
Bull Math Biol (2016) 78:2304–2357
DOI 10.1007/s11538-016-0179-8

ORIGINAL ARTICLE

AMathematical Model of Granulopoiesis Incorporating
the Negative Feedback Dynamics and Kinetics of
G-CSF/Neutrophil Binding and Internalization

M. Craig1,2 · A. R. Humphries3 · M. C. Mackey4

Received: 21 December 2015 / Accepted: 19 May 2016 / Published online: 20 June 2016
© Society for Mathematical Biology 2016

Abstract Wedevelop a physiologicalmodel of granulopoiesiswhich includes explicit
modelling of the kinetics of the cytokine granulocyte colony-stimulating factor (G-
CSF) incorporating both the freely circulating concentration and the concentration of
the cytokine bound to mature neutrophils. G-CSF concentrations are used to directly
regulate neutrophil production, with the rate of differentiation of stem cells to neu-
trophil precursors, the effective proliferation rate in mitosis, the maturation time, and
the release rate from the mature marrow reservoir into circulation all dependent on the
level of G-CSF in the system. The dependence of the maturation time on the cytokine
concentration introduces a state-dependent delay into our differential equation model,
and we show how this is derived from an age-structured partial differential equation
model of the mitosis and maturation and also detail the derivation of the rest of our
model. The model and its estimated parameters are shown to successfully predict the
neutrophil and G-CSF responses to a variety of treatment scenarios, including the
combined administration of chemotherapy and exogenous G-CSF. This concomitant
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treatment was reproduced without any additional fitting to characterize drug–drug
interactions.

Keywords Granulopoiesis · Mathematical modelling · State-dependent delay
differential equations · Physiologically constructed pharmacokinetics · G-CSF ·
Bound and unbound drug concentrations

1 Introduction

We present a new model of granulopoiesis, in which the production of neutrophils
is governed by a negative feedback loop between the neutrophils and granulocyte
colony-stimulating factor (G-CSF). G-CSF is the principal cytokine known to regulate
neutrophil production and in our model it is used to moderate differentiation of stem
cells, apoptosis of proliferating neutrophil precursors, the speed at which neutrophils
mature, and the rate that mature neutrophils are released from the marrow reservoir.
To facilitate this, we derive not only new functions for the pharmacodynamic effects
of G-CSF, but also a new model of the G-CSF kinetics which incorporates cytokine
binding and internalization by the neutrophils. We dispense with the mass action law
assumption made in some previous models and directly model the concentration of
both circulatingG-CSF andG-CSF bound to neutrophils. This improved kineticmodel
furnishes us with G-CSF concentrations which are considerably more accurate than
our previous models so we are able to use them to directly drive the pharmacodynamic
effects and finally form a fully closed cytokine-neutrophil feedback loop.

At homeostasis the dominant removal mechanism for G-CSF is internalization by
neutrophils after it binds to receptors on these cells (Layton and Hall 2006). This gives
rise to a negative feedbackmechanism on theG-CSF pharmacokinetics (PKs)whereby
large concentrations of neutrophils result in G-CSF being removed from circulation, in
turn leading to lowconcentrations of circulatingG-CSF.On the other hand if neutrophil
concentrations are reduced then G-CSF is not cleared from circulation as quickly and
circulating concentrations increase as a result. The feedback loop is completed by the
pharmacodynamic (PD) effects of the G-CSF: Elevated (depressed) G-CSF levels lead
to increased (decreased) neutrophil production. Due to this feedback, using the simple
paradigm that neutrophil concentration is a cipher for the cytokine concentration (with
one low when the other is high), it is possible to derive granulopoiesis models without
explicitly modelling the cytokines. This can be useful because it is not universally
agreed where or how the multitude of identified cytokines all act.

The mathematical modelling of granulopoiesis has a long and rich history (Bernard
et al. 2003; Brooks et al. 2012; Colijn and Mackey 2005b; Craig et al. 2015; Foley
et al. 2006; Foley and Mackey 2009b; Hearn et al. 1998; Kazarinoff and Driessche
1979; King-Smith and Morley 1970; Schirm et al. 1996; Schmitz 1988; Schmitz et al.
1990; Scholz et al. 2005; Shvitra et al. 1983;Wichmann and Loffler 1988; Vainas et al.
2012; Vainstein et al. 2005; von Schulthess and Mazer 1982), but one of the earliest
and most complete treatments is that of Rubinow and Lebowitz (1975) which incorpo-
rates a number of features that we retain in our model, including active proliferation,
maturation, a marrow reservoir, and free exchange between the circulating and mar-
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ginal blood neutrophil pools. Rubinow’s model, however, predates the discovery and
characterization of G-CSF and so it uses neutrophil concentrations as a cipher for the
cytokine and its effects. Subsequent physiological models have also all incorporated at
least some elements of this cytokine paradigm in their modelling. Some authors have
been principally interested in neutrophil pathologies, including cyclical neutropenia,
chronic myeloid leukemia, and myelosuppression during chemotherapy, while others
have primarily studied the effects of G-CSF mimetics. Many models of cyclic neu-
tropenia, includingColijn andMackey (2005b), Foley et al. (2006), Hearn et al. (1998),
Lei and Mackey (2011), and Schmitz et al. (2014), acknowledge the role of G-CSF
in neutrophil production and pathologies but rely on the cytokine paradigm to drive
the pharmacodynamic responses. A number of different modelling approaches have
been proposed, including compartmental ODE models (Schirm et al. 1996; Friberg
and Karlsson 2003; Quartino et al. 2012; González-Sales et al. 2012; Krzyzanski et al.
2010; Wang et al. 2001), delay differential equations (DDEs) incorporating statistical
distributions to model delays (Vainstein et al. 2005; Vainas et al. 2012) and DDEs
derived from age-structured partial differential equation (PDE) models, like the one
developed in this work (Brooks et al. 2012; Craig et al. 2015; Foley and Mackey
2009b).

In recent years, synthetic forms of G-CSF have been developed and are admin-
istered to patients for a variety of reasons, including to treat cyclical neutropenia or
as an adjuvant during chemotherapy (Dale and Mackey 2015; Dale and Welte 2011;
Molineux et al. 2012). However, the administration of exogenous G-CSF breaks the
cytokine paradigm and it is possible for neutrophil and G-CSF concentrations to both
be elevated at the same time. This breakdown of the natural feedback relationship
can cause physiological models that use the paradigm to mischaracterize the elimina-
tion dynamics of G-CSF. For example, both Krzyzanski et al. (2010) and Craig et al.
(2015) overestimate the renal clearance of G-CSF so much as to essentially elimi-
nate the contribution of neutrophil-mediated internalization, even though they each
include this nonlinear clearance in their models. If elevated neutrophil concentrations
are used to drive the system dynamics on the assumption that corresponding G-CSF
concentrations are reduced when they are in fact elevated, the modelled effects will
act in the opposite sense to the physiology. As a consequence, the model will either
develop instabilities and/or give a poor fit to observed dynamics.

The mischaracterization of G-CSF elimination dynamics was the impetus for the
current work. Consequently, we will not use the neutrophil concentration as a cipher
for the G-CSF concentration, but will model both the G-CSF pharmacokinetics and
pharmacodynamics (PK/PD) in detail. For this, we develop a novel pharmacokinetic
model of G-CSF which includes both unbound and bound blood concentrations. The
G-CSF concentrations given by this kinetic model are then used to drive the pharma-
codynamic effects of the cytokine, in a fully formed negative feedback loop.

We begin by summarizing the granulopoiesis model in Sect. 2. Its development is
then extensively detailed in Sect. 3, beginning from the stem cells in Sect. 3.1. The
novel pharmacokineticG-CSFmodel incorporating bound and unbound blood concen-
trations is motivated and developed in Sect. 3.2. There we show how the hypothesis of
an equilibrium between bound and unbound concentrations is not satisfied for G-CSF,
necessitating the inclusion of more complex kinetics in its pharmacokinetic model.
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Next, the derivation of the DDE granulopoiesis model is given in Sect. 3.3 and the
pharmacodynamicmodel of G-CSF is developed in Sect. 3.4.Models of the exogenous
drugs considered in our study are detailed in Sect. 3.5. Having laid the foundations of
our model, the various methods of parameter estimation and fitting used for our analy-
ses are subsequently explained in Sect. 4. These approaches include model-specific
constraints, as seen in Sects. 4.1 and 4.3, while fitting procedures from published data
are described in Sects. 4.2, 4.4, and 4.5. The resulting parameters are then summarized
in Sect. 5. Finally in Sect. 6 we put our model to the acid test of predicting (not fitting)
the population neutrophil response in a group of patients undergoing simultaneous
chemotherapy and G-CSF administration (Pfreundschuh et al. 2004a, b) and obtain
excellent agreement between the model predicted behavior and the clinical data. We
conclude with a short discussion in Sect. 7.

2 Model Summary

Here we define the variables and summarize the equations that define our granu-
lopoiesis model. A detailed derivation is contained in Sect. 3. Figure 1 shows a
schematic diagram describing the main elements of the hematopoietic system that
we model.

The hematopoietic stem cell (HSC), neutrophil, and G-CSF model is a set of five
differential equations including constant and state-dependent delays. Let Q(t) be the
concentration of HSCs at time t , NR(t) be the concentration of mature neutrophils
in the marrow reservoir, and N (t) be the concentration of the total blood neutrophil
pool (TBNP) at time t (which includes both circulating and marginated neutrophils).
Further, let G1(t) be the concentration of unbound, circulating G-CSF and G2(t) be
the concentration of G-CSF bound to receptors on mature neutrophils (in the reservoir
or in the blood neutrophil pool).

The production of neutrophils from the HSCs is modelled by

d
dt Q(t) = −(

κ(G1(t)) + κδ + β(Q(t))
)
Q(t)

+AQ(t)β
(
Q(t − τQ)

)
Q(t − τQ) (1)

d
dt NR(t) = AN (t)κ(G1(t − τN (t)))Q(t − τN (t))

VNM (G1(t))

VNM (G1(t − τNM (t)))

−(
γNR + ϕNR (GBF (t))

)
NR(t) (2)

d
dt N (t) = ϕNR (GBF (t))NR(t) − γN N (t), (3)

with the concentrations of G-CSF (unbound and bound to neutrophil G-CSF receptors)
given by

d
dt G1(t) = IG(t) + Gprod − krenG1(t)

− k12([NR(t) + N (t)]V − G2(t))G1(t)
Pow + k21G2(t) (4)

d
dt G2(t) = −kintG2(t) + k12

([NR(t)+ N(t)]V− G2(t)
)
G1(t)

Pow− k21G2(t), (5)
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Fig. 1 Schematic representation of the production of circulating neutrophils in the bone marrow and the
interaction of the system with G-CSF. Hematopoietic stem cells (HSCs-Q) enter the neutrophil lineage, the
other blood lines, or are removed from the HSC pool. Differentiated HSCs undergo successive divisions
during the proliferative phase. Cells then mature before being stored in the marrow reservoir, or dying
off during maturation. Neutrophils remain in the reservoir until they are removed randomly or enter the
circulation, where they disappear rapidly from the blood. Freely circulating G-CSFmay bind to receptors on
the neutrophils. The concentration of bound G-CSF drives its pharmacodynamic effects. The concentration
of G-CSF bound to mature neutrophils, G2, determines the rate of release from the marrow reservoir. The
concentration of G-CSF bound to neutrophil precursors, assumed proportional to G1 the concentration of
freely circulating G-CSF, determines the rate of differentiation from the HSCs, the speed of maturation, and
the rate of proliferation. For all four effects, speed and rates increase with increasing G-CSF concentration

where IG(t) indicates input of exogenous G-CSF, which we assume is filgrastim (the
most common biosimilar exogenous form of G-CSF). Filgrastim has very similar
PK/PD properties to endogenous G-CSF, so we will not distinguish between the two
types of G-CSF in our model.

The derivation of these equations is given in Sect. 3. In Sect. 3.3, particular attention
is paid to the derivation of the state-dependent delay terms in (2) froman age-structured
partial differential equation (PDE) model of the mitosis and maturation with variable
aging rate of the neutrophil precursors. The G-CSF Eqs. (4), (5) are explained in detail
in Sect. 3.2.

In the stem cell Eq. (1), as explained in Sect. 3.1, we have

β(Q) = fQ
θ
s2
2

θ
s2
2 + Qs2

, (6)

AQ(t) = A∗
Q = 2e−γQτQ . (7)
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Only in the case of administration of chemotherapy is the stem cell amplification factor
AQ(t) nonconstant. During chemotherapeutic treatment AQ(t) will be modified by
replacing (7) with (38) as discussed in Sect. 3.5. Stem cells commit to differentiate to
neutrophil precursors at a rate given by

κ(G1) = κ∗ +
(
κ∗ − κmin

) [
Gs1

1 − (G∗
1)

s1

Gs1
1 + (G∗

1)
s1

]
. (8)

Here, and throughout, the superscript ∗ denotes the homeostasis value of a quantity.
The rationale for using (8) to describe the pharmacodynamic effect of the G-CSF
on the differentiation of the HSCs along with the other G1-dependent functions is
explained in Sect. 3.4.

After entering the neutrophil lineage, cells undergo mitosis at a variable rate
(ηNP (G1(t))) given by

ηNP (G1(t)) = η∗
NP

+
(
η∗
NP

− ηmin
NP

) bNP

G∗
1

(
G1(t) − G∗

1

G1(t) + bNP

)
(9)

for a proliferation time τNP , considered to be constant. Cells subsequently mature at
a variable aging rate given by

VNM (G1(t)) = 1 + (Vmax − 1)
G1(t) − G∗

1

G1(t) − G∗
1 + bV

, (10)

until they reach age aNM so the time τNM (t) it takes for a neutrophil maturing at time
t to mature satisfies the integral relationship

∫ t

t−τNM (t)
VNM (G1(s))ds = aNM . (11)

At homeostasis, VNM (G∗
1) = 1, and thus, aNM is the homeostatic maturation time.

