using the method
of characteristics, given appropriate initial conditions. Before solving this
equation for specific examples, we will write the Liouville equation for the
interval Ik, integrate that equation (k − 1) times and obtain an evolution
equation for the density f̃k(t, xk). The restriction of the Liouville equation
to the interval Ik is

∂fk(t, x0, · · · , xk)
∂t

= −
k∑
i=1

∂

∂xi
{[axi + bxi−1]fk(t, x0, · · · , xk)}

− ∂

∂x0
{F0(x0)fk(t, x0, · · · , xk)} . (6.195)

50



Integrating (6.195) with respect to x0, · · · , xk−1 yields

∂f̃k(t, xk)

∂t
+ axk

∂f̃k(t, xk)

∂xk
=

−
∫ βk−1

αk−1

· · ·
∫ β1

α1

xk−1
∂fk(t, x0, · · · , xk)

∂xk−1
dx0 · · · dxk−1

−
k−1∑
i=1

∫ βk−1

αk−1

· · ·
∫ β1

α1

[axi + bxi−1]
∂fk(t, x0, · · · , xk)

∂xi
dx0 · · · dxk−1

−
∫ βk−1

αk−1

· · ·
∫ β1

α1

{F0(β0)(fk(t, β0, · · · , xk)

−F0(α0)fk(t, α0, · · · , xk)} dx0 · · · dxk−1 (6.196)

6.3.2 The problem of initial conditions

In the previous Section, we did not explicitly show how to specify the initial
conditions for the various sets of ordinary differential equations mimicking
the solution of the differential delay equation on the intervals Ik. It should
be clear that the only quantity that is specified initially is the function
f0(0, x0), from which all the fk(0, x0, · · · , xk)’s can be obtained.

The initial density f1(0, x0, x1) cannot be postulated a priori since the
density of x1’s at time t = 0 is not independent of the initial density f0(0, x0).
In fact, f̃1(0, x1) ≡ f0(τ, x0) since the distribution of the x0’s at time t = τ
becomes the distribution of x1’s at time t = 0 (remember that from Def-
inition 4.2, xi−1(τ) = xi(0)). This observation is a direct consequence of
our definition of the various xk’s. From (6.195), with x = (x0, · · · , xk), the
Liouville equation on Ik is

∂fk(t,x)

∂t
+ F0(x0)

∂fk(t,x)

∂x0
+

k∑
i=1

[axi(t) + bxi−1(t)]
∂fk(t,x)

∂xi

= −
(
∂F0(x0)

∂x0
+ ka

)
fk(t,x) (6.197)

with initial condition fk(0,x). The problem is to construct this density from
f0(0, x0). It is solved by noting that from our definitions

f̃k(0, xk) ≡ f̃k−1(τ, xk).

Therefore,

fk(0,x) = f0(0, x0)

k∏
i=1

f̃i(0, xi). (6.198)
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7 Stochastic differential delay equations

Here we should discuss the work of Frank (2002), Guillouzic et al. (1999) as
well as Mohammed (1984).

8 Approximating the differential delay equation

8.1 Distributed delay

Remark 15. If we keep this section then references to Fargue (1973, 1974)
and Blythe et al. (1985) need to be added.

Rather than just considering a single delay one can more generally con-
sider systems whose memory extends over the whole past. The extent to
which values in the past affect their present evolution is determined by a
kernel K(t) :

dx

dt
= F0(x(t), z(t)) where z(t) =

∫ t

−∞
K(t− u)x(u) du (8.199)

The fixed delay case corresponds to choosing a Dirac delta function for the
kernel, i.e. K(t− u) = δ(t− u− τ).

Under certain conditions, a differential delay equation is equivalent (but
in what sense??) to an infinite set of ordinary differential equations. This
can be shown using the following approach. Assume the kernel in Equation
8.199 is normalized and has the form of a gamma distribution

Gma (q) =
am

m!
qme−aq , a,m ≥ 0 (8.200)

where m is an integer. This kernel has a maximum at q =
m

a
and the

average delay is given by

τ =

∫∞
0 qGma (q) dq∫∞
0 Gma (q) dq

=
m+ 1

a
. (8.201)

The important property of this kernel is

lim
m,a→∞,τ const

Gma (q) = δ(q − τ) (8.202)

so that in this limit
z(t) = x(t− τ) . (8.203)
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We now define

y0(t) ≡ x(t), yi(t) ≡
∫ t

−∞
x(u)Gi−1

a (t− u) du i = 1, ....,m+ 1

(8.204)
The equations satisfied by the yi(t)’s are obtained using the recursive relation

dGpa(t− u)

dt
= a

{
Gp−1
a (t− u)−Gpa(t− u)