The total time it takes a neutrophil to be produced (fromHSC differentiation to release
into the reservoir pool) is

τN (t) = τNP + τNM (t), (12)

and we can differentiate Eq. (11) to obtain the following DDE for both τN and τNM

d
dt τN (t) = d

dt τNM (t) = 1 − VNM (G1(t))

VNM (G1(t − τNM (t)))
. (13)

Maturing neutrophils are assumed to die at a constant rate given by γNM . The amplifi-
cation factor AN (t) between differentiation from HSCs to maturation that appears in
(2) is then given by
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AN (t) = exp

[∫ t−τNM (t)

t−τN (t)
ηNP (G1(s))ds − γNM τNM (t)

]

(14)

as derived in Sect. 3.3. Numerical implementation of the neutrophil amplification rate
is obtained by differentiating the integral expressions in (14) using Leibniz’s rule to
obtain

d
dt AN (t) = AN (t)

[(
1 − d

dt τNM (t)
)(

ηNP (G1(t −τNM (t))) − ηNP (G1(t −τN (t)))
)

− γNM
d
dt τNM (t)

]
. (15)

After maturation neutrophils are sequestered into the marrow neutrophil reservoir.
Mature neutrophils exit the reservoir either by dying with constant rate γNR or by
being released into circulation with a rate ϕNR depending on the fraction GBF (t) of
neutrophil receptors that are bound by G-CSF. We define

GBF (t) = G2(t)

V [NR(t) + N (t)] ∈ [0, 1], G∗
BF = G∗

2

V [N∗
R + N∗] , (16)

and let

ϕNR (GBF (t)) = ϕ∗
NR

+ (
ϕmax
NR

− ϕ∗
NR

) GBF (t) − G∗
BF

GBF (t) − G∗
BF + bG

. (17)

Neutrophils are removed from circulation with constant rate γN .
In Eqs. (1)–(5) we use units of 109 cells/kg (of body mass) for the reservoir and

circulating neutrophils, and 106 cells/kg for the stem cells. The scaling factors ensure
that computations are performed with numbers of similar magnitude which improves
numerical stability. Circulating and bound G-CSF concentrations are measured in
standard units of nanograms per milliliter of blood. The differing units for neutrophils
andG-CSF are only problematical in Eqs. (4), (5)where quantities in both units appear;
see Sect. 4.2 for the derivation of the conversion factor V .

Its also important to note that N (t)measures the total blood neutrophil pool, includ-
ing both the circulating and marginated neutrophils. To convert N (t) to an absolute
neutrophil count/circulating neutrophil numbers NC (t) (or vice versa) there is a con-
version factor; see (93).

3 Model Development

Herewedescribe the development of our granulopoiesismodel leading to the equations
presented in Sect. 2. The equation for the stem cells (1) is described briefly in Sect. 3.1.
The size of the mature neutrophil reservoir is described by (2). The first term on the
right-hand side of this equationgives the rate thatmature neutrophils enter the reservoir.
This term is derived from an age-structured PDEmodel described in Sect. 3.3 below. In
Sect. 3.2 we describe our new G-CSF model (4), (5) of the unbound freely circulating
G-CSF (G1), and the G-CSF bound to receptors on the neutrophils (G2). This model
allows us to model the pharmacodynamic effects of the G-CSF directly as detailed
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in Sect. 3.4. Finally, Sect. 3.5 outlines our models for the exogenous drugs we will
consider in later sections.

3.1 Stem Cells

Equation (1) for the HSC dynamics was previously used in Mackey (2001), Colijn
and Mackey (2005a), Colijn and Mackey (2005b), Pujo-Menjouet et al. (2005), Foley
and Mackey (2009b), Lei and Mackey (2011), Brooks et al. (2012), and Craig et al.
(2015). In this model HSCs are generally quiescent, but may enter a mitotic phase at
rate β(Q) given by (6), with τQ being the time for cell division, and γQ the apoptotic
rate during mitosis. See Bernard et al. (2003) for a detailed derivation. Here, we
remove the dependence of γQ upon G-CSF as the HSC population is relatively stable
and infrequently dividing (Riether et al. 2015, Durand and Charbord 2010) and, to
our knowledge, no direct evidence of G-CSF’s action upon HSC apoptosis currently
exists. Craig et al. (2015) uses

AQ(t) = 2 exp

[

−
∫ t

t−τQ

γQ(s)ds

]

, (18)

and in the absence of chemotherapy we take the apoptotic rate γQ to be constant so
this becomes (7).

3.2 A Physiologically Constructed Pharmacokinetic G-CSF Model

A new pharmacokinetic model of G-CSF already stated in (4), (5) is used to model
the concentrations of both unbound and bound G-CSF. We do not distinguish between
endogenous and exogenous G-CSF in the model, which constrains us to only consider
biosimilar forms of exogenous G-CSF. Accordingly, we focus on filgrastim, the most
widely available form of exogenous G-CSF. However, other less common forms of
biosimilar exogenousG-CSF are available and include lenograstim andNartograstim®

(Molineux et al. 2012). The pegylated form of rhG-CSF has greatly reduced renal
clearance relative to endogenous G-CSF, which would require a different model, so
we will not consider it in this work.

In Eqs. (4), (5) G1 is the concentration of freely circulating G-CSF and G2 is the
concentration of G-CSFwhich is bound to receptors on the neutrophils. Since the bone
marrow is well perfusedG-CSF can bind tomature neutrophils in themarrow reservoir
aswell as neutrophils in circulation. In themodel kren denotes the nonsaturable removal
rate of circulatingG-CSF (mainly renal). kint denotes the removal rate of boundG-CSF,
which we refer to as the effective internalization rate. This term models the removal
of bound G-CSF both by internalization after binding and through the removal of
the neutrophil itself from circulation (along with its bound G-CSF molecules). k12 is
the rate of binding of free G-CSF to the neutrophils, and Pow is the effective binding
coefficient. The G-CSF receptor has a 2:2 stoichiometry in in vitro studies (Layton and
Hall 2006), so a simple chemical reaction model would suggest Pow = 2. However,
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the number of ligands binding to a receptor only provides an upper bound on the
corresponding Hill coefficient (Santillán 2008) and so we use an effective binding
coefficient Pow ∈ [1, 2].

In our model the bound G-CSF concentration, G2, is saturable, with the capacity of
this compartment being V [NR(t) + N (t)]. Only if every receptor on every neutrophil
in the reservoir and circulation was bound to two G-CSF molecules would G2 equal
V [NR(t)+N (t)]. Thus, the removal rate of neutrophils by internalization is saturable.
G-CSF also binds to immature neutrophils and precursors, which will be important for
the pharmacodynamics, but since these cells are fewer in number and/or have fewer
receptors than the mature neutrophils we neglect this effect on the pharmacokinetics.
Finally, k21 is the rate of unbinding (transformation from bound G-CSF to circulating
G-CSF), and IG(t) denotes exogenous administration ofG-CSF, discussed in Sect. 3.5.

If we were to assume that there is no net transfer between the bound and circulating
G-CSF then letting Ñ (t) = [NR(t) + N (t)], Eqs. (4), (5) imply

k12(V Ñ (t) − G2)G
Pow
1 − k21G2 ≈ 0. (19)

Rearranging (19) we obtain

G2(t) ≈ [G1(t)]Pow
[G1(t)]Pow + k21/k12

V Ñ (t).

Now, adding (4) and (5)

d
dt (G1 + G2) ≈ IG(t) + Gprod − krenG1 − kintG2,

and assuming that G1 � G2 and that d
dt (G1 + G2) ≈ d

dt G1, and finally replacing
the ≈ by an equality we obtain

d
dt G1 = IG(t) + Gprod − krenG1 − kintV Ñ (t)

[G1(t)]Pow
[G1(t)]Pow + k21/k12

. (20)

Equations similar to (20) have been used to model G-CSF pharmacokinetics in many
papers including Craig et al. (2015), Brooks et al. (2012), Foley and Mackey (2009b),
Krzyzanski et al. (2010), Krinner et al. (2013), and Wang et al. (2001), but usually
with Ñ (t) = N (t) the concentration of circulating neutrophils, as opposed to Ñ (t) =
[NR(t) + N (t)] as (4), (5) suggest.

The usual derivation of (20) is from the law of mass action, but this is equivalent to
the assumption (19) that the bound and circulating G-CSF are in quasi-equilibrium.
However, the equilibrium hypothesis (19) cannot hold at homeostasis, since if (19)
holds and kint > 0 then d

dt G2 < 0 which is contradictory. Clinical evidence (Sarkar
et al. 2003;Terashi et al. 1999) suggests that at homeostasis, binding and internalization
is the dominant removal mechanism for G-CSF, so not only does (19) not hold but the
net transfer from unbound to bound G-CSF should be more than 0.5×Gprod. Another
important situation where (19) will fail is during exogenous administration of G-CSF,
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Fig. 2 Data fromWang et al. (2001) for G-CSF concentrations after a 750-µg 25-min IV infusion and five
different simulations: (i) the full neutrophil and G-CSF model (1)–(5) (ii) the G-CSF only model (68), (69),
(iii) the reduced G-CSF model (20) with kint = 0, (iv) the reduced G-CSF model (20) with kint = 30 and
Ñ (t) = N (t) and neutrophil concentrations taken from the Wang et al. (2001) and (v) the full neutrophil
model (1)–(3) and the reduced G-CSF model (20) with kint = 25 and Ñ (t) = [NR(t) + N (t)]. In (ii)
Ntot = 4.1457 and G∗

2 and Gprod are determined by Eqs. (74) and (76), respectively. In (ii), (iv), and
(v) kren = 4.12 and Gprod is determined by (20). All other parameters take values specified in the third
columns of Tables 1 and 2

which will initially increase the concentration of unbound G-CSF (often by orders of
magnitude).

Figure 2 illustrates some of the issues involved in modelling the kinetics of G-
CSF. This figure shows data from a 750-µg intravenous (IV) infusion digitized from
Fig. 6 of Wang et al. (2001), along with a number of simulations of the protocol
using different G-CSF kinetic models. The data in Fig. 2 seem to have at least two
different slopes, suggesting that the G-CSF time course could be approximated by the
sum of two exponentials. This naturally leads to two compartment pharmacokinetic
models (DiPiro et al. 2010). Such a two-compartment G-CSF model was previously
considered by Kuwabara et al. (1994) for Nartograstim®. Consistent with general
two-compartment models in pharmacology, the two compartments corresponded to
the blood and the tissues, and generic saturable and nonsaturable removal of the G-
CSF both occurred from the blood compartment. This differs from our model where
elimination occurs from the two compartments (which instead represent unbound and
bound G-CSF concentrations), both of which are subject to linear elimination. By
contrast, in our model one compartment is saturable with nonsaturable elimination
(the bound G-CSF), which corresponds to known G-CSF removal mechanisms. The
assignment of elimination to the first or second compartments also has significant
effects on the estimation of corresponding pharmacokinetic parameters so the mis-
characterization of these elimination dynamics could have significant effects on the
model’s predictions and behaviors [73].
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The circulating G-CSF concentration time course for a simulation of our full model
(1)–(5) tracks the measured G-CSF data very closely in Fig. 2—curve i. It slightly
overestimates the G-CSF, but it is important to note that the data points are average
values from a number of subjects and we will see in Sect. 4.2 that the G-CSF con-
centrations predicted by our model fall well within recorded ranges for a variety of
administration protocols.

Also shown in Fig. 2 is a simulation of a simplified version of the G-CSF Eqs. (4),
(5) where the time-dependent neutrophil term [NR(t)+N (t)] is replaced by a constant
Ntot, so the G-CSF kinetic equations become independent of the neutrophil dynamics
(Fig. 2—curve ii). The resulting equations are stated as (68), (69) in Sect. 4.2 where
they are used to determine the pharmacokinetic parameters that appear in (4), (5).
The constant Ntot can be thought of as a time average of the term [NR(t) + N (t)]. As
shown in Fig. 2, this stand-alone simplified G-CSFmodel gives G-CSF concentrations
very close to those of the full model, which justifies using it to determine the kinetic
parameters.

Three different simulations of the single G-CSF Eq. (20) are also shown in Fig. 2 to
illustrate the difficulties in dealing with reduced models. One simulation has kint = 0
(Fig. 2—curve iii) so that the elimination of G-CSF is purely renal, and it is clear that
the nuances of the G-CSF kinetics are lost.

A simulation of (20) with kint > 0 and Ñ (t) = N (t) (with values for N (t) taken
from the Wang data) gives even worse results than the purely renal elimination case
(Fig. 2—curve iv). The problem with this model is that for the first few hours, while
the neutrophil concentration is low, the elimination of the G-CSF is mainly renal and
the solution closely tracks the results from the purely renal elimination simulation. But
as soon as the circulating neutrophil concentrations get high enough the elimination of
G-CSF by binding becomes dominant and quickly drives the G-CSF concentration to
very low levels. Similar results are seen if our full neutrophil model (1)–(3) is coupled
to (20) with Ñ (t) = [NR(t) + N (t)] (Fig. 2—curve v).

The tendency of the internalization term to quickly drive the G-CSF concentrations
down, along with the practice of fitting parameters in linear scales, resulted in several
previous models using versions of (20) to take kinetic parameters for which the elimi-
nation of G-CSF is always renal dominated. This is seen both when the G-CSF kinetics
is coupled to physiological models as in Brooks et al. (2012), Craig et al. (2015) and
when using traditional empirical models as in Wang et al. (2001), Krzyzanski et al.
(2010), which consequently all have elimination dynamics which are always renal
dominated.

This is true in both the models of Craig et al. (2015), which used (20) with
Ñ (t) = N (t), and Krzyzanski et al. (2010) which used an equation similar to
(20) but taking account of binding to all available receptors. In both, elimination
by internalization is included in the mathematical models but occurs at an insignif-
icant rate compared to the renal elimination, contrary to the clinical understanding
that elimination of G-CSF by internalization is the dominant removal mechanism at
homeostasis.

Fromour numerical experiments it seems impossible to fit the singleG-CSFEq. (20)
to data when Ñ (t) is taken to be N (t). The mature marrow neutrophil reservoir is an
order of magnitude larger than the total blood neutrophil pool, and the receptors on the
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mature neutrophils need to be taken into account in the kinetics as in (4), (5) to obtain
a good fit to data. But taking account of all the receptors is not sufficient to obtain a
model that fits the physiology closely. This is evidenced by the very poor fit obtained
in Fig. 2 when coupling our neutrophil model to the reduced G-CSF Eq. (20) with
Ñ (t) = [NR(t)+N (t)], and also frommodels such as that of Krzyzanski et al. (2010)
that take account of the G-CSF receptors in marrow, but still obtain renal dominated
kinetics.

The study of congenital diseases like cyclical neutropenia (CN)—an inherently
oscillatory and dynamic disease—and exogenous dosing regimens (such as during
chemotherapy) necessitates that the dynamics of G-CSF be well characterized. Hence,
we use the more realistic model (4), (5) for G-CSF pharmacokinetics rather than the
single equation reduction (20).

3.3 Modelling Granulopoiesis

The first term on the right-hand side of (2) gives the rate that mature neutrophils enter
the bone marrow reservoir at time t and is obtained by modelling the differentiation
of stem cells at time t − τN (t) through mitosis of neutrophil precursors to time t −
τN (t) + τNP = t − τNM (t) followed by maturation of the cells until time t . The
time variation of τN (t) and τNM (t) is solution dependent, so this term involves state-
dependent delays. Granulopoiesis models incorporating state-dependent delay have
been employed before in Foley and Mackey (2009b), Foley and Mackey (2009a), and
Brooks et al. (2012), but the derivation of thosemodels was inaccurate and theymissed
the important VNM (G1(t))/VNM (G1(t − τNM (t))) term. Here we will show in detail
how the mitotic and maturation stages of the neutrophil precursors can be modelled
by age-structured PDE models, whose solution by the method of characteristics leads
to the state-dependent delay terms in (2).

We do not model the cell-cycle process during mitosis, nor do we differentiate
between the different maturation stages of dividing cells (myeloblasts, promyelocytes,
myelocytes). Rather, to simplify the modelling and the resulting differential equations
we model mitosis as an exponential process from the moment the HSC commits to
differentiate to the end of the mitosis. The proliferation rate ηNP is assumed to be
independent of which stage in mitosis the cell has reached. There is evidence that
the cytokine G-CSF affects the differentiation of HSCs and the effective proliferation
rate during mitosis, as explained in Endele et al. (2014), and so we allow both the
differentiation rate κ and the proliferation rate ηNP to vary with G1, the circulating
G-CSF, as shown in Eqs. (8), (9), and explained in Sect. 3.4.

We let np(t, a) be the cell density as a function of time t and age a during prolif-
eration. We assume that cells age at a constant rate, ȧ = 1, from age 0 to age τNP , so
τNP is also the time period that cells spend in proliferation, and the proliferation rate
is τNP (G1(t)). Then, differentiating,

ηNP (G1(t))n p(t, a) = dn p

dt
= ∂n p

∂t
+ da

dt

∂n p

∂a
= ∂n p

∂t
+ ∂n p

∂a
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Fig. 3 During maturation the
aging rate is variable with
ȧ(t) = VNM (G1(t)), so age is
not trivially related to time, and
the maturation time τNM (t) is
variable

0

aNM

tt − τNM
(t)

a

so the age-structured PDE model for proliferation is

∂n p

∂t
+ ∂n p

∂a
= ηNP (G1(t))n p(t, a), t � 0, a ∈ [0, τNP ], (21)

which by the method of characteristics has solution

n p(t, a) = n p(t − a, 0) exp

[∫ t

t−a
ηNP (G1(s))ds

]
, t � 0, a ∈ [0,min{t, τNP }].

(22)
If τNP � a > t > 0 the solution depends on the initial condition n p(0, a − t), but a
similar expression applies. We will use homeostatic initial conditions throughout, so
the solution in (22) is all that is required (Fig. 3).

We model the maturing neutrophil precursors (metamyelocytes and bands) as a
single homogeneous compartment. There is evidence that G-CSF affects the time
that cells spend in maturation (Spiekermann et al. 1997; Basu et al. 2002) and the
speedup in maturation has been measured experimentally (Price et al. 1996). Since
the exact mechanism by which G-CSF affects maturation time is unknown, we will
model this process by decoupling time from age and demanding that cells age by an
amount aNM , but allowing them to mature at a variable aging rate ȧ(t) = VNM (G1(t))
where VNM (G1) is a monotonically increasing function with VNM (0) > 0 and
limG1→∞ VNM (G1) = Vmax < ∞.

See Sect. 3.4 for further discussion of the function VNM (G1). We assume that the
rate of cell death, γNM , during maturation is constant independent of the concentration
of G-CSF.

We let nm(t, a) be the cell density as a function of time t and age a duringmaturation
for t � 0 and a ∈ [0, aNM ]. Then the age-structured maturation model is

∂nm
∂t

+ VNM (G1(t))
∂nm
∂a

= ∂nm
∂t

+ da

dt

∂nm
∂a

= dnm
dt

= −γNM nm(t, a). (23)

The characteristics are defined by ȧ = VNM (G1(t)), and along characteristics for
t � τNM (t) we obtain

nm(t, aNM ) = nm(t − τNM (t), 0)e−γNM τNM (t). (24)
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Fig. 4 Transition from
proliferation to maturation

age

0
t t + δt time

δtVNM
(G1(t))

np(t, τNP
)

Age-structured PDE models have been used in hematopoiesis models many times
previously (Lei and Mackey 2011; Foley and Mackey 2009b; Colijn and Mackey
2005b; Craig et al. 2015), but special care needs to be taken to interpret nm(t, a)when
the maturation has variable velocity, or an incorrect solution will be obtained (Fig. 4).

Cellswhichmature at time t entermaturation at time t−τNM (t) and so differentiated
from HSCs at time t − τNM (t)− τNP = t − τN (t). The rate at which cells differentiate
at time t − τN (t) is κ(G1(t − τN (t)))Q(t − τN (t)), and hence,

n p(t − τN (t), 0) = κ(G1(t − τN (t)))Q(t − τN (t)).

Then by (22)

n p(t − τNM (t), aNM ) = n p(t − τN (t), 0) exp

[∫ t

t−aNM

ηNP (G1(s))ds

]

= κ(G1(t − τN (t)))Q(t − τN (t)) exp

[∫ t

t−aNM

ηNP (G1(s))ds

]

. (25)

To obtain the boundary condition for the maturation phase, note that np(t, τNP )

is the rate at which cells leave proliferation and enter maturation. Hence, to leading
order, n p(t, τNP )δt cells entermaturation in the time interval [t, t+δt]. Cells that enter
maturation at time t will already have age VNM (G1(t))δt by time t+δt . Since n p(t, a)

and nm(t, a) describe the density of cells in the proliferation and maturation phases,
to avoid the spontaneous creation or destruction of cells at the transition between
proliferation and maturation we require

∫ VNM (G1(t))δt

0
nm(t + δt, a)da −

∫ t+δt

t
n p(t, τNP )dt = O(δt2).

Then

VNM (G1(t))nm(t, 0) = lim
δt→0

1

δt

∫ VNM (G1(t))δt

0
nm(t + δt, a)da

= lim
δt→0

1

δt

∫ t+δt

t
n p(t, τNP )dt = n p(t, τNP ), (26)
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and hence, the boundary condition for the maturation compartment is

nm(t − τNM (t), 0) = n p(t − τNM (t), τNP )/VNM (G1(t − τNM (t))). (27)

Combining (24), (25), (27), and (14) we obtain

nm(t,aNM ) = n p(t − τNM (t), τNP )

VNM (G1(t − τNM (t)))
e−γNM τNM (t)

= κ(G1(t − τN (t))Q(t − τN (t))

VNM (G1(t − τNM (t)))
exp

[∫ t−τNM (t)

t−τN (t)
ηNP (G1(s))ds − γNM τNM (t)

]

= κ(G1(t − τN (t)))Q(t − τN (t))

VNM (G1(t − τNM (t)))
AN (t). (28)

Again because of the variable aging rate there is a correction factor to apply to
nm(t, aNM ) to obtain the rate that cells leave maturation. To calculate this rate notice
that cells which reach age aNM at time t have age aNM − VNM (G1(t))δt + O(δt2) at
time t − δt . Thus, the number of neutrophils that mature in the time interval [t − δt, t]
is

aNM∫

aNM −VNM (G1(t))δt

nm(t − δt, a)da + O(δt2) = VNM (G1(t))nm(t, aNM )δt + O(δt2).

Hence, the rate that cells leave maturation is VNM (G1(t))nm(t, aNM ), which using
(28) can be written as

κ(G1(t − τN (t)))Q(t − τN (t))AN (t)
VNM (G1(t))

VNM (G1(t − τNM (t)))
, (29)

which is the first term on the right-hand side of (2). The correction factor
VNM (G1(t))/VNM (G1(t − τNM (t)))was omitted from the state-dependent DDEmod-
els in Foley and Mackey (2009b) and Brooks et al. (2012).

3.4 G-CSF Pharmacodynamics

G-CSF, in concert with many other cytokines, regulates important parts of granu-
lopoiesis. The precise mechanisms by which it does this are not fully understood (and
would probably be beyond the level of detail that we would want to model mathe-
matically even if they were), but it is known that G-CSF acts along several signalling
pathways in complex processes which activate and generate secondary signals that
regulate neutrophil production (Greeenbaum and Link 2011; Semerad et al. 2002;
Ward et al. 1998).

The initiation of signalling pathways and the transfer of the resulting signals respon-
sible for the various effects of a given drug may be driven directly by receptor binding
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and/or the internalization of the drug. Assuming the rate at which a drug is internalized
is proportional to its bound concentration, we do not need to distinguish between the
different possible pathways and will use the concentration of the bound drug to drive
the pharmacodynamics and produce the effects in the body.

Many previous models applied the cytokine paradigm mentioned in the introduc-
tion to model cytokine effects directly from the circulating neutrophil concentrations.
For example in Colijn and Mackey (2005a), Colijn and Mackey (2005b), Foley and
Mackey (2009b), Lei andMackey (2011), Brooks et al. (2012), and Craig et al. (2015),
the differentiation function was taken to be a monotonically decreasing function of
the circulating neutrophil concentration. Some authors preferred instead to introduce
simplified pharmacodynamic models using direct and indirect PD effects related to
the concentration of unbound G-CSF (Wang et al. 2001; Shochat et al. 2007), while
other more detailed approaches have also been studied (Scholz et al. 2012; Vainstein
et al. 2005; Vainas et al. 2012).

The cytokine paradigm breaks downwhenG-CSF is given exogenously. Immediate
responses of the hematopoietic system to G-CSF administration include releasing
neutrophils from the marrow reservoir into circulation, and increasing the maturation
speed of neutrophils, so the circulating concentration of neutrophils and the total
number of neutrophils in the reservoir and circulation both increase, which results
in G-CSF and neutrophil concentrations being high concurrently. Consequently, we
will use G-CSF concentrations from (4), (5) to directly model the pharmacodynamic
effects of G-CSF on the differentiation rate of HSCs κ , the effective proliferation rate
of neutrophil precursors in mitosis ηNP , the aging rate of maturing neutrophils VNM ,
and the release rate of neutrophils from the bone marrow reservoir ϕNR .

We use Hill and Michaelis–Menten functions to model the G-CSF dependency of
these effects. There is some disagreement in the literature over exactlywhich cytokines
are important in different parts of the process, and we may be assigning some effects
to G-CSF that are actually due to GM-CSF or one of the other myriad of cytokines
that regulate granulopoiesis. If these other cytokines are mostly in quasi-equilibrium
with G-CSF, using G-CSF as a cipher for all the cytokines should produce very similar
effects without the extraordinary complexity that would be inherent in modelling each
one of the cytokines.

Mammalian studies (Hammond et al. 1991; Bugl et al. 2012; Lui et al. 2013) reveal
that neutrophils are still produced even in the absence of G-CSF, presumably because
other cytokines are acting. Accordingly, we will construct our effects functions to have
nonzero activity even in the complete absence of G-CSF. Moreover, in Sect. 4.3 we
will consider the mathematics in the case of G-CSF knockout with our model to derive
a parameter constraint to reduce the number of unknown parameters.

Recall that the concentration of G-CSF bound to mature neutrophils satisfies the
inequality G2(t) � V [NR(t) + N (t)] with equality only if every G-CSF receptor
were bound to two G-CSFmolecules. We suppose that the rate that mature neutrophils
are released from the marrow reservoir into circulation is dependent on the fraction
GBF (t) = G2(t)/(V [NR(t) + N (t)]) of their receptors which are bound to G-CSF.
The rate is then given by the Michaelis–Menten function ϕNR (GBF ) defined by (17).
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Letting

ϕratio
NR

= ϕmax
NR

ϕ∗
NR

> 1, (30)

this function is also similar to the one used by Shochat et al. (2007) that was adapted
in Craig et al. (2015) except that we use the fraction of bound receptors to drive the
function. At homeostasis (16) and (17) imply that

ϕNR (G∗
BF ) = ϕNR

(
G∗

2/[V (N∗ + N∗
R)]) = ϕ∗

NR
.