}
, (8.205)

to give

dy0

dt
= F0(y0, ym+1)

dyi
dt

= a(yi−1 − yi) ≡ Fi(yi−1, yi) i = 1, 2, ....,m+ 1. (8.206)

Hence (8.199) is strictly equivalent to the system of equations (8.206), which
is an (m + 2)-dimensional system of ordinary differential equations, all of
which are linear except for the first one which contains F . If the limit in
(8.202) is taken, the original system (8.199) becomes a differential delay
equation, and it is equivalent to an infinite set of linear ordinary differential
equations plus one nonlinear ordinary differential equation.

The Liouville equation corresponding to (8.206) is given by

∂f

∂t
= −∂(fF0)

∂y0
− a

m+1∑
i=1

∂[f(yi−1 − yi)]
∂yi

≡ −
m+1∑
i=0

∂(fFi)

∂yi
, (8.207)

or, using (8.201),

∂f

∂t
+
m+1∑
i=0

Fi
∂f

∂yi
= −f

{
∂F0

∂y0
− (m+ 1)2

τ̄

}
. (8.208)

In the limit m→∞, the initial condition for both the integro-differential
equation (8.199) (a function on (−∞, 0]) and the system (8.206) is infinite-
dimensional. However, for finite m, the initial condition for (8.199) is still in-
finite dimensional, while that for (8.206) is a point in an (m+2)-dimensional
phase space. This “dimension reduction” which occurs in the transformation
from the distributed delay system to the finite-dimensional set of ordinary
differential equations is, however, only apparent.

Remark 16. What the heck does this term

(m+ 1)2

τ̄

in Equation 8.208 mean as m→∞? Is there a mistake, or is it nonsense?
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Let I(t), t ∈ (−∞, 0] be the initial condition of (8.199). Then the initial
conditions yi(0) of (8.206) are constants given by

yi(0) =

∫ 0

−∞
I(u)Gi−1

a (−u) du . (8.209)

Further, if I(u) equals a constant C, then yi(0) = C for all i because the
kernels are normalized. What this means is that although the initial con-
dition is infinite dimensional, the solution depends only on a finite number
of constants given by the integrals in (8.208). This becomes more apparent
when the problem is formulated in terms of the (m + 2) coupled ordinary
differential equations.

Critique

• First note that though the differential delay equation (1.1) is non-
invertible, the system of ordinary equations (8.206) is invertible. This
is an unsatisfactory and apparently contradictory situation which I
discussed with AL some years ago–without resolution.

• It is completely unclear what the equation resulting from Equation
8.208 the limit m→∞ should be.

8.2 Dividing up the delay interval

Consider the differential delay equation

dx

dt
= F (x(t), x(t− τ)), (8.210)

and following Banks (1977, 1979a,b) define

yi(t) = x

(
t− iτ

n

)
i = 0, · · · , n. (8.211)

Note that

z(t)− z(t− θ) =

∫ t

θ
ż(s)ds ' θż(t− θ), (8.212)

so
z(t) ' z(t− θ) + θż(t− θ). (8.213)

Using the approximation (8.213) with equations like (8.211) we have

yk(t) ' yk
(
t− τ

n

)
+
τ

n
ẏk

(
t− τ

n

)
, (8.214)
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so we can rewrite (8.210) as the system (i = 1, . . . , n)

dy0(t)

dt
= F0(y0(t), yn(t))

dyi(t)

dt
=

n

τ
[−yi(t) + yi−1(t)] ≡ Fi(yi(t), yi−1(t)). (8.215)

Thus, from the system of ordinary differential equations (8.215) and the
considerations of the previous section, we know that a density f(t, y0, · · · , yn)
will evolve according to

∂f

∂t
+ f

n∑
i=0

∂Fi
∂yi

+

n∑
i=0

Fi
∂f

∂yi
= 0, (8.216)

or
∂f

∂t
+

n∑
i=0

Fi
∂f

∂yi
= −f

{
∂F0

∂y0
− n2

τ

}
. (8.217)

Critique

• The Bank’s approach gives precisely the same result as the distribution
of delays approach, compare (8.208) with (8.217), though for myself I
have a better feeling for the Banks approach.

• Again we seem to have this pesky divergence in the evolution Equation
8.217 as n→∞.

• What, if any, is the relation of this approach to the approximation we
have in Remark 14?

9 Discussion and conclusions
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