The parameter bG defines the half-effect concentration with

ϕNR (G∗
BF + bG) = 1

2

(
ϕ∗
NR

+ ϕmax
NR

)
,

while the condition ϕNR (0) > 0 implies the constraint

bG > ϕratio
NR

G∗
BF = G∗

2ϕ
ratio
NR

V (N∗
R + N∗)

. (31)

To model the effects of G-CSF on the differentiation, proliferation, and matura-
tion some care must be taken. We posit that it is cytokine signalling that drives these
processes, andG2(t) denotes the concentration of boundG-CSF, which is proportional
to the rate that G-CSF is internalized. So it would be tempting to use G2(t) to govern
these processes, and indeed initially we tried this without success. The problem is that
G2(t) models the concentration of G-CSF bound to mature neutrophils in the marrow
reservoir and circulation. Through (4) and (5) this gives a very good model of the
removal of G-CSF from circulation because although the neutrophil progenitor cells
also have G-CSF receptors, these cells are relatively few in number and have rela-
tively few receptors, hence they can be ignored when modelling the G-CSF kinetics.
However, when modelling the pharmacodynamic effects of G-CSF it appears to be
crucial to take account of the binding of G-CSF to the neutrophil precursors, and it is
the freely circulating G-CSF which is available to bind to the G-CSF receptors on the
immature neutrophils and precursors. Consequently, we should use G1(t) to govern
the cytokine dependent differentiation, proliferation, and maturation.

Another way to see that it should be the circulating G-CSF G1(t), and not the
G-CSF bound to mature neutrophils G2(t) that should govern these processes is as
follows. If the concentration of mature neutrophils is decreased then the concentration
of bound G-CSF will also decrease because the number of receptors available to bind
to will be decreased, but the concentration of unbound G-CSF will increase because
the rate the G-CSF is removed by internalization is reduced. However, with a reduced
concentration of neutrophils, an elevated cytokine concentration is needed to increase
differentiation, proliferation, and maturation speed.

We model the differentiation rate from HSCs to neutrophil precursors using the
Hill function (8). Very little is known about how the differentiation rate changes as
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a function of G-CSF, but we suppose that it will not vary by orders of magnitude,
since this would lead to instability in the HSC population, while the HSC population
is observed to be very stable in healthy subjects (Riether et al. 2015). It is then con-
venient to assume that the homeostatic rate is at the midpoint of the range of possible
differentiation rates so

κ∗ = 1

2

(
κmin + κmax

)
. (32)

With this assumption (8) is a standard sigmoidal Hill function with minimum differen-
tiation rate κ(0) = κmin, and with κ(G1) increasing monotonically with G1 and such
that at homeostasis κ(G∗

1) = κ∗, while for large concentrations limG1→∞ κ(G1) =
κ∗ + (κ∗ −κmin) = κmax. To ensure that neutrophils are still produced in the complete
absence of G-CSF we will require that κmin > 0.

G-CSF is believed to increase the effective rate of mitosis during proliferation
by reducing apoptosis. Thus, we use a monotonically increasing Michaelis–Menten
function ηNP (G1(t)) defined by (9) to describe the G-CSF-dependent effective
proliferation rate (which measures the difference between actual proliferation and
apoptosis). This function looks a little different than the other Michaelis–Menten
functions we will use, but this is simply because it has been scaled to give the correct
minimal and homeostasis effects with ηNP (0) = ηmin

NP
> 0 and ηNP (G∗

1) = η∗
NP

, with
ηNP (G1) a monotonically increasing function of G1.

Letting

ηmax
NP

= lim
G1→∞ ηNP (G1) = η∗

NP
+ bNP

G∗
1

(
η∗
NP

− ηmin
NP

)
,

we see that

bNP

G∗
1

= ηmax
NP

− η∗
NP

η∗
NP

− ηmin
NP

,

so the parameter bNP > 0 determines the relative position of η∗
NP

∈ [ηmin
NP

, ηmax
NP

] with
η∗
NP

> (ηmin
NP

+ ηmax
NP

)/2 when bNP ∈ (0,G∗
1) and η∗

NP
< (ηmin

NP
+ ηmax

NP
)/2 when

bNP > G∗
1.

G-CSF is known to affect the time that neutrophils spend in maturation (Spieker-
mann et al. 1997; Basu et al. 2002), an acceleration inmaturation that Price et al. (1996)
measured experimentally, but the mechanism by which G-CSF speeds up maturation
is not well understood. We choose to model this process by decoupling time from age
and demanding that cells age by an amount aNM , but allowing them to mature at a
variable aging rate ȧ(t) = VNM (G1(t))where VNM (G1) is a monotonically increasing
Michaelis–Menten function given in (10). This is similar to the form used inCraig et al.
(2015) which was adopted from Foley and Mackey (2009b) and is also functionally
equivalent to (17).

The aging velocity function VNM (G1) satisfies the homeostasis condition VNM (G∗
1)= 1, so the aging rate at homeostasis is 1. The aging rate saturates with

limG1→∞ VNM (G1) = Vmax ∈ (1,∞), where bV is the half-effect parameter with
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VNM (G∗
1 + bV ) = (1 + Vmax)/2. We will require that VNM (0) > 0, which from (10)

is equivalent to the constraint
bV > G∗

1Vmax. (33)

This ensures that the aging velocity VNM (G1) is strictly positive for all G1 � 0.
Notice that, using (13)

d
dt (t − τNM (t)) = 1 − d

dt τNM (t) = VNM (G1(t))

VNM (G1(t − τNM (t)))
, (34)

andpositivity ofVNM (G1) assures that t−τNM (t), and similarly t−τN (t), aremonoton-
ically increasing functions of t . This is important in state-dependent DDE theory for
existence and uniqueness of solutions. Physiologically, it assures that cells which have
exited maturation never reenters that phase.

One can conceive of other biological systems where nonmonotonic deviating argu-
ments t − τM (t) would be natural. For example, aging velocity could be negative if
insufficient nutrients were available to maintain the mass of an organism in a model
where maturation was governed by juvenile size. In such a model there would be no
output frommaturation at time t if t−τM (t) < sups�t s−τM (s), units that would have
exited maturation at time t having already done so at some previous time. However,
given the lack of evidence for such mechanisms in hematopoiesis, we will always
impose (33) to ensure that the aging velocity is positive.

The responses of our new model and the model of Craig et al. (2015) to exogenous
administration of G-CSF are very different. With our new model both differentiation
and proliferation are increased with increased G-CSF so that after some time delay
the marrow reservoir gets replenished. In the previous model, the G-CSF triggered
an immediate release of neutrophils from the marrow reservoir into circulation and
the resulting high circulating neutrophil count would cause differentiation and prolif-
eration to be decreased. This meant the the marrow reservoir would suffer a double
depletion with increased release into circulation combined with reduced production
of new mature neutrophils, which could lead to instabilities in the model that ought
not to be occurring in the granulopoiesis of healthy subjects.

Since the four functions (8), (9), (10), and (17) describe the effects of G-CSF
on granulopoiesis, rather than modelling the processes that lead to the effects, the
parameters in these functions do not correspond to physiological quantities that can
be measured directly. Nevertheless, these parameters can be determined by fitting the
response of the system to experimental data as described in Sect. 4.4.

3.5 Modelling Exogenous Drug Administration

As noted following (4), IG(t) denotes the input of exogenous G-CSF. The admin-
istration of rhG-CSF (in our case filgrastim) typically takes two forms: IV infusion
(where the drug is given intravenously over a period of time) or subcutaneously (injec-
tion under the skin). In the former case, the drug passes directly into the bloodstream
meaning the bioavailable fraction (the percentage of the administered dose that enters
the blood) is 100%. In this case, we express the single exogenous administration as
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IG(t) =
{

Do
tinfVd

, t0 � t � tinf
0 otherwise,

(35)

where Do is the administered dose, t0 is the start of the infusion, tinf is the time of
infusion, and Vd is the volume of distribution. The volume of distribution is a phar-
macokinetic parameter which relates the hypothetical volume a drug would occupy
to the concentration observed in the plasma. It is typically calculated for a drug by
dividing the administered dose by the concentration in the blood immediately follow-
ing an administration for the simplest case of IV bolus administration (instantaneous
administration into the blood). Drugs given subcutaneously do not immediately reach
the bloodstream. Instead, a certain proportion of the medication remains in the subcu-
taneous tissue pool before diffusing into the plasma. Some previous studies, notably
(Foley andMackey 2009b; Brooks et al. 2012) used an extra transition compartment to
model the administered G-CSF concentration in the tissues before reaching the blood
and allowed for the free exchange between this central (blood) compartment and the
tissue compartment. Owing to the specifics of the pharmacokinetics of filgrastim, we
will instead use the following direct input functions obtained by solving the differ-
ential equation for the dose deposit compartment as in Krzyzanski et al. (2010) and
Craig et al. (2015) to model subcutaneous administration as

IG(t) =
{

kaDoF
Vd

e−ka(t−t0), t � t0
0 t < t0,

(36)

where ka is the constant of absorption, and F is the bioavailable fraction (the fraction
of nonmetabolized dose which enters the system). This direct form is preferred over
the two compartment method previously employed in Foley and Mackey (2009b),
Brooks et al. (2012) because of the relatively small volume of distribution exhibited
by filgrastim (the biosimilar exogenous form of G-CSF), which is to say that Vd is
less than the standard 70L measure of highly distributed drugs (Craig et al. 2015) and
that the drug does not have a strong tendency to redistribute into the tissues.

The pharmacokinetic model of the chemotherapeutic drug (Zalypsis®) used in this
paper is the same as in Craig et al. (2015). Briefly, the concentration of chemotherapeu-
tic drug in the system is modelled using a set of four ordinary differential equations
which was determined to be suitable through population pharmacokinetic analysis
(Pérez-Ruixo et al. 2012). The PK model of Zalypsis® is given by

d
dt Cp(t) = IC (t) + k f pC f (t) + ksl1 pCsl1(t) − (kp f + kpsl1 + kelC )Cp(t)

d
dt C f (t) = kp f Cp(t) + ksl2 f Csl2(t) − (k f p + k f sl2)C f (t)

d
dt Csl1(t) = kpsl1Cp(t) − ksl1 pCsl1(t),

d
dt Csl2(t) = k f sl2C f (t) − ksl2 f Csl2(t), (37)

where Cp is the concentration in the central (blood) compartment, C f is the con-
centration in the fast-exchange tissues, and Csl1 and Csl2 are the concentrations in
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the slow-exchange tissues, ki j are traditional rate constants between the i th and j th
compartments (i, j = p, f, sl1, sl2), and kelC is the rate of elimination from the cen-
tral compartment. We consider the chemotherapeutic drug to be administered by IV
infusion. Accordingly, we set IC (t) = DoseZal/�t , where DoseZal is the administered
dose and �t is the time of infusion, when an infusion is administered and IC (t) = 0
when no infusion is given.

In contrast to the pharmacodynamic effects of G-CSF, chemotherapy has negative
effects on the neutrophil (and other blood) lineages. Chemotherapy (and radiother-
apy) works by disrupting the cell cycle of tumors (Maholtra and Perry 2003), but this
interference also affects all cells which are dividing, including the neutrophil progen-
itors. The cytotoxic side effects chemotherapeutic treatment has on the neutrophils
are called myelosuppression, and it is a leading cause of treatment adaptation and/or
cessation for patients undergoing chemotherapy (Craig et al. 2015). Since chemother-
apy’s myelosuppressive action only affects cells capable of division, we model the
pharmacodynamic effects of chemotherapy on the HSCs, which rarely divide, and the
neutrophil progenitors in the proliferative phase, which divide regularly until they exit
the mitotic phase.

Since the effects of chemotherapy on the HSCs are not clear, we model the antipro-
liferative effect as a simple linear increase of the rate of apoptosis experienced by these
cells by replacing γQ in Eq. (18) by γQ + hQCp(t) where Cp(t) is the concentration
of the chemotherapeutic drug in the central blood compartment given by (37), and hQ

is a factor to be determined (as outlined in Sect. 4.5). Then (18) gives

AQ(t) = 2e
−γQτQ−hQ

∫ t
t−τQ

Cp(s)ds
. (38)

It is convenient to numerically implement (38) as a differential equation, and applying
Leibniz’s rule to (38), similar to the derivation of (15), we obtain

d
dt AQ(t) = (hQ(Cp(t − τQ) − Cp(t)))AQ(t), (39)

and we replace (7) by (39) when chemotherapy is administered.
The second effect of chemotherapeutic drugs is to reduce the effective proliferation

rate of the mitotic neutrophil progenitors. We model this by replacing ηNP of (9) by

ηchemo
NP

(G1(t),Cp(t)) = ηinfNP
+ ηNP (G1(t)) − ηinfNP

1 + (Cp(t)/EC50)sc
, (40)

which is a modification of the model used in Craig et al. (2015). Here ηinfNP
corre-

sponds to the effective proliferation rate in the presence of an infinite dose of the
drug. We require ηinfNP

< ηmin
NP

to ensure that effective proliferation is reduced, so

ηchemo
NP

(G1(t),Cp(t)) < ηchemo
NP

(G1(t)) whenever Cp(t) > 0. We will allow the pos-

sibility of ηinfNP
< 0, which would correspond to negative effective proliferation (more

death than division in the mitotic phase) in the presence of very large concentrations of
the chemotherapeutic drug, thoughwe note that because the drug is cleared from circu-
lation relatively quickly we will have ηchemo

NP
(G1(t),Cp(t)) > 0 most of the time even
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if ηinfNP
< 0. If ηinfNP

∈ (0, ηmin
NP

) then effective cell division is reduced but never com-
pletely halted however large the concentration of the chemotherapeutic drug. EC50 is
the concentration of chemotherapeutic drug which gives the half-maximal effect, and
sc is a Hill coefficient. The parameters hQ , ηinfNP

, EC50, and sc will all be estimated
using fitting techniques described in Sect. 4.5.

4 Parameter Estimation and Equation Constraints

In this section we show how our mathematical model imposes constraints on its own
parameters to be self-consistent, and how experimental data can be used to determine
model parameters. We begin in Sect. 4.1 by studying the model at homeostasis and
deriving inequalities that the parameters must satisfy, as well as showing how exper-
imentally measured quantities can be used to directly determine some parameters.
In Sect. 4.2 we show how the G-CSF pharmacokinetic parameters can be determined
using a combination of model equation constraints and parameter fitting to experimen-
tal data from single administrations of G-CSF. In Sect. 4.3, G-CSF knockout is used
to derive further parameter constraints and relationships. Finally in Sect. 4.4 we show
how the pharmacodynamic parameters in the neutrophil equations can be determined
by fitting the model to experimental data for the circulating neutrophil concentrations
after a single IV or subcutaneous administration of G-CSF.

4.1 Neutrophil Steady-State Parameter Determination and Constraints

At homeostasis let Q∗ be the stem cell concentration and denote the sizes of the four
neutrophil compartments at homeostasis by N∗

P (proliferation), N∗
M (maturation), N∗

R
(marrow reservoir), N∗ (total blood neutrophil pool), and the average time that a cell
spends in one of these stages at homeostasis by τNP , aNM , τ

∗
NR

, and τ ∗
NC

, respectively.
With the exception of τNP , all of these quantities have been determined experimentally,
but unfortunately only τNP and aNM actually appear in our model. In this section we
show that our model imposes some constraints on the values of these parameters, and
also how the values of κ∗, N∗

P , N
∗
M , N∗

R , N
∗, aNM , τ

∗
NR

, and τ ∗
NC

can be used through
the model to determine values for the parameters τNP , η

∗
NP

, γNM , γNR , γN , and ϕ∗
NR

which do appear in the model in Sect. 2.
At homeostasis Eqs. (1)–(3) become

0 = −(
κ∗ + κδ + β(Q∗)

)
Q∗ + A∗

Qβ(Q∗)Q∗, (41)

κ∗Q∗A∗
N = (ϕ∗

NR
+ γNR )N∗

R, (42)

ϕ∗
NR

N∗
R = γN N

∗. (43)

Equation (41) has the trivial solution Q∗ = 0 with other solutions given by

κ∗ + κδ = (A∗
Q − 1)β(Q∗) (44)
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To the best of our knowledge, there is no experimental data to determine the relative
rates of differentiation to the three cell lines (erythrocytes, neutrophils, and thrombo-
cytes) at homeostasis. In the absence of any evidence to the contrary, we will assume
that these are all equal. Since κ∗ denotes the differentiation rate to the neutrophil line
and κδ differentiation to erythrocyte and thrombocyte precursors we obtain

κ∗ = 1
2κδ = 1

3 (A
∗
Q − 1)β(Q∗). (45)

At homeostasis neutrophil precursors are assumed to enter the mitotic phase at rate
κ∗Q∗. They then proliferate at a rate η∗

NP
for a time τNP . The total number of cells in

the proliferative phase at homeostasis is thus

N∗
P =

∫ τNP

0
κ∗Q∗eη∗

NP
s
ds = κ∗Q∗ e

η∗
NP

τNP − 1

η∗
NP

, (46)

and cells leave proliferation and enter maturation at a rate R∗
P given by

R∗
P = κ∗Q∗eη∗

NP
τNP . (47)

At homeostasis from (10)we have VNM (G∗
2) = 1, and thus from (11), the time spent

in maturation at homeostasis is aNM . The number of cells of age s for s ∈ [0, aNM ]
in the maturation phase is then κ∗Q∗ exp(η∗

NP
τNP − γNM s), and the total number of

cells in the maturation phase is

N∗
M =

∫ aNM

0
κ∗Q∗eη∗

NP
τNP −γNM s

ds = κ∗Q∗eη∗
NP

τNP
1 − e−γNM aNM

γNM

. (48)

Writing

A∗
N = exp

(
η∗
NP

τNP − γNMaNM

)
, (49)

which corresponds to (14) at homeostasis, we can rewrite (48) as

N∗
M = κ∗Q∗A∗

N
eγNM aNM − 1

γNM

. (50)

Now the rate at which cells leave the maturation phase is

κ∗Q∗eη∗
NP

τNP −γNM aNM = κ∗Q∗A∗
N .

The average time, τ ∗
NC

, that neutrophils spend in circulation in the blood (in the
total blood neutrophil pool) has been measured a number of times. However, what
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is actually measured is the half-removal time, τ1/2, which gives γN , the removal rate
from circulation by

γN = 1

τ ∗
NC

= ln 2

τ1/2
. (51)

Equation (43) ensures that at homeostasis the rate neutrophils leave the reservoir
and enter circulation equals the rate at which they are removed from circulation. From
this we obtain

ϕ∗
NR

= γN N∗

N∗
R

. (52)

The rate at which neutrophils exit the mature marrow reservoir is given by (ϕ∗
NR

+
γNR )N∗

R where ϕ∗
NR

is the transition rate constant for cells entering circulation and
γNR is the random death rate. Thus, the average time that cells spend in the reservoir
at homeostasis is

τ ∗
NR

= 1

ϕ∗
NR

+ γNR

. (53)

Hence, the random death rate in the reservoir, γNR � 0, is given by

γNR = 1

τ ∗
NR

− ϕ∗
NR

, (54)

and we require that

τ ∗
NR

ϕ∗
NR

� 1 (55)

to ensure that γNR � 0. That said, using (51) and (52), we can rewrite (55) as

τ ∗
NR

τ ∗
NC

�
N∗
R

N∗ . (56)

The apoptosis rate during the maturation phase, γNM � 0, is calculated by elimi-
nating κ∗Q∗A∗

N from (42) and (50). Also making use of (54), we obtain

FM (γNM ) := N∗
R(eγNM aNM − 1) − γNM τ ∗

NR
N∗
M = 0. (57)

It is easy to see that FM (0) = 0 and hence γNM = 0 is one solution of (57). Since
F ′′
M (γ ) > 0 for all γ � 0, if F ′

M (0) < 0 there is a unique γNM > 0 such that
FM (γNM ) = 0, and no positive value of γ such that FM (γ ) = 0 if F ′

M (0) � 0.
Since cell death is known to occur in the maturation compartment (see Mackey et al.
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2003), we should choose our parameters so that (57) admits a solution γNM > 0. The
condition F ′

M (0) > 0 is equivalent to

N∗
R

N∗
M

<
τ ∗
NR

aNM

, (58)

and to include apoptosis in thematuration compartment our parametersmust be chosen
to satisfy (58).

Equation (56) can be interpreted as a lower bound on τ ∗
NR

, and (58) as an upper
bound. Eliminating τ ∗

NR
from these two bounds we find that the parameters must

satisfy

aNM

τ ∗
NC

<
N∗
M

N∗ (59)

for the constraints (56) and (58) to be consistent. Then τ ∗
NR

must satisfy

τ ∗
NR

∈
(
aNM

N∗
R

N∗
M

, τ ∗
NC

N∗
R

N∗

)
(60)

for both (56) and (58) to be satisfied as strict inequalities. All the quantities in (60)
have been estimated experimentally. To be consistent with our model the values must
satisfy both (59) and (60). In Sect. 5 we state parameters that satisfy these constraints.
With those parameters we take γNM > 0 to be the unique strictly positive solution to
(57).

Equation (42) ensures that the rates cells enter and leave the reservoir are equal at
homeostasis. Rearranging and using (52) we obtain

A∗
N = N∗

R

κ∗Q∗τ ∗
NR

, (61)

which determines A∗
N . Now from (49) we have

e
η∗
NP

τNP = A∗
Ne

γNM aNM . (62)

Then (46) implies that

η∗
NP

= κ∗Q∗ e
η∗
NP

τNP − 1

N∗
P

= κ∗Q∗ A∗
Ne

γNM aNM − 1

N∗
P

(63)

and then from (62) we have

τNP = 1

η∗
NP

ln
(
A∗
Ne

γNM aNM
)
. (64)
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In Sect. 5 we use the equations of this section to determine parameter values for our
model.

4.2 Estimation of G-CSF Pharmacokinetic Parameters

Following Watari et al. (1989), Kawakami et al. (1990), Barreda et al. (2004), and
Krzyzanski et al. (2010) we take the homeostasis concentration of the free circulating
G-CSF to be G∗

1 = 0.025ng/mL. The parameter V in (5) is the same parameter V as
appears in (20). ButV is difficult to interpret directly from (20), and although published
values are available, they vary widely between sources. For the pharmacokinetic G-
CSF model (4), (5) the meaning of V is clear; it is simply the conversion factor that
converts a neutrophil concentration N in units of 109 cells/kg of body mass, into the
corresponding G-CSF concentration V N in units of nanograms per milliliter when
every receptor on the neutrophils is bound.

To compute V , we first note that themolecular mass of G-CSF is 18.8kDa= 18,800
g/mol (Krzyzanski et al. 2010) or dividing by Avogadro’s constant, the equivalent
weight ofG-CSF isGmw = 3.12×10−11 ng/molecule.We take thenumber of receptors
per neutrophil to be R = 600, which is in the middle of the range that Barreda et al.
(2004) cites, though we note that both smaller and larger numbers can be found in the
literature. Then given N , the number of receptors per milliliter is

R × 70

5000
× 109 × N ,

where we assume body mass of 70kg and 5000mL of blood. Since two molecules
bind to each receptor the maximum concentration of bound G-CSF is

V N = 2 × Gmw × R × 70

5000
× 109 × N = 0.525N ng/mL

and hence

V = 0.525 (ng/mL)/(109 cells/kg). (65)

Values havebeenpublished for several of the other parameters in theG-CSFEqs. (4),
(5), but these have been largely based on in vitro experiments and/or simpler G-CSF
models using mixed-effects estimation techniques, and so are not directly applicable
to our model (Krzyzanski et al. 2010; Wang et al. 2001; Scholz et al. 2012; Sarkar
et al. 2003).

At homeostasis, Eqs. (4), (5) give

G∗
2 = (G∗

1)
Pow

(G∗
1)

Pow + (kint + k21)/k12
V [N∗

R + N∗], (66)
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and

Gprod = krenG
∗
1 + kintG

∗
2

= krenG
∗
1 + kintV [N∗

R + N∗] (G∗
1)

Pow

(G∗
1)

Pow + (kint + k21)/k12
. (67)

Once values of kint, k12, k21, kren, and Pow are determined as we describe below,
(66) and (67) determine values for G∗

2 and Gprod. The remaining parameters might be
determined by simulating the full model with exogenous G-CSF administration and
fitting the response of the model to published data for such experiments. However, that
would involve also fitting the as yet undetermined pharmacodynamic parameters in
Eqs. (1)–(17) which would create a very large optimization problem, with the potential
for interactions between the pharmacokinetic and pharmacodynamic parameters to
create a complicated functional with many local minima. To avoid this, we prefer
to determine the pharmacokinetic and pharmacodynamic parameters separately. Here
we determine the PK parameters by decoupling the G-CSF Eqs. (4)–(5) from the
neutrophil dynamics.

There have been several studies tracking the response of the hematopoietic system
to a single administration of exogenous G-CSF including Wang et al. (2001) and
Krzyzanski et al. (2010).

If data were available for circulating neutrophil and marrow reservoir neutrophil
concentrations as functions of time it would be possible to treat Eqs. (4)–(5) separately
from the rest of the model as a system of two ordinary differential equations with
[NR(t) + N (t)] treated as a known nonautonomous forcing term determined by the
data. But unfortunately it is not known how to directly measure time-varying human
marrow neutrophil reservoirs or bound G-CSF concentrations and such values are not
reported in the literature.

In the absence of marrow neutrophil data we will decouple the G-CSF kinetic
Eqs. (4)–(5) from the rest of the model by replacing the time-dependent term [NR(t)+
N (t)] by the constant Ntot to obtain

d
dt G1(t) = IG(t) + Gprod − krenG1(t)

− k12(NtotV − G2(t))G1(t)
Pow + k21G2(t) (68)

d
dt G2(t) = −kintG2(t) + k12

(
NtotV− G2(t)

)
G1(t)

Pow − k21G2(t). (69)

In (68) and (69) the constant Ntot represents the constant total number of neutrophils
available for G-CSF binding and will be treated as an extra parameter to be determined
during the fitting. It should correspond approximately to an average value of [NR(t)+
N (t)] across the time course of the data.

With data for bound G-CSF unavailable we are constrained to fit (68), (69) to
data for the unbound G-CSF. To do this we use digitizations of two sets of data
from Wang et al. (2001) from a 750-µg intravenous (IV) administration of G-CSF
and from a subcutaneous (SC) administration of the same dose. SC administrations
necessarily include the absorption kinetics of a drug, as outlined in Eq. (36), whereas
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IV administrations reach the blood directly and can be modelled more simply as in
(35). For these reasons, both IV and SC data were used simultaneously during the
fitting procedure to best characterize the parameters. Rather than fitting directly to the
data from Wang et al. (2001), to obtain robust parameter fits we took the G-CSF data
from the SC and IV administrations and fit a spline through each to define functions
GSC

dat (t) and GIV
dat (t) over the time intervals 0 � t � 2 days for which the data were

taken.With postulated parameter values we then use theMATLAB (Mathworks 2015)
ordinary differential equation solver ode45 to simulate (68), (69) over the same time
interval to define functions GSC

1 (t) and GIV
1 (t). We measure the error between the

simulated solutions and the data using the L2 function norm defined by

‖G‖22 =
∫ T

0
G(t)2dt. (70)

For the IV data which varies over orders of magnitude, as shown in Fig. 2, we use a
log scale, while for the SC data a linear scale is appropriate. We define a combined
error function for both simulations by

Err = ‖ log(GIV
1 ) − log(GIV

dat )‖22 + χ0.95‖GSC
1 − GSC

dat‖22, (71)

where the scale factor χ defined by

χ = maxt∈[0,T ] log(GIV
dat (t)) − mint∈[0,T ] log(GIV

dat (t))

maxt∈[0,T ] GSC
dat (t) − mint∈[0,T ] GSC

dat (t)
, (72)

effectively rescales the data so that both datasets have equal weight. [Since χ < 1 the
power 0.95 in (71) works to give slightly more weight to the SC data.]

Fitting was performed using the MATLAB Mathworks (2015) lsqcurvefit least
squares solver, with the error function Err evaluated numerically by sampling the
functions at a thousand equally spaced points. It is convenient to define the constant

Nelim = 1 − krenG∗
1

Gprod
(73)

where Nelim is the fraction of G-CSF clearance performed through internalization at
homeostasis [obtained in (73) as one minus the fraction of renal clearance at home-
ostasis]. The estimation was performed for the G-CSF parameters: k12, k21, Pow, kint,
the neutrophil constant Nelim, and the pharmacokinetic drug parameters ka , and F .
The elimination fraction Nelim was either fixed (Nelim = 0.6 and 0.8 in Table 1) or
fitted (the other entries in Table 1). At each step of the optimization the candidate k12,
k21, Pow, kint and Nelim are used to determine the dependent parameters G∗

2, kren, and
Gprod, which from (68), (69), and (73) are given by

G∗
2 = V Ntot

(G∗
1)

Pow

(G∗
1)

Pow + (k21 + kint)/k12
(74)
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Table 1 Pharmacokinetic parameter estimates from the simplified G-CSF model (68), (69) for different
homeostasis elimination fractions of Nelim

Name Value 1 Value 2 Value 3 Value 4 Value 5 Units

Nelim 0.097478 0.6 0.71678 0.8 0.87358 –

kren 1.3142 0.45064 0.2456 0.16139 0.094597 days−1

k12 2.3004 2.2519 2.1342 2.2423 2.878 days−1

k21 407.1641 198.2403 168.2588 184.8658 259.8087 days−1

kint 394.5111 459.2721 275.2744 462.4209 632.0636 days−1

Pow 1.7355 1.4418 1.4631 1.4608 1.4815 –

Ntot 3.9496 4.1767 4.1457 4.2009 3.606 109cells/kg

Do = 750 µg, Vd = 2178.0mL

F 0.99752 0.75 0.75 0.75 0.98271 –

ka 3.8154 5.2142 5.0574 5.143 4.1931 days−1

Err 0.16352 0.15716 0.17901 0.18543 0.21130 –

Do = 300 µg, Vd = 4754.7mL

F 1 0.63361 0.62299 0.64466 0.71424 –

ka 6.3783 8.0804 8.0628 8.0236 7.4367 days−1

Do = 375 µg, Vd = 2322.9mL

F 0.89831 0.4801 0.48549 0.49964 0.57618 –

ka 4.18161 6.7326 6.6324 6.6133 6.1259 days−1

Err is defined by (71) for the 750-µg dose. As described in the text, dose-dependent drug parameters were
only recalculated for the lower doses

kren =
(

−1 + 1

Nelim

)
Vkint(G

∗
1)

(Pow−1) Ntot

(G∗
1)

Pow + (k21 + kint)/k12
(75)

Gprod = kintG
∗
2 + krenG

∗
1. (76)

The following fitting procedure was employed. First parameters were fit from IV
data for a 750-µg administration (Wang et al. 2001) on the log scale to ensure that
behavior at both high and low concentrations were properly characterized. Next initial
SC parameters were fit from 750-µg SC data in linear scale. Using the parameters
from these two fits as seed values, we next obtain final parameter values by fitting
both log-concentration IV and linear SC data simultaneously using the norm defined
in (71). Finally, as the pharmacokinetic parameters related to the SC administration
have been shown to be dose-dependent (Scholz et al. 2012), we re-estimate F and ka
for lower doses of 300 and 375µg (Krzyzanski et al. 2010; Wang et al. 2001). Since
Vd is typically calculated by the ratio of the dose to the initial concentration in the
blood for IV administrations (DiPiro et al. 2010), we have applied the same calculation
here to scale the G-CSF prediction to the first measured data point. Accordingly, the
volume of distribution was recalculated to fit the administered dose. The resulting
parameters are reported in Table 1.

Figure 5 shows the comparison of the solutions from the fitting procedure of the
simplified model (68), (69) for the parameter set with Nelim = 0.80 from Table 1
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Fig. 5 G-CSF PK parameter fitting results of (68), (69) with parameter values taken from Table 1 with
Nelim = 0.80. In both panels, a 750-µg dose is administered following the protocol described inWang et al.
(2001). Blue lines with data digitized data median values, red solid lines model solution with estimated
parameters, black dashed linesmaximum and minimum values of the digitized data. a 25-min IV infusion.
b Subcutaneous injection (Color figure online)

to the Wang et al. (2001) data for 750-µg IV and SC doses in log and linear scales,
respectively.

Figure 6a, b gives linear and log scale plots of the simulations of (68), (69) with the
Nelim = 0.80 parameter set from Table 1 for an IV administration from Krzyzanski
et al. (2010). In this case no fittingwas performed; theKrzyzanski et al. (2010) protocol
is simulated using parameters obtained from fitting to the Wang data, and a good fit to
the data is still obtained. Figure 6c shows another simulation for a slightly larger SC
dose, with the same G-CSF parameters (only the dose-dependent drug parameters ka
and F were fit, as already noted), and we again obtain good agreement with the data.

We characterize the parameter sets found for the simplified G-CSFmodel (68), (69)
by the fraction Nelim of the G-CSF that is cleared by binding and internalization at
homeostasis. For 0 � Nelim < 1/2 the elimination is renal dominated at homeostasis,
while for 1/2 < Nelim � 1 the pharmacokinetics are internalization dominant. As
already mentioned in Sect. 3.2, from a clinical standpoint, it is believed that Nelim >

1/2, while a number of previously published models including Craig et al. (2015),
Krzyzanski et al. (2010), and Wang et al. (2001) have Nelim close to zero.

When we included Nelim as a parameter to be fit the results were very sensitive to
the seed values used to start the optimization and had a tendency to produce parameter
sets with very low or very high Nelim (see the Nelim = 0.097 and Nelim = 0.87358
parameter sets in Table 1), but we also found a good fit with Nelim = 0.71678 and
were able to find good fits for any fixed value of Nelim, as shown in Fig. 5 (see
Table 1 for parameter sets with Nelim = 0.6 and 0.8). Our results seem to indicate
that there is at least a one parameter family of plausible parameter sets with each set
characterized by the value of Nelim. This arises because we are fitting the simplified
model (68), (69) without any data for the bound G-CSF concentrations. If the model
(68), (69) were linear then parameter identifiability theory would require data from
both components of the solution in order to identify unique parameters in the model.
Even though (68), (69) is nonlinear, the lack of any bound G-CSF data allows us to
fit the unbound G-CSF concentrations with different parameter sets, which will result
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Fig. 6 G-CSF pharmacokinetic parameter fitting results of (68), (69) with parameter values taken from
Table 1with Nelim = 0.80 compared for different administration types, doses, anddatasets.a,bAsimulation
of (68), (69) is compared to data from Krzyzanski et al. (2010) in linear and log scales. c A simulation
compared to data from Wang et al. (2001). d Neutrophil concentrations (blue line) of the full neutrophil
model (1)–(17) compared to the value of Ntot and N∗

R + N∗. a–c Blue line with data digitized data median
values, red solid linemodel solution from estimated parameters, black dashed lines digitized data maximum
and minimum values (Color figure online)

in different solutions for the unmeasured bound G-CSF concentrations. In Sect. 4.4
we will see that different G-CSF kinetic parameter sets will result in similar G-CSF
responses, but markedly different neutrophil dynamics. The small differences in the
reported errors Err in Table 1 are not sufficient alone to make a definitive judgement of
which is the optimal parameter set. In the following sectionswewill study the response
of the full system (1)–(17) not just to exogenous G-CSF but also chemotherapeutic
treatment (both alone and with prophylactic exogenous G-CSF) which will lead us to
conclude that the PK parameters from Table 1 with Nelim = 0.80 produce the best
model responses to a variety of scenarios.

As shown in Table 1, the estimates obtained for Ntot are significantly larger than
[N∗

R +N∗]. Figure 6d validates the use of the Ntot simplification used for (68), (69) by
comparing Ntot to [N∗

R + N∗] and to NR(t)+ N (t) from the solution of the full model
(1)–(17) with a 750-µg dose of G-CSF administered by a 25-min IV infusion. This
demonstrates that Ntot is an approximate average for [NR(t)+ N (t)] over most of the
simulation. This, along with the similarity between the results given by (4)–(5) and the
full model (as illustrated in Fig. 2) not only gives us confidence in the simplifiedmodel
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(68)–(69) for estimating the G-CSF kinetic parameters, but also provides additional
confirmation that the marrow reservoir neutrophils NR(t)must be included along with
the total blood neutrophil pool N (t) in the full kinetic G-CSF model (4)–(5) in order
to reproduce the observed physiological response.

4.3 Parameter Estimates from G-CSF Knockout

Several murine studies (Bugl et al. 2012, Lui et al. 2013) have looked at the effects of
G-CSF knockout by producing mice lacking G-CSF receptors and measuring the dif-
ferences in circulating neutrophil counts compared to wild-type mice. The conclusion
of these studies is that even in the case of complete incapacity of the neutrophils to
bind with G-CSF, neutrophil counts were still between 20 and 30% of normal levels.
This is consistent with G-CSF not being the sole cytokine to regulate neutrophil pro-
duction. Consequently, we will ensure that our model produces reduced but nonzero
circulating neutrophil concentrations in the complete absence of G-CSF, and so in
this section we consider the behavior of the equations defining neutrophil production
when G1 ≡ G2 ≡ 0. In that case the four G-CSF dependent functions take values
κ(0) = κmin, ηNP (0) = ηmin

NP
, VNM (0) ∈ (0, 1) [by (33)], and ϕNR (0) ∈ (0, ϕ∗

NR
) [by

(31)].
We let N∗

ko denote the total blood neutrophil pool under G-CSF knockout and define
the ratio

Cko = N∗
ko/N

∗. (77)

Let θ = RPko/R∗
P be the ratio of the rate of cells leaving proliferation in the absence

of G-CSF to the rate of cells leaving proliferation at homeostasis. Using (47) and a
similar calculation for RPko we obtain

θ = RPko

R∗
P

= κminQ∗eτNP ηmin
NP

κ∗Q∗eτNP η∗
NP

= κmin

κ∗ e
τNP η∗

NP
(μ−1)

, (78)

where we also introduce the second auxiliary parameter

μ = ηmin
NP

/η∗
NP

� 1, (79)

which measures the fractional reduction in the proliferation rate at knockout. In (78)
we have assumed that the number of stem cells is unchanged at knockout. Since the
differentiation rate to neutrophils will be decreased from κ∗ to κmin in the absence
of G-CSF, the number of stem cells will actually increase, but using (44) and (6) this
increase can be calculated and is found to be less than 1% for our model parameters.

For given values of θ ,μ and e
τNP η∗

NP wewill use (78) to determine the ratio κmin/κ∗.
Since κmin � κ∗ [see (32)], (78) implies that θ � e

τNP η∗
NP

(μ−1)
. Rearranging this gives

a lower bound for μ, from which obtain the constraint
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μ ∈
(

1 + ln(θ)

τNPη∗
NP

, 1

)

. (80)

Here μ = 1 corresponds to a constant proliferation rate independent of G-CSF, with
the reduced production of neutrophils at knockout caused by a reduction of the dif-
ferentiation rate κ . If μ is equal to its lower bound then κ is constant independent
of G-CSF concentration, and the reduced production of neutrophils is caused by the
reduced effective proliferation rate ηNP . For intermediate values of μ, both κmin and
ηmin
NP

are reduced from their homeostasis values, and μ acts as a tuning parameter to

weight the relative contribution of each mechanism with κmin/κ∗ a monotonically
decreasing function of μ = ηmin

NP
/η∗

NP
.

A value for θ can be computed by studying the dynamics in the absence of G-CSF
after the proliferation stage. Letting N∗

ko and N∗
Rko denote the number of neutrophils at

knockout in the total blood pool and in the marrow reservoir, respectively, the rate that
cells enter and leave circulation should be equal implying that γN N∗

ko = ϕNR (0)N∗
Rko,

or

N∗
Rko = 1

ϕNR (0)
γN N

∗
ko. (81)

The rate RMko that mature neutrophils are created at knockout is then equal to the rate
that neutrophils enter and leave the marrow reservoir, and hence,

RMko = (ϕNR (0) + γNR )N∗
Rko = γN N

∗
ko

(
1 + γNR

ϕNR (0)

)
. (82)

During G-CSF knockout, the maturation time is given by aNM /VNM (0), during which
cells die at a constant rate γNM (which is not affected by G-CSF). Hence, the rate RPko
that cells exit proliferation in the absence of G-CSF is related to RMko by

RPkoe
−γNM

aNM
VNM

(0) = RMko.

Thus,

RPko = e
γNM

aNM
VNM

(0) RMko = γN N
∗
ko

(
1 + γNR

ϕNR (0)

)
e
γNM

aNM
VNM

(0)
. (83)

A similar calculation yields R∗
P , the rate that cells leave proliferation at homeostasis

(with G-CSF), as

R∗
P = γN N

∗
(

1 + γNR

ϕ∗
NR

)

eγNM aNM . (84)
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Then

θ = RPko

R∗
P

= Cko
ϕNR (0) + γNR

ϕ∗
NR

+ γNR

exp
[
aNM γNM

( 1

VNM (0)
− 1

)]
, (85)

where Cko is defined by (77).

4.4 Estimating the Pharmacodynamic Parameters

We still require estimates for six parameters, μ, bNP , Vmax, bV , bG , and ϕmax
NR

in the
functions defining the pharmacodynamic effects of G-CSF on the neutrophil produc-
tion and mobilization.

We digitized data from Wang et al. (2001) for average circulating neutrophil con-
centrations for 3days following a 375- and a 750-µg 25-min IV infusion. The data
also contained circulating G-CSF concentrations, but we did not use the G-CSF con-
centrations for fitting. As in Sect. 4.2, instead of fitting directly to the data we used it
to define two continuous functions N 375

dat (t) and N 750
dat (t), one for each dose, and fit the

response of the full model (1)–(17) to these functions.
The fitting is difficult because no data are available for reservoir or stem cell concen-

trations, and the circulating neutrophil concentrations are only measured for 3days
after the infusion. Since the proliferation time for neutrophil precursors is about a
week, these data cannot be used to fit any stem cell parameters, as no cells that com-
mit to differentiate to the neutrophil line after the infusion will reach circulation during
this time (which is why we do not re-estimate any stem cell parameters in the cur-
rent work). Although at homeostasis it also takes about a week for cells to traverse
maturation and the marrow reservoir, these processes are greatly sped up after G-CSF
administration, and cells that are in proliferation at the time of the infusion can reach
circulation within a day, enabling us to estimate relevant parameters.

After 3days the neutrophil concentrations have not returned to their homeostatic
values. If parameters are fit just using this short interval of data, we found parameters
which gave good fits to the circulating neutrophil concentrations over the first 3days,
but for which the neutrophil concentrations then underwent very large deviations from
homeostasis values lasting months or more. There is no evidence of a single G-CSF
administration destabilizing granulopoiesis (Molineux 2011). Accordingly, we will
require that the fit parameters result in stable dynamics. We do this by adding artificial
data points for 7 � t � 21 days. Accordingly, we construct N 375

dat (t) and N 750
dat (t)

over two disjoint time intervals as splines through the data points for t ∈ [0, 3] and as
constant functions N dose

dat (t) = N∗ for t ∈ [7, 21]. Since we have no data for t between
3 and 7days describing how the neutrophils return to homeostasis, we do not define
values for N dose

dat (t) for this time interval.
For candidate parameter values, we then used MATLAB’s delay differential equa-

tion solver ddesd (Mathworks 2015) to simulate (1)–(17) over the full 21-day time
interval. This defined the functions N 375(t) and N 750(t), from which we were able to
measure the error between the data and the simulated solutions using an L2 function
norm similar to the one defined in (70). For the disjoint time intervals, we have two
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integrals to perform, and rescale them to carry equal weight and hence define

‖N‖22 = 1

3

∫ 3

0
N (t)2dt + 1

14

∫ 21

7
N (t)2dt, (86)

with corresponding fitting error

Err = ‖N 375
dat (t) − N 375(t)‖22 + ‖N 750

dat (t) − N 750(t)‖22. (87)

Parameter estimation was performed using the fmincon function in MATLAB
(Mathworks 2015). As in the G-CSF fitting described in Sect. 4.2, the error was
evaluated by sampling the functions at one thousand points [with 500 in each time
interval because of the scaling in (86)].

Instead of directly fitting the six parameters specified at the start of this section,
we let b̃V = bV /Vmax and fit to the six parameters μ, bNP , Vmax, b̃V , ϕNR (0), and
ϕratio
NR

. This set of parameters is easier to fit to because the constraints (31) and (33)

then become simply ϕNR (0) > 0 and b̃V > G∗
1, while the original constraints both

involve more than one of the unkown parameters.
From (17), (30), and (78), at each step of the optimization the six fitting parameters

define the remaining parameters via

ηmin
NP

= μη∗
NP

, ϕmax
NR

= ϕratio
NR

ϕ∗
NR

, bV = b̃V Vmax,

κmin = θκ∗e(τNP η∗
NP

(1−μ))
, bG = G∗

BF

ϕmax
NR

− ϕNR (0)

ϕ∗
NR

− ϕNR (0)
.

(88)

where θ itself is calculated from (85). TheHill coefficient of (8) was set to be s1 = 1.5,
midway within its plausible range of values, as explained in Sect. 5.

The estimation of μ requires some caution as its lower bound in (80) changes at
each iteration of the optimization as θ varies, andwe see from (85) that θ itself depends
on three of the parameters to which we are fitting. Nonsensical results are obtained if
the model is simulated with μ outside its bounds. Since the constraint is difficult to
apply, to ensure that (80) is respected we use a penalty method. Consequently, (80)
is checked at each iteration of the optimization and if μ is outside of its bounds μ is
reset to the bound and after the simulation is computed Err is multiplied by the penalty
factor e|μ−μbound|1/2 which is larger than 1 when μ �= μbound. The error function thus
penalized cannot have aminimumwithμ outside of its bounds, and so the optimization
routine is forced to find values for μ within the permissible range.

A family of G-CSF kinetic parameter sets is reported in Table 1 in Sect. 4.2. Esti-
mates for the pharmacodynamic parameters were performed for every parameter set
in Table 1. The resulting pharmacodynamic parameters are reported in Table 2.

Since G∗
2 in the full model (1)–(17) is given by (66) which differs from the value

given by (74) for the simplified model (68), (69), the values ofGprod and Nelim derived
for the two models will also be different. In Table 2 the values from Sect. 4.2 for the
simplified model are referred to as N simp

elim , and we also state the corresponding value
of Nelim for the full model from (73) using (67).
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Table 2 Parameter estimation results for the pharmacodynamic parameters

Name Value 1 Value 2 Value 3 Value 4 Value 5 Units

N
simp
elim 0.097478 0.6 0.71678 0.8 0.87358 –

Nelim 0.3631 0.4508 0.6204 0.7033 0.8153 –

μ 0.96381 0.86303 0.85482 0.84458 0.90768 –

bNP 0.125 0.026182 0.025994 0.022868 0.024908 ng/mL

Vmax 7.9932 7.9881 7.9697 7.867 7.994 –

b̃V 0.031250 0.031251 0.031255 0.031283 0.031261 ng/mL

ϕNR (0) 0.072801 0.026753 0.023154 0.020056 0.049852 days−1

ϕratioNR
10.9606 11.7257 11.9442 11.3556 11.9706 –

ηmin
NP

1.6045 1.4367 1.4231 1.406 1.5111 days−1

ϕmax
NR

3.9897 4.2682 4.3478 4.1335 4.3574 days−1

bV 0.24979 0.24964 0.24909 0.24611 0.2499 ng/mL

bG 6.3999×10−5 0.0002107 0.00019058 0.00018924 0.00018725 –

θ 0.45978 0.18895 0.17099 0.15096 0.32529 –

κmin 0.0052359 0.0073325 0.0073325 0.0073325 0.0073325 days−1

Err 0.3482 0.3153 0.2928 0.2843 0.3762 –

N
simp
elim refers to Nelim value of the corresponding kinetic parameters for the simplified G-CSF model given

in Table 1. Nelim is the corresponding value for the full model, then stated are the six fit parameters, followed
by the dependent parameters. The approximation error to the data is found by integrating (3) as in (87) and
comparing to Wang’s data (2001) for a 375- and 750-µg IV infusion of 25min

It is important to note that if μ were close to 1 and far from its lower bound,
then κmin/κ∗ � 1, and the wide variation in possible differentiation rates could have
potentially destabilizing effects on the stem cells. However, formost of the investigated
parameter sets (except for N simp

elim = 0.097478) with the added ‘stabilizing’ data,μwas
found to be essentially equal to its lower bound. In this case κmin is almost equal to κ∗,
and the rate of differentiation out of the stem cell compartment is essentially constant
and (8) is virtually independent of the influence of G-CSF. For the current model with
the imposed stabilizing data, this implies that any change in production is produced by
variations in the effective proliferation rate of (9). Without the additional data points,
we found parameter estimates where μ was far from its lower bound and κmin was
similarly lower than κ∗ but these led to unstable dynamics. As shown in Sects. 4.5 and
6, the parameter estimates obtained are shown to successfully reproduce protocols for
chemotherapy-alone and chemotherapy with adjuvant G-CSF. Accordingly, differen-
tiation from the hematopoietic stem cells is likely close to constant in reality but from
our results, we cannot conclude that differentiation is independent of G-CSF.

Figure 7 shows the comparison of the resulting model solutions for three dif-
ferent values of Nelim, two of which are shown to be less optimal. Also included
are the corresponding G-CSF predictions without any re-estimation from the values
obtained in Sect. 4.2. For Nelim = 0.097478, the G-CSF response is well predicted
as shown in Fig. 7b, but because of the renal domination of these parameters, the
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Fig. 7 Simulations of the full model (1)–(17) for various parameter sets with different Nelim values. Left
Circulating neutrophil concentrations in 109 cells/L over 21days, with the first 3days shown as an inset.
Right The corresponding circulating G-CSF concentrations. Blue lines with data digitized data from Fig. 7
(neutrophil concentrations) and Fig. 6 (G-CSF concentrations) of Wang et al. (2001), red solid linesmodel
solution, black dashed lines maximum and minimum digitized data values from Fig. 7 and Fig. 6 of Wang

et al. (2001), yellowdashed lines respective homeostatic values. a N simp
elim = 0.097478,b N

simp
elim = 0.097478,

c N
simp
elim = 0.80, d N

simp
elim = 0.80, e N

simp
elim = 0.87358 and f N simp

elim = 0.87358 (Color figure online)

cytokine paradigm fails in the endogenous-only case. Moreover, repeated admin-
istrations of exogenous G-CSF will not accumulate per clinical observations. The
G-CSF response seems to be well characterized by the N simp

elim = 0.87358 parameters
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in Fig. 7f; however, the dynamics of the neutrophil response in Fig. 7e do not stay
within the data bounds, and so are not a good fit. Using N simp

elim = 0.8, both the neu-
trophil and G-CSF responses are successfully predicted in Fig. 7c, d. The two sets with
the lowest errors (N simp

elim = 0.71678 and N simp
elim = 0.8) were used to determine parame-

ters relating to the pharmacodynamic effects of chemotherapy, which is discussed in
Sect. 4.5.

4.5 Estimation of Chemotherapy-Related Parameters

To estimate parameters in (38) and (40), data from the results of the Phase I clinical
trial of Zalypsis® were digitized from González-Sales et al. (2012). Unlike the data
used for fitting in Sects. 4.2 and 4.4, here the protocols differ from one subject to the
next and are reported per patient. All dosing regimenswere as stated inGonzález-Sales
et al. (2012) with doses scaled by body surface area (BSA). Since the subjects were
patients undergoing anticancer treatments, deviations from the prescribed protocols
were frequent. Thus, only subjects in the top row (A, B) and bottom row (D, E) of
Fig. 3 in González-Sales et al. (2012) were retained for our analyses.

As with the parameter estimation of the two previous sections, we define the func-

tion N
ch j
dat (t) from a spline fit to the data, where j = A, B, D, E corresponds to each

of the retained subjects. Likewise, the function Nch j (t) was defined from the solution
from theDDE solver ddesd inMATLAB (Mathworks 2015) for each patient.When the
subject was administered two or more cycles of chemotherapy, we took time intervals
corresponding to the first two cycles. Thus, the time spans differed for each subject-
specific fitting procedure and were: tspanA = [0, 43], tspanB = [0, 41], tspanC = [0, 47],
and tspanD = [0, 61]. As explained in Sect. 5, to account for each subject’s baseline
ANC, we adjust a scaling factor so our homeostasis N∗ value matches each individ-
ual’s. We have previously shown the robustness of a similar model to pharmacokinetic
interindividual and interoccasion variability which substantiates this adjustment and
the use of average values in physiological models (Craig et al. 2016). For each of the
four patients, we define the integrals

‖N (t)‖2j = 1

|tspan j
|
∫ max(tspan j )

min(tspan j )
N (t)2dt, (89)

where j = A, B, D, E . To find average parameter values which fit to all four patients
together, we further defined the average error in the L2 function norm of (89) between
the simulated solutions and the data by

Err = 1

4

∑

j

‖Nch j (t) − N
ch j
dat (t)‖2j . (90)

Parameters hQ , ηinfNP
, sc, and EC50 were then estimated using the lsqcurvefit opti-

mization routine inMATLAB (Mathworks 2015) and similarly averaged. These values
are reported in Table 3, and the results of Fig. 8 were obtained from simulations using
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Table 3 Results of the
parameter estimation of
chemotherapy effects values

Name Value 1 Value 2 Units

N
simp
elim 0.71678 0.8 –

Nelim 0.6204 0.7033 –

hQ 0.0071122 0.0079657 –

EC50 0.78235 0.72545 ng/mL

sc 0.90568 0.89816 –

ηinfNP
0 0 days−1

Err 0.17068 0.16965 –
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Fig. 8 Results from the chemotherapy parameter fitting for N simp
elim = 0.80 parameters over two chemother-

apy cycles. Model solutions were obtained using the parameters given in Table 2 and by simulating the full
model (1)–(17). Chemotherapeutic concentrations are obtained via (37) and (40). Equation (18) is replaced
by (38) and solved by using (39). Data and experimental protocols from Fig. 3 of González-Sales et al.
(2012). Blue lines with data digitized data, red solid lines model solution. a Subject A. b Subject B. c
Subject D. d Subject E (Color figure online)

these parameters. For each of hQ , EC50, sc, and ηinfNP
, similar estimates were obtained

for N simp
elim = 0.71578 and N simp

elim = 0.8, although the average error of N simp
elim = 0.8 is

slightly smaller and was accordingly retained as optimal.
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5 Parameter Values

Here we summarize the parameter values we use in the full model taken from exper-
imental results and the fitting procedures described in Sect. 4. For the model to be
self-consistent these parameters must be positive and satisfy the parameter constraints
that we derived above, namely (30), (31), (33), (59), (60), and (80).

The main model parameters are stated in Table 4. For the stem cells we reuse para-
meter values for Q∗, γQ , τQ , fQ , s2 and β(Q∗) from previous modelling (sometimes
rounding them to fewer significant figures). The value of θ2 is obtained by evaluating
(6) at homeostasis and rearranging to obtain

θ2 =
[
(Q∗)s2β(Q∗)
fQ − β(Q∗)

] 1
s2

. (91)

In Table 4 we quote a value of θ2 to five significant figures, but in our computations all
parameters defined by formulae are evaluated to full machine precision. This ensures
that our differential equation model has a steady state exactly at the stated homeostasis
values.

For the neutrophil parameters we mainly take experimental values from the work
of Dancey et al. (1976) and use the formulae of Sect. 4.1 to determine the related
model parameter values. However, some choices and adjustments need to be made to
ensure that the values are consistent with the model. Dancey et al. (1976) measured the
circulating neutrophil pool to be 0.22× 109 cells/kg and the recovery rate to be 0.585
from which we obtain the total blood neutrophil pool N∗ (including the marginated
pool) to be

N∗ = 0.22

0.585
≈ 0.3761 × 109 cells/kg. (92)

Since N (t)measures the total blood neutrophil pool in units of 109 cells/kg some care
needs to be taken when comparing to data, where absolute neutrophil counts (ANC)
measure the circulating neutrophil pool in units of cells/µL. Based on 70kg of body
mass and 5L of blood we have the default conversion factor for healthy subjects of

ANC = 0.585 × 70

5
× 1000 × N (t) = 8190 N (t) cells/µL. (93)

This gives a baseline homeostasis ANC of 8190N∗ = 3080 cells/µL, well within
the accepted normal range of 1800–7000cells/µL (Ryan 2016). When comparing our
model to data for individuals with different baseline ANCs (as in Sect. 4.5) we adjust
the conversion factor (93), but not the parameter values in our model, so that N∗ gives
the homeostasis ANC of the data.

Dancey et al. (1976) measures the proliferation and maturation phases at home-
ostasis to be N∗

P = 2.11×109 cells/kg (mainly promyelocytes and myelocytes) and
N∗
M = 3.33×109 cells/kg (metamyelocytes and bands). Using these numbers in the

calculations in Sect. 4.1 results in a proliferation time τNP defined by (64) of about
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26days. In our model τNP is the time from when the HSC first commits to differ-
entiate to the neutrophil line to the end of proliferation of the neutrophil precursors.
Although this time has never been definitively measured, 26days seems to be too
long. This is confirmed by the time to neutrophil replenishment in the blood after both
allogenic and autologous stem cell transplantation (Baiocci et al. 1993; Cairo et al.
1992), where circulating neutrophils are seen 2weeks after the transplant. We suspect
that this overly long proliferation time results from the simplification in our model of
considering proliferation as a single homogenous process as detailed in Sect. 3.3.

To obtain a more realistic proliferation time of around a week, close to the 6.3days
that Smith (2016) states, we keep the total of N∗

P +N∗
M = 5.44×109 cells/kg as found

by Dancey et al. (1976), but redistribute cells between proliferation and maturation
and set

N∗
P = 0.93×109 cells/kg, N∗

M = 4.51×109 cells/kg. (94)

Dancey et al. (1976)measured the half-removal time of neutrophils from circulation
to be t1/2 = 7.6h. Accordingly, using (51) and rounding, we set γN = 35/16 =
2.1875 days−1 and obtain τ ∗

NC
as the reciprocal of this. Then Eq. (58) imposes the

constraint that aNM < 5.4823 days. If we set aNM = 3.9 days close to the value of
3.8 days found by Hearn et al. (1998), then (60) imposes the constraint that τ ∗

NR
∈

(1.9543, 2.7472). Hence, we take

aNM = 3.9 days, τ ∗
NR

= 2.7 days, (95)

so that both constraints are satisfied, and aNM + τ ∗
NR

= 6.6 days, the value given in
Dancey et al. (1976). The rest of the neutrophil homeostasis parameters are calculated
using the formulae of Sect. 4.1, paying attention in (61) to multiply Q∗ by 10−3 to
convert it to the same units as N∗

R .
The G-CSF pharmacokinetic parameters are fit using the simplified G-CSF model

(68), (69) as described in Sect. 4.2. This produces multiple, but equally plausible,
parameter sets but as described in previous sections not all of these result in good
fits to data when we consider the neutrophil response of the full model (1)–(17) to
administrations of G-CSF or of chemotherapy. Consequently as stated in Sect. 4.5,
to obtain the best responses of the system to these scenarios we use the fourth set of
pharmacokinetic parameters from Table 1 which for the simplified G-CSFmodel have
N simp
elim = 0.8 to define kren, k12, k21, kint, and Pow, as well as the exogenous G-CSF

parameters Vd , F , ka (where the last three are dose dependent). Equations (66), (67),
and (73) then define G∗

2, Gprod, and Nelim = 0.7033 for the full model.
At G-CSF knockout, from Bugl et al. (2012), Lui et al. (2013) we have Cko ∈

[0.2, 0.3], so it is natural to set Cko = 0.25.
For the pharmacodynamic parameters, similar to Pow, arguments could be made

for choosing s1 = 1 or s1 = 2, but having fit Pow and finding it close to 1.5, we will
simply set

s1 = 1.5 (96)
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to reduce the number of parameters that need to be fit by one. The remaining pharma-
codynamic parameters μ, bNP , Vmax, b̃V , ϕNR (0), and ϕratio

NR
were then fit as described

in Sect. 4.4, with these parameters defining values of the dependent parameters ηmin
NP

,
ϕmax
NR

, bV , and bG via (88). From Sect. 4.3 we also obtain values for θ from (85) and

κmin from (88). Each set of kinetic parameters from Table 1 defines a different set of
pharmacodynamic parameters as reported in Table 2, but as noted already we prefer
the parameter set for N simp

elim = 0.80 which corresponds to Nelim = 0.7033.
The full set of parameter values for our combined neutrophil and G-CSF model

(1)–(17) are given in Table 4, along with their units, interpretation, and source. Since
some of these parameters are defined by equations involving auxiliary parameters that
do not explicitly appear in the full model we state these parameters and their source in
Table 5. Parameters related to the pharmacokinetics and pharmacodynamics of both
of the exogenous drugs which have not previously been stated are given in Table 6.

6 Model Evaluation and Functional Responses

One of the major successes of this study rests in its translational nature and, by
extension, its relevance for clinicians and physiologists. Anticancer treatments fre-
quently result in myelosuppression (neutropenia, or low neutrophil counts), and this
has significant consequences on patients’ treatment protocols and, ultimately, the ther-
apeutic outcome. Accordingly, one of our main interests is in application to G-CSF
dose adaptation during chemotherapy. Having estimated the G-CSF pharmacokinetic,
homeostasis related, and chemotherapy pharmacodynamic parameters individually as
described in Sects. 4.2, 4.4, and 4.5, a convincing demonstration of the robustness of
the model is its ability to successfully predict drug–drug interaction scenarios. There-
fore, we will compare the model’s predictions of the concurrent administration of
anticancer drugs with adjuvant G-CSF support to clinical data to evince the clinical
applicability of our model. We previously studied G-CSF treatment adaptation in a
model with simplified G-CSF kinetics and pharmacodynamics (Craig et al. 2015). The
current model provides for more realistic predictions than in our previous work (Craig
et al. 2015).

Therefore, as in Craig et al. (2015), we simulated the CHOP14 protocol described in
Pfreundschuh et al. (2004b) and Pfreundschuh et al. (2004a)which includes the admin-
istration of both chemotherapy and exogenousG-CSF.Although the chemotherapeutic
drug modelled in Sect. 3.5 is not part of the combination therapy of the CHOP14 reg-
imen, the cytotoxic effects of the anticancer drugs are presumed to be similar. To
compare to the CHOP14 data published in Krinner et al. (2013), we simulated a
regimen of six cycles of 14-day periodic chemotherapeutic treatment with rhG-CSF
treatment beginning 4days after the administration of chemotherapy and continuing
for ten administrations per cycle. As in Craig et al. (2015), the simulated dose of 4µg
of Zalypsis® was selected from the optimal regimens identified in González-Sales
et al. (2012) and per the CHOP14 protocol outlined in Pfreundschuh et al. (2004b),
Pfreundschuh et al. (2004a), ten 300-µg doses of subcutaneous G-CSFwere simulated
per cycle. The lower dose of 300µg was selected since we assumed an average weight
of 70kg per patient throughout.
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Fig. 9 Comparison of the predicted neutrophil response to the CHOP14 protocol Pfreundschuh et al.

(2004b) and Pfreundschuh et al. (2004a) for N simp
elim = 0.80. In this regimen, 4µg of Zalypsis® given by a

1-h IV infusion is administered 14days apart, beginning on day 0, for 6 cycles (84days total). Per cycle, 10
administrations of 300-µg subcutaneous doses of filgrastim are given beginning 4days after the start of the
chemotherapeutic cycle and continuing to day 13 post-chemotherapy. The simulation is compared to data
from Krinner et al. (2013), presented in quartiles. In pale green the first quartile, in pale pinkmedian range,
in pale blue third quartile. Black line with sampling points model prediction sampled every day at clinical
sampling points, solid purple line full model prediction (Color figure online)

Figure 9 shows the result of the neutrophil response comparison of the model’s
prediction to the clinical data. Unlike experimental settings where information on
the HSCs, the marrow neutrophils, and the bound G-CSF concentrations are unavail-
able, the model’s solutions for Q(t), NR(t), and G2(t) are easily obtainable and
provide insight into not only the mechanisms responsible for myelosuppresion dur-
ing chemotherapy, but also ways in which this toxicity might be avoided. Identifying
specific mechanisms impacting the appearance of neutropenia during chemotherapy
has important ramifications for clinicians (who can then better predict the onset of
myelosuppression) and is a further example of the translational nature of physiolog-
ical models such as the one reported here. In Fig. 10, the HSCs, neutrophils in the
marrow reservoir, and bound and unbound G-CSF are all seen to converge to periodic
responses. However, while the reduction in HSC concentrations is minimal (Fig. 10a)
the neutrophil marrow reservoir is shown in Fig. 10b to become severely depleted.
This depletion is caused by the delayed effects of the administration of chemotherapy
but also the rapid transit of cells from the reservoir into the blood caused by the intro-
duction of exogenous G-CSF 4days post-chemotherapy (see Fig. 11e below). This
in turn prevents ANC recoveries from depressed values, despite the administration of
G-CSF. As inVainstein et al. (2005) and Craig et al. (2015), it is likely that delaying the
beginning of prophylactic G-CSF support during chemotherapy would help to combat
myelosuppresion, but this is a future avenue of investigation.
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Fig. 10 Model responses to the CHOP14 protocol as described in Sect. 6. a Q(t) over the six CHOP cycles
detailed above, b–d NR(t), G1(t), and G2(t) over three CHOP cycles

It is also revealing to study how each of the model’s functions correspond to the
estimated parameters to gain further insight on themechanisms of granulopoiesis. Fig-
ure 11 shows the functions κ(G1), ηNP (G1), ηchemo

NP
(G1), VNM (G1), and ϕNR (GBF )

and identifies their respective homeostatic levels.Wecan see thatϕNR (GBF ) inFig. 11e
has a homeostasis concentrationϕNR (G∗

BF ) very close toϕNR (0). This reflects the abil-
ity of the granulopoietic system to respond rapidly in the case of emergencies (Rankin
2010) but also supports the hypothesis that early prophylactic support withG-CSF dur-
ing chemotherapy may hasten the emptying of the reservoir due to the responsiveness
of ϕNR (GBF (t)) in particular (Craig et al. 2015; Vainas et al. 2012).

7 Discussion

Clinically relevant translational models in medicine not only must accurately depict
different and independent treatment regimes (Vainstein et al. 2005), but must also be
able to reconstruct homeostatic and pathological caseswhichmaybe intervention inde-
pendent. The granulopoiesis model we have developed is physiologically relevant and,
perhapsmost importantly, provides insight beyond that which is clinicallymeasurable.
The updated pharmacokinetic model of G-CSF, novel in that it explicitly accounts for
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(Color figure online)

unbound and bound concentrations, correctly accounts for G-CSF dynamics whereas
previous one compartment models all resulted in renal dominated dynamics. The new
pharmacokinetic model also further allows us to comment on the principal mecha-
nisms driving the production of neutrophils. Although the relatively small number of
neutrophil progenitors do not have a significant effect on G-CSF kinetics, our results
suggest that differentiation, proliferation, andmaturation speed are driven primarily by
signalling from G-CSF bound to neutrophil progenitors, and not from signalling of G-
CSF bound to mature neutrophils. We can further characterize the principal processes
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governing myelosuppression during the concurrent administration of chemotherapy
and prophylactic G-CSF, which we have determined lies in the simultaneous deple-
tion of the marrow reservoir by high doses of exogenous G-CSF combined with fewer
neutrophils reaching the reservoir due to the cytotoxicity of the anticancer drug.

The modelling reported here combines a number of original approaches to the
conceptualization of physiological, pharmacokinetic, and pharmacodynamics models
and to the estimation of parameters and model verification. For example, traditional
least squares estimation was redefined using functions which ensured robustness and
allowed for comparisons of predictions to data over richly sampled intervals instead of
at fewer data points. Moreover, the model’s physiological realism served as a means
of evaluating the suitability of optimized parameter values so we were not relying
solely on goodness-of-fit, which can obfuscate the biological relevance of results
(van der Graaf and Benson 2011). The inclusion of the detailed characterizations of
physiological mechanisms in our model therefore serves as a litmus test of suitability
in addition to providing intuition about the processes driving granulopoiesis.

The broader implications of the approaches outlined in this work extend into var-
ious domains. The derivation of a delay differential equation model with variable
aging rate from an age-structured PDE, as described in Sect. 3.3, is mathematically
significant and its intricate nature has led to previous modelling errors. As mentioned,
the fitting procedures outlined in Sects. 4.2, 4.4, and 4.5 motivate the development
of more refined least squares methods and parameter estimation techniques. Addi-
tionally, the novel pharmacokinetic model of G-CSF has ramifications with respect
to the usual approaches used by PK/PD modellers. The mischaracterization of the
elimination dynamics, despite the inclusion of internalization terms, has led to models
which contradict what is known of the physiology. While they can characterize cer-
tain clinical situations, like the single administration of exogenous G-CSF, they fail
when applied to more complex scenarios. Without accounting for the entire process
of neutrophil development or using physiological rationale for a model’s parameters,
one is unable to judge whether a model captures the complicated dynamics of gran-
ulopoiesis. In the model we have developed, we have ensured the accuracy of its
predictions and the appropriateness of its parameters through careful construction. In
turn, this rational approach has implications for the clinical practice where it can serve
to optimize dosing regimens in oncological settings and also serve to pinpoint the ori-
gins of dynamical neutrophil disorders like cyclic neutropenia, ultimately contributing
to the improvement of patient care and outcomes.
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